1
|
Capodimonte L, Meireles FTP, Bahr G, Bonomo RA, Dal Peraro M, López C, Vila AJ. OXA β-lactamases from Acinetobacter spp. are membrane bound and secreted into outer membrane vesicles. mBio 2025; 16:e0334324. [PMID: 39670715 PMCID: PMC11796391 DOI: 10.1128/mbio.03343-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
β-lactamases from Gram-negative bacteria are generally regarded as soluble, periplasmic enzymes. NDMs have been exceptionally characterized as lipoproteins anchored to the outer membrane. A bioinformatics study on all sequenced β-lactamases was performed that revealed a predominance of putative lipidated enzymes in the Class D OXAs. Namely, 60% of the OXA Class D enzymes contain a lipobox sequence in their signal peptide, that is expected to trigger lipidation and membrane anchoring. This contrasts with β-lactamases from other classes, which are predicted to be mostly soluble proteins. Almost all (>99%) putative lipidated OXAs are present in Acinetobacter spp. Importantly, we further demonstrate that OXA-23 and OXA-24/40 are lipidated, membrane-bound proteins in Acinetobacter baumannii. In contrast, OXA-48 (commonly produced by Enterobacterales) lacks a lipobox and is a soluble protein. Outer membrane vesicles (OMVs) from A. baumannii cells expressing OXA-23 and OXA-24/40 contain these enzymes in their active form. Moreover, OXA-loaded OMVs were able to protect A. baumannii, Escherichia coli, and Pseudomonas aeruginosa cells susceptible to piperacillin and imipenem. These results permit us to conclude that membrane binding is a bacterial host-specific phenomenon in OXA enzymes. These findings reveal that membrane-bound β-lactamases are more common than expected and support the hypothesis that OMVs loaded with lipidated β-lactamases are vehicles for antimicrobial resistance and its dissemination. This advantage could be crucial in polymicrobial infections, in which Acinetobacter spp. are usually involved, and underscore the relevance of identifying the cellular localization of lactamases to better understand their physiology and target them.IMPORTANCEβ-lactamases represent the main mechanism of antimicrobial resistance in Gram-negative pathogens. Their catalytic function (cleaving β-lactam antibiotics) occurs in the bacterial periplasm, where they are commonly reported as soluble proteins. A bioinformatic analysis reveals a significant number of putative lipidated β-lactamases, expected to be attached to the outer bacterial membrane. Notably, 60% of Class D OXA β-lactamases (all from Acinetobacter spp.) are predicted as membrane-anchored proteins. We demonstrate that two clinically relevant carbapenemases, OXA-23 and OXA-24/40, are membrane-bound proteins in A. baumannii. This cellular localization favors the secretion of these enzymes into outer membrane vesicles that transport them outside the boundaries of the cell. β-lactamase-loaded vesicles can protect populations of antibiotic-susceptible bacteria, enabling them to thrive in the presence of β-lactam antibiotics. The ubiquity of this phenomenon suggests that it may have influenced the dissemination of resistance mediated by Acinetobacter spp., particularly in polymicrobial infections, being a potent evolutionary advantage.
Collapse
Affiliation(s)
- Lucia Capodimonte
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | | | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carolina López
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
2
|
Liu R, Liu Y, Qiu J, Ren Q, Wei C, Pan D, Shi J, Liu P, Wei D, Xiang T, Cheng N. Biochemical properties and substrate specificity of GOB-38 in Elizabethkingia anophelis. Sci Rep 2025; 15:351. [PMID: 39747310 PMCID: PMC11695579 DOI: 10.1038/s41598-024-82748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
The novel pathogen, Elizabethkingia anophelis, has gained attention due to its high mortality rates and drug resistance facilitated by its inherent metallo-β-lactamases (MBLs) genes. This study successfully identified and outlined the functions of the B3-Q MBLs variant, GOB-38, in a clinical sample of E. anophelis. The T7 expression system was employed to stimulate the expression of recombinant protein in Escherichia coli, followed by an analysis of the biochemical properties of purified GOB-38. Our findings indicate that the enzyme GOB-38 displays a wide range of substrates, including broad-spectrum penicillins, 1-4 generation cephalosporins, and carbapenems, potentially contributing to in vitro drug resistance in E. coli through a cloning mechanism. It is important to highlight that GOB-38 exhibits a distinct active site composition compared to GOB-1/18, featuring hydrophilic amino acids Thr51 and Glu141 at both ends of its active center instead of hydrophobic alanine, potentially indicating a preference for imipenem. Furthermore, the co-isolation of Acinetobacter baumannii and E. anophelis, two opportunistic pathogens, from a single lung infection is noteworthy. Our in vitro co-culture experiments suggest that E. anophelis, carrying two MBL genes, may have the ability to transfer carbapenem resistance to other bacterial species through co-infection.
Collapse
Affiliation(s)
- Ren Liu
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yang Liu
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Jiehui Qiu
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qun Ren
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chunping Wei
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Dejin Pan
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jianglong Shi
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China
| | - Peng Liu
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - DanDan Wei
- Departments of Clinical Laboratory, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China
| | - Tianxin Xiang
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China.
- China-Japan Friendship Jiang Xi Hospital, National Regional Center for Respiratory Medicine, Nanchang, Jiangxi, China.
- Departments of Hospital Infection Control, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Na Cheng
- Department of Infectious Disease, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330052, Jiangxi, China.
- Departments of Hospital Infection Control, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Capodimonte L, Meireles FTP, Bahr G, Bonomo RA, Dal Peraro M, López C, Vila AJ. OXA β-lactamases from Acinetobacter spp. are membrane-bound and secreted into outer membrane vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.622015. [PMID: 39574660 PMCID: PMC11580949 DOI: 10.1101/2024.11.04.622015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
β-lactamases from Gram-negative bacteria are generally regarded as soluble, periplasmic enzymes. NDMs have been exceptionally characterized as lipoproteins anchored to the outer membrane. A bioinformatics study on all sequenced β-lactamases was performed that revealed a predominance of putative lipidated enzymes in the class D OXAs. Namely, 60% of the OXA class D enzymes contain a lipobox sequence in their signal peptide, that is expected to trigger lipidation and membrane anchoring. This contrasts with β-lactamases from other classes, which are predicted to be mostly soluble proteins. Almost all (> 99%) putative lipidated OXAs are present in Acinetobacter spp. Importantly, we further demonstrate that OXA-23 and OXA-24/40 are lipidated, membrane-bound proteins in Acinetobacter baumannii. In contrast, OXA-48 (commonly produced by Enterobacterales) lacks a lipobox and is a soluble protein. Outer membrane vesicles (OMVs) from Acinetobacter baumannii cells expressing OXA-23 and OXA-24/40 contain these enzymes in their active form. Moreover, OXA-loaded OMVs were able to protect A. baumannii, Escherichia coli and Pseudomonas aeruginosa cells susceptible to piperacillin and imipenem. These results permit us to conclude that membrane binding is a bacterial host-specific phenomenon in OXA enzymes. These findings reveal that membrane-bound β-lactamases are more common than expected and support the hypothesis that OMVs loaded with lipidated β-lactamases are vehicles for antimicrobial resistance and its dissemination. This advantage could be crucial in polymicrobial infections, in which Acinetobacter spp. are usually involved, and underscore the relevance of identifying the cellular localization of lactamases to better understand their physiology and target them.
Collapse
Affiliation(s)
- Lucia Capodimonte
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Fernando Teixeira Pinto Meireles
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Pharmacology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Matteo Dal Peraro
- Institute of Bioengineering, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Carolina López
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (CONICET IBR -UNR)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
4
|
González LJ, Bahr G, González MM, Bonomo RA, Vila AJ. In-cell kinetic stability is an essential trait in metallo-β-lactamase evolution. Nat Chem Biol 2023; 19:1116-1126. [PMID: 37188957 PMCID: PMC11534350 DOI: 10.1038/s41589-023-01319-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Protein stability is an essential property for biological function. In contrast to the vast knowledge on protein stability in vitro, little is known about the factors governing in-cell stability. Here we show that the metallo-β-lactamase (MBL) New Delhi MBL-1 (NDM-1) is a kinetically unstable protein on metal restriction that has evolved by acquiring different biochemical traits that optimize its in-cell stability. The nonmetalated (apo) NDM-1 is degraded by the periplasmic protease Prc that recognizes its partially unstructured C-terminal domain. Zn(II) binding renders the protein refractory to degradation by quenching the flexibility of this region. Membrane anchoring makes apo-NDM-1 less accessible to Prc and protects it from DegP, a cellular protease degrading misfolded, nonmetalated NDM-1 precursors. NDM variants accumulate substitutions at the C terminus that quench its flexibility, enhancing their kinetic stability and bypassing proteolysis. These observations link MBL-mediated resistance with the essential periplasmic metabolism, highlighting the importance of the cellular protein homeostasis.
Collapse
Affiliation(s)
- Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariano M González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina.
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA.
| |
Collapse
|
5
|
Yang Y, Yan YH, Schofield CJ, McNally A, Zong Z, Li GB. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol 2023; 31:735-748. [PMID: 36858862 DOI: 10.1016/j.tim.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Resistance to β-lactam antibiotics is rapidly growing, substantially due to the spread of serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which efficiently catalyse β-lactam hydrolysis. Combinations of a β-lactam antibiotic with an SBL inhibitor have been clinically successful; however, no MBL inhibitors have been developed for clinical use. MBLs are a worrying resistance vector because they catalyse hydrolysis of all β-lactam antibiotic classes, except the monobactams, and they are being disseminated across many bacterial species worldwide. Here we review the classification, structures, substrate profiles, and inhibition mechanisms of MBLs, highlighting current clinical problems due to MBL-mediated resistance and progress in understanding and combating MBL-mediated resistance.
Collapse
Affiliation(s)
- Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Kaderabkova N, Bharathwaj M, Furniss RCD, Gonzalez D, Palmer T, Mavridou DA. The biogenesis of β-lactamase enzymes. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001217. [PMID: 35943884 PMCID: PMC10235803 DOI: 10.1099/mic.0.001217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
The discovery of penicillin by Alexander Fleming marked a new era for modern medicine, allowing not only the treatment of infectious diseases, but also the safe performance of life-saving interventions, like surgery and chemotherapy. Unfortunately, resistance against penicillin, as well as more complex β-lactam antibiotics, has rapidly emerged since the introduction of these drugs in the clinic, and is largely driven by a single type of extra-cytoplasmic proteins, hydrolytic enzymes called β-lactamases. While the structures, biochemistry and epidemiology of these resistance determinants have been extensively characterized, their biogenesis, a complex process including multiple steps and involving several fundamental biochemical pathways, is rarely discussed. In this review, we provide a comprehensive overview of the journey of β-lactamases, from the moment they exit the ribosomal channel until they reach their final cellular destination as folded and active enzymes.
Collapse
Affiliation(s)
- Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Manasa Bharathwaj
- Centre to Impact AMR, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - R. Christopher D. Furniss
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Tracy Palmer
- Microbes in Health and Disease, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
7
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
8
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases and a tug-of-war for the available zinc at the host-pathogen interface. Curr Opin Chem Biol 2022; 66:102103. [PMID: 34864439 PMCID: PMC8860843 DOI: 10.1016/j.cbpa.2021.102103] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/16/2021] [Accepted: 10/28/2021] [Indexed: 02/03/2023]
Abstract
Metallo-β-lactamases (MBLs) are zinc-dependent hydrolases that inactivate virtually all β-lactam antibiotics. The expression of MBLs by Gram-negative bacteria severely limits the therapeutic options to treat infections. MBLs bind the essential metal ions in the bacterial periplasm, and their activity is challenged upon the zinc starvation conditions elicited by the native immune response. Metal depletion compromises both the enzyme activity and stability in the periplasm, impacting on the resistance profile in vivo. Thus, novel inhibitory approaches involve the use of chelating agents or metal-based drugs that displace the native metal ion. However, newer MBL variants incorporate mutations that improve their metal binding abilities or stabilize the metal-depleted form, revealing that metal starvation is a driving force acting on MBL evolution. Future challenges require addressing the gap between in cell and in vitro studies, dissecting the mechanism for MBL metalation and determining the metal content in situ.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Lisandro J González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
9
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
10
|
Li X, Gui R, Li J, Huang R, Shang Y, Zhao Q, Liu H, Jiang H, Shang X, Wu X, Nie X. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30434-30457. [PMID: 34161080 DOI: 10.1021/acsami.1c10309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the face of the abundant production of various types of carbapenemases, the antibacterial efficiency of imipenem, seen as "the last line of defense", is weakening. Following, the incidence of carbapenem-resistant Acinetobacter baumannii (CRAB), which can generate antibiotic-resistant biofilms, is increasing. Based on the superior antimicrobial activity of silver nanoparticles against multifarious bacterial strains compared with common antibiotics, we constructed the IPM@AgNPs-PEG-NOTA nanocomposite (silver nanoparticles were coated with SH-PEG-NOTA as well as loaded by imipenem) whose core was a silver nanoparticle to address the current challenge, and IPM@AgNPs-PEG-NOTA was able to function as a novel smart pH-sensitive nanodrug system. Synergistic bactericidal effects of silver nanoparticles and imipenem as well as drug-resistance reversal via protection of the β-ring of carbapenem due to AgNPs-PEG-NOTA were observed; thus, this nanocomposite confers multiple advantages for efficient antibacterial activity. Additionally, IPM@AgNPs-PEG-NOTA not only offers immune regulation and accelerates tissue repair to improve therapeutic efficacy in vivo but also can prevent the interaction of pathogens and hosts. Compared with free imipenem or silver nanoparticles, this platform significantly enhanced antibacterial efficiency while increasing reactive oxygen species (ROS) production and membrane damage, as well as affecting cell wall formation and metabolic pathways. According to the results of crystal violet staining, LIVE/DEAD backlight bacterial viability staining, and real-time quantitative polymerase chain reaction (RT-qPCR), this silver nanocomposite downregulated the levels of ompA expression to prevent formation of biofilms. In summary, this research demonstrated that the IPM@AgNPs-PEG-NOTA nanocomposite is a promising antibacterial agent of security, pH sensitivity, and high efficiency in reversing resistance and synergistically combatting carbapenem-resistant A. baumannii. In the future, various embellishments and selected loads for silver nanoparticles will be the focus of research in the domains of medicine and nanotechnology.
Collapse
Affiliation(s)
- Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xueling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xin Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha 410000, Hunan, China
| |
Collapse
|
11
|
Belluzo BS, Abriata LA, Giannini E, Mihovilcevic D, Dal Peraro M, Llarrull LI. An experiment-informed signal transduction model for the role of the Staphylococcus aureus MecR1 protein in β-lactam resistance. Sci Rep 2019; 9:19558. [PMID: 31862951 PMCID: PMC6925264 DOI: 10.1038/s41598-019-55923-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
The treatment of hospital- and community-associated infections by methicillin-resistant Staphylococcus aureus (MRSA) is a perpetual challenge. This Gram-positive bacterium is resistant specifically to β-lactam antibiotics, and generally to many other antibacterial agents. Its resistance mechanisms to β-lactam antibiotics are activated only when the bacterium encounters a β-lactam. This activation is regulated by the transmembrane sensor/signal transducer proteins BlaR1 and MecR1. Neither the transmembrane/metalloprotease domain, nor the complete MecR1 and BlaR1 proteins, are isolatable for mechanistic study. Here we propose a model for full-length MecR1 based on homology modeling, residue coevolution data, a new extensive experimental mapping of transmembrane topology, partial structures, molecular simulations, and available NMR data. Our model defines the metalloprotease domain as a hydrophilic transmembrane chamber effectively sealed by the apo-sensor domain. It proposes that the amphipathic helices inserted into the gluzincin domain constitute the route for transmission of the β-lactam-binding event in the extracellular sensor domain, to the intracellular and membrane-embedded zinc-containing active site. From here, we discuss possible routes for subsequent activation of proteolytic action. This study provides the first coherent model of the structure of MecR1, opening routes for future functional investigations on how β-lactam binding culminates in the proteolytic degradation of MecI.
Collapse
Affiliation(s)
- Bruno S Belluzo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Estefanía Giannini
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Damila Mihovilcevic
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling - École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, CH-1015, Lausanne, Switzerland
| | - Leticia I Llarrull
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Predio CONICET Rosario, 27 de Febrero 210 bis, 2000, Rosario, Argentina. .,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
12
|
Cheng Z, Shurina BA, Bethel CR, Thomas PW, Marshall SH, Thomas CA, Yang K, Kimble RL, Montgomery JS, Orischak MG, Miller CM, Tennenbaum JL, Nix JC, Tierney DL, Fast W, Bonomo RA, Page RC, Crowder MW. A Single Salt Bridge in VIM-20 Increases Protein Stability and Antibiotic Resistance under Low-Zinc Conditions. mBio 2019; 10:e02412-19. [PMID: 31744917 PMCID: PMC6867895 DOI: 10.1128/mbio.02412-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
To understand the evolution of Verona integron-encoded metallo-β-lactamase (VIM) genes (blaVIM) and their clinical impact, microbiological, biochemical, and structural studies were conducted. Forty-five clinically derived VIM variants engineered in a uniform background and expressed in Escherichia coli afforded increased resistance toward all tested antibiotics; the variants belonging to the VIM-1-like and VIM-4-like families exhibited higher MICs toward five out of six antibiotics than did variants belonging to the widely distributed and clinically important VIM-2-like family. Generally, maximal MIC increases were observed when cephalothin and imipenem were tested. Additionally, MIC determinations under conditions with low zinc availability suggested that some VIM variants are also evolving to overcome zinc deprivation. The most profound increase in resistance was observed in VIM-2-like variants (e.g., VIM-20 H229R) at low zinc availability. Biochemical analyses reveal that VIM-2 and VIM-20 exhibited similar metal binding properties and steady-state kinetic parameters under the conditions tested. Crystal structures of VIM-20 in the reduced and oxidized forms at 1.25 Å and 1.37 Å resolution, respectively, show that Arg229 forms an additional salt bridge with Glu171. Differential scanning fluorimetry of purified proteins and immunoblots of periplasmic extracts revealed that this difference increases thermostability and resistance to proteolytic degradation when zinc availability is low. Therefore, zinc scarcity appears to be a selective pressure driving the evolution of multiple metallo-β-lactamase families, although compensating mutations use different mechanisms to enhance resistance.IMPORTANCE Antibiotic resistance is a growing clinical threat. One of the most serious areas of concern is the ability of some bacteria to degrade carbapenems, drugs that are often reserved as last-resort antibiotics. Resistance to carbapenems can be conferred by a large group of related enzymes called metallo-β-lactamases that rely on zinc ions for function and for overall stability. Here, we studied an extensive panel of 45 different metallo-β-lactamases from a subfamily called VIM to discover what changes are emerging as resistance evolves in clinical settings. Enhanced resistance to some antibiotics was observed. We also found that at least one VIM variant developed a new ability to remain more stable under conditions where zinc availability is limited, and we determined the origin of this stability in atomic detail. These results suggest that zinc scarcity helps drive the evolution of this resistance determinant.
Collapse
Affiliation(s)
- Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Christopher R Bethel
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Pei W Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas, USA
| | - Steven H Marshall
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Caitlyn A Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert L Kimble
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | | - Matthew G Orischak
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Callie M Miller
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Jordan L Tennenbaum
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Jay C Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas, USA
| | - Robert A Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
13
|
Giannini E, González LJ, Vila AJ. A simple protocol to characterize bacterial cell-envelope lipoproteins in a native-like environment. Protein Sci 2019; 28:2004-2010. [PMID: 31518027 DOI: 10.1002/pro.3728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 01/04/2023]
Abstract
Physiological conditions in living cells are strictly regulated to allow, optimize, and coordinate biological processes. The bacterial cell envelope is the compartment where the communication with the external environment takes place. This involves membrane proteins, key players in many biological processes that ensure bacterial survival. The biochemical characterization of membrane proteins, either integral, lipidated or peripheral is challenging due to their mixed protein-lipid nature, making it difficult to purify and obtain considerable amounts of samples. In contrast to integral membrane proteins, lipidated proteins are usually purified as truncated soluble versions, neglecting the impact of the membrane environment. Here we report a simple and robust protocol to characterize bacterial lipidated proteins in spheroplasts from Escherichia coli using a β-lactamase as a model. The Metallo-β-lactamase NDM-1 is an enzyme anchored to the inner leaflet of the outer membrane of Gram-negative bacteria. Kinetic parameters and stability of the lipidated NDM-1 and the soluble unbound version (NDM-1 C26A) were measured in spheroplasts and periplasm, respectively. These studies revealed that membrane anchoring increases the KM of the enzyme, consequently decreasing the catalytic efficiency, while not affecting its kinetic stability. This approach can be used to characterize lipidated proteins avoiding the purification step while mimicking its native environment. This approach also helps in filling the gap between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Estefanía Giannini
- Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Lisandro J González
- Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Alejandro J Vila
- Laboratorio de Metaloproteínas, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
14
|
Protein determinants of dissemination and host specificity of metallo-β-lactamases. Nat Commun 2019; 10:3617. [PMID: 31399590 PMCID: PMC6689000 DOI: 10.1038/s41467-019-11615-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
The worldwide dissemination of metallo-β-lactamases (MBLs), mediating resistance to carbapenem antibiotics, is a major public health problem. The extent of dissemination of MBLs such as VIM-2, SPM-1 and NDM among Gram-negative pathogens cannot be explained solely based on the associated mobile genetic elements or the resistance phenotype. Here, we report that MBL host range is determined by the impact of MBL expression on bacterial fitness. The signal peptide sequence of MBLs dictates their adaptability to each host. In uncommon hosts, inefficient processing of MBLs leads to accumulation of toxic intermediates that compromises bacterial growth. This fitness cost explains the exclusion of VIM-2 and SPM-1 from Escherichia coli and Acinetobacter baumannii, and their confinement to Pseudomonas aeruginosa. By contrast, NDMs are expressed without any apparent fitness cost in different bacteria, and are secreted into outer membrane vesicles. We propose that the successful dissemination and adaptation of MBLs to different bacterial hosts depend on protein determinants that enable host adaptability and carbapenem resistance. Metallo-β-lactamases (MBLs) confer resistance to carbapenem antibiotics. Here, López et al. show that the host range of MBLs depends on the efficiency of MBL signal peptide processing and secretion into outer membrane vesicles, which affects bacterial fitness.
Collapse
|
15
|
The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop. Antimicrob Agents Chemother 2018; 63:AAC.01754-18. [PMID: 30348667 DOI: 10.1128/aac.01754-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are "last resort" β-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-β-lactamases (MβLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all β-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MβLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MβLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different β-lactams in all MβLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MβLs.
Collapse
|
16
|
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob Agents Chemother 2018; 62:AAC.02280-17. [PMID: 29133551 DOI: 10.1128/aac.02280-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce β-lactamases with carbapenemase activity, such as the metallo-β-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse β-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other β-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 μM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.
Collapse
|
17
|
Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site. Antimicrob Agents Chemother 2016; 60:6013-22. [PMID: 27458232 DOI: 10.1128/aac.01067-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/17/2016] [Indexed: 11/20/2022] Open
Abstract
Metallo-beta-lactamases (MBLs) are broad-spectrum, Zn(II)-dependent lactamases able to confer resistance to virtually every β-lactam antibiotic currently available. The large diversity of active-site structures and metal content among MBLs from different sources has limited the design of a pan-MBL inhibitor. GOB-18 is a divergent MBL from subclass B3 that is expressed by the opportunistic Gram-negative pathogen Elizabethkingia meningoseptica This MBL is atypical, since several residues conserved in B3 enzymes (such as a metal ligand His) are substituted in GOB enzymes. Here, we report the crystal structure of the periplasmic di-Zn(II) form of GOB-18. This enzyme displays a unique active-site structure, with residue Gln116 coordinating the Zn1 ion through its terminal amide moiety, replacing a ubiquitous His residue. This situation contrasts with that of B2 MBLs, where an equivalent His116Asn substitution leads to a di-Zn(II) inactive species. Instead, both the mono- and di-Zn(II) forms of GOB-18 are active against penicillins, cephalosporins, and carbapenems. In silico docking and molecular dynamics simulations indicate that residue Met221 is not involved in substrate binding, in contrast to Ser221, which otherwise is conserved in most B3 enzymes. These distinctive features are conserved in recently reported GOB orthologues in environmental bacteria. These findings provide valuable information for inhibitor design and also posit that GOB enzymes have alternative functions.
Collapse
|
18
|
González LJ, Bahr G, Nakashige TG, Nolan EM, Bonomo RA, Vila AJ. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 2016; 12:516-22. [PMID: 27182662 PMCID: PMC4912412 DOI: 10.1038/nchembio.2083] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/14/2016] [Indexed: 01/22/2023]
Abstract
Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the blaNDM gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.
Collapse
Affiliation(s)
- Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH; Departments of Medicine, Pharmacology, Microbiology and Molecular Biology, and Biochemistry; Case Western Reserve University, Cleveland, OH, USA
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
19
|
Meini MR, Llarrull LI, Vila AJ. Evolution of Metallo-β-lactamases: Trends Revealed by Natural Diversity and in vitro Evolution. Antibiotics (Basel) 2016; 3:285-316. [PMID: 25364574 PMCID: PMC4212336 DOI: 10.3390/antibiotics3030285] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of β-lactamase enzymes is one of the most distributed resistance mechanisms towards β-lactam antibiotics. Metallo-β-lactamases constitute a worrisome group of these kinds of enzymes, since they present a broad spectrum profile, being able to hydrolyze not only penicillins, but also the latest generation of cephalosporins and carbapenems, which constitute at present the last resource antibiotics. The VIM, IMP, and NDM enzymes comprise the main groups of clinically relevant metallo-β-lactamases. Here we present an update of the features of the natural variants that have emerged and of the ones that have been engineered in the laboratory, in an effort to find sequence and structural determinants of substrate preferences. This knowledge is of upmost importance in novel drug design efforts. We also discuss the advances in knowledge achieved by means of in vitro directed evolution experiments, and the potential of this approach to predict natural evolution of metallo-β-lactamases.
Collapse
Affiliation(s)
- María-Rocío Meini
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Leticia I. Llarrull
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| | - Alejandro J. Vila
- Authors to whom correspondence should be addressed; E-Mails: (M.-R.M.); (L.I.L.); (A.J.V.); Tel.: +54-341-423-7070 (ext. 611 M.-R.M.; 637 L.I.L.; 632 A.J.V.); Fax: 54-341-423-7070 (ext. 607)
| |
Collapse
|
20
|
Luna LE, Forastieri PS, Marchiaro P, Limansky A, Cravero RM. Structural diversity and similar bioactivity in synthetic bicyclononanes. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1141429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | - Patricia Marchiaro
- IBR (Instituto de Biología Molecular y Celular de Rosario), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Adriana Limansky
- IBR (Instituto de Biología Molecular y Celular de Rosario), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | |
Collapse
|
21
|
Mojica MF, Mahler SG, Bethel CR, Taracila MA, Kosmopoulou M, Papp-Wallace KM, Llarrull LI, Wilson BM, Marshall SH, Wallace CJ, Villegas MV, Harris ME, Vila AJ, Spencer J, Bonomo RA. Exploring the Role of Residue 228 in Substrate and Inhibitor Recognition by VIM Metallo-β-lactamases. Biochemistry 2015; 54:3183-96. [PMID: 25915520 DOI: 10.1021/acs.biochem.5b00106] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Lactamase inhibitors (BLIs) restore the efficacy of otherwise obsolete β-lactams. However, commercially available BLIs are not effective against metallo-β-lactamases (MBLs), which continue to be disseminated globally. One group of the most clinically important MBLs is the VIM family. The discovery of VIM-24, a natural variant of VIM-2, possessing an R228L substitution and a novel phenotype, compelled us to explore the role of this position and its effects on substrate specificity. We employed mutagenesis, biochemical and biophysical assays, and crystallography. VIM-24 (R228L) confers enhanced resistance to cephems and increases the rate of turnover compared to that of VIM-2 (kcat/KM increased by 6- and 10-fold for ceftazidime and cefepime, respectively). Likely the R → L substitution relieves steric clashes and accommodates the C3N-methyl pyrrolidine group of cephems. Four novel bisthiazolidine (BTZ) inhibitors were next synthesized and tested against these MBLs. These inhibitors inactivated VIM-2 and VIM-24 equally well (Ki* values of 40-640 nM) through a two-step process in which an initial enzyme (E)-inhibitor (I) complex (EI) undergoes a conformational transition to a more stable species, E*I. As both VIM-2 and VIM-24 were inhibited in a similar manner, the crystal structure of a VIM-2-BTZ complex was determined at 1.25 Å and revealed interactions of the inhibitor thiol with the VIM Zn center. Most importantly, BTZs also restored the activity of imipenem against Klebsiella pneumoniae and Pseudomonas aeruginosa in whole cell assays producing VIM-24 and VIM-2, respectively. Our results suggest a role for position 228 in defining the substrate specificity of VIM MBLs and show that BTZ inhibitors are not affected by the R228L substitution.
Collapse
Affiliation(s)
- Maria F Mojica
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - S Graciela Mahler
- ⊥Laboratorio de Química Farmacéutica, Universidad de la República, Montevideo, Uruguay
| | - Christopher R Bethel
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magdalena A Taracila
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Magda Kosmopoulou
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Krisztina M Papp-Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Leticia I Llarrull
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Brigid M Wilson
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Steven H Marshall
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Christopher J Wallace
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Maria V Villegas
- ∇Centro Internacional de Entrenamiento e Investigaciones Médicas, CIDEIM, Cali, Colombia
| | | | - Alejandro J Vila
- #Instituto de Biología Molecular y Celular de Rosario (IBR), Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - James Spencer
- @School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Robert A Bonomo
- ∥Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| |
Collapse
|
22
|
Meini MR, Tomatis PE, Weinreich DM, Vila AJ. Quantitative Description of a Protein Fitness Landscape Based on Molecular Features. Mol Biol Evol 2015; 32:1774-87. [PMID: 25767204 DOI: 10.1093/molbev/msv059] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Understanding the driving forces behind protein evolution requires the ability to correlate the molecular impact of mutations with organismal fitness. To address this issue, we employ here metallo-β-lactamases as a model system, which are Zn(II) dependent enzymes that mediate antibiotic resistance. We present a study of all the possible evolutionary pathways leading to a metallo-β-lactamase variant optimized by directed evolution. By studying the activity, stability and Zn(II) binding capabilities of all mutants in the preferred evolutionary pathways, we show that this local fitness landscape is strongly conditioned by epistatic interactions arising from the pleiotropic effect of mutations in the different molecular features of the enzyme. Activity and stability assays in purified enzymes do not provide explanatory power. Instead, measurement of these molecular features in an environment resembling the native one provides an accurate description of the observed antibiotic resistance profile. We report that optimization of Zn(II) binding abilities of metallo-β-lactamases during evolution is more critical than stabilization of the protein to enhance fitness. A global analysis of these parameters allows us to connect genotype with fitness based on quantitative biochemical and biophysical parameters.
Collapse
Affiliation(s)
- María-Rocío Meini
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Pablo E Tomatis
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, and Center for Computational Molecular Biology, Brown University
| | - Alejandro J Vila
- Laboratory of Metalloproteins, Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
23
|
Laouami S, Clair G, Armengaud J, Duport C. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579. PLoS One 2014; 9:e107354. [PMID: 25216269 PMCID: PMC4162614 DOI: 10.1371/journal.pone.0107354] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/14/2014] [Indexed: 01/07/2023] Open
Abstract
The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.
Collapse
Affiliation(s)
- Sabrina Laouami
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
| | - Géremy Clair
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
- Laboratoire de Biochimie des Systèmes Perturbés, CEA Marcoule, DSV-iBEB-SBTN-LBSP, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire de Biochimie des Systèmes Perturbés, CEA Marcoule, DSV-iBEB-SBTN-LBSP, Bagnols-sur-Cèze, France
| | - Catherine Duport
- Avignon Université/INRA, SQPOV UMR408, Avignon, France
- INRA, SQPOV UMR408, Avignon, France
| |
Collapse
|
24
|
Meini MR, González LJ, Vila AJ. Antibiotic resistance in Zn(II)-deficient environments: metallo-β-lactamase activation in the periplasm. Future Microbiol 2014; 8:947-79. [PMID: 23902139 DOI: 10.2217/fmb.13.34] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
González LJ, Moreno DM, Bonomo RA, Vila AJ. Host-specific enzyme-substrate interactions in SPM-1 metallo-β-lactamase are modulated by second sphere residues. PLoS Pathog 2014; 10:e1003817. [PMID: 24391494 PMCID: PMC3879351 DOI: 10.1371/journal.ppat.1003817] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 10/21/2013] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most virulent and resistant non-fermenting Gram-negative pathogens in the clinic. Unfortunately, P. aeruginosa has acquired genes encoding metallo-β-lactamases (MβLs), enzymes able to hydrolyze most β-lactam antibiotics. SPM-1 is an MβL produced only by P. aeruginosa, while other MβLs are found in different bacteria. Despite similar active sites, the resistance profile of MβLs towards β-lactams changes from one enzyme to the other. SPM-1 is unique among pathogen-associated MβLs in that it contains “atypical” second sphere residues (S84, G121). Codon randomization on these positions and further selection of resistance-conferring mutants was performed. MICs, periplasmic enzymatic activity, Zn(II) requirements, and protein stability was assessed. Our results indicated that identity of second sphere residues modulates the substrate preferences and the resistance profile of SPM-1 expressed in P. aeruginosa. The second sphere residues found in wild type SPM-1 give rise to a substrate selectivity that is observed only in the periplasmic environment. These residues also allow SPM-1 to confer resistance in P. aeruginosa under Zn(II)-limiting conditions, such as those expected under infection. By optimizing the catalytic efficiency towards β-lactam antibiotics, the enzyme stability and the Zn(II) binding features, molecular evolution meets the specific needs of a pathogenic bacterial host by means of substitutions outside the active site. The presence of Zn(II)-containing metallo-β-lactamases (MβLs) that confer resistance to all penicillins, cephalosporins and carbapenems in Pseudomonas aeruginosa adds significantly to the threat of this pathogen in our health care system. SPM-1 is an MβLs widely distributed in South America and only found in P. aeruginosa. In common with all MβLs, the active site residues are highly conserved. In this work we asked the following question: how would substrate specificity evolve in SPM-1 if the active site residues are highly uniform and do not permit substitutions. To this end, we explored the role of two amino acids (S84 and G121) that are outside the active site (second sphere) and are unique in the SPM-1 β-lactamase. We discovered that replacing these amino acids impacts resistance to cephalosporins and carbapenems and that this resistance profile depends on the enzymatic behavior and the availability of Zn(II) in the environment. This work demonstrates how protein evolution by means of subtle substitutions outside the active site meets the specific needs of a pathogenic bacterial host.
Collapse
Affiliation(s)
- Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Diego M. Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center and Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, Ohio, United States of America
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- * E-mail:
| |
Collapse
|
26
|
Castanié-Cornet MP, Bruel N, Genevaux P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1442-56. [PMID: 24269840 DOI: 10.1016/j.bbamcr.2013.11.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/10/2013] [Accepted: 11/13/2013] [Indexed: 12/22/2022]
Abstract
Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Extensive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking throughout this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein translocation pathways as well. This review describes such essential molecular chaperone functions, with emphasis on both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP) and the redox enzyme maturation proteins (REMPs) is also discussed. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Marie-Pierre Castanié-Cornet
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Nicolas Bruel
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et Génétique Moléculaire (LMGM), Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.
| |
Collapse
|
27
|
Low-molecular-mass penicillin binding protein 6b (DacD) is required for efficient GOB-18 metallo-β-lactamase biogenesis in Salmonella enterica and Escherichia coli. Antimicrob Agents Chemother 2013; 58:205-11. [PMID: 24145538 DOI: 10.1128/aac.01224-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are Zn(2+)-containing secretory enzymes of clinical relevance, whose final folding and metal ion assembly steps in Gram-negative bacteria occur after secretion of the apo form to the periplasmic space. In the search of periplasmic factors assisting MBL biogenesis, we found that dacD null (ΔdacD) mutants of Salmonella enterica and Escherichia coli expressing the pre-GOB-18 MBL gene from plasmids showed significantly reduced resistance to cefotaxime and concomitant lower accumulation of GOB-18 in the periplasm. This reduced accumulation of GOB-18 resulted from increased accessibility to proteolytic attack in the periplasm, suggesting that the lack of DacD negatively affects the stability of secreted apo MBL forms. Moreover, ΔdacD mutants of S. enterica and E. coli showed an altered ability to develop biofilm growth. DacD is a widely distributed low-molecular-mass (LMM) penicillin binding protein (PBP6b) endowed with low dd-carboxypeptidase activity whose functions are still obscure. Our results indicate roles for DacD in assisting biogenesis of particular secretory macromolecules in Gram-negative bacteria and represent to our knowledge the first reported phenotypes for bacterial mutants lacking this LMM PBP.
Collapse
|
28
|
Cai Y, Yan W, Xu W, Yin Y, He Y, Wang H, Zhang X. Screening and identification of DnaJ interaction proteins in Streptococcus pneumoniae. Curr Microbiol 2013; 67:732-41. [PMID: 23907491 PMCID: PMC3824243 DOI: 10.1007/s00284-013-0424-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 06/16/2013] [Indexed: 11/30/2022]
Abstract
Streptococcus pneumoniae DnaJ is recognized as a virulence factor whose role in pneumococcal virulence remains unclear. Here, we attempted to reveal the contribution of DnaJ in pneumococcal virulence from the identification of its interacting proteins using co-immunoprecipitation method. dnaJ was cloned into plasmid pAE03 generating pAE03-dnaJ-gfp which was used to transform S. pneumoniae D39 strain. Then anti-GFP coated beads were used to capture GFP-coupled proteins from the bacterial lysate. The resulting protein mixtures were subjected to SDS-PAGE and those differential bands were determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. We finally obtained nine proteins such as DnaK, Gap, Eno, SpxB using this method. Furthermore, to confirm the interaction between DnaJ and these candidates, bacterial two-hybrid system was employed to reveal, for example, the interaction between DnaJ and DnaK, Eno, SpxB. Further protein expression experiments suggested that DnaJ prevented denaturation of Eno and SpxB at high temperature. These results help to understand the role of DnaJ in the pathogenesis of S. pneumoniae.
Collapse
Affiliation(s)
- YingYing Cai
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Lisa MN, Morán-Barrio J, Guindón MF, Vila AJ. Probing the role of Met221 in the unusual metallo-β-lactamase GOB-18. Inorg Chem 2012; 51:12419-25. [PMID: 23113650 DOI: 10.1021/ic301801h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallo-β-lactamases (MβLs) are the main mechanism of bacterial resistance against last generation β-lactam antibiotics such as carbapenems. Most MβLs display unusual structural features in their active sites, such as binuclear zinc centers without carboxylate bridging ligands and/or a Cys ligand in a catalytic zinc site. Cys221 is an essential residue for catalysis conserved in B1 and B2 lactamases, while most B3 enzymes present a Ser in this position. GOB lactamases stand as an exception within this picture, with a Met residue in position 221. Then, we obtained a series of GOB-18 point mutants in order to analyze the role of this unusual Met221 residue. We found that Met221 is essential for the protein stability, most likely due to its involvement in a hydrophobic core. In contrast to other known MβLs, residue 221 is not involved in metal binding or in catalysis in GOB enzymes, according to spectroscopic and kinetic studies. Our findings show that the essential catalytic features are maintained despite the structural heterogeneity among MβLs and suggest that a strategy to design general inhibitors should be undertaken on the basis of mechanistic rather than structural information.
Collapse
Affiliation(s)
- María-Natalia Lisa
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) and Departamento de Química Biológica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, 2000 Rosario, Argentina
| | | | | | | |
Collapse
|
30
|
Metallo-β-lactamases withstand low Zn(II) conditions by tuning metal-ligand interactions. Nat Chem Biol 2012; 8:698-700. [PMID: 22729148 PMCID: PMC3470787 DOI: 10.1038/nchembio.1005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/14/2012] [Indexed: 11/25/2022]
Abstract
A number of multiresistant bacterial pathogens inactivate antibiotics by producing ZnII-dependent β-lactamases. We show that metal uptake leading to an active dinuclear enzyme in the periplasmic space of Gram-negative bacteria is ensured by a cysteine residue, an unusual metal ligand in oxidizing environments. Kinetic, structural and affinity data show that such ZnII-Cys interaction is an adaptive trait tuning the metal binding affinity, thus enabling antibiotic resistance at restrictive ZnII concentrations.
Collapse
|
31
|
Van Oudenhove L, De Vriendt K, Van Beeumen J, Mercuri PS, Devreese B. Differential proteomic analysis of the response of Stenotrophomonas maltophilia to imipenem. Appl Microbiol Biotechnol 2012; 95:717-33. [DOI: 10.1007/s00253-012-4167-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 11/28/2022]
|
32
|
In vivo impact of Met221 substitution in GOB metallo-β-lactamase. Antimicrob Agents Chemother 2012; 56:1769-73. [PMID: 22252824 DOI: 10.1128/aac.05418-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MβLs) represent one of the main mechanisms of bacterial resistance against β-lactam antibiotics. The elucidation of their mechanism has been limited mostly by the structural diversity among their active sites. All MβLs structurally characterized so far present a Cys or a Ser residue at position 221, which is critical for catalysis. GOB lactamases stand as an exception within this picture, possessing a Met residue in this location. We studied different mutants in this position, and we show that Met221 is essential for protein stability, most likely due to its involvement in a hydrophobic core. In contrast to other known MβLs, residue 221 is not involved in metal binding or in catalysis in GOB enzymes, further highlighting the structural diversity of MβLs. We also demonstrate the usefulness of protein periplasmic profiles to assess the contribution of protein stability to antibiotic resistance.
Collapse
|
33
|
Horsfall LE, Izougarhane Y, Lassaux P, Selevsek N, Liénard BMR, Poirel L, Kupper MB, Hoffmann KM, Frère JM, Galleni M, Bebrone C. Broad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme. FEBS J 2011; 278:1252-63. [PMID: 21299838 DOI: 10.1111/j.1742-4658.2011.08046.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The metallo-β-lactamase (MBL) GOB-1 was expressed via a T7 expression system in Escherichia coli BL21(DE3). The MBL was purified to homogeneity and shown to exhibit a broad substrate profile, hydrolyzing all the tested β-lactam compounds efficiently. The GOB enzymes are unique among MBLs due to the presence of a glutamine residue at position 116, a zinc-binding residue in all known class B1 and B3 MBL structures. Here we produced and studied the Q116A, Q116N and Q116H mutants. The substrate profiles were similar for each mutant, but with significantly reduced activity compared with that of the wild-type. In contrast to the Q116H enzyme, which bound two zinc ions just like the wild-type, only one zinc ion is present in Q116A and Q116N. These results suggest that the Q116 residue plays a role in the binding of the zinc ion in the QHH site.
Collapse
Affiliation(s)
- Louise E Horsfall
- Centre d'Ingénierie des Protéines, Université de Liège, Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|