1
|
Foka FET, Mufhandu HT. Current ARTs, Virologic Failure, and Implications for AIDS Management: A Systematic Review. Viruses 2023; 15:1732. [PMID: 37632074 PMCID: PMC10458198 DOI: 10.3390/v15081732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Antiretroviral therapies (ARTs) have revolutionized the management of human immunodeficiency virus (HIV) infection, significantly improved patient outcomes, and reduced the mortality rate and incidence of acquired immunodeficiency syndrome (AIDS). However, despite the remarkable efficacy of ART, virologic failure remains a challenge in the long-term management of HIV-infected individuals. Virologic failure refers to the persistent detectable viral load in patients receiving ART, indicating an incomplete suppression of HIV replication. It can occur due to various factors, including poor medication adherence, drug resistance, suboptimal drug concentrations, drug interactions, and viral factors such as the emergence of drug-resistant strains. In recent years, extensive efforts have been made to understand and address virologic failure in order to optimize treatment outcomes. Strategies to prevent and manage virologic failure include improving treatment adherence through patient education, counselling, and supportive interventions. In addition, the regular monitoring of viral load and resistance testing enables the early detection of treatment failure and facilitates timely adjustments in ART regimens. Thus, the development of novel antiretroviral agents with improved potency, tolerability, and resistance profiles offers new options for patients experiencing virologic failure. However, new treatment options would also face virologic failure if not managed appropriately. A solution to virologic failure requires a comprehensive approach that combines individualized patient care, robust monitoring, and access to a range of antiretroviral drugs.
Collapse
Affiliation(s)
- Frank Eric Tatsing Foka
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| | - Hazel Tumelo Mufhandu
- Department of Microbiology, Virology Laboratory, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North West University, Mafikeng, Private Bag, Mmabatho X2046, South Africa
| |
Collapse
|
2
|
Connell BJ, Hermans LE, Wensing AMJ, Schellens I, Schipper PJ, van Ham PM, de Jong DTCM, Otto S, Mathe T, Moraba R, Borghans JAM, Papathanasopoulos MA, Kruize Z, Venter FWD, Kootstra NA, Tempelman H, Tesselaar K, Nijhuis M. Immune activation correlates with and predicts CXCR4 co-receptor tropism switch in HIV-1 infection. Sci Rep 2020; 10:15866. [PMID: 32985522 PMCID: PMC7522993 DOI: 10.1038/s41598-020-71699-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/10/2020] [Indexed: 12/31/2022] Open
Abstract
HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003–1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065–1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.
Collapse
Affiliation(s)
- Bridgette J Connell
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Lucas E Hermans
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Annemarie M J Wensing
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands.,Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Ingrid Schellens
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Pauline J Schipper
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Petra M van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Dorien T C M de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
| | - Sigrid Otto
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Tholakele Mathe
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Robert Moraba
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | | | - Maria A Papathanasopoulos
- HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zita Kruize
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Francois W D Venter
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neeltje A Kootstra
- Amsterdam University Medical Center, Amsterdam Infection and Immunity Institute, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands
| | - Hugo Tempelman
- Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa
| | - Kiki Tesselaar
- Center for Translational Immunology, UMCU, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands. .,Ndlovu Research Consortium, Elandsdoorn, Limpopo Province, South Africa. .,HIV Pathogenesis Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
3
|
Vicenti I, Lai A, Giannini A, Boccuto A, Dragoni F, Saladini F, Zazzi M. Performance of Geno2Pheno[coreceptor] to infer coreceptor use in human immunodeficiency virus type 1 (HIV-1) subtype A. J Clin Virol 2018; 111:12-18. [PMID: 30594700 DOI: 10.1016/j.jcv.2018.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Assessment of human immunodeficiency virus type 1 (HIV-1) coreceptor usage is required prior to treatment with the CCR5 antagonist maraviroc to exclude the presence of CXCR4-using (X4) strains. Genotype-based interpretation systems are mostly designed on subtype B and have been reported to be less accurate for subtype A/CRF02_AG. OBJECTIVES To evaluate the performance of the widely used Geno2Pheno[coreceptor] (G2P[c]) algorithm for prediction of coreceptor usage with subtype A/CRF02_AG vs. subtype B. STUDY DESIGN Co-receptor tropism of 24 subtype A/CRF02_AG and 24 subtype B viruses was measured phenotypically by a homebrew single-cycle assay and genotypically by using G2P[c]. Samples with discrepant genotype-phenotype results were analyzed by next generation sequencing (NGS) and interpreted by the NGS Geno2Pheno algorithm (G2P[454]). RESULTS At 10% false positive rate (FPR), the G2P[c]/phenotype discordance rate was 12.5% (n = 3) for subtype A/CRF02_AG and 8.3% (n = 2) for subtype B. Minority X4 species escaping detection by bulk sequencing but documented by NGS explained the two subtype B and possibly one subtype A/CRF02_AG discordant case. The other two subtype A/CRF02_AG miscalled by G2P[c] could be explained by X4 overcalling at borderline FPR and/or by algorithm failure. DISCUSSION Our study did not demonstrate relevantly higher G2P[c] inaccuracy with subtype A/CRF02_AG with respect to subtype B. Genotype/phenotype discordances can be due to different reasons, including but not limited to, algorithm inaccuracy. Very large genotype/phenotype correlation panels are required to detect and explain the reason for any consistent difference in genotypic tropism prediction for subtype A/CRF02_AG vs. subtype B.
Collapse
Affiliation(s)
- Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| | - Alessia Lai
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Alessia Giannini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Adele Boccuto
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Saladini
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Matsuda M, Louvel S, Sugiura W, Haas A, Pfeifer N, Yokomaku Y, Iwatani Y, Kaiser R, Klimkait T. Performance Evaluation of a Genotypic Tropism Test Using HIV-1 CRF01_AE Isolates in Japan. Jpn J Infect Dis 2018; 71:264-266. [PMID: 29709982 DOI: 10.7883/yoken.jjid.2017.482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Geno2Pheno (coreceptor), a genotypic tropism test, demonstrates excellent agreement with the phenotypic tropism test for subtype B and some other subtypes. However, potential X4-overcalling for CRF01_AE might occur with the present version. To confirm X4 overcalling for AE and to optimize the algorithm for use with AE, we compared the tropism of 22 AE samples by both genotypic and phenotypic methods. The env V3 region was analyzed by bulk sequencing, and tropism was evaluated using the Geno2Pheno algorithm. PhenXR, a phenotypic tropism test, was performed in parallel to determine chemokine receptor preferences. A high X4-overcalling for select samples and a low rate of R5-concordant samples (9.1%) were observed for AE with the current version of Geno2Pheno (coreceptor). On the other hand, the new version, namely, Geno2Pheno (Sanger), showed a high concordance rate of 81.8%, with PhenXR. Because majority of the samples were selected based on discrepancies in the genotypic tropism calls between the present version Geno2Pheno (coreceptor) (FPR<10%) and the new version Geno2Pheno (Sanger) (X4-risk<36), it remains to be determined whether the new version provides improved R5-calls for the AE sequences in general or only in this setting. Further clinical validation studies are warranted.
Collapse
Affiliation(s)
- Masakazu Matsuda
- Department of Infectious Diseases and Immunology, National Hospital Organization Nagoya Medical Center
| | | | - Wataru Sugiura
- Department of Infectious Diseases and Immunology, National Hospital Organization Nagoya Medical Center
| | - Alexandra Haas
- Molecular Virology, Department Biomedicine - Petersplatz, University of Basel
| | - Nico Pfeifer
- Max Planck Institute for Informatics, Computational Biology and Applied Algorithmics
| | - Yoshiyuki Yokomaku
- Department of Infectious Diseases and Immunology, National Hospital Organization Nagoya Medical Center
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, National Hospital Organization Nagoya Medical Center
| | - Rolf Kaiser
- Institute of Virology, University of Cologne
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine - Petersplatz, University of Basel
| |
Collapse
|
5
|
Kitawi RC, Hunja CW, Aman R, Ogutu BR, Muigai AWT, Kokwaro GO, Ochieng W. Partial HIV C2V3 envelope sequence analysis reveals association of coreceptor tropism, envelope glycosylation and viral genotypic variability among Kenyan patients on HAART. Virol J 2017; 14:29. [PMID: 28196510 PMCID: PMC5310022 DOI: 10.1186/s12985-017-0703-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/08/2017] [Indexed: 01/18/2023] Open
Abstract
Background HIV-1 is highly variable genetically and at protein level, a property it uses to subvert antiviral immunity and treatment. The aim of this study was to assess if HIV subtype differences were associated with variations in glycosylation patterns and co-receptor tropism among HAART patients experiencing different virologic treatment outcomes. Methods A total of 118 HIV env C2V3 sequence isolates generated previously from 59 Kenyan patients receiving highly active antiretroviral therapy (HAART) were examined for tropism and glycosylation patterns. For analysis of Potential N-linked glycosylation sites (PNGs), amino acid sequences generated by the NCBI’s Translate tool were applied to the HIVAlign and the N-glycosite tool within the Los Alamos Database. Viral tropism was assessed using Geno2Pheno (G2P), WebPSSM and Phenoseq platforms as well as using Raymond’s and Esbjörnsson’s rules. Chi square test was used to determine independent variables association and ANOVA applied on scale variables. Results At respective False Positive Rate (FPR) cut-offs of 5% (p = 0.045), 10% (p = 0.016) and 20% (p = 0.005) for CXCR4 usage within the Geno2Pheno platform, HIV-1 subtype and viral tropism were significantly associated in a chi square test. Raymond’s rule (p = 0.024) and WebPSSM (p = 0.05), but not Phenoseq or Esbjörnsson showed significant associations between subtype and tropism. Relative to other platforms used, Raymond’s and Esbjörnsson’s rules showed higher proportions of X4 variants, while WebPSSM resulted in lower proportions of X4 variants across subtypes. The mean glycosylation density differed significantly between subtypes at positions, N277 (p = 0.034), N296 (p = 0.036), N302 (p = 0.034) and N366 (p = 0.004), with HIV-1D most heavily glycosylated of the subtypes. R5 isolates had fewer PNGs than X4 isolates, but these differences were not significant except at position N262 (p = 0.040). Cell-associated isolates from virologic treatment success subjects were more glycosylated than cell-free isolates from virologic treatment failures both for the NXT (p = 0.016), and for all the patterns (p = 0.011). Conclusion These data reveal significant associations of HIV-1 subtype diversity, viral co-receptor tropism, viral suppression and envelope glycosylation. These associations have important implications for designing therapy and vaccines against HIV. Heavy glycosylation and preference for CXCR4 usage of HIV-1D may explain rapid disease progression in patients infected with these strains.
Collapse
Affiliation(s)
- Rose C Kitawi
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.,Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000 -00200, Nairobi, Kenya
| | - Carol W Hunja
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.,South Eastern Kenya University, P.O Box 170-90200, Kitui, Kenya
| | - Rashid Aman
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.,African Center for Clinical Trials, P.O. Box 2288-00202, Nairobi, Kenya.,Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Bernhards R Ogutu
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.,Institute of Healthcare Management, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya.,Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya
| | - Anne W T Muigai
- Jomo Kenyatta University of Agriculture and Technology, P.O Box 62000 -00200, Nairobi, Kenya
| | - Gilbert O Kokwaro
- Institute of Healthcare Management, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya
| | - Washingtone Ochieng
- Center for Research in Therapeutic Sciences, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya. .,Institute of Healthcare Management, Strathmore University, P.O. Box 59857-00200, Nairobi, Kenya. .,Kenya Medical Research Institute, P.O. Box 54840-00200, Nairobi, Kenya. .,Immunology and Infectious Diseases Dept, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
6
|
Saladini F, Vicenti I. Role of phenotypic investigation in the era of routine genotypic HIV-1 drug resistance testing. Future Virol 2016. [DOI: 10.2217/fvl-2016-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The emergence of drug resistance can seriously compromise HIV type-1 therapy and decrease therapeutic options. Resistance testing is highly recommended to guide treatment decisions and drug activity can be accurately predicted in the clinical setting through genotypic assays. While phenotypic systems are not suitable for monitoring drug resistance in routine laboratory practice, genotyping can misclassify unusual or complex mutational patterns, particularly with recently approved antivirals. In addition, phenotypic assays remain fundamental for characterizing candidate antiretroviral compounds. This review aims to discuss how phenotypic assays contributed to and still play a role in understanding the mechanisms of resistance of both licensed and investigational HIV type-1 inhibitors.
Collapse
Affiliation(s)
- Francesco Saladini
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena Italy, Policlinico Le Scotte, Viale Bracci 16 53100 Siena, Italy
| |
Collapse
|
7
|
Deep Sequencing of the HIV-1 env Gene Reveals Discrete X4 Lineages and Linkage Disequilibrium between X4 and R5 Viruses in the V1/V2 and V3 Variable Regions. J Virol 2016; 90:7142-58. [PMID: 27226378 DOI: 10.1128/jvi.00441-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/23/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED HIV-1 requires the CD4 receptor and a coreceptor (CCR5 [R5 phenotype] or CXCR4 [X4 phenotype]) to enter cells. Coreceptor tropism can be assessed by either phenotypic or genotypic analysis, the latter using bioinformatics algorithms to predict tropism based on the env V3 sequence. We used the Primer ID sequencing strategy with the MiSeq sequencing platform to reveal the structure of viral populations in the V1/V2 and C2/V3 regions of the HIV-1 env gene in 30 late-stage and 6 early-stage subjects. We also used endpoint dilution PCR followed by cloning of env genes to create pseudotyped virus to explore the link between genotypic predictions and phenotypic assessment of coreceptor usage. We found out that the most stringently sequence-based calls of X4 variants (Geno2Pheno false-positive rate [FPR] of ≤2%) formed distinct lineages within the viral population, and these were detected in 24 of 30 late-stage samples (80%), which was significantly higher than what has been seen previously by using other approaches. Non-X4 lineages were not skewed toward lower FPR scores in X4-containing populations. Phenotypic assays showed that variants with an intermediate FPR (2 to 20%) could be either X4/dual-tropic or R5 variants, although the X4 variants made up only about 25% of the lineages with an FPR of <10%, and these variants carried a distinctive sequence change. Phylogenetic analysis of both the V1/V2 and C2/V3 regions showed evidence of recombination within but very little recombination between the X4 and R5 lineages, suggesting that these populations are genetically isolated. IMPORTANCE Primer ID sequencing provides a novel approach to study genetic structures of viral populations. X4 variants may be more prevalent than previously reported when assessed by using next-generation sequencing (NGS) and with a greater depth of sampling than single-genome amplification (SGA). Phylogenetic analysis to identify lineages of sequences with intermediate FPR values may provide additional information for accurately predicting X4 variants by using V3 sequences. Limited recombination occurs between X4 and R5 lineages, suggesting that X4 and R5 variants are genetically isolated and may be replicating in different cell types or that X4/R5 recombinants have reduced fitness.
Collapse
|
8
|
Garg H, Lee RT, Maurer-Stroh S, Joshi A. HIV-1 adaptation to low levels of CCR5 results in V3 and V2 loop changes that increase envelope pathogenicity, CCR5 affinity and decrease susceptibility to Maraviroc. Virology 2016; 493:86-99. [DOI: 10.1016/j.virol.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022]
|
9
|
Gonzalez-Serna A, Genebat M, Ruiz-Mateos E, Leal M. Short-term maraviroc exposure, a clinical approach to decide on maraviroc prescription in HIV-1-infected treatment-naïve patients. Drug Des Devel Ther 2016; 10:353-4. [PMID: 26848259 PMCID: PMC4723024 DOI: 10.2147/dddt.s100639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Alejandro Gonzalez-Serna
- Laboratory of Molecular Immunobiology, Hospital General Universitario Gregorio Maranon, Madrid, Spain
| | - Miguel Genebat
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Seville, Spain
| | - Ezequiel Ruiz-Mateos
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Seville, Spain
| | - Manuel Leal
- Laboratory of Immunovirology, Institute of Biomedicine of Seville, Seville, Spain
| |
Collapse
|
10
|
Incompatible Natures of the HIV-1 Envelope in Resistance to the CCR5 Antagonist Cenicriviroc and to Neutralizing Antibodies. Antimicrob Agents Chemother 2015; 60:437-50. [PMID: 26525792 DOI: 10.1128/aac.02285-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
Cenicriviroc is a CCR5 antagonist which prevents human immunodeficiency virus type 1 (HIV-1) from cellular entry. The CCR5-binding regions of the HIV-1 envelope glycoprotein are important targets for neutralizing antibodies (NAbs), and mutations conferring cenicriviroc resistance may therefore affect sensitivity to NAbs. Here, we used the in vitro induction of HIV-1 variants resistant to cenicriviroc or NAbs to examine the relationship between resistance to cenicriviroc and resistance to NAbs. The cenicriviroc-resistant variant KK652-67 (strain KK passaged 67 times in the presence of increasing concentrations of cenicriviroc) was sensitive to neutralization by NAbs against the V3 loop, the CD4-induced (CD4i) region, and the CD4-binding site (CD4bs), whereas the wild-type (WT) parental HIV-1 strain KKWT from which cenicriviroc-resistant strain KK652-67 was obtained was resistant to these NAbs. The V3 region of KK652-67 was important for cenicriviroc resistance and critical to the high sensitivity of the V3, CD4i, and CD4bs epitopes to NAbs. Moreover, induction of variants resistant to anti-V3 NAb 0.5γ and anti-CD4i NAb 4E9C from cenicriviroc-resistant strain KK652-67 resulted in reversion to the cenicriviroc-sensitive phenotype comparable to that of the parental strain, KKWT. Resistance to 0.5γ and 4E9C was caused by the novel substitutions R315K, G324R, and E381K in the V3 and C3 regions near the substitutions conferring cenicriviroc resistance. Importantly, these amino acid changes in the CCR5-binding region were also responsible for reversion to the cenicriviroc-sensitive phenotype. These results suggest the presence of key amino acid residues where resistance to cenicriviroc is incompatible with resistance to NAbs. This implies that cenicriviroc and neutralizing antibodies may restrict the emergence of variants resistant to each other.
Collapse
|
11
|
Abstract
The human immunodeficiency virus-1 (HIV-1) enters target cells by binding its envelope glycoprotein gp120 to the CD4 receptor and/or coreceptors such as C-C chemokine receptor type 5 (CCR5; R5) and C-X-C chemokine receptor type 4 (CXCR4; X4), and R5-tropic viruses predominate during the early stages of infection. CCR5 antagonists bind to CCR5 to prevent viral entry. Maraviroc (MVC) is the only CCR5 antagonist currently approved by the United States Food and Drug Administration, the European Commission, Health Canada, and several other countries for the treatment of patients infected with R5-tropic HIV-1. MVC has been shown to be effective at inhibiting HIV-1 entry into cells and is well tolerated. With expanding MVC use by HIV-1-infected humans, different clinical outcomes post-approval have been observed with MVC monotherapy or combination therapy with other antiretroviral drugs, with MVC use in humans infected with dual-R5- and X4-tropic HIV-1, infected with different HIV-1 genotype or infected with HIV-2. This review discuss the role of CCR5 in HIV-1 infection, the development of the CCR5 antagonist MVC, its pharmacokinetics, pharmacodynamics, drug-drug interactions, and the implications of these interactions on treatment outcomes, including viral mutations and drug resistance, and the mechanisms associated with the development of resistance to MVC. This review also discusses available studies investigating the use of MVC in the treatment of other diseases such as cancer, graft-versus-host disease, and inflammatory diseases.
Collapse
Affiliation(s)
- Shawna M Woollard
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Georgette D Kanmogne
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
12
|
Boonchawalit S, Harada S, Shirai N, Gatanaga H, Oka S, Matsushita S, Yoshimura K. Impact of the Maraviroc-Resistant Mutation M434I in the C4 Region of HIV-1 gp120 on Sensitivity to Antibody-Mediated Neutralization. Jpn J Infect Dis 2015; 69:236-43. [PMID: 26166507 DOI: 10.7883/yoken.jjid.2015.310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously reported that a maraviroc (MVC)-resistant human immunodeficiency virus type 1variant, generated using in vitro selection, exhibited high sensitivity to several neutralizing monoclonal antibodies (NMAbs) and autologous plasma IgGs. The MVC-resistant variant acquired 4 sequential mutations in gp120: T297I, M434I, V200I, and K305R. In this study, we examined the mutation most responsible for conferring enhanced neutralization sensitivity of the MVC-resistant variant to several NMAbs and autologous plasma IgGs. The virus with the first resistant mutation, T297I, was sensitive to all NMAbs, whereas the passage control virus was not. The neutralization sensitivity of the variant greatly increased following its acquisition of the second mutation, M434I, in the C4 region. The M434I mutation conferred the greatest neutralizing sensitivity among the 4 MVC-resistant mutations. Additionally, the single M434I mutation was sufficient for the enhanced neutralization of the virus by NMAbs, autologous plasma IgGs, and heterologous sera relative to that of the parental virus.
Collapse
|
13
|
Lazzarin A, Reynes J, Molina JM, Valluri S, Mukwaya G, Heera J, Craig C, van der Ryst E, Sierra-Madero JG. The maraviroc expanded access program - safety and efficacy data from an open-label study. HIV CLINICAL TRIALS 2015; 16:10-21. [PMID: 25777185 DOI: 10.1179/1528433614z.0000000002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE The maraviroc (MVC) expanded access program (EAP) was initiated to increase MVC availability to patients with limited treatment options. Darunavir (DRV), raltegravir (RAL), and etravirine (ETV) were either recently approved or under regulatory review at study initiation and available for coadministration with MVC. Thus, the safety of MVC in combination with new antiretroviral therapies (ARVs) could be assessed. This open-label safety study of MVC was conducted at 262 sites worldwide in 1032 R5 HIV-positive treatment-experienced patients with limited/no therapeutic options. METHODS Study visits included screening, baseline, end of study or early discontinuation, and follow-up 30 days after last dose. Interim visits for HIV-1 RNA and CD4 cell counts occurred according to local HIV infection management guidelines. Safety data were analyzed overall and by subgroup based on ARV combination [MVC+optimized background therapy (OBT), MVC ± OBT+DRV/r, MVC ± OBT+RAL, MVC ± OBT+RAL+DRV/r, MVC ± OBT+RAL+ETV ± DRV/r]. RESULTS Most (90.3%) adverse events (AEs) were of mild or moderate severity with few grade 3/4 events, discontinuations, or temporary discontinuations/dose reductions due to AEs or serious AEs. Similar results were observed across subgroups. Of treated patients, 79.9% and 50% had HIV-1 RNA < 400 copies/ml and < 50 copies/ml respectively, at the end of the study, early termination visits, or at last known status. Tropism changes and selection of MVC-resistant R5 virus, including high-level MVC dependence, were mechanisms of viral escape. CONCLUSION MVC was well tolerated with virologic suppression observed in most patients.
Collapse
|
14
|
Mbondji-Wonje C, Ragupathy V, Zhao J, Nanfack A, Lee S, Torimiro J, Nyambi P, Hewlett IK. Genotypic prediction of tropism of highly diverse HIV-1 strains from Cameroon. PLoS One 2014; 9:e112434. [PMID: 25379669 PMCID: PMC4224497 DOI: 10.1371/journal.pone.0112434] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The use of CCR5 antagonists involves determination of HIV-1 tropism prior to initiation of treatment. HIV-1 tropism can be assessed either by phenotypic or genotypic methods. Genotypic methods are extensively used for tropism prediction. However, their validation in predicting tropism of viral isolates belonging to group M non-B subtypes remains challenging. In Cameroon, the genetic diversity of HIV-1 strains is the broadest reported worldwide. To facilitate the integration of CCR5 antagonists into clinical practice in this region, there is a need to evaluate the performance of genotypic methods for predicting tropism of highly diverse group M HIV-1 strains. METHODS Tropism of diverse HIV-1 strains isolated from PBMCs from Cameroon was determined using the GHOST cell assay. Prediction, based on V3 sequences from matched plasma samples, was determined using bioinformatics algorithms and rules based on position 11/25 and net charge applied independently or combined according to Delobel's and Garrido's rules. Performance of genotypic methods was evaluated by comparing prediction generated with tropism assigned by the phenotypic assay. RESULTS Specificity for predicting R5-tropic virus was high, ranging from 83.7% to 97.7% depending on the genotypic methods used. Sensitivity for X4-tropic viruses was fairly low, ranging from 33.3% to 50%. In our study, overall, genotypic methods were less able to accurately predict X4-tropic virus belonging to subtype CRF02_AG. In addition, it was found that of the methods we used the Garrido rule has the highest sensitivity rate of over 50% with a specificity of 93%. CONCLUSION Our study demonstrated that overall, genotypic methods were less sensitive for accurate prediction of HIV-1 tropism in settings where diverse HIV-1 strains co-circulate. Our data suggest that further optimization of genotypic methods is needed and that larger studies to determine their utility for tropism prediction of diverse HIV-1 strains may be warranted.
Collapse
Affiliation(s)
- Christelle Mbondji-Wonje
- Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, United States of America
- Faculty of Medicine, Pharmacy and Biomedical sciences, University of Douala, Douala, Cameroon
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, United States of America
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, United States of America
| | - Aubin Nanfack
- Chantal Biya International Reference Centre, Yaoundé, Cameroon
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Sherwin Lee
- Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, United States of America
| | - Judith Torimiro
- Chantal Biya International Reference Centre, Yaoundé, Cameroon
| | - Phillipe Nyambi
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Indira K. Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transmission Transmitted Diseases, Office of Blood Review and Research, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, United States of America
| |
Collapse
|
15
|
Abstract
Human immunodeficiency virus (HIV) exhibits remarkable diversity in its genomic makeup and exists in any given individual as a complex distribution of closely related but nonidentical genomes called a viral quasispecies, which is subject to genetic variation, competition, and selection. This viral diversity clinically manifests as a selection of mutant variants based on viral fitness in treatment-naive individuals and based on drug-selective pressure in those on antiretroviral therapy (ART). The current standard-of-care ART consists of a combination of antiretroviral agents, which ensures maximal viral suppression while preventing the emergence of drug-resistant HIV variants. Unfortunately, transmission of drug-resistant HIV does occur, affecting 5% to >20% of newly infected individuals. To optimize therapy, clinicians rely on viral genotypic information obtained from conventional population sequencing-based assays, which cannot reliably detect viral variants that constitute <20% of the circulating viral quasispecies. These low-frequency variants can be detected by highly sensitive genotyping methods collectively grouped under the moniker of deep sequencing. Low-frequency variants have been correlated to treatment failures and HIV transmission, and detection of these variants is helping to inform strategies for vaccine development. Here, we discuss the molecular virology of HIV, viral heterogeneity, drug-resistance mutations, and the application of deep sequencing technologies in research and the clinical care of HIV-infected individuals.
Collapse
Affiliation(s)
- Shiven B Chabria
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510; , ,
| | | | | |
Collapse
|