1
|
Joos M, Van Ginneken S, Villanueva X, Dijkmans M, Coppola GA, Pérez-Romero CA, Vackier T, Van der Eycken E, Marchal K, Lories B, Steenackers HP. EPS inhibitor treatment of Salmonella impacts evolution without selecting for resistance to biofilm inhibition. NPJ Biofilms Microbiomes 2025; 11:73. [PMID: 40328762 PMCID: PMC12056028 DOI: 10.1038/s41522-025-00693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 05/08/2025] Open
Abstract
Virulence factors of pathogens, such as toxin production and biofilm formation, often exhibit a public character, providing benefits to nearby non-producers. Consequently, anti-virulence drugs targeting these public traits may not select for resistance, as resistant mutants that resume production of the virulence factor share the benefits of their resistance with surrounding sensitive cells. In agreement with this, we show that even after long-term treatment with a 2-amino-imidazole (2-AI) biofilm inhibitor, Salmonella populations remained as susceptible to biofilm inhibition as the ancestral populations. Nonetheless, further genotypic and phenotypic analysis revealed that the Salmonella populations did adapt to the treatment and accumulated mutations in efflux pump regulators and alternative sigma factors. These mutations resulted in a reduced biofilm-forming capacity and increased efflux activity. Their selection was due to a growth delaying side effect of the biofilm inhibitor. Enhanced efflux activity helped overcome this growth delay, providing a fitness advantage over the ancestor. Finally, we demonstrate that chemical modification of the inhibitor enhances its specificity by partially alleviating the unintended growth delay while retaining the anti-biofilm activity, which in turn eliminated the selection pressure for increased efflux. Overall, our findings highlight that while unintended side effects can complicate anti-virulence strategies, adaptation to these effects does not necessarily restore the inhibited virulence trait. Moreover, chemical modification can mitigate these unintended side effects and enhance drug specificity.
Collapse
Affiliation(s)
- Mathieu Joos
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Sybren Van Ginneken
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Xabier Villanueva
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Marie Dijkmans
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Guglielmo A Coppola
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium
| | - Camilo Andres Pérez-Romero
- Department of Plant Biotechnology and Bioinformatics, UGent - Internet Technology and Data Science Lab (IDLab), Gent, Belgium
| | - Thijs Vackier
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Erik Van der Eycken
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven, Belgium
- People's Friendship University of Russia (RUDN University), Moscow, Russia
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, UGent - Internet Technology and Data Science Lab (IDLab), Gent, Belgium
| | - Bram Lories
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium
| | - Hans P Steenackers
- KU Leuven - MiCA Lab, Centre of Microbial and Plant Genetics, Leuven, Belgium.
| |
Collapse
|
2
|
Zhang J, Gong X, Gan Q, Yan Y. Application of Metabolite-Responsive Biosensors for Plant Natural Products Biosynthesis. BIOSENSORS 2023; 13:633. [PMID: 37366998 DOI: 10.3390/bios13060633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Plant natural products (PNPs) have shown various pharmaceutical activities, possessing great potential in global markets. Microbial cell factories (MCFs) provide an economical and sustainable alternative for the synthesis of valuable PNPs compared with traditional approaches. However, the heterologous synthetic pathways always lack native regulatory systems, bringing extra burden to PNPs production. To overcome the challenges, biosensors have been exploited and engineered as powerful tools for establishing artificial regulatory networks to control enzyme expression in response to environments. Here, we reviewed the recent progress involved in the application of biosensors that are responsive to PNPs and their precursors. Specifically, the key roles these biosensors played in PNP synthesis pathways, including isoprenoids, flavonoids, stilbenoids and alkaloids, were discussed in detail.
Collapse
Affiliation(s)
- Jianli Zhang
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qi Gan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials, and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
3
|
Hajiagha MN, Kafil HS. Efflux pumps and microbial biofilm formation. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023:105459. [PMID: 37271271 DOI: 10.1016/j.meegid.2023.105459] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Biofilm-related infections are resistant forms of pathogens that are regarded as a medical problem, particularly due to the spread of multiple drug resistance. One of the factors associated with biofilm drug resistance is the presence of various types of efflux pumps in bacteria. Efflux pumps also play a role in biofilm formation by influencing Physical-chemical interactions, mobility, gene regulation, quorum sensing (QS), extracellular polymeric substances (EPS), and toxic compound extrusion. According to the findings of studies based on efflux pump expression analysis, their role in the anatomical position within the biofilm will differ depending on the biofilm formation stage, encoding gene expression level, the type and concentration of substrate. In some cases, the function of the efflux pumps can overlap with each other, so it seems necessary to accurate identify the efflux pumps of biofilm-forming bacteria along with their function in this process. Such studies will help to choose treatment strategy, at least in combination with antibiotics. Furthermore, if the goal of treatment is an efflux pump manipulation, we should not limit it to inhibition.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajiagha
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Ferrand A, Vergalli J, Bosi C, Pantel A, Pagès JM, Davin-Regli A. Contribution of efflux and mutations in fluoroquinolone susceptibility in MDR enterobacterial isolates: a quantitative and molecular study. J Antimicrob Chemother 2023; 78:1532-1542. [PMID: 37104818 DOI: 10.1093/jac/dkad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
OBJECTIVES The emergence of MDR strains is a public health problem in the management of associated infections. Several resistance mechanisms are present, and antibiotic efflux is often found at the same time as enzyme resistance and/or target mutations. However, in the laboratory routinely, only the latter two are identified and the prevalence of antibiotic expulsion is underestimated, causing a misinterpretation of the bacterial resistance phenotype. The development of a diagnostic system to quantify the efflux routinely would thus improve the management of patients. METHODS A quantitative technique based on detection of clinically used fluoroquinolones was investigated in Enterobacteriaceae clinical strains with a high or basal efflux activity. The detail of efflux involvement was studied from MIC determination and antibiotic accumulation inside bacteria. WGS was carried out on selected strains to determine the genetic background associated with efflux expression. RESULTS Only 1 Klebsiella pneumoniae isolate exhibited a lack of efflux whereas 13 isolates had a basal efflux and 8 presented efflux pump overexpression. The antibiotic accumulation evidenced the efficacy of the efflux mechanism in strains, and the contribution of dynamic expulsion versus target mutations in fluoroquinolone susceptibility. CONCLUSIONS We confirmed that phenylalanine arginine β-naphthylamide is not a reliable marker of efflux due to the affinity of the AcrB efflux pump for different substrates. We have developed an accumulation test that can be used efficiently on clinical isolates collected by the biological laboratory. The experimental conditions and protocols ensure a robust assay that with improvements in practice, expertise and equipment could be transferred to the hospital laboratory to diagnose the contribution of efflux in Gram-negative bacteria.
Collapse
Affiliation(s)
- Aurélie Ferrand
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Julia Vergalli
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Claude Bosi
- Laboratoire de Biologie Polyvalente, Centre Hospitalier d'Aubagne, Aubagne, France
| | - Alix Pantel
- Virulence Bactérienne et Infections Chroniques, INSERM U1047, Université Montpellier, Service de Microbiologie et Hygiène Hospitalière, CHU Nîmes, 30900 Nîmes, France
| | - Jean-Marie Pagès
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, IRBA, MCT, Marseille, France
| |
Collapse
|
5
|
Chiou CS, Hong YP, Wang YW, Chen BH, Teng RH, Song HY, Liao YS. Antimicrobial Resistance and Mechanisms of Azithromycin Resistance in Nontyphoidal Salmonella Isolates in Taiwan, 2017 to 2018. Microbiol Spectr 2023; 11:e0336422. [PMID: 36688703 PMCID: PMC9927516 DOI: 10.1128/spectrum.03364-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial resistance was investigated in 2,341 nontyphoidal Salmonella (NTS) isolates recovered from humans in Taiwan from 2017 to 2018 using antimicrobial susceptibility testing. Azithromycin resistance determinants were detected in 175 selected isolates using PCR and confirmed in 81 selected isolates using whole-genome sequencing. Multidrug resistance was found in 47.3% of total isolates and 96.2% of Salmonella enterica serovar Anatum and 81.7% of S. enterica serovar Typhimurium isolates. Resistance to the conventional first-line drugs (ampicillin, chloramphenicol, and cotrimoxazole), cefotaxime and ceftazidime, and ciprofloxacin was found in 32.5 to 49.0%, 20.3 to 20.4%, and 3.2% of isolates, respectively. A total of 76 (3.1%) isolates were resistant to azithromycin, which was associated with mph(A), erm(42), erm(B), and possibly the enhanced expression of efflux pump(s) due to ramAp or defective ramR. mph(A) was found in 53% of the 76 azithromycin-resistant isolates from 11 serovars and located in an IS26-mph(A)-mrx(A)-mphR(A)-IS6100 unit in various incompatibility plasmids and the chromosomes. erm(42) in S. enterica serovar Albany was carried by an integrative and conjugative element, ICE_erm42, and in S. enterica serovar Enteritidis and S. Typhimurium was located in IS26 composite transposons in the chromosomes. erm(B) was carried by IncI1-I(α) plasmids in S. Enteritidis and S. Typhimurium. ramAp was a plasmid-borne ramA, a regulatory activator of efflux pump(s), found in only S. enterica serovar Goldcoast. Since the azithromycin resistance determinants are primarily carried on mobile genetic elements, they could easily be disseminated among human bacterial pathogens. The ramAp-carrying S. Goldcoast isolates displayed azithromycin MICs of 16 to 32 mg/L. Thus, the epidemiological cutoff value of ≤16 mg/L of azithromycin proposed for wild-type NTS should be reconsidered. IMPORTANCE Antimicrobial resistance in NTS isolates is a major public health concern in Taiwan, and the mechanisms of azithromycin resistance are rarely investigated. Azithromycin and carbapenems are the last resort for the treatment of invasive salmonellosis caused by multidrug-resistant (MDR) and extensively drug-resistant Salmonella strains. Our study reports the epidemiological trend of resistance in NTS in Taiwan and the genetic determinants involved in azithromycin resistance. We point out that nearly half of NTS isolates from 2017 to 2018 are MDR, and 20% are resistant to third-generation cephalosporins. The azithromycin resistance rate (3.1%) for the NTS isolates from Taiwan is much higher than those for the NTS isolates from the United States and Europe. Our study also indicates that azithromycin resistance is primarily mediated by mph(A), erm(42), erm(B), and ramAp, which are frequently carried on mobile genetic elements. Thus, the azithromycin resistance determinants could be expected to be disseminated among diverse bacterial pathogens.
Collapse
Affiliation(s)
- Chien-Shun Chiou
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Yu-Ping Hong
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - You-Wun Wang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Bo-Han Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ru-Hsiou Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Hui-Yung Song
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| | - Ying-Shu Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taipei, Taiwan
| |
Collapse
|
6
|
Blair JMA, Siasat P, McNeil HE, Colclough A, Ricci V, Lawler AJ, Abdalaal H, Buckner MMC, Baylay A, Busby SJ, Piddock LJV. EnvR is a potent repressor of acrAB transcription in Salmonella. J Antimicrob Chemother 2022; 78:133-140. [PMID: 36308324 PMCID: PMC9780535 DOI: 10.1093/jac/dkac364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Resistance nodulation division (RND) family efflux pumps, including the major pump AcrAB-TolC, are important mediators of intrinsic and evolved antibiotic resistance. Expression of these pumps is carefully controlled by a network of regulators that respond to different environmental cues. EnvR is a TetR family transcriptional regulator encoded upstream of the RND efflux pump acrEF. METHODS Binding of EnvR protein upstream of acrAB was determined by electrophoretic mobility shift assays and the phenotypic consequence of envR overexpression on antimicrobial susceptibility, biofilm motility and invasion of eukaryotic cells in vitro was measured. Additionally, the global transcriptome of clinical Salmonella isolates overexpressing envR was determined by RNA-Seq. RESULTS EnvR bound to the promoter region upstream of the genes coding for the major efflux pump AcrAB in Salmonella, inhibiting transcription and preventing production of AcrAB protein. The phenotype conferred by overexpression of envR mimicked deletion of acrB as it conferred multidrug susceptibility, decreased motility and decreased invasion into intestinal cells in vitro. Importantly, we demonstrate the clinical relevance of this regulatory mechanism because RNA-Seq revealed that a drug-susceptible clinical isolate of Salmonella had low acrB expression even though expression of its major regulator RamA was very high; this was caused by very high EnvR expression. CONCLUSIONS In summary, we show that EnvR is a potent repressor of acrAB transcription in Salmonella, and can override binding by RamA so preventing MDR to clinically useful drugs. Finding novel tools to increase EnvR expression may form the basis of a new way to prevent or treat MDR infections.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen E McNeil
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Abigail Colclough
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Vito Ricci
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Amelia J Lawler
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Hind Abdalaal
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Michelle M C Buckner
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Alison Baylay
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Stephen J Busby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
7
|
OUP accepted manuscript. J Antimicrob Chemother 2022; 77:1272-1281. [DOI: 10.1093/jac/dkac044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2022] [Indexed: 11/15/2022] Open
|
8
|
Abstract
Active efflux of antibiotics preventing their accumulation to toxic intracellular concentrations contributes to clinically relevant multidrug resistance. Inhibition of active efflux potentiates antibiotic activity, indicating that efflux inhibitors could be used in combination with antibiotics to reverse drug resistance. Expression of ramA by Salmonella enterica serovar Typhimurium increases in response to efflux inhibition, irrespective of the mode of inhibition. We hypothesized that measuring ramA promoter activity could act as a reporter of efflux inhibition. A rapid, inexpensive, and high-throughput green fluorescent protein (GFP) screen to identify efflux inhibitors was developed, validated, and implemented. Two chemical compound libraries were screened for compounds that increased GFP production. Fifty of the compounds in the 1,200-compound Prestwick chemical library were identified as potential efflux inhibitors, including the previously characterized efflux inhibitors mefloquine and thioridazine. There were 107 hits from a library of 47,168 proprietary compounds from L. Hoffmann La Roche; 45 were confirmed hits, and a dose response was determined. Dye efflux and accumulation assays showed that 40 Roche and three Prestwick chemical library compounds were efflux inhibitors. Most compounds had specific efflux-inhibitor-antibiotic combinations and/or species-specific synergy in antibiotic disc diffusion and checkerboard assays performed with Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and Salmonella Typhimurium. These data indicate that both narrow-spectrum and broad-spectrum combinations of efflux inhibitors with antibiotics can be found. Eleven novel efflux inhibitor compounds potentiated antibiotic activities against at least one species of Gram-negative bacteria, and data revealing an E. coli mutant with loss of AcrB function suggested that these are AcrB inhibitors.IMPORTANCE Multidrug-resistant Gram-negative bacteria pose a serious threat to human and animal health. Molecules that inhibit multidrug efflux offer an alternative approach to resolving the challenges caused by antibiotic resistance, by potentiating the activity of old, licensed, and new antibiotics. We have developed, validated, and implemented a high-throughput screen and used it to identify efflux inhibitors from two compound libraries selected for their high chemical and pharmacological diversity. We found that the new high-throughput screen is a valuable tool to identify efflux inhibitors, as evidenced by the 43 new efflux inhibitors described in this study.
Collapse
|
9
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
10
|
Piddock LJV. The 2019 Garrod Lecture: MDR efflux in Gram-negative bacteria-how understanding resistance led to a new tool for drug discovery. J Antimicrob Chemother 2019; 74:3128-3134. [PMID: 31626705 DOI: 10.1093/jac/dkz370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The AcrAB-TolC MDR efflux system confers intrinsic MDR and overproduction confers clinically relevant resistance to some antibiotics active against Gram-negative bacteria. The system is made up of three components, namely AcrA, AcrB and TolC, otherwise known as the AcrAB-TolC tripartite system. Inactivation or deletion of a gene encoding one of the constituent proteins, or substitution of a single amino acid in the efflux pump component AcrB that results in loss of efflux function, confers increased antibiotic susceptibility. Clinically relevant resistance can be mediated by a mutation in acrB that changes the way AcrB substrates are transported. However, it is more common that resistant clinical and veterinary isolates overproduce the AcrAB-TolC MDR efflux system. This is due to mutations in genes such as marR and ramR that encode repressors of transcription factors (MarA and RamA, respectively) that when produced activate expression of the acrAB and tolC genes thereby increasing efflux. The Lon protease degrades MarA and RamA to return the level of efflux to that of the WT. Furthermore, the levels of AcrAB-TolC are regulated by CsrA. Studies with fluorescent reporters that report levels of acrAB and regulatory factors allowed the development of a new tool for discovering efflux inhibitors. Screens of the Prestwick Chemical Library and a large library from a collaborating pharmaceutical company have generated a number of candidate compounds for further research.
Collapse
Affiliation(s)
- Laura J V Piddock
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
11
|
Colclough AL, Scadden J, Blair JMA. TetR-family transcription factors in Gram-negative bacteria: conservation, variation and implications for efflux-mediated antimicrobial resistance. BMC Genomics 2019; 20:731. [PMID: 31606035 PMCID: PMC6790063 DOI: 10.1186/s12864-019-6075-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background TetR-family transcriptional regulators (TFTRs) are DNA binding factors that regulate gene expression in bacteria. Well-studied TFTRs, such as AcrR, which regulates efflux pump expression, are usually encoded alongside target operons. Recently, it has emerged that there are many TFTRs which act as global multi-target regulators. Our classical view of TFTRs as simple, single-target regulators therefore needs to be reconsidered. As some TFTRs regulate essential processes (e.g. metabolism) or processes which are important determinants of resistance and virulence (e.g. biofilm formation and efflux gene expression) and as TFTRs are present throughout pathogenic bacteria, they may be good drug discovery targets for tackling antimicrobial resistant infections. However, the prevalence and conservation of individual TFTR genes in Gram-negative species, has to our knowledge, not yet been studied. Results Here, a wide-scale search for TFTRs in available proteomes of clinically relevant pathogens Salmonella and Escherichia species was performed and these regulators further characterised. The majority of identified TFTRs are involved in efflux regulation in both Escherichia and Salmonella. The percentage variance in TFTR genes of these genera was found to be higher in those regulating genes involved in efflux, bleach survival or biofilm formation than those regulating more constrained processes. Some TFTRs were found to be present in all strains and species of these two genera, whereas others (i.e. TetR) are only present in some strains and some (i.e. RamR) are genera-specific. Two further pathogens on the WHO priority pathogen list (K. pneumoniae and P. aeruginosa) were then searched for the presence of the TFTRs conserved in Escherichia and Salmonella. Conclusions Through bioinformatics and literature analyses, we present that TFTRs are a varied and heterogeneous family of proteins required for the regulation of numerous important processes, with consequences to antimicrobial resistance and virulence, and that the roles and responses of these proteins are frequently underestimated. Electronic supplementary material The online version of this article (10.1186/s12864-019-6075-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A L Colclough
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J Scadden
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - J M A Blair
- Institute of Microbiology and Infection, Biosciences Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Webber MA, Buckner MMC, Redgrave LS, Ifill G, Mitchenall LA, Webb C, Iddles R, Maxwell A, Piddock LJV. Quinolone-resistant gyrase mutants demonstrate decreased susceptibility to triclosan. J Antimicrob Chemother 2018; 72:2755-2763. [PMID: 29091182 DOI: 10.1093/jac/dkx201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/26/2017] [Indexed: 12/31/2022] Open
Abstract
Objectives Cross-resistance between antibiotics and biocides is a potentially important driver of MDR. A relationship between susceptibility of Salmonella to quinolones and triclosan has been observed. This study aimed to: (i) investigate the mechanism underpinning this; (ii) determine whether the phenotype is conserved in Escherichia coli; and (iii) evaluate the potential for triclosan to select for quinolone resistance. Methods WT E. coli, Salmonella enterica serovar Typhimurium and gyrA mutants were used. These were characterized by determining antimicrobial susceptibility, DNA gyrase activity and sensitivity to inhibition. Expression of stress response pathways (SOS, RpoS, RpoN and RpoH) was measured, as was the fitness of mutants. The potential for triclosan to select for quinolone resistance was determined. Results All gyrase mutants showed increased triclosan MICs and altered supercoiling activity. There was no evidence for direct interaction between triclosan and gyrase. Identical substitutions in GyrA had different impacts on supercoiling in the two species. For both, there was a correlation between altered supercoiling and expression of stress responses. This was more marked in E. coli, where an Asp87Gly GyrA mutant demonstrated greatly increased fitness in the presence of triclosan. Exposure of parental strains to low concentrations of triclosan did not select for quinolone resistance. Conclusions Our data suggest gyrA mutants are less susceptible to triclosan due to up-regulation of stress responses. The impact of gyrA mutation differs between E. coli and Salmonella. The impacts of gyrA mutation beyond quinolone resistance have implications for the fitness and selection of gyrA mutants in the presence of non-quinolone antimicrobials.
Collapse
Affiliation(s)
- Mark A Webber
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK.,The Quadram Institute, Norwich Research Park, Norwich NR47UH, UK
| | - Michelle M C Buckner
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Liam S Redgrave
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Gyles Ifill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Lesley A Mitchenall
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Carly Webb
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Robyn Iddles
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR47UH, UK
| | - Laura J V Piddock
- Institute of Microbiology & Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B152TT, UK
| |
Collapse
|
13
|
Ricci V, Attah V, Overton T, Grainger DC, Piddock LJV. CsrA maximizes expression of the AcrAB multidrug resistance transporter. Nucleic Acids Res 2018; 45:12798-12807. [PMID: 29040729 PMCID: PMC5727465 DOI: 10.1093/nar/gkx929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/02/2017] [Indexed: 01/30/2023] Open
Abstract
Carbon Storage Regulator A (CsrA) is an RNA binding protein that acts as a global regulator of diverse genes. Using a combination of genetics and biochemistry we show that CsrA binds directly to the 5′ end of the transcript encoding AcrAB. Deletion of csrA or mutagenesis of the CsrA binding sites reduced production of both AcrA and AcrB. Nucleotide substitutions at the 5′ UTR of acrA mRNA that could potentially weaken the inhibitory RNA secondary structure, allow for more efficient translation of the AcrAB proteins. Given the role of AcrAB-TolC in multi-drug efflux we suggest that CsrA is a potential drug target.
Collapse
Affiliation(s)
- Vito Ricci
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Victoria Attah
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Tim Overton
- Bioengineering, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - David C Grainger
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection, College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
14
|
Weston N, Sharma P, Ricci V, Piddock LJV. Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae. Res Microbiol 2017; 169:425-431. [PMID: 29128373 DOI: 10.1016/j.resmic.2017.10.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/16/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022]
Abstract
Bacterial multidrug efflux systems are a major mechanism of antimicrobial resistance and are fundamental to the physiology of Gram-negative bacteria. The resistance-nodulation-division (RND) family of efflux pumps is the most clinically significant, as it is associated with multidrug resistance. Expression of efflux systems is subject to multiple levels of regulation, involving local and global transcriptional regulation as well as post-transcriptional and post-translational regulation. The best-characterised RND system is AcrAB-TolC, which is present in Enterobacteriaceae. This review describes the current knowledge and new data about the regulation of the acrAB and tolC genes in Escherichia coli and Salmonella enterica.
Collapse
Affiliation(s)
- Natasha Weston
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Prateek Sharma
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Vito Ricci
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Laura J V Piddock
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
15
|
Computational Analysis of the Molecular Mechanism of RamR Mutations Contributing to Antimicrobial Resistance in Salmonella enterica. Sci Rep 2017; 7:13418. [PMID: 29042652 PMCID: PMC5645378 DOI: 10.1038/s41598-017-14008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 11/09/2022] Open
Abstract
Antimicrobial resistance (AMR) in pathogenic microorganisms with multidrug resistance (MDR) constitutes a severe threat to human health. A major causative mechanism of AMR is mediated through the multidrug efflux pump (MEP). The resistance-nodulation-division superfamily (RND family) of Gram-negative bacteria is usually the major cause of MDR in clinical studies. In Salmonella enterica, the RND pump is translated from the acrAB gene, which is regulated by the activator RamA. Many MEP-caused AMR strains have high ramA gene expression due to mutations in RamR, which has a homodimeric structure comprising the dimerization domain and DNA-binding domain (DBD). Three mutations on the dimerization domain, namely Y59H, M84I, and E160D, are far from the DBD; the molecular mechanism through which they influence RamR’s binding affinity to the ramA gene promoter and consequently disrupt RamA remains unclear. The present study conducted molecular dynamics simulations, binding free energy calculations, and normal mode analysis to investigate the mechanism through which Y59H, M84I, and E160D mutations on the dimerization domain influence the binding affinity of RamR to the ramA promoter. The present results suggest that the three mutations alter the RamR structure, resulting in decreased DNA-binding affinity.
Collapse
|
16
|
Shen J, Yang B, Gu Q, Zhang G, Yang J, Xue F, Shao J, Yi X, Jiang Y. The Role of AcrAB-TolC Efflux Pump in Mediating Fluoroquinolone Resistance in Naturally Occurring Salmonella Isolates from China. Foodborne Pathog Dis 2017; 14:728-734. [PMID: 28926285 DOI: 10.1089/fpd.2017.2291] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The involvement of AcrAB-TolC efflux pump in regulating fluoroquinolone resistance of naturally occurring Salmonella isolates is insufficiently investigated. In this study, the regulatory genes, acrR, ramR, marRAB, and soxRS of AcrAB-TolC efflux pump, of 27 naturally occurring fluoroquinolone-resistant Salmonella isolates collected in China were sequenced. The expression levels of acrB, ramA, marA, and soxS were also examined using quantitative real-time polymerase chain reaction. Gene alterations were mainly observed for acrR (three mutation types) and ramR (four mutation types), not for marRAB (no mutation) or soxRS (one mutaton type). Overexpressions were also mainly observed for acrB and ramA, not for marA or soxS. Some mutations/deletions in ramR caused highly elevated expression of ramA. Complementation with wild-type ramR gene reduced mRNA levels of acrB and ramA by 1.7- to 2.2-fold and 10.5- to 30.1-fold, respectively, and lowered fluoroquinolones (FQ) minimum inhibitory concentrations by 2- to 8-fold. Neither MarA nor SoxS was found to be associated with increased FQ resistance. This study shows that the AcrAB efflux pump is playing a role in mediating fluoroquinolone resistance, and RamA may be the major global regulator of AcrAB-TolC-mediated fluoroquinolone resistance in Salmonella.
Collapse
Affiliation(s)
- Jinling Shen
- 1 Technology Center of Zhangjiagang Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China , Zhangjiagang, China .,4 Technical Center for Animal Plant and Food Inspection and Qurantine , Shanghai Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China, Shanghai, China
| | - Baowei Yang
- 2 College of Food Science and Engineering, Northwest A&F University , Yangling, China
| | - Qiang Gu
- 1 Technology Center of Zhangjiagang Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China , Zhangjiagang, China
| | - Guodong Zhang
- 3 Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration, College Park, Maryland
| | - Jielin Yang
- 4 Technical Center for Animal Plant and Food Inspection and Qurantine , Shanghai Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China, Shanghai, China
| | - Feng Xue
- 5 College of Veterinary Medicine, Nanjing Agricultural University , Nanjing, China .,6 Jiangsu Collaborative Innovation Center of Meat Production and Processing , Nanjing, China
| | - Jingdong Shao
- 1 Technology Center of Zhangjiagang Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China , Zhangjiagang, China
| | - Xiaojuan Yi
- 1 Technology Center of Zhangjiagang Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China , Zhangjiagang, China
| | - Yuan Jiang
- 4 Technical Center for Animal Plant and Food Inspection and Qurantine , Shanghai Entry-Exit Inspection and Quarantine Bureau of the People's Republic of China, Shanghai, China .,6 Jiangsu Collaborative Innovation Center of Meat Production and Processing , Nanjing, China
| |
Collapse
|
17
|
Buffet-Bataillon S, Tattevin P, Maillard JY, Bonnaure-Mallet M, Jolivet-Gougeon A. Efflux pump induction by quaternary ammonium compounds and fluoroquinolone resistance in bacteria. Future Microbiol 2016; 11:81-92. [DOI: 10.2217/fmb.15.131] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biocides, primarily those containing quaternary ammonium compounds (QAC), are heavily used in hospital environments and various industries (e.g., food, water, cosmetic). To date, little attention has been paid to potential implications of QAC use in the emergence of antibiotic resistance, especially fluoroquinolone-resistant bacteria in patients and in the environment. QAC-induced overexpression of efflux pumps can lead to: cross resistance with fluoroquinolones mediated by multidrug efflux pumps; stress response facilitating mutation in the Quinolone Resistance Determining Region; and biofilm formation increasing the risk of transfer of mobile genetic elements carrying fluoroquinolone or QAC resistance determinants. By following the European Biocidal Product Regulation, manufacturers of QAC are required to ensure that their QAC-based biocidal products are safe and will not contribute to emerging bacterial resistance.
Collapse
Affiliation(s)
| | - Pierre Tattevin
- Service des Maladies Infectieuses, Pontchaillou, 35043 Rennes, France
- INSERM U835, Université de Rennes 1, 35000 Rennes, France
| | - Jean-Yves Maillard
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Martine Bonnaure-Mallet
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
- Pôle Odontologie, Teaching Hospital, 35043 Rennes, France
| | - Anne Jolivet-Gougeon
- Pôle Biologie, Teaching Hospital Pontchaillou, 35043 Rennes, France
- EA 1254 Microbiologie, Université de Rennes 1, 35000 Rennes, France
| |
Collapse
|
18
|
Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015; 6:377. [PMID: 25972857 PMCID: PMC4412071 DOI: 10.3389/fmicb.2015.00377] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids, and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design, and subsequent experimental verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on EPIs will also be analyzed and the reasons why no compounds have yet progressed into clinical use will be explored.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | | | - Shutao Ma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan, China
| |
Collapse
|
19
|
Blair JMA, Richmond GE, Piddock LJV. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol 2014; 9:1165-77. [DOI: 10.2217/fmb.14.66] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT Gram-negative bacteria express a plethora of efflux pumps that are capable of transporting structurally varied molecules, including antibiotics, out of the bacterial cell. This efflux lowers the intracellular antibiotic concentration, allowing bacteria to survive at higher antibiotic concentrations. Overexpression of some efflux pumps can cause clinically relevant levels of antibiotic resistance in Gram-negative pathogens. This review discusses the role of efflux in resistance of clinical isolates of Gram-negative bacteria, the regulatory mechanisms that control efflux pump expression, the recent advances in our understanding of efflux pump structure and how inhibition of efflux is a promising future strategy for tackling multidrug resistance in Gram-negative pathogens.
Collapse
Affiliation(s)
- Jessica MA Blair
- Antimicrobials Research Group, Institute of Microbiology & Infection, School of Immunity & Infection, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Grace E Richmond
- Antimicrobials Research Group, Institute of Microbiology & Infection, School of Immunity & Infection, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Laura JV Piddock
- Antimicrobials Research Group, Institute of Microbiology & Infection, School of Immunity & Infection, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
20
|
Piddock LJV. Understanding the basis of antibiotic resistance: a platform for drug discovery. MICROBIOLOGY-SGM 2014; 160:2366-2373. [PMID: 25122880 DOI: 10.1099/mic.0.082412-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
There are numerous genes in Salmonella enterica serovar Typhimurium that can confer resistance to fluoroquinolone antibiotics, including those that encode topoisomerase proteins, the primary targets of this class of drugs. However, resistance is often multifactorial in clinical isolates and it is not uncommon to also detect mutations in genes that affect the expression of proteins involved in permeability and multi-drug efflux. The latter mechanism, mediated by tripartite efflux systems, such as that formed by the AcrAB-TolC system, confers inherent resistance to many antibiotics, detergents and biocides. Genetic inactivation of efflux genes gives multi-drug hyper-susceptibility, and in the absence of an intact AcrAB-TolC system some chromosomal and transmissible antibiotic resistance genes no longer confer clinically relevant levels of resistance. Furthermore, a functional multi-drug resistance efflux pump, such as AcrAB-TolC, is required for virulence and the ability to form a biofilm. In part, this is due to altered expression of virulence and biofilm genes being sensitive to efflux status. Efflux pump expression can be increased, usually due to mutations in regulatory genes, and this confers resistance to clinically useful drugs such as fluoroquinolones and β-lactams. Here, I discuss some of the work my team has carried out characterizing the mechanisms of antibiotic resistance in Salmonella enterica serovar Typhimurium from the late 1980s to 2014. A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2014, can be viewed via this link: https://www.youtube.com/watch?v=MCRumMV99Yw.
Collapse
Affiliation(s)
- Laura J V Piddock
- Antimicrobials Research Group, School of Immunity and Infection and Institute for Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
21
|
Baucheron S, Nishino K, Monchaux I, Canepa S, Maurel MC, Coste F, Roussel A, Cloeckaert A, Giraud E. Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother 2014; 69:2400-6. [PMID: 24816212 DOI: 10.1093/jac/dku140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES In Salmonella Typhimurium, the genes encoding the AcrAB-TolC multidrug efflux system are mainly regulated by the ramRA locus, composed of the divergently transcribed ramA and ramR genes. The acrAB and tolC genes are transcriptionally activated by RamA, the gene for which is itself transcriptionally repressed by RamR. Previous studies have reported that bile induces acrAB in a ramA-dependent manner, but none provided evidence for an induction of ramA expression by bile. Therefore, the objective of this study was to clarify the regulatory mechanism by which bile activates acrAB and tolC. METHODS qRT-PCR was used to address the effects of bile (using choleate, an ox-bile extract) on the expression of ramA, ramR, acrB and tolC. Electrophoretic mobility shift assays and surface plasmon resonance experiments were used to measure the effect of bile on RamR binding to the ramA promoter (PramA) region. RESULTS We show that ramA is transcriptionally activated by bile and is strictly required for the bile-mediated activation of acrB and tolC. Additionally, bile is shown to specifically inhibit the binding of RamR to the PramA region, which overlaps the putative divergent ramR promoter, thereby explaining our observation that bile also activates ramR transcription. CONCLUSIONS We propose a regulation model whereby the bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through the transcriptional derepression of the ramA activator gene.
Collapse
Affiliation(s)
- Sylvie Baucheron
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Kunihiko Nishino
- Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Isabelle Monchaux
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Sylvie Canepa
- INRA, UMR7247, Plateforme d'Analyse Intégrative des Biomolécules et de Phénomique des Animaux d'Intérêt Bio-agronomique, Nouzilly, France
| | - Marie-Christine Maurel
- INRA, UMR7247, Plateforme d'Analyse Intégrative des Biomolécules et de Phénomique des Animaux d'Intérêt Bio-agronomique, Nouzilly, France
| | - Franck Coste
- Centre de Biophysique Moléculaire CNRS, UPR4301, Orléans, France
| | - Alain Roussel
- Centre de Biophysique Moléculaire CNRS, UPR4301, Orléans, France
| | - Axel Cloeckaert
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| | - Etienne Giraud
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000 Tours, France
| |
Collapse
|
22
|
Ricci V, Blair JMA, Piddock LJV. RamA, which controls expression of the MDR efflux pump AcrAB-TolC, is regulated by the Lon protease. J Antimicrob Chemother 2013; 69:643-50. [PMID: 24169580 PMCID: PMC3922155 DOI: 10.1093/jac/dkt432] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES RamA regulates the AcrAB-TolC multidrug efflux system. Using Salmonella Typhimurium, we investigated the stability of RamA and its impact on antibiotic resistance. METHODS To detect RamA, we introduced ramA::3XFLAG::aph into plasmid pACYC184 and transformed this into Salmonella Typhimurium SL1344ramA::cat and lon::aph mutants. An N-terminus-deleted mutant [pACYC184ramA(Δ2-21)::3XFLAG::aph] in which the first 20 amino acids of RamA were deleted was also constructed. To determine the abundance and half-life of FLAG-tagged RamA, we induced RamA with chlorpromazine (50 mg/L) and carried out western blotting using anti-FLAG antibody. Susceptibility to antibiotics and phenotypic characterization of the lon mutant was also carried out. RESULTS We show that on removal of chlorpromazine, a known inducer of ramA, the abundance of RamA decreased to pre-induced levels. However, in cells lacking functional Lon, we found that the RamA protein was not degraded. We also demonstrated that the 21 amino acid residues of the RamA N-terminus are required for recognition by the Lon protease. Antimicrobial susceptibility and phenotypic tests showed that the lon mutant was more susceptible to fluoroquinolone antibiotics, was filamentous when observed by microscopy and grew poorly, but showed no difference in motility or the ability to form a biofilm. There was also no difference in the ability of the lon mutant to invade human intestinal cells (INT-407). CONCLUSIONS In summary, we show that the ATP-dependent Lon protease plays an important role in regulating the expression of RamA and therefore multidrug resistance via AcrAB-TolC in Salmonella Typhimurium.
Collapse
Affiliation(s)
- Vito Ricci
- Antimicrobials Research Group, School of Immunity and Infection and Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | | | | |
Collapse
|
23
|
Lawler AJ, Ricci V, Busby SJW, Piddock LJV. Genetic inactivation of acrAB or inhibition of efflux induces expression of ramA. J Antimicrob Chemother 2013; 68:1551-7. [PMID: 23493314 PMCID: PMC3682690 DOI: 10.1093/jac/dkt069] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Objectives The transcriptional activator RamA regulates production of the multidrug resistance efflux AcrAB–TolC system in several Enterobacteriaceae. This study investigated factors that lead to increased expression of ramA. Methods In order to monitor changes in ramA expression, the promoter region of ramA was fused to a gfp gene encoding an unstable green fluorescence protein (GFP) on the reporter plasmid, pMW82. The ramA reporter plasmid was transformed into Salmonella Typhimurium SL1344 and a ΔacrB mutant. The response of the reporter to subinhibitory concentrations of antibiotics, dyes, biocides, psychotropic agents and efflux inhibitors was measured during growth over a 5 h time period. Results Our data revealed that the expression of ramA was increased in a ΔacrB mutant and also in the presence of the efflux inhibitors phenylalanine-arginine-β-naphthylamide, carbonyl cyanide m-chlorophenylhydrazone and 1-(1-naphthylmethyl)-piperazine. The phenothiazines chlorpromazine and thioridazine also increased ramA expression, triggering the greatest increase in GFP expression. However, inducers of Escherichia coli marA and soxS and 12 of 17 tested antibiotic substrates of AcrAB–TolC did not induce ramA expression. Conclusions This study shows that expression of ramA is not induced by most substrates of the AcrAB–TolC efflux system, but is increased by mutational inactivation of acrB or when efflux is inhibited.
Collapse
Affiliation(s)
- A J Lawler
- Antimicrobials Research Group, School of Immunity and Infection, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
24
|
Duval V, Lister IM. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response. ACTA ACUST UNITED AC 2013; 2:101-124. [PMID: 24860636 DOI: 10.6000/1927-3037.2013.02.03.2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Ida M Lister
- Arietis Corporation, 650 Albany Street, Room 130, Boston, MA 02118
| |
Collapse
|