1
|
Chen Y, Yi M, Wang Y, Yao L, Ji G, Gao Z. Identification of a novel antimicrobial peptide from amphioxus ribosomal protein L27. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110063. [PMID: 39622458 DOI: 10.1016/j.fsi.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 01/26/2025]
Abstract
Antimicrobial peptides (AMPs), derived from a variety of proteins such as ribosomal proteins, play a pivotal role in the innate immune system. However, information regarding ribosomal protein-derived AMPs is currently limited and their mechanisms of action remain poorly defined. Here we identified and characterized the antibacterial activity of amphioxus RPL27 (BjRPL27) and its core functional region located at residues 51-72 (termed BjRPL2751-72). We found that BjRPL27 expression was upregulated in the hepatic caecum following bacterial infection. Both the recombinant protein rBjRPL27 and the synthetic peptide BjRPL2751-72 effectively killed the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Aeromonas hydrophila via a combined action of disrupting cell membrane integrity, inducing membrane depolarization, and increasing intracellular reactive oxygen species (ROS) production. Additionally, the sequence of BjRPL2751-72 was highly conserved among all eukaryotic RPL27s, implying an ancient origin for the antibacterial activity of the RPL27 family. In vivo assays showed that BjRPL2751-72 not only efficiently protected zebrafish from A. hydrophila infection, but also killed the bacterium S. aureus on the skin wound of rats. Furthermore, neither BjRPL27 nor BjRPL2751-72 exhibited hemolytic activity towards human red blood cells, making them promising lead molecules for designing novel AMPs. These findings highlight the potential of BjRPL2751-72 as a novel AMP with selective bactericidal properties.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Mengmeng Yi
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunsheng Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Lan Yao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Guangdong Ji
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Zhan Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Ali W, Chen Y, Wang Z, Yan K, Men Y, Li Z, Cai W, He Y, Qi J. Characterization of antimicrobial properties of TroH2A-29 peptide from golden pompano (Trachinotus ovatus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 163:105315. [PMID: 39805411 DOI: 10.1016/j.dci.2025.105315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Antimicrobial peptides (AMPs) are small, potent molecules that serve as a crucial first line of defense across a wide range of organisms, including fish. In this study, we investigated the antimicrobial properties of a novel peptide, spanning residues 52 to 80 of the full-length histone H2A protein, comprising a total of 29 amino acids. This peptide, designated as Histone H2A-29 (TroH2A-29), was derived from the golden pompano (Trachinotus ovatus) and evaluated for its activity against both Gram-positive bacteria, Lactococcus garvieae and Staphylococcus epidermidis, and Gram-negative bacteria, Vibrio alginolyticus and Vibrio harveyi. The expression of TroH2A in the intestines, liver, and gills of T. ovatus was significantly upregulated after bacterial infections with L. garvieae and V. harveyi. The highest expression levels were observed at 48 h post-infection in the intestines and at different time points in the liver and gills. TroH2A-29 exhibited a high hydrophobic ratio (51 %) and formed an α-helical structure, suggesting its potential as an antimicrobial agent. Notably, TroH2A-29 induced significant agglutination of all four bacterial species in the presence of Ca2⁺. TroH2A-29 demonstrated bactericidal effects against L. garvieae, V. harveyi, and V. alginolyticus, with a MIC50 of 60 μM. However, it showed no antibacterial activity against S. epidermidis. Transmission electron microscopy (TEM) revealed that TroH2A-29 caused morphological damage to the bacterial cells, including cell collapse in L. garvieae and shrinkage in V. alginolyticus and V. harveyi. No morphological changes were observed in S. epidermidis. Membrane permeability assays showed that TroH2A-29 increased membrane disruption in L. garvieae, V. harveyi, and V. alginolyticus, but had little effect on S. epidermidis. Additionally, TroH2A-29 caused membrane depolarization in all tested bacterial strains. These findings highlight the potential of TroH2A-29 as a novel antimicrobial peptide with selective bactericidal properties.
Collapse
Affiliation(s)
- Wajid Ali
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Ying Chen
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhuoyu Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Kai Yan
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yu Men
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zibin Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Wenxiu Cai
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yan He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education/ Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
3
|
Mallawarachchi S, Wang H, Mulgaonkar N, Irigoyen S, Padilla C, Mandadi K, Borneman J, Fernando S. Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus. J Appl Microbiol 2024; 135:lxae061. [PMID: 38509024 DOI: 10.1093/jambio/lxae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
AIMS Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. METHODS AND RESULTS Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. CONCLUSIONS In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Collapse
Affiliation(s)
- Samavath Mallawarachchi
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Haoqi Wang
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Nirmitee Mulgaonkar
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Sonia Irigoyen
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Carmen Padilla
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
| | - Kranthi Mandadi
- Texas A&M AgriLife Research & Extension Center, Texas A&M University System, 2415 E Highway 83, Weslaco, TX 78596, United States
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, United States
- Institute for Advancing Health through Agriculture, Texas A&M AgriLife, College Station, TX 77843, United States
| | - James Borneman
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA 92521, United States
| | - Sandun Fernando
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, United States
| |
Collapse
|
4
|
Ying X, Xue G, Sun P, Gan Z, Fan Z, Liu B, Han Y, Yang J, Zhang J, Lu A. Antimicrobial Peptides Targeting Streptococcus mutans: Current Research on Design, Screening and Efficacy. Curr Microbiol 2023; 81:18. [PMID: 38007405 DOI: 10.1007/s00284-023-03540-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023]
Abstract
Antimicrobial peptides (AMPs) are small-molecule peptides that play a vital role in the nonspecific immune defense system of organisms. They mainly kill microorganisms by physically destroying the cell membrane and causing the leakage of contents. AMPs have attracted much attention as potential alternatives to antibiotics due to their low susceptibility to resistance. Streptococcus mutans (S. mutans) is one of the main causative agents of human dental caries. The design, screening, and efficacy evaluation of AMPs targeting S. mutans offer new possibilities for the prevention and treatment of oral diseases, especially dental caries, in the future. This article reviews AMPs from different sources that have inhibitory effects on S. mutans, discusses the mechanism of action of AMPs against S. mutans biofilms, and focuses on the research progress of screening methods, design modification, and biological activity evaluation of AMPs. We hope to provide insights and reference value for the development of new biologics.
Collapse
Affiliation(s)
- Xinxin Ying
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Guanglu Xue
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Pengxiang Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Ziling Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Ziqian Fan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Bo Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Yaoting Han
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Jiaqian Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China.
| | - Aiping Lu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200010, China.
| |
Collapse
|
5
|
Duque HM, Rodrigues G, Santos LS, Franco OL. The biological role of charge distribution in linear antimicrobial peptides. Expert Opin Drug Discov 2023; 18:287-302. [PMID: 36720196 DOI: 10.1080/17460441.2023.2173736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMP) have received particular attention due to their capacity to kill bacteria. Although much is known about them, peptides are currently being further researched. A large number of AMPs have been discovered, but only a few have been approved for topical use, due to their promiscuity and other challenges, which need to be overcome. AREAS COVERED AMPs are diverse in structure. Consequently, they have varied action mechanisms when targeting microorganisms or eukaryotic cells. Herein, the authors focus on linear peptides, particularly those that are alpha-helical structured, and examine how their charge distribution and hydrophobic amino acids could modulate their biological activity. EXPERT OPINION The world currently needs urgent solutions to the infective problems caused by resistant pathogens. In order to start the race for antimicrobial development from the charge distribution viewpoint, bioinformatic tools will be necessary. Currently, there is no software available that allows to discriminate charge distribution in AMPs and predicts the biological effects of this event. Furthermore, there is no software available that predicts the side-chain length of residues and its role in biological functions. More specialized software is necessary.
Collapse
Affiliation(s)
- Harry Morales Duque
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Gisele Rodrigues
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Lucas Souza Santos
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, PC: (CEP) 70.790-160, Brasília-DF, Brazil.,S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, PC: (CEP) 79117-010, Campo Grande-MS, Brazil
| |
Collapse
|
6
|
Peptide Designs for Use in Caries Management: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044247. [PMID: 36835657 PMCID: PMC9961499 DOI: 10.3390/ijms24044247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The objective of this study was to review the design methods that have been used to create peptides for use in caries management. Two independent researchers systematically reviewed many in vitro studies in which peptides were designed for use in caries management. They assessed the risk of bias in the included studies. This review identified 3592 publications, of which 62 were selected. Forty-seven studies reported 57 antimicrobial peptides. Among them, 31 studies (66%, 31/47) used the template-based design method; 9 studies (19%, 9/47) used the conjugation method; and 7 studies (15%, 7/47) used other methods, such as the synthetic combinatorial technology method, the de novo design method and cyclisation. Ten studies reported mineralising peptides. Seven of these (70%, 7/10) used the template-based design method, two (20%, 2/10) used the de novo design method, and one study (10%, 1/10) used the conjugation method. In addition, five studies developed their own peptides with antimicrobial and mineralising properties. These studies used the conjugation method. Our assessment for the risk of bias in the 62 reviewed studies showed that 44 publications (71%, 44/62) had a medium risk and that 3 publications had a low risk (5%, 3/62). The two most common methods for developing peptides for use in caries management that were used in these studies were the template-based design method and the conjugation method.
Collapse
|
7
|
Roca-Pinilla R, Lisowski L, Arís A, Garcia-Fruitós E. The future of recombinant host defense peptides. Microb Cell Fact 2022; 21:267. [PMID: 36544150 PMCID: PMC9768982 DOI: 10.1186/s12934-022-01991-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The antimicrobial resistance crisis calls for the discovery and production of new antimicrobials. Host defense peptides (HDPs) are small proteins with potent antibacterial and immunomodulatory activities that are attractive for translational applications, with several already under clinical trials. Traditionally, antimicrobial peptides have been produced by chemical synthesis, which is expensive and requires the use of toxic reagents, hindering the large-scale development of HDPs. Alternatively, HDPs can be produced recombinantly to overcome these limitations. Their antimicrobial nature, however, can make them toxic to the hosts of recombinant production. In this review we explore the different strategies that are used to fine-tune their activities, bioengineer them, and optimize the recombinant production of HDPs in various cell factories.
Collapse
Affiliation(s)
- Ramon Roca-Pinilla
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia
| | - Leszek Lisowski
- grid.1013.30000 0004 1936 834XTranslational Vectorology Research Unit, Faculty of Medicine and Health, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145 Australia ,grid.415641.30000 0004 0620 0839Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Anna Arís
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| | - Elena Garcia-Fruitós
- grid.8581.40000 0001 1943 6646Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries IRTA, 08140 Caldes de Montbui, Spain
| |
Collapse
|
8
|
Garstka K, Hecel A, Kozłowski H, Rowińska-Żyrek M. Specific Zn(II)-binding site in the C-terminus of Aspf2, a zincophore from Aspergillus fumigatus. Metallomics 2022; 14:6608364. [PMID: 35700143 PMCID: PMC9780748 DOI: 10.1093/mtomcs/mfac042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022]
Abstract
Aspergillus fumigatus, one of the most widespread opportunistic human fungal pathogens, adapts to zinc limitation by secreting a 310 amino acid Aspf2 zincophore, able to specifically bind Zn(II) and deliver it to a transmembrane zinc transporter, ZrfC. In this work, we focus on the thermodynamics of Zn(II) complexes with unstructured regions of Aspf2; basing on a variety of spectrometric and potentiometric data, we show that the C-terminal part has the highest Zn(II)-binding affinity among the potential binding sites, and Ni(II) does not compete with Zn(II) binding to this region. The 14 amino acid Aspf2 C-terminus coordinates Zn(II) via two Cys thiolates and two His imidazoles and it could be considered as a promising A. fumigatus targeting molecule.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland,Institute of Health Sciences, University of Opole, Katowicka 68 St, 45-060 Opole, Poland
| | - Magdalena Rowińska-Żyrek
- Correspondence: Magdalena Rowińska-Żyrek, Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland. E-mail:
| |
Collapse
|
9
|
Liu N, Li X, Wang M, Zhang F, Wang C, Zhang K, Wang H, Xu S, Hu W, Gu L. DexA70, the Truncated Form of a Self-Produced Dextranase, Effectively Disrupts Streptococcus mutans Biofilm. Front Microbiol 2021; 12:737458. [PMID: 34650538 PMCID: PMC8505985 DOI: 10.3389/fmicb.2021.737458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022] Open
Abstract
Billions of people suffer from dental caries every year in spite of the effort to reduce the prevalence over the past few decades. Streptococcus mutans is the leading member of a specific group of cariogenic bacteria that cause dental caries. S. mutans forms biofilm, which is highly resistant to harsh environment, host immunity, and antimicrobial treatments. In this study, we found that S. mutans biofilm is highly resistant to both antimicrobial agents and lysozyme. DexA70, the truncated form of DexA (amino acids 100–732), a dextranase in S. mutans, prevents S. mutans biofilm formation and disassembles existing biofilms within minutes at nanomolar concentrations when supplied exogenously. DexA70 treatment markedly enhances biofilm sensitivity to antimicrobial agents and lysozyme, indicating its great potential in combating biofilm-related dental caries.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xin Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Maofeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
11
|
Current status and future of delivery systems for prevention and treatment of infections in the oral cavity. Drug Deliv Transl Res 2021; 11:1703-1734. [PMID: 33770415 PMCID: PMC7995675 DOI: 10.1007/s13346-021-00961-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Oral health reflects the general health, and it is fundamental to well-being and quality of life. An infection in the oral cavity can be associated with serious complications in human health. Local therapy of these infections offers many advantages over systemic drug administration, targeting directly to the diseased area while minimizing systemic side effects. Specialized drug delivery systems into the oral cavity have to be designed in such a fashion that they resist to the aqueous environment that is constantly bathed in saliva and subject to mechanical forces. Additionally, a prolonged release of drug should also be provided, which would enhance the efficacy and also decrease the repeated dosing. This review is aimed to summarize the current most relevant findings related to local drug delivery of various drug groups for prevention and treatment of infections (viral, bacterial, fungal) and infection-related manifestations in the oral cavity. Current therapeutic challenges in regard to effective local drug delivery systems will be discussed, and the recent approaches to overcome these obstacles will be reviewed. Finally, future prospects will be overviewed to promote novel strategies that can be implemented in clinical management for prevention and treatment of oral infections.
Collapse
|
12
|
Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs). Front Microbiol 2021; 12:616979. [PMID: 33692766 PMCID: PMC7937881 DOI: 10.3389/fmicb.2021.616979] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) or host defense peptides protect the host against various pathogens such as yeast, fungi, viruses and bacteria. AMPs also display immunomodulatory properties ranging from the modulation of inflammatory responses to the promotion of wound healing. More interestingly, AMPs cause cell disruption through non-specific interactions with the membrane surface of pathogens. This is most likely responsible for the low or limited emergence of bacterial resistance against many AMPs. Despite the increasing number of antibiotic-resistant bacteria and the potency of novel AMPs to combat such pathogens, only a few AMPs are in clinical use. Therefore, the current review describes (i) the potential of AMPs as alternatives to antibiotics, (ii) the challenges toward clinical implementation of AMPs and (iii) strategies to improve the success rate of AMPs in clinical trials, emphasizing the lessons we could learn from these trials.
Collapse
Affiliation(s)
- Gabrielle S Dijksteel
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Magda M W Ulrich
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Beverwijk, Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | |
Collapse
|
13
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch Oral Biol 2020; 122:105022. [PMID: 33418434 DOI: 10.1016/j.archoralbio.2020.105022] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to perform a comprehensive review of the use of antimicrobial peptides for the prevention and treatment of dental caries. The study included publications in the English language that addressed the use of antimicrobial peptides in the prevention and treatment of caries. These publications were also searchable on PubMed, Web of Science, Embase, Scopus, the Collection of Anti-Microbial Peptides and the Antimicrobial Peptide Database. A total of 3,436 publications were identified, and 67 publications were included. Eight publications reported seven natural human antimicrobial peptides as bactericidal to Streptococcus mutans. Fifty-nine publications reported 43 synthetic antimicrobial peptides developed to mimic natural antimicrobial peptides, fusing peptides with functional sequences and implementing new designs. The 43 synthetic antimicrobial peptides were effective against Streptococcus mutans, and nine peptides specifically targeted Streptococcus mutans. Ten antimicrobial peptides had an affinity for hydroxyapatite to prevent bacterial adhesion. Six antimicrobial peptides were also antifungal. Four antimicrobial peptides promoted remineralisation or prevented the demineralisation of teeth by binding calcium to hydroxyapatite. In conclusion, this study identified 67 works in the literature that reported seven natural and 43 synthetic antimicrobial peptides for the prevention and treatment of caries. Most of the antimicrobial peptides were bactericidal, and some prevented bacterial adhesion. A few antimicrobial peptides displayed remineralising properties with hydroxyapatite.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, China.
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Izadi N, Keikha M, Ghazvini K, Karbalaei M. Oral antimicrobial peptides and new therapeutic strategies for plaque-mediated diseases. GENE REPORTS 2020; 21:100811. [DOI: 10.1016/j.genrep.2020.100811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Barot T, Rawtani D, Kulkarni P, Hussain CM, Akkireddy S. Physicochemical and biological assessment of flowable resin composites incorporated with farnesol loaded halloysite nanotubes for dental applications. J Mech Behav Biomed Mater 2020; 104:103675. [PMID: 32174431 DOI: 10.1016/j.jmbbm.2020.103675] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to fabricate flowable resin composites, by incorporating Farnesol loaded Halloysite Nanotubes (Fa-HNT) as a filler and evaluate their physicochemical as well as biological properties. Chemical and morphological characterization of antibacterial filler, Fa-HNT were performed using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM). The antibacterial filler was mixed into composite material consisting of methacrylate monomers and dental glass fillers at concentrations of 1-20% (wt./wt.). It was observed that addition of mass fractions of Fa-HNT causes enhancement of compressive strength as well as flexural modulus of the composite. However, it significantly decreases flexural strength and degree of conversion. A significant antibacterial activity of dental composite was observed with increase in the area of zone of inhibition against the strains of Streptococcus mutans (S. mutans). There was no cytotoxicity observed by Fa-HNT resin composites on NIH-3T3 (mouse embryonic fibroblast cells) cell lines. A favourable integration of antibacterial filler with significant mechanical properties was achieved at concentrations from 7 to 13 wt% of Fa-HNT in dental composites, which is desirable in dentistry.
Collapse
Affiliation(s)
- Tejas Barot
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India
| | - Deepak Rawtani
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India.
| | - Pratik Kulkarni
- Institute of Research and Development, Gujarat Forensic Sciences University, sector 9, near Police Bhawan, Gandhinagar-382007, Gujarat, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 161 Warren St., University Heights, Newark, NJ 07102, USA
| | | |
Collapse
|
16
|
Conversion of Broad-Spectrum Antimicrobial Peptides into Species-Specific Antimicrobials Capable of Precisely Targeting Pathogenic Bacteria. Sci Rep 2020; 10:944. [PMID: 31969663 PMCID: PMC6976587 DOI: 10.1038/s41598-020-58014-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/03/2020] [Indexed: 11/25/2022] Open
Abstract
Currently, the majority of antibiotics in clinical use have broad activity spectra, killing pathogenic and beneficial microorganisms indiscriminately. The disruption of the ecological balance of normal flora often results in secondary infections or other antibiotic-associated complications. Therefore, targeted antimicrobial therapies capable of specifically eliminating pathogenic bacteria while retaining the protective benefits of a normal microflora would be advantageous. In this study, we successfully constructed a series of Enterococcus faecalis-targeted antimicrobial peptides from wide-spectrum antimicrobial peptide precursors. These peptides are designed based on fusion of the species-specific peptide pheromone cCF10 and modification of the active region of the antimicrobial peptide. The results showed that cCF10-C4 possessed specific antimicrobial activity against E. faecalis and was not active against other types of bacteria tested. The specificity of this hybrid peptide was shown by the absence of antimicrobial effects in the pheromone-substituted derivative. Further studies indicated that cCF10-C4 and its parent peptide C4 exert their activities by damaging cytoplasmic membrane integrity. The present study reveals the application potential of these molecules as “probiotic” antimicrobials for the control of specific bacterial infections, and it also helps to elucidate the design and construction of species-specific antimicrobials with precise targeting specificity.
Collapse
|
17
|
Sztukowska MN, Roky M, Demuth DR. Peptide and non-peptide mimetics as potential therapeutics targeting oral bacteria and oral biofilms. Mol Oral Microbiol 2019; 34:169-182. [PMID: 31389653 PMCID: PMC6772003 DOI: 10.1111/omi.12267] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
The development of the oral biofilm requires a complex series of interactions between host tissues and the colonizing bacteria as well as numerous interspecies interactions between the organisms themselves. Disruption of normal host-microbe homoeostasis in the oral cavity can lead to a dysbiotic microbial community that contributes to caries or periodontal disease. A variety of approaches have been pursued to develop novel potential therapeutics that are active against the oral biofilm and/or target specific oral bacteria. The structure and function of naturally occurring antimicrobial peptides from oral tissues and secretions as well as external sources such as frog skin secretions have been exploited to develop numerous peptide mimetics and small molecule peptidomimetics that show improved antimicrobial activity, increased stability and other desirable characteristics relative to the parent peptides. In addition, a rational and minimalist approach has been developed to design small artificial peptides with amphipathic α-helical properties that exhibit potent antibacterial activity. Furthermore, with an increased understanding of the molecular mechanisms of beneficial and/or antagonistic interspecies interactions that contribute to the formation of the oral biofilm, new potential targets for therapeutic intervention have been identified and both peptide-based and small molecule mimetics have been developed that target these key components. Many of these mimetics have shown promising results in in vitro and pre-clinical testing and the initial clinical evaluation of several novel compounds has demonstrated their utility in humans.
Collapse
Affiliation(s)
- Maryta N. Sztukowska
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Mohammad Roky
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| | - Donald R. Demuth
- Department of Oral Immunology and Infectious DiseasesUniversity of Louisville School of DentistryLouisvilleKentucky
| |
Collapse
|
18
|
Sarma P, Mahendiratta S, Prakash A, Medhi B. Specifically targeted antimicrobial peptides: A new and promising avenue in selective antimicrobial therapy. Indian J Pharmacol 2018; 50:1-3. [PMID: 29861521 PMCID: PMC5954627 DOI: 10.4103/ijp.ijp_218_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Phulen Sarma
- Department of Pharmacology, PGIMER, Chandigarh, India
| | | | - Ajay Prakash
- Department of Pharmacology, PGIMER, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER, Chandigarh, India
| |
Collapse
|
19
|
Guo L, Edlund A. Targeted Antimicrobial Peptides: A Novel Technology to Eradicate Harmful Streptococcus Mutans. JOURNAL OF THE CALIFORNIA DENTAL ASSOCIATION 2017; 45:557-564. [PMID: 29899655 PMCID: PMC5994769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Lihong Guo
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Anna Edlund
- J Craig Venter Institute, Genomic Medicine Group, La Jolla, CA, USA
| |
Collapse
|
20
|
Abstract
Even though the oral microbiome is one of the most complex sites on the body it is an excellent model for narrow‐spectrum antimicrobial therapy. Current research indicates that disruption of the microbiome leads to a dysbiotic environment allowing for the overgrowth of pathogenic species and the onset of oral diseases. The gram‐negative colonizer, Porphyromonas gingivalis has long been considered a key player in the initiation of periodontitis and Streptococcus mutans has been linked to dental caries. With antibiotic research still on the decline, new strategies are greatly needed to combat infectious diseases. By targeting key pathogens, it may be possible to treat oral infections while allowing for the recolonization of the beneficial, healthy flora. In this review, we examine unique strategies to specifically target periodontal pathogens and address what is needed for the success of these approaches in the microbiome era.
Collapse
Affiliation(s)
- V N Stone
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA
| | - P Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Luo Y, McLean DTF, Linden GJ, McAuley DF, McMullan R, Lundy FT. The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro. Front Microbiol 2017; 8:544. [PMID: 28408902 PMCID: PMC5374219 DOI: 10.3389/fmicb.2017.00544] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/03/2022] Open
Abstract
Amongst the recognized classes of naturally occurring antimicrobials, human host defense peptides are an important group with an advantage (given their source) that they should be readily translatable to medicinal products. It is also plausible that truncated versions will display some of the biological activities of the parent peptide, with the benefit that they are less costly to synthesize using solid-phase chemistry. The host defense peptide, LL-37, and two truncated mimetics, KE-18 and KR-12, were tested for their inhibitory effects and antibiofilm properties against Candida albicans, Staphylococcus aureus, and Escherichia coli, microorganisms commonly implicated in biofilm-related infections such as ventilator-associated pneumonia (VAP). Using in silico prediction tools, the truncated peptides KE-18 and KR-12 were selected for minimum inhibitory concentration (MIC) and antibiofilm testing on the basis of their favorable cationicity, hydrophobic ratio, and amphipathicity compared with the parent peptide. Two methods were analyzed for determining peptide efficacy against biofilms; a crystal violet assay and an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. The biocidal activities (measured by MIC) and antibiofilm activities (measured by a crystal violet assay) appeared to be independent. LL-37 had no biocidal action against C. albicans (MIC > 250 μg/ml) but significant effects in both biofilm-prevention and biofilm-inhibition assays. KE-18 and KR-12 yielded superior MIC values against all three microorganisms. Only KE-18 had a significant effect in the biofilm-prevention assay, which persisted even at sub-MICs. Neither of the truncated peptides were active in the biofilm-inhibition assay. KE-18 was shown to bind lipopolysaccharide as effectively as LL-37 and to bind lipoteichoic acid more effectively. None of the peptides showed hemolytic activity against human erythrocytes at the concentrations tested. KE-18 should be considered for further development as a natural peptide-derived therapeutic for prevention of multi-species biofilm-related infections such as VAP.
Collapse
Affiliation(s)
- Yu Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Denise T F McLean
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Danny F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Ronan McMullan
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| |
Collapse
|
22
|
Mai S, Mauger MT, Niu LN, Barnes JB, Kao S, Bergeron BE, Ling JQ, Tay FR. Potential applications of antimicrobial peptides and their mimics in combating caries and pulpal infections. Acta Biomater 2017; 49:16-35. [PMID: 27845274 DOI: 10.1016/j.actbio.2016.11.026] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/24/2016] [Accepted: 11/10/2016] [Indexed: 02/02/2023]
Abstract
Antimicrobial peptides (AMPs) are short cationic host-defense molecules that provide the early stage of protection against invading microbes. They also have important modulatory roles and act as a bridge between innate and acquired immunity. The types and functions of oral AMPs were reviewed and experimental reports on the use of natural AMPs and their synthetic mimics in caries and pulpal infections were discussed. Natural AMPs in the oral cavity, predominantly defensins, cathelicidins and histatins, possess antimicrobial activities against oral pathogens and biofilms. Incomplete debridement of microorganisms in root canal space may precipitate an exacerbated immune response that results in periradicular bone resorption. Because of their immunomodulatory and wound healing potentials, AMPs stimulate pro-inflammatory cytokine production, recruit host defense cells and regulate immuno-inflammatory responses in the vicinity of the pulp and periapex. Recent rapid advances in the development of synthetic AMP mimics offer exciting opportunities for new therapeutic initiatives in root canal treatment and regenerative endodontics. STATEMENT OF SIGNIFICANCE Identification of new therapeutic strategies to combat antibiotic-resistant pathogens and biofilm-associated infections continues to be one of the major challenges in modern medicine. Despite the presence of commercialization hurdles and scientific challenges, interests in using antimicrobial peptides as therapeutic alternatives and adjuvants to combat pathogenic biofilms have never been foreshortened. Not only do these cationic peptides possess rapid killing ability, their multi-modal mechanisms of action render them advantageous in targeting different biofilm sub-populations. These factors, together with adjunctive bioactive functions such as immunomodulation and wound healing enhancement, render AMPs or their synthetic mimics exciting candidates to be considered as adjuncts in the treatment of caries, infected pulps and root canals.
Collapse
|
23
|
Wei Y, Qiu W, Zhou XD, Zheng X, Zhang KK, Wang SD, Li YQ, Cheng L, Li JY, Xu X, Li MY. Alanine racemase is essential for the growth and interspecies competitiveness of Streptococcus mutans. Int J Oral Sci 2016; 8:231-238. [PMID: 27740612 PMCID: PMC5168415 DOI: 10.1038/ijos.2016.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 02/05/2023] Open
Abstract
D-alanine (D-Ala) is an essential amino acid that has a key role in bacterial cell wall synthesis. Alanine racemase (Alr) is a unique enzyme that interconverts L-alanine and D-alanine in most bacteria, making this enzyme a potential target for antimicrobial drug development. Streptococcus mutans is a major causative factor of dental caries. The factors involved in the survival, virulence and interspecies interactions of S. mutans could be exploited as potential targets for caries control. The current study aimed to investigate the physiological role of Alr in S. mutans. We constructed alr mutant strain of S. mutans and evaluated its phenotypic traits and interspecies competitiveness compared with the wild-type strain. We found that alr deletion was lethal to S. mutans. A minimal supplement of D-Ala (150 μg·mL-1) was required for the optimal growth of the alr mutant. The depletion of D-alanine in the growth medium resulted in cell wall perforation and cell lysis in the alr mutant strain. We also determined the compromised competitiveness of the alr mutant strain relative to the wild-type S. mutans against other oral streptococci (S. sanguinis or S. gordonii), demonstrated using either conditioned medium assays or dual-species fluorescent in situ hybridization analysis. Given the importance and necessity of alr to the growth and competitiveness of S. mutans, Alr may represent a promising target to modulate the cariogenicity of oral biofilms and to benefit the management of dental caries.
Collapse
Affiliation(s)
- Yuan Wei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Qiu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ke-Ke Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Da Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Qing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ji-Yao Li
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ming-Yun Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Zhang M, Wei W, Sun Y, Jiang X, Ying X, Tao R, Ni L. Pleurocidin congeners demonstrate activity against Streptococcus and low toxicity on gingival fibroblasts. Arch Oral Biol 2016; 70:79-87. [PMID: 27341459 DOI: 10.1016/j.archoralbio.2016.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 05/08/2016] [Accepted: 06/07/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Fish epidermal antimicrobial peptides, such as pleurocidin, are cathelicidins with broad-spectrum antimicrobial activity against gram negative and gram-positive bacteria, as well as fungi. In the current study, we attempted to optimize peptide bioactivity by sequence modification and assess the antimicrobial activities. METHODS Fifteen pleurocidin analogues were designed, and the efficacy of pleurocidin congeners against common cariogenic microorganisms was tested; furthermore, we performed a preliminary study of the antimicrobial mechanism. We assayed the minimal inhibitory concentration (MIC), minimal bactericide concentration (MBC) and bactericidal kinetics to determine the cell killing activity. Scanning electron microscopy (SEM) was used to observe the bacterial membrane after treatment with congeners' peptides. Human gingival fibroblasts (HGFs) were also used in toxicity studies. RESULTS The MIC and MBC results indicated that peptide congeners had different antimicrobial activities against the tested oral strains. Toxicity studies indicated that several congener peptides had little effect on human gingival fibroblasts (HGFs) with 5min of in vitro treatment. CONCLUSION Our findings suggested that several pleurocidin congeners had the antimicrobial effect against Streptococcus mutans, Streptococcus sanguinis and Streptococcus sobrinus.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Stomatology, The 101 Military Hospital, Wuxi 214000, People's Republic of China
| | - Wang Wei
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | - Yingming Sun
- Department of Stomatology, The 101 Military Hospital, Wuxi 214000, People's Republic of China
| | - Xiu Jiang
- School of Stomatology, Anhui Medical University, Anhui 230032, People's Republic of China
| | - Xiu Ying
- School of Stomatology, Anhui Medical University, Anhui 230032, People's Republic of China
| | - Rui Tao
- Department of Stomatology, The 101 Military Hospital, Wuxi 214000, People's Republic of China.
| | - Longxing Ni
- State Key Laboratory of Military Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
25
|
Chunxiao C, Keyu J, Yuanyuan M, Sa Z, Jianye Z, Zhiqiang L, Xiangyi H. [Biological characteristics of a human specifically targeted antimicrobial peptide C16LL-37 against Streptococcus mutans]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2016; 34:295-301. [PMID: 27526457 PMCID: PMC7030836 DOI: 10.7518/hxkq.2016.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/02/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the biological characteristics of a human specifically targeted antimi- crobial peptide C16LL-37 against Streptococcus mutans (S. mutans). METHODS In this study, an antimicrobial peptide LL-37, a peptide derived from CSP(C16) (S. mutans competence stimulating peptide), and recombinant peptide C16LL-37 were synthesized by Fmoc-chemistry-based strategy. The selectivity and antibacterial activity of C16LL-37 were identified by the colony counting method on microbial culture plates. After treatment of C16LL-37 at 32 µmol · L⁻¹, the morphological changes in S. mutans were observed by using scanning electron microscopy (SEM). In addition, enzyme-linked immunosorbent assay was used to evaluate the hemolytic activity and antibacterial activity of C16LL-37 under different conditions. RESULTS 1) The minimum inhibitory concentration of C16LL-37 was 16 µmol · L⁻¹, and the minimum bactericidal concentration was 64 μmol ·L⁻¹. 2) The survival rate of S. mutans was 3.46% after C16LL-37 treatment at 64 µmo-L⁻¹ for 30 min, whereas it was 0% at 64 µmol · L⁻¹ for 60 min. The survival rates of four other kinds of bacteria were more than 60% at any time (P < 0.05). 3) The morphological change in S. mutans was observed after C16LL-37 treatment at 32 µmol · L⁻¹ by using SEM. S. mutans presented an irregular shape, rough surface, and evident splitting. 4) The hemolysis rate of C16LL-37 (≤ 64 µmol · L⁻¹) was less than 0.33%. 5) This study showed no significant in- fluence on the antibacterial activity of C16LL-37 under different conditions, such as temperature, pH, salinity, and trypsin at low concentration (P > 0.05). CONCLUSION C16LL-37 exhibited obvious specificity for S. mutans, strong antibacterial activity, low toxicity, and high stability. Thus, C16LL-37 has good potential in caries research and clinical application.
Collapse
|
26
|
Muciño G, Castro-Obregón S, Hernandez-Pando R, Del Rio G. Autophagy as a target for therapeutic uses of multifunctional peptides. IUBMB Life 2016; 68:259-67. [PMID: 26968336 DOI: 10.1002/iub.1483] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022]
Abstract
The emergence of complex diseases is promoting a change from one-target to multitarget drugs and peptides are ideal molecules to fulfill this polypharmacologic role. Here we review current status in the design of polypharmacological peptides aimed to treat complex diseases, focusing on tuberculosis. In this sense, combining multiple activities in single molecules is a two-sided sword, as both positive and negative side effects might arise. These polypharmacologic compounds may be directed to regulate autophagy, a catabolic process that enables cells to eliminate intracellular microbes (xenophagy), such as Mycobacterium tuberculosis (MBT). Here we review some strategies to control MBT infection and propose that a peptide combining both antimicrobial and pro-autophagic activities would have a greater potential to limit MBT infection. This endeavor may complement the knowledge gained in understanding the mechanism of action of antibiotics and may lead to the design of better polypharmacological peptides to treat complex diseases such as tuberculosis.
Collapse
Affiliation(s)
- Gabriel Muciño
- Department of Neurodevelopment and Physiology, Instituto De Fisiología Celular, UNAM, México, D.F, México
| | - Susana Castro-Obregón
- Department of Neurodevelopment and Physiology, Instituto De Fisiología Celular, UNAM, México, D.F, México
| | - Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán,", Mexico
| | - Gabriel Del Rio
- Department of Biochemistry and Structural Biology, Instituto De Fisiología Celular, UNAM, México, D.F, México
| |
Collapse
|
27
|
A "building block" approach to the new influenza A virus entry inhibitors with reduced cellular toxicities. Sci Rep 2016; 6:22790. [PMID: 26952867 PMCID: PMC4782136 DOI: 10.1038/srep22790] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/22/2016] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) is a severe worldwide threat to public health and economic development that results in the emergence of drug-resistant or highly virulent strains. Therefore, it is imperative to develop potent anti-IAV drugs with different modes of action to currently available drugs. Herein, we show a new class of antiviral peptides generated by conjugating two known short antiviral peptides: part-1 (named Jp with the sequence of ARLPR) and part-2 (named Hp with the sequence of KKWK). The new peptides were thus created by hybridization of these two domains at C- and N- termini, respectively. The anti-IAV screening results identified that C20-Jp-Hp was the most potent peptide with IC50 value of 0.53 μM against A/Puerto Rico/8/34 (H1N1) strain. Interestingly, these new peptides display lower toxicities toward mammalian cells and higher therapeutic indices than their prototypes. In addition, the mechanism of action of C20-Jp-Hp was extensively investigated.
Collapse
|
28
|
Abstract
As our knowledge of host-microbial interactions within the oral cavity increases, future treatments are likely to be more targeted. For example, efforts to target a single species or key virulence factors that they produce, while maintaining the natural balance of the resident oral microbiota that acts to modulate the host immune response would be an advantage. Targeted approaches may be directed at the black-pigmented anaerobes, Porphyromonas gingivalis and Prevotella intermedia, associated with periodontitis. Such pigments provide an opportunity for targeted phototherapy with high-intensity monochromatic light. Functional inhibition approaches, including the use of enzyme inhibitors, are also being explored to control periodontitis. More general disruption of dental plaque through the use of enzymes and detergents, alone and in combination, shows much promise. The use of probiotics and prebiotics to improve gastrointestinal health has now led to an interest in using these approaches to control oral disease. More recently the potential of antimicrobial peptides and nanotechnology, through the application of nanoparticles with biocidal, anti-adhesive and delivery capabilities, has been explored. The aim of this review is to consider the current status as regards non-conventional treatment approaches for oral infections with particular emphasis on the plaque-related diseases.
Collapse
Affiliation(s)
- Robert P Allaker
- a Oral Microbiology; Barts and The London School of Medicine & Dentistry; Queen Mary University of London ; London, UK
| | | |
Collapse
|
29
|
Qiu W, Zheng X, Wei Y, Zhou X, Zhang K, Wang S, Cheng L, Li Y, Ren B, Xu X, Li Y, Li M. d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Mol Oral Microbiol 2015; 31:435-44. [PMID: 26526529 DOI: 10.1111/omi.12146] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2015] [Indexed: 02/05/2023]
Abstract
Part of the d-alanine (d-Ala) metabolic pathway in bacteria involves the conversion of l-alanine to d-Ala by alanine racemase and the formation of d-alanyl-d-alanine by d-alanine-d-alanine ligase, the product of which is involved in cell wall peptidoglycan synthesis. At present, drugs that target the metabolic pathway of d-Ala are already in clinical use - e.g. d-cycloserine (DCS) is used as an antibiotic against Mycobacterium tuberculosis. Streptococcus mutans is the main cariogenic bacterium in the oral cavity. Its d-Ala metabolism-associated enzymes alanine racemase and d-alanine-d-alanine ligase are encoded by the genes smu.1834 and smu.599, respectively, which may be potential targets for inhibitors. In this study, the addition of DCS blocked the d-Ala metabolic pathway in S. mutans, leading to bacterial cell wall defects, significant inhibition of bacterial growth and biofilm formation, and reductions in extracellular polysaccharide production and bacterial adhesion. However, the exogenous addition of d-Ala could reverse the inhibitory effect of DCS. Through the means of drug regulation, our study demonstrated, for the first time, the importance of d-Ala metabolism in the survival and biofilm formation of S. mutans. If the growth of S. mutans can be specifically inhibited by designing drugs that target d-Ala metabolism, then this may serve as a potential new treatment for dental caries.
Collapse
Affiliation(s)
- W Qiu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - X Zheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wei
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - K Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - S Wang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - L Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - B Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - X Xu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - M Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Wang J, Zhong W, Lin D, Xia F, Wu W, Zhang H, Lv L, Liu S, He J. Antimicrobial Peptides Derived from Fusion Peptides of Influenza A Viruses, a Promising Approach to Designing Potent Antimicrobial Agents. Chem Biol Drug Des 2015; 86:487-95. [PMID: 25581878 DOI: 10.1111/cbdd.12511] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 11/29/2022]
Abstract
The emergence and dissemination of antibiotic-resistant bacterial pathogens have spurred the urgent need to develop novel antimicrobial agents with different mode of action. In this respect, we turned several fusogenic peptides (FPs) derived from the hemagglutinin glycoproteins (HAs) of IAV into potent antibacterials by replacing the negatively or neutrally charged residues of FPs with positively charged lysines. Their antibacterial activities were evaluated by testing the MICs against a panel of bacterial strains including S. aureus, S. mutans, P. aeruginosa, and E. coli. The results showed that peptides HA-FP-1, HA-FP-2-1, and HA-FP-3-1 were effective against both Gram-positive and Gram-negative bacteria with MICs ranging from 1.9 to 16.0 μm, while the toxicities toward mammalian cells were low. In addition, the mode of action and the secondary structure of these peptides were also discussed. These data not only provide several potent peptides displaying promising potential in development as broad antimicrobial agents, but also present a useful strategy in designing new antimicrobial agents.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjing Zhong
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Dongguo Lin
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Fan Xia
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Wenjiao Wu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Heyuan Zhang
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Shuwen Liu
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Jian He
- School of Pharmaceutical Sciences, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| |
Collapse
|
31
|
Sharma S, Lavender S, Woo J, Guo L, Shi W, Kilpatrick-Liverman L, Gimzewski JK. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy. MICROBIOLOGY-SGM 2014; 160:1466-1473. [PMID: 24763427 DOI: 10.1099/mic.0.075267-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid L-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface.
Collapse
Affiliation(s)
- Shivani Sharma
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | | | - JungReem Woo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Lihong Guo
- Department of Dentistry, University of California, Los Angeles, CA, USA
| | - Wenyuan Shi
- Department of Dentistry, University of California, Los Angeles, CA, USA
| | | | - James K Gimzewski
- International Center for Materials Nanoarchitectonics Satellite (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.,California NanoSystems Institute, University of California, Los Angeles, CA, USA.,Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Ding Y, Wang W, Fan M, Tong Z, Kuang R, Jiang W, Ni L. Antimicrobial and anti-biofilm effect of Bac8c on major bacteria associated with dental caries and Streptococcus mutans biofilms. Peptides 2014; 52:61-7. [PMID: 24309076 DOI: 10.1016/j.peptides.2013.11.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022]
Abstract
Dental caries is a common oral bacterial infectious disease. Its prevention and treatment requires control of the causative pathogens within dental plaque, especially Streptococcus mutans (S. mutans). Antimicrobial peptides (AMPs), one of the promising substitutes for conventional antibiotics, have been widely tested and used for controlling bacterial infections. The present study focuses on evaluating the potential of the novel AMPs cyclic bactenecin and its derivatives against bacteria associated with dental caries. The results indicate that Bac8c displayed highest activity against the bacteria tested, whereas both cyclic and linear bactenecin had weak antimicrobial activity. The cytotoxicity assay showed that Bac8c did not cause detectable toxicity at concentrations of 32-128μg/ml for 5min or 32-64μg/ml for 60min. S. mutans and Lactobacillus fermenti treated with Bac8c showed variable effects on bacterial structure via scanning electron microscopy and transmission electron microscopy. There appeared to be a large amount of extracellular debris and obvious holes on the cell surface, as well as loss of cell wall and nucleoid condensation. The BioFlux system was employed to generate S. mutans biofilms under a controlled flow, which more closely resemble the formation process of natural biofilms. Bac8c remarkably reduced the viability of cells in biofilms formed in the BioFlux system. This phenomenon was further analyzed and verified by real-time PCR results of a significant suppression of the genes involved in S. mutans biofilm formation. Taken together, this study suggests that Bac8c has a potential clinical application in preventing and treating dental caries.
Collapse
Affiliation(s)
- Yonglin Ding
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Wei Wang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Meng Fan
- Department of General Surgery, The 456th Hospital of PLA, Ji'nan City, Shandong, China
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Rong Kuang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - WenKai Jiang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Longxing Ni
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
33
|
Wu X, Hurdle JG. The Membrane as a Novel Target Site for Antibiotics to Kill Persisting Bacterial Pathogens. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
34
|
Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics. Pharmaceuticals (Basel) 2013; 6:1055-81. [PMID: 24276381 PMCID: PMC3817730 DOI: 10.3390/ph6081055] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 08/02/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs) have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.
Collapse
|
35
|
Domenyuk V, Loskutov A, Johnston SA, Diehnelt CW. A technology for developing synbodies with antibacterial activity. PLoS One 2013; 8:e54162. [PMID: 23372679 PMCID: PMC3553175 DOI: 10.1371/journal.pone.0054162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 12/10/2012] [Indexed: 12/28/2022] Open
Abstract
The rise in antibiotic resistance has led to an increased research focus on discovery of new antibacterial candidates. While broad-spectrum antibiotics are widely pursued, there is evidence that resistance arises in part from the wide spread use of these antibiotics. Our group has developed a system to produce protein affinity agents, called synbodies, which have high affinity and specificity for their target. In this report, we describe the adaptation of this system to produce new antibacterial candidates towards a target bacterium. The system functions by screening target bacteria against an array of 10,000 random sequence peptides and, using a combination of membrane labeling and intracellular dyes, we identified peptides with target specific binding or killing functions. Binding and lytic peptides were identified in this manner and in vitro tests confirmed the activity of the lead peptides. A peptide with antibacterial activity was linked to a peptide specifically binding Staphylococcus aureus to create a synbody with increased antibacterial activity. Subsequent tests showed that this peptide could block S. aureus induced killing of HEK293 cells in a co-culture experiment. These results demonstrate the feasibility of using the synbody system to discover new antibacterial candidate agents.
Collapse
Affiliation(s)
- Valeriy Domenyuk
- The Biodesign Institute of Arizona State University, Tempe, Arizona, United States of America
| | - Andrey Loskutov
- The Biodesign Institute of Arizona State University, Tempe, Arizona, United States of America
| | - Stephen Albert Johnston
- The Biodesign Institute of Arizona State University, Tempe, Arizona, United States of America
- School of Life Science, Arizona State University, Tempe, Arizona, United States of America
| | - Chris W. Diehnelt
- The Biodesign Institute of Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
36
|
Research Advances in Modified Antimicrobial Peptides*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Aoki W, Kuroda K, Ueda M. Next generation of antimicrobial peptides as molecular targeted medicines. J Biosci Bioeng 2012; 114:365-70. [DOI: 10.1016/j.jbiosc.2012.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 11/26/2022]
|
38
|
Joshi S, Bisht GS, Rawat DS, Maiti S, Pasha S. Comparative mode of action of novel hybrid peptide CS-1a and its rearranged amphipathic analogue CS-2a. FEBS J 2012; 279:3776-90. [DOI: 10.1111/j.1742-4658.2012.08738.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/30/2012] [Accepted: 08/06/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | - Souvik Maiti
- Proteomics and Structural Biology Unit; Institute of Genomics & Integrative Biology; Delhi; India
| | - Santosh Pasha
- Peptide Research Laboratory; Institute of Genomics & Integrative Biology; Delhi; India
| |
Collapse
|
39
|
da Silva BR, de Freitas VAA, Nascimento-Neto LG, Carneiro VA, Arruda FVS, de Aguiar ASW, Cavada BS, Teixeira EH. Antimicrobial peptide control of pathogenic microorganisms of the oral cavity: a review of the literature. Peptides 2012; 36:315-21. [PMID: 22664320 DOI: 10.1016/j.peptides.2012.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/24/2012] [Accepted: 05/24/2012] [Indexed: 12/30/2022]
Abstract
Antimicrobial peptides, molecules produced in many different organisms, have high biocidal activity against several microorganisms. However, several questions about these molecules remain unclear. Therefore, this report details a systematic survey of the literature on the use of antimicrobial peptides against oral pathogens and indicates which peptides and microorganisms are most extensively studied. Articles were located using the PubMed and Science Direct databases with the following inclusion criteria: publication date between 2002 and 2011; keywords "biofilm OR biological film OR biological layer OR bacterial growth" AND "peptide" AND "oral cavity OR mouth OR buccal mucosa OR oral mucosa OR mouth mucosa"; and abstract in English. A total of 73 articles were selected after refinement of the data. An increase in publications focusing on the use of antimicrobial peptides against oral microorganisms was observed. In addition, the peptides produced by cells of the oral mucosa (defensins, LL-37 and histatins) as well as Streptococcus mutans (among cariogenic bacteria) and Porphyromonas gingivalis (among periodontal bacteria) were the most studied subjects. It was concluded that the use of antimicrobial peptides as a tool for microbial control is of increasing importance, likely due to its widespread use, mechanism of action, and low rates of bacterial resistance.
Collapse
|
40
|
Wang W, Tao R, Tong Z, Ding Y, Kuang R, Zhai S, Liu J, Ni L. Effect of a novel antimicrobial peptide chrysophsin-1 on oral pathogens and Streptococcus mutans biofilms. Peptides 2012; 33:212-9. [PMID: 22281025 DOI: 10.1016/j.peptides.2012.01.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
Abstract
Dental caries and pulpal diseases are common oral bacterial infectious diseases. Controlling and reducing the causative pathogens, such as Streptococcus mutans and Enterococcus faecalis, is a key step toward prevention and treatment of the two diseases. Chrysophsin-1 is a cationic antimicrobial peptide having broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria. In this study, we investigated the antibacterial activity of chrysophsin-1 against several oral pathogens and S. mutans biofilms and performed a preliminary study of the antimicrobial mechanism. Cytotoxic activity of chrysophsin-1 against human gingival fibroblasts (HGFs) was investigated. Minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and time-kill assay were used to evaluate the killing effect of chrysophsin-1. Scanning electron microscopy (SEM) was used to analyze morphological and membrane change in oral pathogens. Live/Dead staining, in conjunction with confocal scanning laser microscopy (CSLM), was used to observe and analyze S. mutans biofilms. MIC and MBC results demonstrated that chrysophsin-1 had different antimicrobial activities against the tested oral microbes. Lysis and pore formation of the cytomembrane were observed following treatment of the bacteria with chrysophsin-1 for 4h or 24h by SEM. Furthermore, CLSM images showed that chrysophsin-1 remarkably reduced the viability of cells within biofilms and had a significantly lethal effect against S. mutans biofilms. Toxicity studies showed that chrysophsin-1 at concentration between 8 μg/ml and 32 μg/ml had little effect on viability of HGFs in 5 min. Our findings suggest that chrysophsin-1 may have potential clinical applications in the prevention and treatment of dental caries and pulpal diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Operative Dentistry and Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jorge P, Lourenço A, Pereira MO. New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. BIOFOULING 2012; 28:1033-1061. [PMID: 23016989 DOI: 10.1080/08927014.2012.728210] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Antimicrobial peptides (AMPs) have a broad spectrum of activity and unspecific mechanisms of action. Therefore, they are seen as valid alternatives to overcome clinically relevant biofilms and reduce the chance of acquired resistance. This paper reviews AMPs and anti-biofilm AMP-based strategies and discusses ongoing and future work. Recent studies report successful AMP-based prophylactic and therapeutic strategies, several databases catalogue AMP information and analysis tools, and novel bioinformatics tools are supporting AMP discovery and design. However, most AMP studies are performed with planktonic cultures, and most studies on sessile cells test AMPs on growing rather than mature biofilms. Promising preliminary synergistic studies have to be consubstantiated and the study of functionalized coatings with AMPs must be further explored. Standardized operating protocols, to enforce the repeatability and reproducibility of AMP anti-biofilm tests, and automated means of screening and processing the ever-expanding literature are still missing.
Collapse
Affiliation(s)
- Paula Jorge
- IBB - Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
42
|
Li P, Li X, Saravanan R, Li CM, Leong SSJ. Antimicrobial macromolecules: synthesis methods and future applications. RSC Adv 2012. [DOI: 10.1039/c2ra01297a] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Joshi S, Dewangan RP, Yadav S, Rawat DS, Pasha S. Synthesis, antibacterial activity and mode of action of novel linoleic acid–dipeptide–spermidine conjugates. Org Biomol Chem 2012; 10:8326-35. [DOI: 10.1039/c2ob26393a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 545] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
45
|
Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol 2011; 6:635-51. [PMID: 21707311 DOI: 10.2217/fmb.11.27] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the discovery of magainins, cecropins and defensins 30 years ago, antimicrobial peptides (AMPs) have been hailed as a potential solution to the dearth of novel antibiotic development. AMPs have shown robust activity against a wide variety of pathogens, including drug-resistant bacteria. Unlike small-molecule antibiotics, however, AMPs have failed to translate this success to the clinic. Only the polymyxins, gramicidins, nisin and daptomycin are currently approved for medical use; the latter is the only example to have been developed in the last several decades. Nonetheless, researchers continue to isolate, modify and develop novel AMPs for therapeutic applications. Efforts have focused on increasing stability, reducing cytotoxicity, improving antimicrobial activity and incorporating AMPs in novel formulations, including nanoscale particles. As peptide synthesis and recombinant production methodologies improve, and more relevant bioassays become available, it becomes increasingly likely that AMPs will break the regulatory barrier and enter the marketplace as valuable antimicrobial weapons in the next 10 years.
Collapse
Affiliation(s)
- Randal Eckert
- C3 Jian, Inc., 423 Hindry Ave, Unit D, Inglewood, CA 90301, USA.
| |
Collapse
|
46
|
Sullivan R, Santarpia P, Lavender S, Gittins E, Liu Z, Anderson MH, He J, Shi W, Eckert R. Clinical efficacy of a specifically targeted antimicrobial peptide mouth rinse: targeted elimination of Streptococcus mutans and prevention of demineralization. Caries Res 2011; 45:415-28. [PMID: 21860239 DOI: 10.1159/000330510] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Streptococcus mutans, the major etiological agent of dental caries, has a measurable impact on domestic and global health care costs. Though persistent in the oral cavity despite conventional oral hygiene, S. mutans can be excluded from intact oral biofilms through competitive exclusion by other microorganisms. This suggests that therapies capable of selectively eliminating S. mutans while limiting the damage to the normal oral flora might be effective long-term interventions to fight cariogenesis. To meet this challenge, we designed C16G2, a novel synthetic specifically targeted antimicrobial peptide with specificity for S. mutans. C16G2 consists of a S. mutans-selective 'targeting region' comprised of a fragment from S. mutans competence stimulation peptide (CSP) conjoined to a 'killing region' consisting of a broad-spectrum antimicrobial peptide (G2). In vitro studies have indicated that C16G2 has robust efficacy and selectivity for S. mutans, and not other oral bacteria, and affects targeted bacteria within seconds of contact. METHODS In the present study, we evaluated C16G2 for clinical utility in vitro, followed by a pilot efficacy study to examine the impact of a 0.04% (w/v) C16G2 rinse in an intra-oral remineralization/demineralization model. RESULTS AND CONCLUSIONS C16G2 rinse usage was associated with reductions in plaque and salivary S. mutans, lactic acid production, and enamel demineralization. The impact on total plaque bacteria was minimal. These results suggest that C16G2 is effective against S. mutans in vivo and should be evaluated further in the clinic.
Collapse
Affiliation(s)
- R Sullivan
- Colgate-Palmolive Technology Center, Piscataway, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rapid probing of biological surfaces with a sparse-matrix peptide library. PLoS One 2011; 6:e23551. [PMID: 21858167 PMCID: PMC3156232 DOI: 10.1371/journal.pone.0023551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 07/20/2011] [Indexed: 02/02/2023] Open
Abstract
Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue.
Collapse
|
48
|
Abstract
AIMS The goal of this review is to identify the antimicrobial proteins in the oral fluids, saliva and gingival crevicular fluid and identify functional families and candidates for antibacterial treatment. RESULTS Periodontal biofilms initiate a cascade of inflammatory and immune processes that lead to the destruction of gingival tissues and ultimately alveolar bone loss and tooth loss. Treatment of periodontal disease with conventional antibiotics does not appear to be effective in the absence of mechanical debridement. An alternative treatment may be found in antimicrobial peptides and proteins, which can be bactericidal and anti-inflammatory and block the inflammatory effects of bacterial toxins. The peptides have co-evolved with oral bacteria, which have not developed significant peptide resistance. Over 45 antibacterial proteins are found in human saliva and gingival crevicular fluid. The proteins and peptides belong to several different functional families and offer broad protection from invading microbes. Several antimicrobial peptides and proteins (AMPs) serve as templates for the development of therapeutic peptides and peptide mimetics, although to date none have demonstrated efficacy in human trials. CONCLUSIONS Existing and newly identified AMPs may be developed for therapeutic use in periodontal disease or can serve as templates for peptide and peptide mimetics with improved therapeutic indices.
Collapse
Affiliation(s)
- Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
49
|
Selective membrane disruption: mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob Agents Chemother 2011; 55:3446-52. [PMID: 21518845 DOI: 10.1128/aac.00342-11] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The specifically targeted antimicrobial peptide (STAMP) C16G2 was developed to target the cariogenic oral pathogen Streptococcus mutans. Because the design of this peptide was novel, we sought to better understand the mechanism through which it functioned. Compared to antimicrobial peptides (AMPs) with wide spectra of activity, the STAMP C16G2 has demonstrated specificity for S. mutans in a mixed-culture environment, resulting in the complete killing of S. mutans while having minimal effect on the other streptococci. In the current study, we sought to further confirm the selectivity of C16G2 and also compare its membrane activity to that of melittin B, a classical toxic AMP, in order to determine the STAMP's mechanism of cell killing. Disruption of S. mutans cell membranes by C16G2 was demonstrated by increased SYTOX green uptake and ATP efflux from the cells similar to those of melittin B. Treatment with C16G2 also resulted in a loss of membrane potential as measured by DiSC(3)5 fluorescence. In comparison, the individual moieties of C16G2 demonstrated no specificity and limited antimicrobial activity compared to those of the STAMP C16G2. The data suggest that C16G2 has a mechanism of action similar to that of traditional AMPs and kills S. mutans through disruption of the cell membrane, allowing small molecules to leak out of the cell, which is followed by a loss of membrane potential and cell death. Interestingly, this membrane activity is rapid and potent against S. mutans, but not other noncariogenic oral streptococci.
Collapse
|
50
|
Ueno S, Minaba M, Nishiuchi Y, Taichi M, Tamada Y, Yamazaki T, Kato Y. Generation of novel cationic antimicrobial peptides from natural non-antimicrobial sequences by acid-amide substitution. Ann Clin Microbiol Antimicrob 2011; 10:11. [PMID: 21418660 PMCID: PMC3070621 DOI: 10.1186/1476-0711-10-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 03/22/2011] [Indexed: 11/30/2022] Open
Abstract
Background Cationic antimicrobial peptides (CAMPs) are well recognized to be promising as novel antimicrobial and antitumor agents. To obtain novel skeletons of CAMPs, we propose a simple strategy using acid-amide substitution (i.e. Glu→Gln, Asp→Asn) to confer net positive charge to natural non-antimicrobial sequences that have structures distinct from known CAMPs. The potential of this strategy was verified by a trial study. Methods The pro-regions of nematode cecropin P1-P3 (P1P-P3P) were selected as parent sequences. P1P-P3P and their acid-amide-substituted mutants (NP1P-NP3P) were chemically synthesized. Bactericidal and membrane-disruptive activities of these peptides were evaluated. Conformational changes were estimated from far-ultraviolet circular dichroism (CD) spectra. Results NP1P-NP3P acquired potent bactericidal activities via membrane-disruption although P1P-P3P were not antimicrobial. Far-ultraviolet CD spectra of NP1P-NP3P were similar to those of their parent peptides P1P-P3P, suggesting that NP1P-NP3P acquire microbicidal activity without remarkable conformational changes. NP1P-NP3P killed bacteria in almost parallel fashion with their membrane-disruptive activities, suggesting that the mode of action of those peptides was membrane-disruption. Interestingly, membrane-disruptive activity of NP1P-NP3P were highly diversified against acidic liposomes, indicating that the acid-amide-substituted nematode cecropin pro-region was expected to be a unique and promising skeleton for novel synthetic CAMPs with diversified membrane-discriminative properties. Conclusions The acid-amide substitution successfully generated some novel CAMPs in our trial study. These novel CAMPs were derived from natural non-antimicrobial sequences, and their sequences were completely distinct from any categories of known CAMPs, suggesting that such mutated natural sequences could be a promising source of novel skeletons of CAMPs.
Collapse
Affiliation(s)
- Satoshi Ueno
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | |
Collapse
|