1
|
Leitão MM, Gonçalves ASC, Borges F, Simões M, Borges A. Polypharmacological strategies for infectious bacteria. Pharmacol Rev 2025; 77:100038. [PMID: 40022769 DOI: 10.1016/j.pharmr.2025.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 03/04/2025] Open
Abstract
Polypharmacological approaches have significant potential for the treatment of various complex diseases, including infectious bacteria-related diseases. Actually, multitargeting agents can achieve better therapeutic effects and overcome the drawbacks of monotherapy. Although multidrug multitarget strategies have demonstrated the ability to inactivate infectious bacteria, several challenges have been pointed out. In this way, multitarget direct ligands approaches appear to be a rational and sustainable strategy to combat antibiotic resistance. By combining different pharmacophores, antibiotic hybrids stand out as a promising application in the field of bacterial infections. These new chemical entities can achieve synergistic interactions that allow to extend the spectrum of action and target multiple pathways. In addition, antibiotic hybrids can reduce the likelihood of resistance development and provide improved chemical stability. It is worth highlighting that despite the efforts of the scientific community to discover new solutions for the most complex diseases, there is a significant lack of studies on biofilm-associated infections. This review describes the different polypharmacological approaches that can be used to treat bacterial infections with a particular focus, whenever possible, on those promoted by biofilms. By exploring these innovative approaches, we aim to inspire further research and progress in the search for effective treatments for infectious bacteria-related diseases, including biofilm-related ones. SIGNIFICANCE STATEMENT: The importance of the proposed topic lies in the escalating challenge of antibiotic resistance, particularly in the context of infectious bacteria-related infections. Polypharmacological approaches, such as antibiotic hybrids, represent innovative strategies to combat bacterial infections. By targeting multiple signaling pathways, these approaches not only enhance therapeutic effect but also reduce the development of resistance while improving the drug's chemical stability. Despite the urgent need to combat bacterial infectious diseases, there is a notable research gap, in particular in biofilm-related ones. This review highlights the critical importance of exploring polypharmacological approaches with the aim of motivating further research and advances in effective treatments for infectious bacteria, including biofilm related infections.
Collapse
Affiliation(s)
- Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal; DEQB-Department of Chemical and Biological Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Park J, Kim D, Son YJ, Ciufolini MA, Clovis S, Han M, Kim LH, Shin SJ, Hwang HJ. Chemical optimization and derivatization of micrococcin p2 to target multiple bacterial infections: new antibiotics from thiopeptides. World J Microbiol Biotechnol 2024; 40:307. [PMID: 39162916 DOI: 10.1007/s11274-024-04109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Antimicrobial resistance poses a significant threat to humanity, and the development of new antibiotics is urgently needed. Our research has focused on thiopeptide antibiotics such as micrococcin P2 (MP2) and derivatives thereof as new anti-infective agents. Thiopeptides are sulfur-rich, structurally complex substances that exhibit potent activity against Gram-positive pathogens and Mycobacteria species, including clinically resistant strains. The clinical development of thiopeptides has been hampered by the lack of efficient synthetic platforms to conduct detailed structure-activity relationship studies of these natural products. The present contribution touches upon efficient synthetic routes to MP2 that laid the groundwork for clinical translation. The medicinal chemistry campaign on MP2 has been guided by computational molecular dynamic simulations and parallel investigations to improve drug-like properties, such as enhancing the aqueous solubility and optimizing antibacterial activity. Such endeavors have enabled identification of promising lead compounds, AJ-037 and AJ-206, against Mycobacterium avium complex (MAC). Extensive in vitro studies revealed that these compounds exert potent activity against MAC species, a subspecies of non-tuberculous mycobacteria (NTM) that proliferate inside macrophages. Two additional pre-clinical candidates have been identified: AJ-024, for the treatment of Clostridioides difficile infections, and AJ-147, for methicillin-resistant Staphylococcus aureus impetigo. Both compounds compare quite favorably with current first-line treatments. In particular, the ability of AJ-147 to downregulate pro-inflammatory cytokines adds a valuable dimension to its clinical use. In light of above, these new thiopeptide derivatives are well-poised for further clinical development.
Collapse
Affiliation(s)
- Jiyun Park
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Dahyun Kim
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Young-Jin Son
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Marco A Ciufolini
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6K 1Z1, Canada
| | - Shyaka Clovis
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Minwoo Han
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation (K-MEDI hub), 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea
| | - Lee-Han Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hee-Jong Hwang
- A&J Science Co., Ltd, 80 Chumbok Ro, Dong Gu, Daegu, 41061, Republic of Korea.
| |
Collapse
|
3
|
Cun WY, Keller PA, Pyne SG. Current and Ongoing Developments in Targeting Clostridioides difficile Infection and Recurrence. Microorganisms 2024; 12:1206. [PMID: 38930588 PMCID: PMC11205563 DOI: 10.3390/microorganisms12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, spore-forming anaerobic bacterial pathogen that causes severe gastrointestinal infection in humans. This review provides background information on C. difficile infection and the pathogenesis and toxigenicity of C. difficile. The risk factors, causes, and the problem of recurrence of disease and current therapeutic treatments are also discussed. Recent therapeutic developments are reviewed including small molecules that inhibit toxin formation, disrupt the cell membrane, inhibit the sporulation process, and activate the host immune system in cells. Other treatments discussed include faecal microbiota treatment, antibody-based immunotherapies, probiotics, vaccines, and violet-blue light disinfection.
Collapse
Affiliation(s)
- Wendy Y. Cun
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | | | - Stephen G. Pyne
- School of Chemistry and Molecular Science, Molecular Horizons Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| |
Collapse
|
4
|
Rueedi G, Panchaud P, Friedli A, Specklin JL, Hubschwerlen C, Blumstein AC, Caspers P, Enderlin-Paput M, Jacob L, Kohl C, Locher HH, Pfaff P, Schmitt C, Seiler P, Ritz D. Discovery and Structure-Activity Relationship of Cadazolid: A First-In-Class Quinoxolidinone Antibiotic for the Treatment of Clostridioides difficile Infection. J Med Chem 2024; 67:9465-9484. [PMID: 38753983 DOI: 10.1021/acs.jmedchem.4c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Clostridioides difficile (C. difficile) is one of the leading causes of healthcare-associated infections worldwide. The increasing incidence of strains resistant to currently available therapies highlights the need for alternative treatment options with a novel mode of action. Oxazolidinones that are connected to a quinolone moiety with a pyrrolidine linker, such as compound 1, are reported to exhibit potent broadspectrum antibacterial activity. In an effort to optimize this class of compounds for the treatment of C. difficile infection (CDI), we have identified cadazolid (9), a first-in-class quinoxolidinone antibiotic, which is a potent inhibitor of C. difficile protein synthesis. In order to achieve narrow-spectrum coverage of clinically most relevant strains without affecting the gut microbiota, an emphasis was placed on abolishing activity against commensals of the intestinal microbiome while retaining good coverage of pathogenic C. difficile, including hypervirulent and epidemic strains.
Collapse
Affiliation(s)
- Georg Rueedi
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | - Astrid Friedli
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | | | | | | | | | - Loïc Jacob
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | - Hans H Locher
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | - Philippe Pfaff
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | | | - Peter Seiler
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| | - Daniel Ritz
- Idorsia Pharmaceuticals Ltd, CH-4123 Allschwil, Switzerland
| |
Collapse
|
5
|
Feng J, Zheng Y, Ma W, Ihsan A, Hao H, Cheng G, Wang X. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacol Ther 2023; 252:108550. [PMID: 39492518 DOI: 10.1016/j.pharmthera.2023.108550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
The rise of antibiotic resistance and the decrease in the discovery of new antibiotics have caused a global health crisis. Of particular concern is the fact that despite efforts to develop new antibiotics, drug discovery is unable to keep up with the rapid development of resistance. This ongoing crisis highlights the fact that single-target drugs may not always exhibit satisfactory therapeutic effects and are prone to target mutations and resistance due to the complexity of bacterial mechanisms. Retrospective studies have shown that most successful antibiotics have multiple targets. Compared with single-target drugs, successfully designed multitarget drugs can simultaneously regulate multiple targets to reduce resistance caused by single-target mutations or expression changes. In addition to a lower risk of drug-drug interactions, multitarget drugs show superior pharmacokinetics and higher patient compliance compared with combination therapies. Therefore, to reduce resistance, many efforts have been made to discover and design multitarget drugs with different chemical structures and functions. Although there have been numerous studies on how to develop drugs and slow down the development of drug resistance, the reduction of bacterial resistance by multitarget antibacterial drugs has not received widespread attention and is rarely mentioned in the peer-reviewed literature. This review summarises the development of antibiotic resistance and the mechanisms proposed for its emergence, examines the potential of multitarget drugs as an effective strategy to slow the development of resistance, and discusses the rationale for multitarget drug therapy. We also describe multitarget antibacterial compounds with the potential to reduce drug resistance and the available strategies to develop multitarget drugs.
Collapse
Affiliation(s)
- Jin Feng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Youle Zheng
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wanqing Ma
- MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Awais Ihsan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Islamabad 45550, Pakistan
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei 430070, China; MAO Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
7
|
Comparison between Symptomatic and Asymptomatic Mice after Clostridioides difficile Infection Reveals Novel Inflammatory Pathways and Contributing Microbiota. Microorganisms 2022; 10:microorganisms10122380. [PMID: 36557633 PMCID: PMC9782979 DOI: 10.3390/microorganisms10122380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Clostridioides difficile causes the highest number of nosocomial infections. Currently, treatment options for C. difficile infection (CDI) are very limited, resulting in poor treatment outcomes and high recurrence rates. Although the disease caused by CDI is inflammatory in nature, the role of inflammation in the development of CDI symptoms is contradictory and not completely understood. Hence, the use of anti-inflammatory medication is debatable in CDI. In the current study, we evaluated the genetic and microbiome profiles of mice after infection with C. difficile. These mice were categorized based on the severity of CDI and the results were viewed accordingly. Our results indicate that certain genes are upregulated in severe CDI more than in the moderate case. These include oncostatin-M (OSM), matrix metalloprotease 8 (MMP8), triggering receptor expressed on myeloid cells 1 (Trem-1), and dual oxidase 2 (Duox2). We also investigated the microbiome composition of CDI mice before and after infecting with C. difficile. The results show that C. difficile abundance is not indicative of diseases severity. Certain bacterial species (e.g., Citrobacter) were enriched while others (e.g., Turicibacter) were absent in severe CDI. This study identifies novel inflammatory pathways and bacterial species with a potential role in determining the severity of CDI.
Collapse
|
8
|
Romero-Rodríguez A, Martínez de la Peña C, Troncoso-Cotal S, Guzmán C, Sánchez S. Emerging alternatives against Clostridioides difficile infection. Anaerobe 2022; 78:102638. [DOI: 10.1016/j.anaerobe.2022.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
|
9
|
Chen J, Du Y, Lu Y, Wang H, Wu Q. Recent development of small-molecular inhibitors against Clostridioides difficile infection. Bioorg Chem 2022; 125:105843. [DOI: 10.1016/j.bioorg.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|
10
|
Yang W, Yoon Y, Lee Y, Oh H, Choi J, Shin S, Lee S, Lee H, Lee Y, Seo J. Photosensitizer-peptoid conjugates for photoinactivation of Gram-negative bacteria: structure-activity relationship and mechanistic studies. Org Biomol Chem 2021; 19:6546-6557. [PMID: 34259297 DOI: 10.1039/d1ob00926e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Multitarget engagement is considered an effective strategy to overcome the threat of bacterial infection, and antimicrobials with multiple mechanisms of action have been successful as natural chemical weaponry. Here, we synthesized a library of photosensitizer-peptoid conjugates (PsPCs) as novel antimicrobial photodynamic therapy (aPDT) agents. The peptoids, linkers, and photosensitizers were varied, and their structure-antimicrobial activity relationships against Escherichia coli were evaluated; PsPC 9 was indicated to be the most promising photoresponsive antimicrobial agent among the synthesized PsPCs. Spectroscopic analyses indicated that 9 generated singlet oxygen upon absorption of visible light (420 nm) while maintaining the weakly helical conformation of the peptoid. Mechanistic studies suggested that damage to the bacterial membrane and cleavage of DNA upon light irradiation were the main causes of bactericidal activity, which was supported by flow cytometry and DNA gel electrophoresis experiments. We demonstrated that the optimal combination of membrane-active peptoids and photosensitizers can generate an efficient aPDT agent that targets multiple sites of bacterial components and kills bacteria by membrane disruption and reactive oxygen species generation.
Collapse
Affiliation(s)
- Woojin Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Younggun Yoon
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunjee Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Hyeongyeol Oh
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), 49 Dosicheomdansaneopro, Nam-gu, Gwangju 61751, South Korea
| | - Hohjai Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, South Korea.
| |
Collapse
|
11
|
Chiu CW, Tsai PJ, Lee CC, Ko WC, Hung YP. Inhibition of spores to prevent the recurrence of Clostridioides difficile infection - A possibility or an improbability? JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:1011-1017. [PMID: 34229970 DOI: 10.1016/j.jmii.2021.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 11/28/2022]
Abstract
Clostridioides difficile is one of the most common nosocomial gastrointestinal pathogens, and recurrence is a problematic issue because approximately 20-30% of patients experience at least one episode of recurrence, even after treatment with a therapeutic drug of choice for C. difficile infection (CDI), such as vancomycin. CDI recurrence has a multifactorial complex mechanism, in which gut microbiota disruption coincident with viable C. difficile spores, is considered the most important factor. The effectiveness of an anti-C. difficile antimicrobial agent against CDI cannot guarantee its inhibitory effect on C. difficile spores and vice versa. However, an antimicrobial agent, such as fidaxomicin, which has a good inhibitory effect on both C. difficile vegetative cells and spores is assumed to not only treat CDI but also prevent its recurrence. Prolonged adherence to the exosporium has been proposed as a possible mechanism of inhibiting spores, and as a result, redesigning anti-C. difficile antimicrobial agents with the ability to adhere to the exosporium may provide another pathway for the development of anti-C. difficile spore agents. For example, vancomycin lacks an inhibitory effect against C. difficile spores, but a vancomycin-loaded spore-targeting iron oxide nanoparticle that selectively binds to C. difficile spores has been developed to successfully delay spore germination. Some new antimicrobial agents in phase II clinical trials, including cadazolid and ridinilazole, have shown exceptional anti-C. difficile and spore-inhibiting effects that can be expected to not only treat CDI but also prevent its recurrence in the future.
Collapse
Affiliation(s)
- Chun-Wei Chiu
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Medical College, Tainan, Taiwan
| | - Ching-Chi Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung Univeristy, Tainan, Taiwan.
| |
Collapse
|
12
|
Liu L, Zhou X, Li B, Cheng F, Cui H, Li J, Zhang J. In Vitro and In Vivo Activities, Absorption, Tissue Distribution, and Excretion of OBP-4, a Potential Anti-Clostridioides difficile Agent. Antimicrob Agents Chemother 2021; 65:e00581-21. [PMID: 33820771 PMCID: PMC8315982 DOI: 10.1128/aac.00581-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 11/20/2022] Open
Abstract
Clostridioides difficile infection (CDI) is considered a major concern of the health care system globally, with an increasing need for alternative therapies. OBP-4, a new oxazolidinone-fluoroquinolone hybrid with excellent in vitro activities and good safety, shows promising features as an antibacterial agent. Here, we further evaluated the in vitro and in vivo activities of OBP-4 against C. difficile and its absorption (A), distribution (D), and excretion (E) profiles in rats. In vitro assays indicated that OBP-4 was active against all tested C. difficile strains, with MICs ranging from 0.25 to 1 mg/liter. In addition, OBP-4 showed complete inhibition of spore formation at 0.5× MIC. In the mouse model of CDI, 5-day oral treatment with OBP-4 provided complete protection from death and CDI recurrence in infected mice. However, cadazolid (CZD) and vancomycin (VAN) showed less protection of infected mice than did OBP-4 in terms of diarrhea and weight loss, especially VAN. Subsequently, ADE investigations of OBP-4 with a reliable liquid chromatography-tandem mass spectrometry (LC-MS/MS) method showed extremely low systemic exposure and predominantly fecal excretion, resulting in a high local concentration of OBP-4 in the intestinal tract-the site of CDI. These results demonstrated that OBP-4 possesses good activity against C. difficile and favorable ADE characteristics for oral treatment of CDI, which support further development of OBP-4 as a potential anti-CDI agent.
Collapse
Affiliation(s)
- Lili Liu
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Xuzheng Zhou
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Bing Li
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Fusheng Cheng
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| | - Haifeng Cui
- R & D Center, Beijing Orbiepharm Co., Ltd., Beijing, People's Republic of China
| | - Jing Li
- R & D Center, Beijing Orbiepharm Co., Ltd., Beijing, People's Republic of China
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, People's Republic of China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, People's Republic of China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, People's Republic of China
| |
Collapse
|
13
|
In vivo efficacy of auranofin in a hamster model of Clostridioides difficile infection. Sci Rep 2021; 11:7093. [PMID: 33782498 PMCID: PMC8007812 DOI: 10.1038/s41598-021-86595-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile infections (CDIs) are an urgent public health threat worldwide and are a leading cause of morbidity and mortality in healthcare settings. The increasing incidence and severity of infections combined with the scarcity of effective anti-CDI agents has made treatment of CDI very challenging. Therefore, development of new, effective anticlostridial agents remains a high priority. The current study investigated the in vivo efficacy of auranofin in a CDI hamster model. All hamsters treated with auranofin (5 mg/kg) survived a lethal challenge with C. difficile. Furthermore, auranofin (5 mg/kg) was as effective as vancomycin, the drug of choice for treatment of CDIs, against relapsing CDI. Furthermore, auranofin (5 mg/kg) generated a 3.15-log10 reduction (99.97%) in C. difficile count in the cecal contents of hamsters. These results indicate that auranofin warrants further investigation as a new agent to replenish the pipeline of anti-CDI therapeutics.
Collapse
|
14
|
Optimization of an Assay To Determine Colonization Resistance to Clostridioides difficile in Fecal Samples from Healthy Subjects and Those Treated with Antibiotics. Antimicrob Agents Chemother 2020; 65:AAC.01401-20. [PMID: 33139292 DOI: 10.1128/aac.01401-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/21/2020] [Indexed: 01/05/2023] Open
Abstract
A healthy, intact gut microbiota is often resistant to colonization by gastrointestinal pathogens. During periods of dysbiosis, however, organisms such as Clostridioides difficile can thrive. We describe an optimized in vitro colonization resistance assay for C. difficile in stool (CRACS) and demonstrate the utility of this assay by assessing changes in colonization resistance following antibiotic exposure. Fecal samples were obtained from healthy volunteers (n = 6) and from healthy subjects receiving 5 days of moxifloxacin (n = 11) or no antibiotics (n = 10). Samples were separated and either not manipulated (raw) or sterilized (autoclaved or filtered) prior to inoculation with C. difficile ribotype 027 spores and anaerobic incubation for 72 h. Different methods of storing fecal samples were also investigated in order to optimize the CRACS. In healthy, raw fecal samples, incubation with spores did not lead to increased C. difficile total viable counts (TVCs) or cytotoxin detection. In contrast, increased C. difficile TVCs and cytotoxin detection occurred in sterilized healthy fecal samples or those from antibiotic-treated individuals. The CRACS was functional with fecal samples stored at either 4°C or -80°C but not with those stored with glycerol (12% or 30% [vol/vol]). Our data show that the CRACS successfully models in vitro the loss of colonization resistance and subsequent C. difficile proliferation and toxin production. The CRACS could be used as a proxy for C. difficile infection in clinical studies or to determine if an individual is at risk of developing C. difficile infection or other potential infections occurring due to a loss of colonization resistance.
Collapse
|
15
|
Shang Z, Chan SY, Song Q, Li P, Huang W. The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2016201. [PMID: 33083786 PMCID: PMC7539235 DOI: 10.34133/2020/2016201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022]
Abstract
The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.
Collapse
Affiliation(s)
- Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
16
|
Abstract
Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University
Biosciences Institute, Newcastle University, NE2 4HH Newcastle
upon Tyne, United Kingdom
| | - Michaela Wenzel
- Division of Chemical
Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
17
|
Repurposing the Antiamoebic Drug Diiodohydroxyquinoline for Treatment of Clostridioides difficile Infections. Antimicrob Agents Chemother 2020; 64:AAC.02115-19. [PMID: 32253206 DOI: 10.1128/aac.02115-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile, the leading cause of nosocomial infections, is an urgent health threat worldwide. The increased incidence and severity of disease, the high recurrence rates, and the dearth of effective anticlostridial drugs have created an urgent need for new therapeutic agents. In an effort to discover new drugs for the treatment of Clostridioides difficile infections (CDIs), we investigated a panel of FDA-approved antiparasitic drugs against C. difficile and identified diiodohydroxyquinoline (DIHQ), an FDA-approved oral antiamoebic drug. DIHQ exhibited potent activity against 39 C. difficile isolates, inhibiting growth of 50% and 90% of these isolates at concentrations of 0.5 μg/ml and 2 μg/ml, respectively. In a time-kill assay, DIHQ was superior to vancomycin and metronidazole, reducing a high bacterial inoculum by 3 log10 within 6 h. Furthermore, DIHQ reacted synergistically with vancomycin and metronidazole against C. difficile in vitro. Moreover, at subinhibitory concentrations, DIHQ was superior to vancomycin and metronidazole in inhibiting two key virulence factors of C. difficile, toxin production and spore formation. Additionally, DIHQ did not inhibit the growth of key species that compose the host intestinal microbiota, such as Bacteroides, Bifidobacterium, and Lactobacillus spp. Collectively, our results indicate that DIHQ is a promising anticlostridial drug that warrants further investigation as a new therapeutic for CDIs.
Collapse
|
18
|
Gupta V, Datta P. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian J Med Res 2019; 149:97-106. [PMID: 31219074 PMCID: PMC6563750 DOI: 10.4103/ijmr.ijmr_755_18] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resistance against nearly all antibiotics used clinically have been documented in bacteria. There is an ever-increasing danger caused by multidrug-resistant Gram-negative bacteria in both hospital and community settings. In Gram-negative bacteria, intrinsic resistance to currently available antibiotics is mainly due to overexpressed efflux pumps which are constitutively present and also presence of protective outer membrane. Combination therapy, i.e., use of two or more antibiotics, was thought to be an effective strategy because it took advantage of the additive effects of multiple antimicrobial mechanisms, lower risk of resistance development and lower mortality and improved clinical outcome. However, none of the benefits were seen in in vivo studies. Antibiotic hybrids are being used to challenge the growing drug resistance threat and increase the usefulness of current antibiotic arsenal. Antibiotic hybrids are synthetic constructs of two molecules which are covalently linked. These could be two antibiotics or antibiotic with an adjuvant (efflux pump inhibitor, siderophore, etc.) which increases the access of the antibiotics to the target. The concepts, developments and challenges in the future use of antibiotic hybrids are discussed here. Majority of the studies have been conducted on fluoroquinolones and aminoglycosides molecules. The antibiotic tobramycin has the property to enhance the action of antimicrobial agents against which the multidrug-resistant Gram-negative bacteria were earlier resistant, and thus potentiating the action of legacy antibiotics. Antibiotic hybrids may have a role as the silver bullet in Gram-negative bacteria to overcome drug resistance as well as extend the spectrum of existing antibiotics.
Collapse
Affiliation(s)
- Varsha Gupta
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | - Priya Datta
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| |
Collapse
|
19
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Antimicrobial resistance in Clostridium difficile ribotype 017. Expert Rev Anti Infect Ther 2019; 18:17-25. [PMID: 31800331 DOI: 10.1080/14787210.2020.1701436] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Antimicrobial resistance (AMR) played an important role in the initial outbreaks of Clostridium difficile infection (CDI) in the 1970s. C. difficile ribotype (RT) 017 has emerged as the major strain of C. difficile in Asia, where antimicrobial use is poorly regulated. This strain has also caused CDI outbreaks around the world for almost 30 years. Many of these outbreaks were associated with clindamycin and fluoroquinolone resistance. AMR and selective pressure is likely to be responsible for the success of this RT and may drive future outbreaks.Areas covered: This narrative review summarizes the prevalence and mechanisms of AMR in C. difficile RT 017 and transmission of these AMR mechanisms. To address these topics, reports of outbreaks due to C. difficile RT 017, epidemiologic studies with antimicrobial susceptibility results, studies on resistance mechanisms found in C. difficile and related publications available through Pubmed until September 2019 were collated and the findings discussed.Expert opinion: Primary prevention is the key to control CDI. This should be achieved by developing antimicrobial stewardship in medical, veterinary and agricultural practices. AMR is the key factor that drives CDI outbreaks, and methods for the early detection of AMR can facilitate the control of outbreaks.
Collapse
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | - Brian Kullin
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Deirdre A Collins
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Papanin Putsathit
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
20
|
Mody D, Athamneh AIM, Seleem MN. Curcumin: A natural derivative with antibacterial activity against Clostridium difficile. J Glob Antimicrob Resist 2019; 21:154-161. [PMID: 31622683 DOI: 10.1016/j.jgar.2019.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The rapid emergence of hypervirulent Clostridium difficile (C. difficile) isolates and the paucity of effective anti-clostridial antibiotics call for extensive research to identify new treatment options. This study aimed to test the anti-clostridial activity of bioactive extracts of turmeric, which is a natural herb widely known for its profound medicinal properties. METHODS The MICs of turmeric derivatives were determined against 27 C. difficile strains, including hypervirulent (BI/NAP1/027) and clinical toxigenic isolates. Additionally, their ability to inhibit C. difficile toxin production and spore formation was investigated. Furthermore, the safety profiles of turmeric derivatives regarding their effects on human gut microflora - such as Bacteroides, Lactobacillus and Bifidobacterium - were evaluated. RESULTS Curcuminoids, the major phytoconstituents of turmeric - including curcumin, demethoxycurcumin and bisdemethoxycurcumin - inhibited growth of C. difficile at concentrations ranging from 4 to 32μg/mL. Additionally, curcuminoids showed no negative effect on major populating species of the human gut. Curcumin was more effective than fidaxomicin in inhibiting C. difficile toxin production, but less so in inhibiting spore formation. CONCLUSION The findings suggest that curcumin has potential as an anti-clostridial agent. More work is needed to further investigate the efficacy of curcumin as a stand-alone drug or as a supplement of current drugs of choice, as it has no antagonistic activities but might overcome their drawbacks.
Collapse
Affiliation(s)
- Deepansh Mody
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Ahmad I M Athamneh
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
21
|
Schuster S, Vavra M, Kern WV. Efflux-Mediated Resistance to New Oxazolidinones and Pleuromutilin Derivatives in Escherichia coli with Class Specificities in the Resistance-Nodulation-Cell Division-Type Drug Transport Pathways. Antimicrob Agents Chemother 2019; 63:e01041-19. [PMID: 31209014 PMCID: PMC6709491 DOI: 10.1128/aac.01041-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/13/2019] [Indexed: 02/02/2023] Open
Abstract
A major contribution of the resistance-nodulation-cell division (RND)-transporter AcrB to resistance to oxazolidinones and pleuromutilin derivatives in Escherichia coli was confirmed. However, we discovered significant differences in efflux inhibitor activities, specificities of the homologous pump YhiV (MdtF), and the impact of AcrB pathway mutations. Particularly, entrance channel double-mutation I38F I671T and distal binding pocket mutation F615A revealed class-specific transport routes of oxazolidinones and pleuromutilin derivatives. The findings could contribute to the understanding of the RND-type multidrug transport pathways.
Collapse
Affiliation(s)
- Sabine Schuster
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Martina Vavra
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
| | - Winfried V Kern
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Center, Freiburg, Germany
- Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
22
|
Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Sci Rep 2019; 9:5634. [PMID: 30948752 PMCID: PMC6449356 DOI: 10.1038/s41598-019-42155-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/26/2019] [Indexed: 01/05/2023] Open
Abstract
Oxazolidinones are synthetic antibiotics used for treatment of infections caused by Gram-positive bacteria. They target the bacterial protein synthesis machinery by binding to the peptidyl transferase centre (PTC) of the ribosome and interfering with the peptidyl transferase reaction. Cadazolid is the first member of quinoxolidinone antibiotics, which are characterized by combining the pharmacophores of oxazolidinones and fluoroquinolones, and it is evaluated for treatment of Clostridium difficile gastrointestinal infections that frequently occur in hospitalized patients. In vitro protein synthesis inhibition by cadazolid was shown in Escherichia coli and Staphylococcus aureus, including an isolate resistant against linezolid, the prototypical oxazolidinone antibiotic. To better understand the mechanism of inhibition, we determined a 3.0 Å cryo-electron microscopy structure of cadazolid bound to the E. coli ribosome in complex with mRNA and initiator tRNA. Here we show that cadazolid binds with its oxazolidinone moiety in a binding pocket in close vicinity of the PTC as observed previously for linezolid, and that it extends its unique fluoroquinolone moiety towards the A-site of the PTC. In this position, the drug inhibits protein synthesis by interfering with the binding of tRNA to the A-site, suggesting that its chemical features also can enable the inhibition of linezolid-resistant strains.
Collapse
|
23
|
Tran MCN, Kullar R, Goldstein EJC. Investigational drug therapies currently in early-stage clinical development for the treatment of clostridioides (clostridium) difficile infection. Expert Opin Investig Drugs 2019; 28:323-335. [DOI: 10.1080/13543784.2019.1581763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mai-Chi N. Tran
- Department of Pharmacy, Providence St. John’s Health Center, Santa Monica,
CA, USA
- Department of Pharmacy, Clinica Juan Pablo Medical Group, Los Angeles,
CA, USA
| | | | - Ellie J. C. Goldstein
- R M Alden Research Laboratory, Santa Monica,
CA, USA
- David Geffen School of Medicine, Los Angeles,
CA, USA
| |
Collapse
|
24
|
Gerding DN, Cornely OA, Grill S, Kracker H, Marrast AC, Nord CE, Talbot GH, Buitrago M, Gheorghe Diaconescu I, Murta de Oliveira C, Preotescu L, Pullman J, Louie TJ, Wilcox MH. Cadazolid for the treatment of Clostridium difficile infection: results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. THE LANCET. INFECTIOUS DISEASES 2019; 19:265-274. [PMID: 30709665 DOI: 10.1016/s1473-3099(18)30614-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/06/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cadazolid is a novel quinoxolidinone antibiotic developed for treating Clostridium difficile infection. We aimed to investigate the safety and efficacy of cadazolid compared with vancomycin in patients with C difficile infection. METHODS IMPACT 1 and IMPACT 2 were identically designed, multicentre, double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. IMPACT 1 was done in Australia, Brazil, Canada, France, Germany, Italy, the Netherlands, Peru, Poland, Romania, Spain, and the USA, and IMPACT 2 was done in Argentina, Belgium, Brazil, Canada, Chile, Croatia, Czech Republic, Greece, Hungary, Israel, Romania, Slovakia, South Korea, the UK, and the USA. Patients (aged 18 years or older) with mild-to-moderate or severe C difficile infection (diarrhoea with positive glutamate dehydrogenase and toxin A or B enzyme immunoassays) were randomly assigned (1:1) with a randomisation list stratified by centre and C difficile infection episode type (block size of four), and allocation was masked to investigators and participants. Patients received either oral cadazolid 250 mg twice daily with vancomycin-matching placebo capsule four times daily or oral vancomycin 125 mg four times a day with cadazolid-matching placebo suspension twice daily for 10 days, with 30 days of follow-up. The primary efficacy outcome was non-inferiority (margin -10%) of cadazolid versus vancomycin for clinical cure in the modified intention-to-treat and per-protocol populations. Clinical cure was defined as resolution of diarrhoea with no additional treatment for C difficile infection. These trials are registered with ClinicalTrials.gov, numbers NCT01987895 (IMPACT 1) and NCT01983683 (IMPACT 2). FINDINGS Between March 28, 2014, and March 24, 2017, for IMPACT 1, and Dec 13, 2013, and May 2, 2017, for IMPACT 2, 1263 participants were randomly assigned to receive cadazolid (306 in IMPACT 1 and 298 in IMPACT 2) or vancomycin (326 in IMPACT 1 and 311 in IMPACT 2). In the modified intention-to-treat population in IMPACT 1, 253 (84%) of 302 had clinical cure in the cadazolid group versus 271 (85%) of 318 in the vancomycin group. In IMPACT 2, 235 (81%) of 290 versus 258 (86%) of 301 had clinical cure. In the per-protocol population, 247 (88%) of 282 versus 264 (92%) of 288 had clinical cure in IMPACT 1 and 214 (87%) of 247 versus 237 (92%) of 259 in IMPACT 2. Non-inferiority for clinical cure to vancomycin was shown in IMPACT 1 but not in IMPACT 2 (IMPACT 1 treatment difference: -1·4 [95% CI -7·2 to 4·3] for modified intention to treat and -4·1 [-9·2 to 1·0] for per protocol; IMPACT 2: -4·7 [-10·7 to 1·3] for modified intention to treat and -4·9 [-10·4 to 0·6] for per protocol). The safety and tolerability profiles of the two antibiotics were similar. INTERPRETATION Cadazolid was safe and well tolerated but did not achieve its primary endpoint of non-inferiority to vancomycin for clinical cure in one of two phase 3 C difficile infection trials. Therefore, further commercial development of cadazolid for C difficile infection is unlikely. FUNDING Actelion Pharmaceuticals.
Collapse
Affiliation(s)
- Dale N Gerding
- Edward Hines Jr Veterans Administration Hospital, Hines, IL, USA.
| | - Oliver A Cornely
- Department of Internal Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Clinical Trials Centre Cologne, University of Cologne, Cologne, Germany
| | - Simon Grill
- Actelion Pharmaceuticals, Allschwil, Switzerland
| | | | | | - Carl Erik Nord
- Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | - Liliana Preotescu
- Matei Bals National Institute of Infectious Diseases, Bucharest, Romania
| | | | - Thomas J Louie
- Foothills Medical Center, Alberta Health Services & University of Calgary, Cumming School of Medicine, Calgary, AB, Canada
| | - Mark H Wilcox
- Microbiology, Old Medical School, Leeds General Infirmary, Leeds, UK
| |
Collapse
|
25
|
Abughanimeh O, Qasrawi A, Kaddourah O, Al Momani L, Abu Ghanimeh M. Clostridium difficile infection in oncology patients: epidemiology, pathophysiology, risk factors, diagnosis, and treatment. Hosp Pract (1995) 2018; 46:266-277. [PMID: 30296190 DOI: 10.1080/21548331.2018.1533673] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Clostridium difficile infection (CDI) is one of the most common healthcare-associated infections in the United States. Its incidence has been increasing in the recent years despite preventative measures. CDI increases annual expenses by 1.5 billion dollars. Cancer patients are at higher risk to acquire CDI, as explained by their frequent exposure to risk factors. CDI in cancer patients is associated with higher mortality rates and prolonged hospitalization. Furthermore, CDI affects the course of the disease by delaying treatments such as chemotherapy. Chemotherapeutics drugs are considered independent risk factors for CDI. This review discusses Clostridium difficile infection in cancer patients, including those who are receiving chemotherapy. Herein, we summarize recent data regarding the epidemiology, risk factors, including chemotherapy regimens, pathogenesis, diagnostic techniques and treatment options, including newer agents. Method: A literature search was performed using the PubMed and Google Scholar databases. The MeSH terms utilized in different combinations were 'clostridium difficile', 'neoplasia/cancer/oncology', 'chemotherapy', 'diagnosis', and 'treatment', in addition to looking up each treatment option individually to generate a comprehensive search. The articles were initially screened by title alone, followed by screening through abstracts. Full texts of pertinent articles (including letters to editors, case reports, case series, cohort studies, and clinical trials) were included in this review.
Collapse
Affiliation(s)
- Omar Abughanimeh
- a School of Medicine Internal Medicine , University of Missouri , Kansas City , USA
| | - Ayman Qasrawi
- a School of Medicine Internal Medicine , University of Missouri , Kansas City , USA
| | - Osama Kaddourah
- a School of Medicine Internal Medicine , University of Missouri , Kansas City , USA
| | - Laith Al Momani
- b East Tennessee State University James H Quillen College of Medicine - Internal Medicine , USA
| | | |
Collapse
|
26
|
AbdelKhalek A, Abutaleb NS, Mohammad H, Seleem MN. Antibacterial and antivirulence activities of auranofin against Clostridium difficile. Int J Antimicrob Agents 2018; 53:54-62. [PMID: 30273668 DOI: 10.1016/j.ijantimicag.2018.09.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/14/2018] [Accepted: 09/22/2018] [Indexed: 12/14/2022]
Abstract
Clostridium difficile is a deadly, opportunistic bacterial pathogen. In the last two decades, C. difficile infections (CDIs) have become a national concern because of the emergence of hypervirulent mutants with increased capability to produce toxins and spores. This has resulted in an increased number of infections and deaths associated with CDI. The scarcity of anticlostridial drugs has led to unsatisfactory cure rates, elevated recurrence rates and permitted enhanced colonization with other drug-resistant pathogens (such as vancomycin-resistant enterococci) in afflicted patients. Therefore, both patients and physicians are facing an urgent need for more effective therapies to treat CDI. In an effort to find new anticlostridial drugs, we investigated auranofin, an FDA-approved oral antirheumatic drug that has recently been found to possess antibacterial activity. Auranofin exhibited potent activity against C. difficile isolates, inhibiting growth at a concentration of 1 µg/mL against 50% of all tested isolates. Auranofin inhibited both toxin production and spore formation, a property lacking in both vancomycin and metronidazole (the primary agents used to treat CDI). Auranofin had a direct protective activity against C. difficile toxin-mediated inflammation and inhibited the growth of vancomycin-resistant enterococci. Auranofin is a promising candidate that warrants further investigation as a treatment option for C. difficile infections.
Collapse
Affiliation(s)
- Ahmed AbdelKhalek
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN 47907, USA.
| |
Collapse
|
27
|
Effect of the Synthetic Bile Salt Analog CamSA on the Hamster Model of Clostridium difficile Infection. Antimicrob Agents Chemother 2018; 62:AAC.02251-17. [PMID: 30012758 DOI: 10.1128/aac.02251-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 07/01/2018] [Indexed: 12/15/2022] Open
Abstract
Clostridium difficile infection (CDI) is the leading cause of antibiotic-associated diarrhea and has gained worldwide notoriety due to emerging hypervirulent strains and the high incidence of recurrence. We previously reported protection of mice from CDI using the antigerminant bile salt analog CamSA. Here we describe the effects of CamSA in the hamster model of CDI. CamSA treatment of hamsters showed no toxicity and did not affect the richness or diversity of gut microbiota; however, minor changes in community composition were observed. Treatment of C. difficile-challenged hamsters with CamSA doubled the mean time to death, compared to control hamsters. However, CamSA alone was insufficient to prevent CDI in hamsters. CamSA in conjunction with suboptimal concentrations of vancomycin led to complete protection from CDI in 70% of animals. Protected animals remained disease-free at least 30 days postchallenge and showed no signs of colonic tissue damage. In a delayed-treatment model of hamster CDI, CamSA was unable to prevent infection signs and death. These data support a putative model in which CamSA reduces the number of germinating C. difficile spores but does not keep all of the spores from germinating. Vancomycin halts division of any vegetative cells that are able to grow from spores that escape CamSA.
Collapse
|
28
|
Skinner K, Birchall S, Corbett D, Thommes P, Locher HH. Time-kill kinetics of cadazolid and comparator antibacterial agents against different ribotypes of Clostridium difficile. J Med Microbiol 2018; 67:1402-1409. [DOI: 10.1099/jmm.0.000808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | | | - David Corbett
- 1Evotec (UK), Alderley Park, Cheshire, SK10 4TG, UK
| | - Pia Thommes
- 1Evotec (UK), Alderley Park, Cheshire, SK10 4TG, UK
| | - Hans H. Locher
- 2Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, CH-4123 Allschwil, Switzerland
- †Present address: Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123 Allschwil, Switzerland
| |
Collapse
|
29
|
Jarrad AM, Blaskovich MAT, Prasetyoputri A, Karoli T, Hansford KA, Cooper MA. Detection and Investigation of Eagle Effect Resistance to Vancomycin in Clostridium difficile With an ATP-Bioluminescence Assay. Front Microbiol 2018; 9:1420. [PMID: 30013531 PMCID: PMC6036128 DOI: 10.3389/fmicb.2018.01420] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/11/2018] [Indexed: 11/24/2022] Open
Abstract
Vancomycin was bactericidal against Clostridium difficile at eightfold the minimum inhibitory concentration (MIC) using a traditional minimum bactericidal concentration (MBC) assay. However, at higher concentrations up to 64 × MIC, vancomycin displayed a paradoxical “more-drug-kills-less” Eagle effect against C. difficile. To overcome challenges associated with performing the labor-intensive agar-based MBC method under anaerobic growth conditions, we investigated an alternative more convenient ATP-bioluminescence assay to assess the Eagle effect in C. difficile. The commercial BacTiter-GloTM assay is a homogenous method to determine bacterial viability based on quantification of bacterial ATP as a marker for metabolic activity. The ATP-bioluminescence assay was advantageous over the traditional MBC-type assay in detecting the Eagle effect because it reduced assay time and was simple to perform; measurement of viability could be performed in less than 10 min outside of the anaerobic chamber. Using this method, we found C. difficile survived clinically relevant, high concentrations of vancomycin (up to 2048 μg/mL). In contrast, C. difficile did not survive high concentrations of metronidazole or fidaxomicin. The Eagle effect was also detected for telavancin, but not for teicoplanin, dalbavancin, oritavancin, or ramoplanin. All four pathogenic strains of C. difficile tested consistently displayed Eagle effect resistance to vancomycin, but not metronidazole or fidaxomicin. These results suggest that Eagle effect resistance to vancomycin in C. difficile could be more prevalent than previously appreciated, with potential clinical implications. The ATP-Bioluminescence assay can thus be used as an alternative to the agar-based MBC assay to characterize the Eagle effect against a variety of antibiotics, at a wide-range of concentrations, with much greater throughput. This may facilitate improved understanding of Eagle effect resistance and promote further research to understand potential clinical relevance.
Collapse
Affiliation(s)
- Angie M Jarrad
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Anggia Prasetyoputri
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Tomislav Karoli
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Karl A Hansford
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
30
|
Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. MONATSHEFTE FUR CHEMIE 2018; 149:1199-1245. [PMID: 29983452 PMCID: PMC6006264 DOI: 10.1007/s00706-018-2215-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 01/27/2023]
Abstract
ABSTRACT This review is aimed to provide extensive survey of quinolones and fluoroquinolones for a variety of applications ranging from metal complexes and nanoparticle development to hybrid conjugates with therapeutic uses. The review covers the literature from the past 10 years with emphasis placed on new applications and mechanisms of pharmacological action of quinolone derivatives. The following are considered: metal complexes, nanoparticles and nanodrugs, polymers, proteins and peptides, NO donors and analogs, anionic compounds, siderophores, phosphonates, and prodrugs with enhanced lipophilicity, phototherapeutics, fluorescent compounds, triazoles, hybrid drugs, bis-quinolones, and other modifications. This review provides a comprehensive resource, summarizing a broad range of important quinolone applications with great utility as a resource concerning both chemical modifications and also novel hybrid bifunctional therapeutic agents. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
31
|
Thanissery R, Zeng D, Doyle RG, Theriot CM. A Small Molecule-Screening Pipeline to Evaluate the Therapeutic Potential of 2-Aminoimidazole Molecules Against Clostridium difficile. Front Microbiol 2018; 9:1206. [PMID: 29928268 PMCID: PMC5997789 DOI: 10.3389/fmicb.2018.01206] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/17/2018] [Indexed: 12/19/2022] Open
Abstract
Antibiotics are considered to be the first line of treatment for mild to moderately severe Clostridium difficile infection (CDI) in humans. However, antibiotics are also risk factors for CDI as they decrease colonization resistance against C. difficile by altering the gut microbiota and metabolome. Finding compounds that selectively inhibit different stages of the C. difficile life cycle, while sparing the indigenous gut microbiota is important for the development of alternatives to standard antibiotic treatment. 2-aminoimidazole (2-AI) molecules are known to disrupt bacterial protection mechanisms in antibiotic resistant bacteria such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus, but are yet to be evaluated against C. difficile. A comprehensive small molecule-screening pipeline was developed to investigate how novel small molecules affect different stages of the C. difficile life cycle (growth, toxin, and sporulation) in vitro, and a library of commensal bacteria that are associated with colonization resistance against C. difficile. The initial screening tested the efficacy of eleven 2-AI molecules (compound 1 through 11) against C. difficile R20291 compared to a vancomycin (2 μg/ml) control. Molecules were selected for their ability to inhibit C. difficile growth, toxin activity, and sporulation. Further testing included growth inhibition of other C. difficile strains (CD196, M68, CF5, 630, BI9, M120) belonging to distinct PCR ribotypes, and a commensal panel (Bacteroides fragilis, B. thetaiotaomicron, C. scindens, C. hylemonae, Lactobacillus acidophilus, L. gasseri, Escherichia coli, B. longum subsp. infantis). Three molecules compound 1 and 2, and 3 were microbicidal, whereas compounds 4, 7, 9, and 11 inhibited toxin activity without affecting the growth of C. difficile strains and the commensal microbiota. The antimicrobial and anti-toxin effects of 2-AI molecules need to be further characterized for mode of action and validated in a mouse model of CDI.
Collapse
Affiliation(s)
- Rajani Thanissery
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Daina Zeng
- Agile Sciences, Inc., Raleigh, NC, United States
| | - Raul G Doyle
- Agile Sciences, Inc., Raleigh, NC, United States
| | - Casey M Theriot
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
32
|
Abstract
Clostridium difficile infection (CDI) represents one of the most serious nosocomial infections that have grown dramatically over the past decade. Vancomycin and metronidazole are currently used as a standard therapy for CDI. Metronidazole is recommended as a first-line therapy for mild-to-moderate infections and vancomycin is mainly used for severe and/or refractory cases. However, studies have demonstrated that there are quite high CDI relapse rates with both of these medications, which represents a challenge for clinicians. Over the last decade, a number of newer and novel therapeutic options have emerged as promising alternatives to these standard CDI therapies. The following review provides the updated summaries of these newer therapeutic agents and their status in the treatment of CDI.
Collapse
|
33
|
Chilton C, Pickering D, Freeman J. Microbiologic factors affecting Clostridium difficile recurrence. Clin Microbiol Infect 2018; 24:476-482. [DOI: 10.1016/j.cmi.2017.11.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
|
34
|
Petrosillo N, Granata G, Cataldo MA. Novel Antimicrobials for the Treatment of Clostridium difficile Infection. Front Med (Lausanne) 2018; 5:96. [PMID: 29713630 PMCID: PMC5911476 DOI: 10.3389/fmed.2018.00096] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
The current picture of Clostridium difficile infection (CDI) is alarming with a mortality rate ranging between 3% and 15% and a CDI recurrence rate ranging from 12% to 40%. Despite the great efforts made over the past 10 years to face the CDI burden, there are still gray areas in our knowledge on CDI management. The traditional anti-CDI antimicrobials are not always adequate in addressing the current needs in CDI management. The aim of our review is to give an update on novel antimicrobials for the treatment of CDI, considering the currently available evidences on their efficacy, safety, molecular mechanism of action, and their probability to be successfully introduced into the clinical practice in the near future. We identified, through a PubMed search, 16 novel antimicrobial molecules under study for CDI treatment: cadazolid, surotomycin, ridinilazole, LFF571, ramoplanin, CRS3123, fusidic acid, nitazoxanide, rifampin, rifaximin, tigecycline, auranofin, NVB302, thuricin CD, lacticin 3147, and acyldepsipeptide antimicrobials. In comparison with the traditional anti-CDI antimicrobial treatment, some of the novel antimicrobials reviewed in this study offer several advantages, i.e., the favorable pharmacokinetic and pharmacodynamic profile, the narrow-spectrum activity against CD that implicates a low impact on the gut microbiota composition, the inhibitory activity on CD sporulation and toxins production. Among these novel antimicrobials, the most active compounds in reducing spore production are cadazolid, ridinilazole, CRS3123, ramoplanin and, potentially, the acyldepsipeptide antimicrobials. These antimicrobials may potentially reduce CD environment spread and persistence, thus reducing CDI healthcare-associated acquisition. However, some of them, i.e., surotomycin, fusidic acid, etc., will not be available due to lack of superiority versus standard of treatment. The most CD narrow-spectrum novel antimicrobials that allow to preserve microbiota integrity are cadazolid, ridinilazole, auranofin, and thuricin CD. In conclusion, the novel antimicrobial molecules under development for CDI have promising key features and advancements in comparison to the traditional anti-CDI antimicrobials. In the near future, some of these new molecules might be effective alternatives to fight CDI.
Collapse
Affiliation(s)
- Nicola Petrosillo
- Clinical and Research Department for Infectious Diseases, Unit Systemic and Immunedepression-Associated Infections, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Guido Granata
- Clinical and Research Department for Infectious Diseases, Unit Systemic and Immunedepression-Associated Infections, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | - Maria Adriana Cataldo
- Clinical and Research Department for Infectious Diseases, Unit Systemic and Immunedepression-Associated Infections, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| |
Collapse
|
35
|
Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin Microbiol Rev 2018. [PMID: 29540434 DOI: 10.1128/cmr.00077-17] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The global incidence of drug-resistant Gram-negative bacillary infections has been increasing, and there is a dire need to develop novel strategies to overcome this problem. Intrinsic resistance in Gram-negative bacteria, such as their protective outer membrane and constitutively overexpressed efflux pumps, is a major survival weapon that renders them refractory to current antibiotics. Several potential avenues to overcome this problem have been at the heart of antibiotic drug discovery in the past few decades. We review some of these strategies, with emphasis on antibiotic hybrids either as stand-alone antibacterial agents or as adjuvants that potentiate a primary antibiotic in Gram-negative bacteria. Antibiotic hybrid is defined in this review as a synthetic construct of two or more pharmacophores belonging to an established agent known to elicit a desired antimicrobial effect. The concepts, advances, and challenges of antibiotic hybrids are elaborated in this article. Moreover, we discuss several antibiotic hybrids that were or are in clinical evaluation. Mechanistic insights into how tobramycin-based antibiotic hybrids are able to potentiate legacy antibiotics in multidrug-resistant Gram-negative bacilli are also highlighted. Antibiotic hybrids indeed have a promising future as a therapeutic strategy to overcome drug resistance in Gram-negative pathogens and/or expand the usefulness of our current antibiotic arsenal.
Collapse
|
36
|
Peng Z, Ling L, Stratton CW, Li C, Polage CR, Wu B, Tang YW. Advances in the diagnosis and treatment of Clostridium difficile infections. Emerg Microbes Infect 2018; 7:15. [PMID: 29434201 PMCID: PMC5837143 DOI: 10.1038/s41426-017-0019-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022]
Abstract
Clostridium difficile is a leading cause of antibiotic-associated diarrhea worldwide. The diagnosis of C. difficile infection (CDI) requires both clinical manifestations and a positive laboratory test for C. difficile and/or its toxins. While antibiotic therapy is the treatment of choice for CDI, there are relatively few classes of effective antibiotics currently available. Therefore, the development of novel antibiotics and/or alternative treatment strategies for CDI has received a great deal of attention in recent years. A number of emerging agents such as cadazolid, surotomycin, ridinilazole, and bezlotoxumab have demonstrated activity against C. difficile; some of these have been approved for limited clinical use and some are in clinical trials. In addition, other approaches such as early and accurate diagnosis of CDI as well as disease prevention are important for clinical management. While the toxigenic culture and the cell cytotoxicity neutralization assay are still recognized as the gold standard for the diagnosis of CDI, new diagnostic approaches such as nucleic acid amplification methods have become available. In this review, we will discuss both current and emerging diagnostic and therapeutic modalities for CDI.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Lifen Ling
- The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518000, Guangdong, China
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Charles W Stratton
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Christopher R Polage
- Departments of Pathology and Laboratory Medicine and Internal Medicine, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi-Wei Tang
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
37
|
Galpérine T, Guery B. Exploring ways to improve CDI outcomes. Med Mal Infect 2018; 48:10-17. [PMID: 29336930 DOI: 10.1016/j.medmal.2017.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/23/2017] [Indexed: 12/14/2022]
Abstract
Clostridium difficile is an anaerobic spore-forming Gram-positive bacillus recognized as an evolving international health problem. Metronidazole and vancomycin were - until recently - the only drugs available to treat C. difficile infection (CDI). Better knowledge of the pathophysiology and the development of new drugs completely modified the management of initial episodes and recurrences of CDI. Fidaxomicin significantly reduced recurrences compared with vancomycin. New drugs are also currently evaluated (cadazolid, surotomycin, ridinilazole, rifaximin). Gut microbiota homeostasis was clearly shown to be a key determinant in recurrences as demonstrated by the development of gut microbiota transplantation and alternative microbiota substitution. Passive immunotherapy and vaccinal approaches are also currently being evaluated. In conclusion, CDI treatment has evolved with the development of new therapeutic pathways which now need to be implemented in international guidelines.
Collapse
Affiliation(s)
- T Galpérine
- Infectious diseases service, department of medicine, university Hospital, university of Lausanne, 46, rue du Bugnon, 1011 Lausanne, Switzerland
| | - B Guery
- Infectious diseases service, department of medicine, university Hospital, university of Lausanne, 46, rue du Bugnon, 1011 Lausanne, Switzerland.
| | -
- Infectious diseases service, department of medicine, university Hospital, university of Lausanne, 46, rue du Bugnon, 1011 Lausanne, Switzerland
| |
Collapse
|
38
|
Maxwell-Scott HG, Goldenberg SD. Existing and investigational therapies for the treatment of Clostridium difficile infection: A focus on narrow spectrum, microbiota-sparing agents. Med Mal Infect 2017; 48:1-9. [PMID: 29169816 DOI: 10.1016/j.medmal.2017.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
Despite intense international attention and efforts to reduce its incidence, Clostridium difficile infection (CDI) remains a significant concern for patients, clinicians, and healthcare organizations. It is costly for payers and disabling for patients. Furthermore, recurrent CDI is particularly difficult to manage, resulting in excess mortality, hospital length of stay, and other healthcare resource use. A greater understanding of the role of the gut microbiome has emphasized the importance of this diverse community in providing colonization resistance against CDI. The introduction of fidaxomicin, which has limited effect on the microflora has improved clinical outcomes in relation to disease recurrence. There are a number of other new agents in development, which appear to have a narrow spectrum of activity whilst exerting minimal effect on the microflora. Whilst the role of these emerging agents in the treatment of CDI is presently unclear, they appear to be promising candidates.
Collapse
Affiliation(s)
- H G Maxwell-Scott
- London and Guy's and St Thomas' NHS Foundation Trust, Centre for Clinical Infection and Diagnostics Research, King's College, London, United Kingdom
| | - S D Goldenberg
- London and Guy's and St Thomas' NHS Foundation Trust, Centre for Clinical Infection and Diagnostics Research, King's College, London, United Kingdom.
| |
Collapse
|
39
|
Manthey C, Eckmann L, Fuhrmann V. Therapy for Clostridium difficile infection – any news beyond Metronidazole and Vancomycin? Expert Rev Clin Pharmacol 2017; 10:1239-1250. [DOI: 10.1080/17512433.2017.1362978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- C.F. Manthey
- I. Medical Department, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - L. Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - V. Fuhrmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
41
|
Endres BT, Bassères E, Alam MJ, Garey KW. Cadazolid for the treatment of Clostridium difficile. Expert Opin Investig Drugs 2017; 26:509-514. [PMID: 28286992 DOI: 10.1080/13543784.2017.1304538] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Antibiotic development goals for CDI include potent antimicrobial effect against C. difficile, limited killing of host microbiota, potential effect on spores, and ability to interfere with toxin production. Cadazolid, a novel, non-absorbable hybrid antibiotic has many of these criteria. In phase I and II clinical trials, cadazolid was shown to be safe, well tolerated, and efficacious positioning itself as a potential future viable therapeutic option for CDI. Areas covered: This review provides an in-depth evaluation of the chemistry, microbiology, pharmacodynamics, pharmacokinetics, and clinical trial results for cadazolid. Clinical therapeutic outcomes are compared between cadazolid, fidaxomicin, and surotomycin. Expert opinion: Preclinical and early clinical studies demonstrated that cadazolid has unique properties that will likely be valuable to treat CDI and reduce recurrent infection. With compelling phase II clinical results, results from the ongoing phase III trial will better define the role of cadazolid for treating CDI in the future.
Collapse
Affiliation(s)
- Bradley T Endres
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Eugénie Bassères
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - M Jahangir Alam
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| | - Kevin W Garey
- a Department of Pharmacy Practice and Translational Research , University of Houston College of Pharmacy , Houston , TX , USA
| |
Collapse
|
42
|
Mandal M, Tan Z, Madsen-Duggan C, Buevich AV, Caldwell JP, Dejesus R, Flattery A, Garlisi CG, Gill C, Ha SN, Ho G, Koseoglu S, Labroli M, Basu K, Lee SH, Liang L, Liu J, Mayhood T, McGuinness D, McLaren DG, Wen X, Parmee E, Rindgen D, Roemer T, Sheth P, Tawa P, Tata J, Yang C, Yang SW, Xiao L, Wang H, Tan C, Tang H, Walsh P, Walsh E, Wu J, Su J. Can We Make Small Molecules Lean? Optimization of a Highly Lipophilic TarO Inhibitor. J Med Chem 2017; 60:3851-3865. [DOI: 10.1021/acs.jmedchem.7b00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mihirbaran Mandal
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Zheng Tan
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Christina Madsen-Duggan
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alexei V. Buevich
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - John P. Caldwell
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Reynalda Dejesus
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Amy Flattery
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Charles G. Garlisi
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Charles Gill
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sookhee Nicole Ha
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ginny Ho
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sandra Koseoglu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Marc Labroli
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Kallol Basu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Sang Ho Lee
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Lianzhu Liang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jenny Liu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Todd Mayhood
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Debra McGuinness
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David G. McLaren
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xiujuan Wen
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Emma Parmee
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Diane Rindgen
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Terry Roemer
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Payal Sheth
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Tawa
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - James Tata
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Christine Yang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Shu-Wei Yang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Hao Wang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Christopher Tan
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Haifeng Tang
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Walsh
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Erika Walsh
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jin Wu
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Jing Su
- Global Chemistry, ‡Early Discovery Bacteriology, §Discovery Pharmaceutical Sciences, ∥Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, ⊥In Vivo Pharmacology, and #In Vitro Pharmacology, MRL, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
43
|
New approaches to antibiotic discovery. Biotechnol Lett 2017; 39:805-817. [DOI: 10.1007/s10529-017-2311-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
44
|
In Vitro Activities of MCB3681 and Eight Comparators against Clostridium difficile Isolates with Known Ribotypes and Diverse Geographical Spread. Antimicrob Agents Chemother 2017; 61:AAC.02077-16. [PMID: 27993853 PMCID: PMC5328556 DOI: 10.1128/aac.02077-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/03/2016] [Indexed: 01/12/2023] Open
Abstract
Treatments for Clostridium difficile infection remain limited, despite the introduction of fidaxomicin, and development of new agents is necessary. We determined the in vitro susceptibilities of 199 prevalent or emerging Clostridium difficile PCR ribotypes to MCB3681, a novel investigational quinolonyl-oxazolidinone, and 8 comparators (metronidazole, vancomycin, fidaxomicin, moxifloxacin, ciprofloxacin, clindamycin, tigecycline, and linezolid). MCB3681 showed good activity against C. difficile with no evidence of MCB3681 resistance in isolates showing either moxifloxacin or linezolid resistance or both moxifloxacin and linezolid resistance.
Collapse
|
45
|
van Harten RM, Willems RJL, Martin NI, Hendrickx APA. Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies? Trends Microbiol 2017; 25:467-479. [PMID: 28209400 DOI: 10.1016/j.tim.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 02/08/2023]
Abstract
Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting.
Collapse
Affiliation(s)
- Roel M van Harten
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Nathaniel I Martin
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Antoni P A Hendrickx
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
46
|
Trubiano JA, Cheng AC, Korman TM, Roder C, Campbell A, May MLA, Blyth CC, Ferguson JK, Blackmore TK, Riley TV, Athan E. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 2017; 46:479-93. [PMID: 27062204 DOI: 10.1111/imj.13027] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 12/16/2022]
Abstract
The incidence of Clostridium difficile infection (CDI) continues to rise, whilst treatment remains problematic due to recurrent, refractory and potentially severe nature of disease. The treatment of C. difficile is a challenge for community and hospital-based clinicians. With the advent of an expanding therapeutic arsenal against C. difficile since the last published Australasian guidelines, an update on CDI treatment recommendations for Australasian clinicians was required. On behalf of the Australasian Society of Infectious Diseases, we present the updated guidelines for the management of CDI in adults and children.
Collapse
Affiliation(s)
- J A Trubiano
- Infectious Diseases Department, Austin Health, Melbourne, Western Australia.,Infectious Diseases Department, Peter MacCallum Cancer Centre, Melbourne, Western Australia
| | - A C Cheng
- Infectious Diseases Department, Alfred Health, Melbourne, Western Australia.,Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Western Australia.,Infection Prevention and Healthcare Epidemiology Unit, Alfred Hospital, Melbourne, Western Australia
| | - T M Korman
- Monash Infectious Diseases, Monash Health, Monash University, Melbourne, Western Australia
| | - C Roder
- School of Medicine, Deakin University, Geelong, Victoria, Western Australia.,Geelong Centre for Emerging Infectious Diseases, Barwon Health, Geelong, Victoria, Western Australia
| | - A Campbell
- Infectious Diseases Department, Princess Margaret Hospital for Children, Queen Elizabeth II Medical Centre, Perth, Western Australia
| | - M L A May
- Infection Management and Prevention Service, Lady Cilento Children's Hospital and Sullivan Nicolaides Pathology, Brisbane, Queensland
| | - C C Blyth
- Infectious Diseases Department, Princess Margaret Hospital for Children, Queen Elizabeth II Medical Centre, Perth, Western Australia.,School of Paediatrics and Child Health, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Western Australia.,Department of Microbiology, PathWest Laboratory Medicine, Princess Margaret Hospital, Queen Elizabeth II Medical Centre, Perth, Western Australia
| | - J K Ferguson
- Pathology North, NSW Pathology, Wellington South, New Zealand.,Immunology and Infectious Diseases Unit, John Hunter Hospital, Wellington South, New Zealand.,Universities of New England and Newcastle, Newcastle, New South Wales, Australia
| | - T K Blackmore
- Laboratory Services, Wellington Regional Hospital, Wellington South, New Zealand
| | - T V Riley
- Microbiology and Immunology, School of Pathology and Laboratory Medicine, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Western Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Perth, Western Australia
| | - E Athan
- School of Medicine, Deakin University, Geelong, Victoria, Western Australia.,Department of Infectious Disease, Barwon Health, Geelong, Victoria, Western Australia
| |
Collapse
|
47
|
Bassères E, Endres BT, Dotson KM, Alam MJ, Garey KW. Novel antibiotics in development to treat Clostridium difficile infection. Curr Opin Gastroenterol 2017; 33:1-7. [PMID: 28134686 DOI: 10.1097/mog.0000000000000332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Clostridium difficile infections (CDI) remain a challenge to treat clinically due primarily to limited number of antibiotics available and unacceptably high recurrence rates. Because of this, there has been significant demand for creating innovative therapeutics, which has resulted in the development of several novel antibiotics. RECENT FINDINGS This review updates seven different antibiotics that are currently in development to treat CDI including fidaxomicin, surotomycin, ridinilazole, ramoplanin, cadazolid, LFF571, and CRS3123. Available preclinical and clinical data are compared between these antibiotics. SUMMARY Many of these new antibiotics display almost ideal properties for antibiotics directed against CDI. Despite these properties, not all clinical development of these compounds has been successful. These studies have provided key insights into the pathogenesis of CDI and will continue to inform future drug development. Successful phase III clinical trials should result in several new and novel antibiotics to treat CDI.
Collapse
|
48
|
|
49
|
Head BM, Alfa M, Sitar DS, Rubinstein E, Meyers AFA. In vitro evaluation of the effect of linezolid and levofloxacin on Bacillus anthracis toxin production, spore formation and cell growth. J Antimicrob Chemother 2016; 72:417-420. [PMID: 27798209 DOI: 10.1093/jac/dkw427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Owing to its ability to form spores and toxins, Bacillus anthracis is considered a bioterror agent. Although current therapeutic strategies can be effective, treatment does not prevent sporulation and toxin production. OBJECTIVES To quantify the combined effect of a protein synthesis inhibitor and a bactericidal agent on B. anthracis toxin production, sporulation and cell growth. METHODS Susceptibility and synergy titrations were conducted on B. anthracis Sterne and 03-0191 strains using linezolid and levofloxacin. The effect of antibiotic exposure on cell viability was evaluated using a continuous medium replacement model. In vitro static models were used to study the effect of linezolid and levofloxacin on sporulation and toxin production. Spores were quantified using the heat shock method. Toxin was quantified via commercial ELISA. RESULTS Synergy titrations indicated that the combination was synergistic or indifferent; however, in all models antagonism was observed. In the spore model, linezolid resulted in the lowest sporulation rates, while combination therapy resulted in the highest. In the toxin model, linezolid prevented toxin production altogether. CONCLUSIONS This study advances our understanding of the effects of combination therapy on B. anthracis infection. Used alone, linezolid therapy abolishes toxin production and reduces sporulation. These results suggest that studies using a step-wise approach using linezolid initially to stop sporulation and toxin production followed by levofloxacin to rapidly kill vegetative B. anthracis can be recommended.
Collapse
Affiliation(s)
- Breanne M Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Michelle Alfa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,St Boniface Research Centre, Winnipeg, Canada
| | - Daniel S Sitar
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Canada
| | - Ethan Rubinstein
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Adrienne F A Meyers
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada.,National Laboratory for HIV Immunology, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Winnipeg, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
50
|
Meehan AM, Tariq R, Khanna S. Challenges in management of recurrent and refractory Clostridium difficile infection. World J Clin Infect Dis 2016; 6:28-36. [DOI: 10.5495/wjcid.v6.i3.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile infection (CDI) is the most common nosocomial infection in the United States and is associated with a high mortality. One quarter of patients treated for CDI have at least one recurrence. Spore persistence, impaired host immune response and alteration in the gastrointestinal microbiome due to antibiotic use are factors in recurrent disease. We review the etiology of recurrent CDI and best approaches to management including fecal microbiota transplantation.
Collapse
|