1
|
Römpp A, Treu A, Kokesch-Himmelreich J, Marwitz F, Dreisbach J, Aboutara N, Hillemann D, Garrelts M, Converse PJ, Tyagi S, Gerbach S, Gyr L, Lemm AK, Volz J, Hölscher A, Gröschel L, Stemp EM, Heinrich N, Kloss F, Nuermberger EL, Schwudke D, Hoelscher M, Hölscher C, Walter K. The clinical-stage drug BTZ-043 accumulates in murine tuberculosis lesions and efficiently acts against Mycobacterium tuberculosis. Nat Commun 2025; 16:826. [PMID: 39827265 PMCID: PMC11742723 DOI: 10.1038/s41467-025-56146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The development of granulomas with central necrosis harboring Mycobacterium tuberculosis (Mtb) is the hallmark of human tuberculosis (TB). New anti-TB therapies need to effectively penetrate the cellular and necrotic compartments of these lesions and reach sufficient concentrations to eliminate Mtb. BTZ-043 is a novel antibiotic showing good bactericidal activity in humans in a phase IIa trial. Here, we report on lesional BTZ-043 concentrations severalfold above the minimal-inhibitory-concentration and the substantial local efficacy of BTZ-043 in interleukin-13-overexpressing mice, which mimic human TB pathology of granuloma necrosis. High-resolution MALDI imaging further reveals that BTZ-043 diffuses and accumulates in the cellular compartment, and fully penetrates the necrotic center. This is the first study that visualizes an efficient penetration and accumulation of a clinical-stage TB drug in human-like centrally necrotizing granulomas and that also determines its lesional activity. Our results most likely predict a substantial bactericidal effect of BTZ-043 at these hard-to-reach sites in TB patients.
Collapse
Affiliation(s)
- Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany.
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany.
| | - Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Julia Kokesch-Himmelreich
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Franziska Marwitz
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Julia Dreisbach
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nadine Aboutara
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Doris Hillemann
- National and WHO Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Moritz Garrelts
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Paul J Converse
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sandeep Tyagi
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sina Gerbach
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, Jena, Germany
| | - Luzia Gyr
- Robotic-assisted Discovery of Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, Jena, Germany
| | - Ann-Kathrin Lemm
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Johanna Volz
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Alexandra Hölscher
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Leon Gröschel
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Eva-Maria Stemp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
| | - Norbert Heinrich
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP; Immunology, Infection and Pandemic Research, Munich, Germany
| | - Florian Kloss
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Leibniz-HKI, Jena, Germany
| | - Eric L Nuermberger
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Michael Hoelscher
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Munich-Bayreuth, Munich, Germany
- Institute of Infectious Diseases and Tropical Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP; Immunology, Infection and Pandemic Research, Munich, Germany
- Unit Global Health, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Christoph Hölscher
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Kerstin Walter
- Thematic Translational Unit Tuberculosis, German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
- Division of Infection Immunology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| |
Collapse
|
2
|
Villareal-Rivota B, Meneses-Preza YG, Campillo-Navarro M, Ruiz-Sánchez BP, Soria-Castro R, Barrios-Payán J, Mata-Espinosa D, Donis-Maturano L, Pérez-Tapia SM, Chávez-Blanco AD, Estrada-Parra S, Hernández-Pando R, Chacón-Salinas R. Impaired control of Mycobacterium tuberculosis infection in mast cell-deficient Kit W-sh/W-sh mice. Tuberculosis (Edinb) 2025; 150:102587. [PMID: 39612800 DOI: 10.1016/j.tube.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/15/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Tuberculosis (TB) is a global health problem with diverse clinical manifestations. Different cells of the immune response participate in containing the infection, mainly through the development of granulomas. Mast cells (MCs) are hematopoietic cells that participate in the immune response to different pathogens, and in vitro evidence indicates that they can be activated by Mycobacterium tuberculosis (Mtb). The aim of this study was to evaluate the role of MCs in a murine TB model. We observed that KitW-sh/W-sh mast cell-deficient mice showed increased bacterial load in the lungs and the spleen compared to wild-type C57BL/6 mice. Furthermore, MC-deficient mice showed fewer pulmonary granulomas but an early higher inflammatory infiltrate. Interestingly, serum cytokine levels were altered in MC-deficient mice, which showed increased levels of IL-4, IL-5, and IL-22 during the early phase of the infection but increased levels of IFN-γ, IL-9, IL-10, and IL-21 during the late phase of the infection. These results show that mast cells play an important role during Mtb infection by modulating the immune response to the bacteria.
Collapse
Affiliation(s)
- Berenice Villareal-Rivota
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Yatsiri G Meneses-Preza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Marcia Campillo-Navarro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Bibiana Patricia Ruiz-Sánchez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rodolfo Soria-Castro
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Jorge Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Dulce Mata-Espinosa
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico
| | - Luis Donis-Maturano
- Faculty of Higher Studies-Iztacala, National Autonomous University of Mexico, Tlalnepantla de Baz, 54090, Mexico
| | - Sonia M Pérez-Tapia
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico; Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Alma D Chávez-Blanco
- División de Ciencia Básica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, 14080, Mexico.
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Mexico City, Mexico.
| |
Collapse
|
3
|
Auld SC, Barczak AK, Bishai W, Coussens AK, Dewi IMW, Mitini-Nkhoma SC, Muefong C, Naidoo T, Pooran A, Stek C, Steyn AJC, Tezera L, Walker NF. Pathogenesis of Post-Tuberculosis Lung Disease: Defining Knowledge Gaps and Research Priorities at the Second International Post-Tuberculosis Symposium. Am J Respir Crit Care Med 2024; 210:979-993. [PMID: 39141569 PMCID: PMC11531093 DOI: 10.1164/rccm.202402-0374so] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024] Open
Abstract
Post-tuberculosis (post-TB) lung disease is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to post-TB lung disease are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the Pathogenesis and Risk Factors Committee for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa, in April 2023. The committee first identified six areas with high translational potential: 1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity; 2) fibroblasts and profibrotic activity; 3) granuloma fate and cell death pathways; 4) mycobacterial factors, including pathogen burden; 5) animal models; and 6) the impact of key clinical risk factors, including HIV, diabetes, smoking, malnutrition, and alcohol. We share the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.
Collapse
Affiliation(s)
- Sara C. Auld
- Departments of Medicine, Epidemiology, and Global Health, Emory University School of Medicine and Rollins School of Public Health, Atlanta, Georgia
| | - Amy K. Barczak
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - William Bishai
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Anna K. Coussens
- Infectious Diseases and Immune Defence Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Intan M. W. Dewi
- Microbiology Division, Department of Biomedical Sciences, Faculty of Medicine, and
- Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Caleb Muefong
- Department of Microbiology, University of Chicago, Chicago, Illinois
| | - Threnesan Naidoo
- Department of Forensic & Legal Medicine and
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Health Sciences, Walter Sisulu University, Eastern Cape, South Africa
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, and
- University of Cape Town Lung Institute and Medical Research Council/University of Cape Town Centre for the Study of Antimicrobial Resistance, Cape Town, South Africa
| | - Cari Stek
- Wellcome Center for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Microbiology and
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Liku Tezera
- National Institute for Health and Care Research Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Naomi F. Walker
- Department of Clinical Sciences and Centre for Tuberculosis Research, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; and
- Tropical and Infectious Diseases Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
4
|
Ssekamatte P, Nabatanzi R, Sitenda D, Nakibuule M, Bagaya BS, Kibirige D, Kyazze AP, Kateete DP, Sande OJ, van Crevel R, Cose S, Biraro IA. Impaired Mycobacterium tuberculosis-specific T-cell memory phenotypes and functional profiles among adults with type 2 diabetes mellitus in Uganda. Front Immunol 2024; 15:1480739. [PMID: 39430752 PMCID: PMC11486641 DOI: 10.3389/fimmu.2024.1480739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Background Efforts to eradicate tuberculosis (TB) are threatened by diabetes mellitus (DM), which confers a 3-fold increase in the risk of TB disease. The changes in the memory phenotypes and functional profiles of Mycobacterium tuberculosis (Mtb)-specific T cells in latent TB infection (LTBI)-DM participants remain poorly characterised. We, therefore, assessed the effect of DM on T-cell phenotype and function in LTBI and DM clinical groups. Methods We compared the memory phenotypes and function profiles of Mtb-specific CD4+ and CD8+ T cells among participants with LTBI-DM (n=21), LTBI-only (n=17) and DM-only (n=16). Peripheral blood mononuclear cells (PBMCs) were stimulated with early secretory antigenic 6 kDa (ESAT-6) and culture filtrate protein 10 (CFP-10) peptide pools or phytohemagglutinin (PHA). The memory phenotypes (CCR7/CD45RA), and functional profiles (HLA-DR, PD-1, CD107a, IFN-γ, IL-2, TNF, IL-13, IL-17A) of Mtb-specific CD4+ and CD8+ T cells were characterised by flow cytometry. Results Naïve CD4+ T cells were significantly decreased in the LTBI-DM compared to the LTBI-only participants [0.47 (0.34-0.69) vs 0.91 (0.59-1.05); (p<0.001)]. Similarly, CD8+ HLA-DR expression was significantly decreased in LTBI-DM compared to LTBI-only participants [0.26 (0.19-0.33) vs 0.52 (0.40-0.64); (p<0.0001)], whereas CD4+ and CD8+ PD-1 expression was significantly upregulated in the LTBI-DM compared to the LTBI-only participants [0.61 (0.53-0.77) vs 0.19 (0.10-0.28); (p<0.0001) and 0.41 (0.37-0.56) vs 0.29 (0.17-0.42); (p=0.007)] respectively. CD4+ and CD8+ IFN-γ production was significantly decreased in the LTBI-DM compared to the LTBI-only participants [0.28 (0.19-0.38) vs 0.39 (0.25-0.53); (p=0.030) and 0.36 (0.27-0.49) vs 0.55 (0.41-0.88); (p=0.016)] respectively. CD4+ TNF and CD8+ IL-17A production were significantly decreased in participants with LTBI-DM compared to those with LTBI-only [0.38 (0.33-0.50) vs 0.62 (0.46-0.87); (p=0.004) and 0.29 (0.16-0.42) vs 0.47 (0.29-0.52); (0.017)] respectively. LTBI-DM participants had significantly lower dual-functional (IFN-γ+IL-2+ and IL-2+TNF+) and mono-functional (IFN-γ+ and TNF+) CD4+ responses than LTBI-only participants. LTBI-DM participants had significantly decreased dual-functional (IFN-γ+IL-2+, IFN-γ+ TNF+ and IL-2+TNF+) and mono-functional (IFN-γ+, IL-2+ and TNF+) central and effector memory CD4+ responses compared to LTBI-only participants. Conclusion Type 2 DM impairs the memory phenotypes and functional profiles of Mtb-specific CD4+ and CD8+ T cells, potentially indicating underlying immunopathology towards increased active TB disease risk.
Collapse
Affiliation(s)
- Phillip Ssekamatte
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Marjorie Nakibuule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Davis Kibirige
- Department of Medicine, Uganda Martyrs Lubaga Hospital, Kampala, Uganda
| | - Andrew Peter Kyazze
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Irene Andia Biraro
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
5
|
Kokesch-Himmelreich J, Treu A, Race AM, Walter K, Hölscher C, Römpp A. Do Anti-tuberculosis Drugs Reach Their Target?─High-Resolution Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Provides Information on Drug Penetration into Necrotic Granulomas. Anal Chem 2022; 94:5483-5492. [PMID: 35344339 DOI: 10.1021/acs.analchem.1c03462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is characterized by mycobacteria-harboring centrally necrotizing granulomas. The efficacy of anti-TB drugs depends on their ability to reach the bacteria in the center of these lesions. Therefore, we developed a mass spectrometry (MS) imaging workflow to evaluate drug penetration in tissue. We employed a specific mouse model that─in contrast to regular inbred mice─strongly resembles human TB pathology. Mycobacterium tuberculosis was inactivated in lung sections of these mice by γ-irradiation using a protocol that was optimized to be compatible with high spatial resolution MS imaging. Different distributions in necrotic granulomas could be observed for the anti-TB drugs clofazimine, pyrazinamide, and rifampicin at a pixel size of 30 μm. Clofazimine, imaged here for the first time in necrotic granulomas of mice, showed higher intensities in the surrounding tissue than in necrotic granulomas, confirming data observed in TB patients. Using high spatial resolution drug and lipid imaging (5 μm pixel size) in combination with a newly developed data analysis tool, we found that clofazimine does penetrate to some extent into necrotic granulomas and accumulates in the macrophages inside the granulomas. These results demonstrate that our imaging platform improves the predictive power of preclinical animal models. Our workflow is currently being applied in preclinical studies for novel anti-TB drugs within the German Center for Infection Research (DZIF). It can also be extended to other applications in drug development and beyond. In particular, our data analysis approach can be used to investigate diffusion processes by MS imaging in general.
Collapse
Affiliation(s)
- Julia Kokesch-Himmelreich
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Axel Treu
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Alan M Race
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany
| | - Kerstin Walter
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Christoph Hölscher
- Infection Immunology, Leibniz Lung Center, Research Center Borstel, Borstel 23845, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Bayreuth 95447, Germany.,German Center for Infection Research (DZIF), Braunschweig 38124, Germany
| |
Collapse
|