1
|
Suhajda Á, Al-Nussairawi M, Amara I, Sörös C, Tömösközi-Farkas R, Kriszt B, Farkas M, Cserháti M. Co-Occurrence of Beauvericin and Fumonisin Producing Ability of Fusarium Strains Isolated from Crop Plants in Hungary. Curr Microbiol 2025; 82:302. [PMID: 40407872 PMCID: PMC12101999 DOI: 10.1007/s00284-025-04243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/15/2025] [Indexed: 05/26/2025]
Abstract
Beauvericin (BEA) is an emerging mycotoxin with wide-ranging bioactivity (antimicrobial and insecticide), making it a potential target for drug and pesticide development. BEA primarily produced by Beauveria, Isaria, and Fusarium species. The BEA-producing abilities of a collection of 100 Fusarium strains isolated from maize were tested using a gene-specific primer (Beas_1, Beas_2) by PCR. Among all, 23 were found to have the beauvericin synthetase (BEAS) gene sequence, which is responsible for the production of BEA. Fusarium proliferatum (6) and F. verticillioides (14) strains were producing the highest BEA concentrations. The toxin-producing ability of the strains was investigated in small bioreactors. Parallel with BEA, the most frequent Fusarium toxins such as deoxynivalenol (DON), T2, HT-2, zearalenone (ZEA), fumonisin B1 (FB1), and fumonisin B2 (FB2) were also measured. Only FB1 and FB2 were observed above the detection limit, the coexistence of the FBs and BEA was measured in high concentration. In all BEA-producing strains, the FBs production could be detected. The highest BEA concentration was 3131 mg/kg, and the highest FB1 and FB2 concentrations were 4393 mg/kg and 1390 mg/kg, respectively. In the present study, the gene sequences responsible for the production of BEA in F. verticilloides isolates have not only been detected but also demonstrated with UHPLC-ESI-MS/MS to be capable of biosynthesis. From the phylogenic analysis of the BEAS gene sequences, the assumption could be made that the ability to produce BEA was conferred via horizontal gene transfer.
Collapse
Affiliation(s)
- Ákos Suhajda
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Mohammed Al-Nussairawi
- Department of Clinical and Laboratory Sciences, College of Pharmacy, University of Misan, Misan, Iraq
| | - Ines Amara
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Csilla Sörös
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Rita Tömösközi-Farkas
- Department of Food Chemistry and Analytics, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| | - Milán Farkas
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Mátyás Cserháti
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| |
Collapse
|
2
|
Ibe C, Pohl CH. Update on the structure and function of Candida albicans drug efflux protein, Cdr1. Fungal Genet Biol 2024; 175:103938. [PMID: 39486613 DOI: 10.1016/j.fgb.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Candida albicans is an important human pathogenic yeast, that can become resistant to commonly used antifungal agents, such as azoles. One mechanism of drug resistance is efflux via ATP binding cassette transporters, such as Cdr1. Several studies have investigated the structural organization, binding mechanisms, function and regulation of Cdr1. This review summarizes the findings on the structure and function of Cdr1 and highlights important aspects to consider in future research relating to multidrug ABC transporters.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology and Biochemistry, University of the Free State, PO Box 339, Bloemfontein, 9301, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, PO Box 339, Bloemfontein, 9301, South Africa.
| |
Collapse
|
3
|
Morschhäuser J. Adaptation of Candida albicans to specific host environments by gain-of-function mutations in transcription factors. PLoS Pathog 2024; 20:e1012643. [PMID: 39495716 PMCID: PMC11534201 DOI: 10.1371/journal.ppat.1012643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
The yeast Candida albicans is usually a harmless member of the normal microbiota in healthy persons but is also a major fungal pathogen that can colonize and infect almost every human tissue. A successful adaptation to environmental changes encountered in different host niches requires an appropriate regulation of gene expression. The zinc cluster transcription factors are the largest family of transcriptional regulators in C. albicans and are involved in the control of virtually all aspects of its biology. Under certain circumstances, mutations in these transcription factors that alter their activity and the expression of their target genes confer a selective advantage, which results in the emergence of phenotypically altered variants that are better adapted to new environmental challenges. This review describes how gain-of-function mutations in different zinc cluster transcription factors enable C. albicans to overcome antifungal therapy and to successfully establish itself in specific host niches.
Collapse
Affiliation(s)
- Joachim Morschhäuser
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Patra A, Ghosh SS, Saini GK. Exploring potential molecular targets and therapeutic efficacy of beauvericin in triple-negative breast cancer cells. Comput Biol Chem 2024; 112:108154. [PMID: 39029290 DOI: 10.1016/j.compbiolchem.2024.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Triple negative breast cancer (TNBC) presents a significant global health concern due to its aggressive nature, high mortality rate and limited treatment options, highlighting the urgent need for targeted therapies. Beauvericin, a bioactive fungal secondary metabolite, possess significant anticancer potential, although its molecular targets in cancer cells remain unexplored. This study has investigated possible molecular targets of beauvericin and its therapeutic insights in TNBC cells. In silico studies using molecular docking and MD simulation predicted the molecular targets of beauvericin. The identified targets included MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK with average binding energy of -90.1, -44.3, -72.1, -105 and -60.8 KJ/mol, respectively, implying its multifaceted roles in reversing drug resistance, inhibiting epigenetic modulators and oncogenic tyrosine kinases. Beauvericin has significantly reduced the viability of MDA-MB-231 and MDA-MB-468 cells, with IC50 concentrations of 4.4 and 3.9 µM, while concurrently elevating the intracellular ROS by 9.0 and 7.9 folds, respectively. Subsequent reduction of mitochondrial transmembrane potential in TNBC cells, has confirmed the induction of oxidative stress, leading to apoptotic cell death, as observed by flow cytometric analyses. Beauvericin has also arrested cell cycle at G1-phase and impaired the spheroid formation and clonal expansion abilities of TNBC cells. The viability of spheroids was reduced upon beauvericin treatment, exhibiting IC50 concentrations of 10.3 and 6.2 µM in MDA-MB-468 and MDA-MB-231 cells, respectively. In conclusion, beauvericin has demonstrated promising therapeutic potential against TNBC cells through possible inhibition of MRP-1 (ABCC1), HDAC-1, HDAC-2, LCK and SYK.
Collapse
Affiliation(s)
- Arupam Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, North Guwahati, Assam 781039, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, North Guwahati, Assam 781039, India.
| | - Gurvinder Kaur Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, North Guwahati, Assam 781039, India.
| |
Collapse
|
5
|
Alabi PE, Gautier C, Murphy TP, Gu X, Lepas M, Aimanianda V, Sello JK, Ene IV. Small molecules restore azole activity against drug-tolerant and drug-resistant Candida isolates. mBio 2023; 14:e0047923. [PMID: 37326546 PMCID: PMC10470600 DOI: 10.1128/mbio.00479-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 06/17/2023] Open
Abstract
Each year, fungi cause more than 1.5 billion infections worldwide and have a devastating impact on human health, particularly in immunocompromised individuals or patients in intensive care units. The limited antifungal arsenal and emerging multidrug-resistant species necessitate the development of new therapies. One strategy for combating drug-resistant pathogens is the administration of molecules that restore fungal susceptibility to approved drugs. Accordingly, we carried out a screen to identify small molecules that could restore the susceptibility of pathogenic Candida species to azole antifungals. This screening effort led to the discovery of novel 1,4-benzodiazepines that restore fluconazole susceptibility in resistant isolates of Candida albicans, as evidenced by 100-1,000-fold potentiation of fluconazole activity. This potentiation effect was also observed in azole-tolerant strains of C. albicans and in other pathogenic Candida species. The 1,4-benzodiazepines selectively potentiated different azoles, but not other approved antifungals. A remarkable feature of the potentiation was that the combination of the compounds with fluconazole was fungicidal, whereas fluconazole alone is fungistatic. Interestingly, the potentiators were not toxic to C. albicans in the absence of fluconazole, but inhibited virulence-associated filamentation of the fungus. We found that the combination of the potentiators and fluconazole significantly enhanced host survival in a Galleria mellonella model of systemic fungal infection. Taken together, these observations validate a strategy wherein small molecules can restore the activity of highly used anti-infectives that have lost potency. IMPORTANCE In the last decade, we have been witnessing a higher incidence of fungal infections, due to an expansion of the fungal species capable of causing disease (e.g., Candida auris), as well as increased antifungal drug resistance. Among human fungal pathogens, Candida species are a leading cause of invasive infections and are associated with high mortality rates. Infections by these pathogens are commonly treated with azole antifungals, yet the expansion of drug-resistant isolates has reduced their clinical utility. In this work, we describe the discovery and characterization of small molecules that potentiate fluconazole and restore the susceptibility of azole-resistant and azole-tolerant Candida isolates. Interestingly, the potentiating 1,4-benzodiazepines were not toxic to fungal cells but inhibited their virulence-associated filamentous growth. Furthermore, combinations of the potentiators and fluconazole decreased fungal burdens and enhanced host survival in a Galleria mellonella model of systemic fungal infections. Accordingly, we propose the use of novel antifungal potentiators as a powerful strategy for addressing the growing resistance of fungi to clinically approved drugs.
Collapse
Affiliation(s)
- Philip E. Alabi
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Cécile Gautier
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
| | - Thomas P. Murphy
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Xilin Gu
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Mathieu Lepas
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Vishukumar Aimanianda
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Molecular Mycology Unit, Paris, France
| | - Jason K. Sello
- Department of Chemistry, Brown University, Providence, Rhode Island, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, Paris, France
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
6
|
Metzner K, O’Meara MJ, Halligan B, Wotring JW, Sexton JZ, O’Meara TR. Imaging-Based Screening Identifies Modulators of the eIF3 Translation Initiation Factor Complex in Candida albicans. Antimicrob Agents Chemother 2023; 67:e0050323. [PMID: 37382550 PMCID: PMC10353439 DOI: 10.1128/aac.00503-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure toward resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC50 values ranging from 0.2 to 150 μM. Multiple compounds showed a phenyl sulfone chemotype, prompting further analysis. Of these phenyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans.
Collapse
Affiliation(s)
- Katura Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin Halligan
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jesse W. Wotring
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Wijayawardene NN, Boonyuen N, Ranaweera CB, de Zoysa HKS, Padmathilake RE, Nifla F, Dai DQ, Liu Y, Suwannarach N, Kumla J, Bamunuarachchige TC, Chen HH. OMICS and Other Advanced Technologies in Mycological Applications. J Fungi (Basel) 2023; 9:688. [PMID: 37367624 PMCID: PMC10302638 DOI: 10.3390/jof9060688] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fungi play many roles in different ecosystems. The precise identification of fungi is important in different aspects. Historically, they were identified based on morphological characteristics, but technological advancements such as polymerase chain reaction (PCR) and DNA sequencing now enable more accurate identification and taxonomy, and higher-level classifications. However, some species, referred to as "dark taxa", lack distinct physical features that makes their identification challenging. High-throughput sequencing and metagenomics of environmental samples provide a solution to identifying new lineages of fungi. This paper discusses different approaches to taxonomy, including PCR amplification and sequencing of rDNA, multi-loci phylogenetic analyses, and the importance of various omics (large-scale molecular) techniques for understanding fungal applications. The use of proteomics, transcriptomics, metatranscriptomics, metabolomics, and interactomics provides a comprehensive understanding of fungi. These advanced technologies are critical for expanding the knowledge of the Kingdom of Fungi, including its impact on food safety and security, edible mushrooms foodomics, fungal secondary metabolites, mycotoxin-producing fungi, and biomedical and therapeutic applications, including antifungal drugs and drug resistance, and fungal omics data for novel drug development. The paper also highlights the importance of exploring fungi from extreme environments and understudied areas to identify novel lineages in the fungal dark taxa.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand;
| | - Chathuranga B. Ranaweera
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University Sri Lanka, Kandawala Road, Rathmalana 10390, Sri Lanka;
| | - Heethaka K. S. de Zoysa
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Rasanie E. Padmathilake
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Pulliyankulama, Anuradhapura 50000, Sri Lanka;
| | - Faarah Nifla
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Dong-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
| | - Yanxia Liu
- Guizhou Academy of Tobacco Science, No.29, Longtanba Road, Guanshanhu District, Guiyang 550000, China;
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (J.K.)
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thushara C. Bamunuarachchige
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka; (H.K.S.d.Z.); (F.N.); (T.C.B.)
| | - Huan-Huan Chen
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China;
- Key Laboratory of Insect-Pollinator Biology of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
8
|
Kumawat M, Nabi B, Daswani M, Viquar I, Pal N, Sharma P, Tiwari S, Sarma DK, Shubham S, Kumar M. Role of bacterial efflux pump proteins in antibiotic resistance across microbial species. Microb Pathog 2023:106182. [PMID: 37263448 DOI: 10.1016/j.micpath.2023.106182] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Efflux proteins are transporter molecules that actively pump out a variety of substrates, including antibiotics, from cells to the environment. They are found in both Gram-positive and Gram-negative bacteria and eukaryotic cells. Based on their protein sequence homology, energy source, and overall structure, efflux proteins can be divided into seven groups. Multidrug efflux pumps are transmembrane proteins produced by microbes to enhance their survival in harsh environments and contribute to antibiotic resistance. These pumps are present in all bacterial genomes studied, indicating their ancestral origins. Many bacterial genes encoding efflux pumps are involved in transport, a significant contributor to antibiotic resistance in microbes. Efflux pumps are widely implicated in the extrusion of clinically relevant antibiotics from cells to the extracellular environment and, as such, represent a significant challenge to antimicrobial therapy. This review aims to provide an overview of the structures and mechanisms of action, substrate profiles, regulation, and possible inhibition of clinically relevant efflux pumps. Additionally, recent advances in research and the pharmacological exploitation of efflux pump inhibitors as a promising intervention for combating drug resistance will be discussed.
Collapse
Affiliation(s)
- Manoj Kumawat
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Bilkees Nabi
- Department of Biochemistry & Biochemical Engineering, SHUATS, Allahabad, 211007, India
| | - Muskan Daswani
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Iqra Viquar
- Department of Biotechnology, SantHirdaram Girls College, Bhopal, 462030, India
| | - Namrata Pal
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Poonam Sharma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Shikha Tiwari
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Devojit Kumar Sarma
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Swasti Shubham
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India
| | - Manoj Kumar
- Department of Microbiology, ICMR- National Institute for Research in Environmental Health, Bhopal, 462030, India.
| |
Collapse
|
9
|
Jin X, Hou X, Wang X, Zhang M, Chen J, Song M, Zhang J, Zheng H, Chang W, Lou H. Characterization of an allosteric inhibitor of fungal-specific C-24 sterol methyltransferase to treat Candida albicans infections. Cell Chem Biol 2023; 30:553-568.e7. [PMID: 37160123 DOI: 10.1016/j.chembiol.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Filamentation is an important virulence factor of the pathogenic fungus Candida albicans. The abolition of Candida albicans hyphal formation by disrupting sterol synthesis is an important concept for the development of antifungal drugs with high safety. Here, we conduct a high-throughput screen using a C. albicans strain expressing green fluorescent protein-labeled Dpp3 to identify anti-hypha agents by interfering with ergosterol synthesis. The antipyrine derivative H55 is characterized to have minimal cytotoxicity and potent inhibition of C. albicans hyphal formation in multiple cultural conditions. H55 monotherapy exhibits therapeutic efficacy in mouse models of azole-resistant candidiasis. H55 treatment increases the accumulation of zymosterol, the substrate of C-24 sterol methyltransferase (Erg6). The results of enzyme assays, photoaffinity labeling, molecular simulation, mutagenesis, and cellular thermal shift assays support H55 as an allosteric inhibitor of Erg6. Collectively, H55, an inhibitor of the fungal-specific enzyme Erg6, holds potential to treat C. albicans infections.
Collapse
Affiliation(s)
- Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xue Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyao Chen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Minghui Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
10
|
Metzner K, O’Meara MJ, Halligan B, Wotring JW, Sexton JZ, O’Meara TR. Imaging-based screening identifies modulators of the eIF3 translation initiation factor complex in Candida albicans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537517. [PMID: 37131825 PMCID: PMC10153179 DOI: 10.1101/2023.04.19.537517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure towards resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC 50 values ranging from 0.2 to 150 µM. Multiple compounds showed a phenyl vinyl sulfone chemotype, prompting further analysis. Of these phenyl vinyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans .
Collapse
Affiliation(s)
- Katura Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Matthew J O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin Halligan
- University of Michigan Center for Drug Repurposing, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jesse W. Wotring
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA
- University of Michigan Center for Drug Repurposing, USA
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, MI, USA
- University of Michigan Center for Drug Repurposing, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Teresa R O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Lee Y, Hossain S, MacAlpine J, Robbins N, Cowen LE. Functional genomic analysis of Candida albicans protein kinases reveals modulators of morphogenesis in diverse environments. iScience 2023; 26:106145. [PMID: 36879823 PMCID: PMC9984565 DOI: 10.1016/j.isci.2023.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Candida albicans is a leading cause of mycotic infection. The ability to transition between yeast and filamentous forms is critical to C. albicans virulence and complex signaling pathways regulate this process. Here, we screened a C. albicans protein kinase mutant library in six environmental conditions to identify regulators of morphogenesis. We identified the uncharacterized gene orf19.3751 as a negative regulator of filamentation and follow-up investigations implicated a role for orf19.3751 in cell cycle regulation. We also uncovered a dual role for the kinases Ire1 and protein kinase A (Tpk1 and Tpk2) in C. albicans morphogenesis, specifically as negative regulators of wrinkly colony formation on solid medium but positive regulators of filamentation in liquid medium. Further analyses suggested Ire1 modulates morphogenesis in both media states in part through the transcription factor Hac1 and in part through independent mechanisms. Overall, this work provides insights into the signaling governing morphogenesis in C. albicans.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Cui X, Wang L, Lü Y, Yue C. Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health 2022; 15:986-1000. [PMID: 35981408 DOI: 10.1016/j.jiph.2022.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
With the widespread use of immunosuppressive agents and the increase in patients with severe infections, the incidence of fungal infections worldwide has increased year by year. The fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus cause a total of more than 1 million deaths each year. Long-term use of antifungal drugs can easily lead to fungal resistance, and the prevalence of drug-resistant fungi is a major global health challenge. In order to effectively control global fungal infections, there is an urgent need for new drugs that can exert effective antifungal activity and overcome drug resistance. We must promote the discovery of new antifungal targets and drugs, and find effective ways to control drug-resistant fungi through different ways, so as to reduce the threat of drug-resistant fungi to human life, health and safety. In the past few years, certain progress has been made in the research and development of antifungal drugs. In addition to summarizing some of the antifungal drugs currently approved by the FDA, this review also focuses on potential antifungal drugs, the repositioned drugs, and drugs that can treat drug-resistant bacteria and fungal infections, and provide new ideas for the development of antifungal drugs in the future.
Collapse
Affiliation(s)
- Xiangyi Cui
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Lanlin Wang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Yuhong Lü
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
13
|
Rana S, Singh SK, Dufossé L. Multigene Phylogeny, Beauvericin Production and Bioactive Potential of Fusarium Strains Isolated in India. J Fungi (Basel) 2022; 8:jof8070662. [PMID: 35887419 PMCID: PMC9320867 DOI: 10.3390/jof8070662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The taxonomy of the genus Fusarium has been in a flux because of ambiguous circumscription of species-level identification based on morphotaxonomic criteria. In this study, multigene phylogeny was conducted to resolve the evolutionary relationships of 88 Indian Fusarium isolates based on the internal transcribed spacer region, 28S large subunit, translation elongation factor 1-alpha, RNA polymerase second largest subunit, beta-tubulin and calmodulin gene regions. Fusarium species are well known to produce metabolites such as beauvericin (BEA) and enniatins. These identified isolates were subjected to fermentation in Fusarium-defined media for BEA production and tested using TLC, HPLC and HRMS. Among 88 isolates studied, 50 were capable of producing BEA, which varied from 0.01 to 15.82 mg/g of biomass. Fusarium tardicrescens NFCCI 5201 showed maximum BEA production (15.82 mg/g of biomass). The extract of F. tardicrescens NFCCI 5201 showed promising antibacterial activity against Staphylococcus aureusMLS16 MTCC 2940 and Micrococcus luteus MTCC 2470 with MIC of 62.5 and 15.63 µg/mL, respectively. Similarly, the F. tardicrescens NFCCI 5201 extract in potato dextrose agar (40 µg/mL) exhibited antifungal activity in the food poison technique against plant pathogenic and other fungi, Rhizoctonia solani NFCCI 4327, Sclerotium rolfsii NFCCI 4263, Geotrichum candidum NFCCI 3744 and Pythium sp. NFCCI 3482, showing % inhibition of 84.31, 49.76, 38.22 and 35.13, respectively. The antibiotic effect was found to synergize when Fusarium extract and amphotericin B (20 µg/mL each in potato dextrose agar) were used in combination against Rhizopus sp. NFCCI 2108, Sclerotium rolfsii NFCCI 4263, Bipolaris sorokiniana NFCCI 4690 and Absidia sp. NFCCI 2716, showing % inhibition of 50.35, 79.37, 48.07 and 76.72, respectively. The extract also showed satisfactory dose-dependent DPPH radical scavenging activity with an IC50 value of 0.675 mg/mL. This study reveals the correct identity of the Indian Fusarium isolates based on multigene phylogeny and also throws light on BEA production potential, suggesting their possible applicability in the medicine, agriculture and industry.
Collapse
Affiliation(s)
- Shiwali Rana
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India;
- Faculty of Science, Savitribai Phule Pune University, Ganeshkhind Road, Ganeshkhind, Pune 411007, India
| | - Sanjay Kumar Singh
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India;
- Faculty of Science, Savitribai Phule Pune University, Ganeshkhind Road, Ganeshkhind, Pune 411007, India
- Correspondence: or (S.K.S.); (L.D.); Tel.: +91-20-2532-5103 (S.K.S.); +33-66-873-1906 (L.D.)
| | - Laurent Dufossé
- Chembiopro Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: or (S.K.S.); (L.D.); Tel.: +91-20-2532-5103 (S.K.S.); +33-66-873-1906 (L.D.)
| |
Collapse
|
14
|
Lee Y, Liston SD, Lee D, Robbins N, Cowen LE. Functional analysis of the Candida albicans kinome reveals Hrr25 as a regulator of antifungal susceptibility. iScience 2022; 25:104432. [PMID: 35663022 PMCID: PMC9160768 DOI: 10.1016/j.isci.2022.104432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022] Open
Abstract
Candida albicans is a leading cause of death due to systemic fungal infections. Poor patient outcomes are attributable to the limited number of antifungal classes and the increasing prevalence of drug resistance. Protein kinases have emerged as rewarding targets in the development of drugs for diverse diseases, yet kinases remain untapped in the quest for new antifungals. Here, we performed a comprehensive analysis of the C. albicans kinome to identify genes for which loss-of-function confers hypersensitivity to the two most widely deployed antifungals, echinocandins and azoles. Through this analysis, we found a role for the casein kinase 1 (CK1) homologue Hrr25 in regulating tolerance to both antifungals as well as target-mediated echinocandin resistance. Follow-up investigations established that Hrr25 regulates these responses through its interaction with the SBF transcription factor. Thus, we provide insights into the circuitry governing cellular responses to antifungals and implicate Hrr25 as a key mediator of drug resistance. Screening Candida albicans kinase mutants reveals 47 regulators of antifungal tolerance Hrr25 is important for growth and cell wall/membrane stress tolerance Hrr25 enables target-mediated echinocandin resistance Hrr25 interacts with the SBF transcription factor complex
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sean D Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Dongyeob Lee
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
15
|
Kane A, Carter DA. Augmenting Azoles with Drug Synergy to Expand the Antifungal Toolbox. Pharmaceuticals (Basel) 2022; 15:482. [PMID: 35455479 PMCID: PMC9027798 DOI: 10.3390/ph15040482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022] Open
Abstract
Fungal infections impact the lives of at least 12 million people every year, killing over 1.5 million. Wide-spread use of fungicides and prophylactic antifungal therapy have driven resistance in many serious fungal pathogens, and there is an urgent need to expand the current antifungal arsenal. Recent research has focused on improving azoles, our most successful class of antifungals, by looking for synergistic interactions with secondary compounds. Synergists can co-operate with azoles by targeting steps in related pathways, or they may act on mechanisms related to resistance such as active efflux or on totally disparate pathways or processes. A variety of sources of potential synergists have been explored, including pre-existing antimicrobials, pharmaceuticals approved for other uses, bioactive natural compounds and phytochemicals, and novel synthetic compounds. Synergy can successfully widen the antifungal spectrum, decrease inhibitory dosages, reduce toxicity, and prevent the development of resistance. This review highlights the diversity of mechanisms that have been exploited for the purposes of azole synergy and demonstrates that synergy remains a promising approach for meeting the urgent need for novel antifungal strategies.
Collapse
Affiliation(s)
| | - Dee A. Carter
- School of Life and Environmental Sciences and Sydney ID, University of Sydney, Camperdown, NSW 2006, Australia;
| |
Collapse
|
16
|
Iyer KR, Robbins N, Cowen LE. The role of Candida albicans stress response pathways in antifungal tolerance and resistance. iScience 2022; 25:103953. [PMID: 35281744 PMCID: PMC8905312 DOI: 10.1016/j.isci.2022.103953] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human fungal pathogens are the causative agents of devastating diseases across the globe, and the increasing prevalence of drug resistance threatens to undermine the already limited treatment options. One prominent pathogen is the opportunistic fungus Candida albicans, which can cause both superficial and serious systemic infections in immunocompromised individuals. C. albicans antifungal drug resistance and antifungal tolerance are supported by diverse and expansive cellular stress response pathways. Some of the major players are the Ca2+-calmodulin-activated phosphatase calcineurin, the protein kinase C cell wall integrity pathway, and the molecular chaperone heat shock protein 90. Beyond these core signal transducers, several other enzymes and transcription factors have been implicated in both tolerance and resistance. Here, we highlight some of the major stress response pathways, key advances in identifying chemical matter to inhibit these pathways, and implications for C. albicans persistence in the host. Candida albicans can cause superficial and serious systemic infections in humans Stress response pathways regulate C. albicans antifungal resistance and tolerance Stress response regulators include calcineurin, Pkc1, Hsp90, and many others Stress response inhibitors could reduce the likelihood of fungi persisting in humans
Collapse
Affiliation(s)
- Kali R. Iyer
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, MaRS Centre, West Tower, Room 1638, Toronto, ON M5G 1M1, Canada
- Corresponding author
| |
Collapse
|
17
|
Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata. mBio 2022; 13:e0354521. [PMID: 35038899 PMCID: PMC8764518 DOI: 10.1128/mbio.03545-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this study, 18 predicted membrane-localized ABC transporters of Candida glabrata were deleted individually to create a minilibrary of knockouts (KO). The transporter KOs were analyzed for their susceptibility toward antimycotic drugs. Although CgYOR1 has previously been reported to be upregulated in various azole-resistant clinical isolates of C. glabrata, deletion of this gene did not change the susceptibility to any of the tested azoles. Additionally, Cgyor1Δ showed no change in susceptibility toward oligomycin, which is otherwise a well-known substrate of Yor1 in other yeasts. The role of CgYor1 in azole susceptibility only became evident when the major transporter CgCDR1 gene was deleted. However, under nitrogen-depleted conditions, Cgyor1Δ demonstrated an azole-susceptible phenotype, independent of CgCdr1. Notably, Cgyor1Δ cells also showed increased susceptibility to target of rapamycin (TOR) and calcineurin inhibitors. Moreover, increased phytoceramide levels in Cgyor1Δ and the deletions of regulators downstream of TOR and the calcineurin signaling cascade (Cgypk1Δ, Cgypk2Δ, Cgckb1Δ, and Cgckb2Δ) in the Cgyor1Δ background and their associated fluconazole (FLC) susceptibility phenotypes confirmed their involvement. Collectively, our findings show that TOR and calcineurin signaling govern CgYor1-mediated azole susceptibility in C. glabrata. IMPORTANCE The increasing incidence of Candida glabrata infections in the last 40 years is a serious concern worldwide. These infections are usually associated with intrinsic azole resistance and increasing echinocandin resistance. Efflux pumps, especially ABC transporter upregulation, are one of the prominent mechanisms of azole resistance; however, only a few of them are characterized. In this study, we analyzed the mechanisms of azole resistance due to a multidrug resistance-associated protein (MRP) subfamily ABC transporter, CgYor1. We demonstrate for the first time that CgYor1 does not transport oligomycin but is involved in azole resistance. Under normal growing conditions its function is masked by major transporter CgCdr1; however, under nitrogen-depleted conditions, it displays its azole resistance function independently. Moreover, we propose that the azole susceptibility due to removal of CgYor1 is not due to its transport function but involves modulation of TOR and calcineurin cascades.
Collapse
|
18
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
19
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
20
|
Inhibitor Resistant Mutants Give Important Insights into Candida albicans ABC Transporter Cdr1 Substrate Specificity and Help Elucidate Efflux Pump Inhibition. Antimicrob Agents Chemother 2021; 66:e0174821. [PMID: 34780272 PMCID: PMC8765293 DOI: 10.1128/aac.01748-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is a major cause of drug resistance in fungal pathogens. Milbemycins, enniatin B, beauvericin and FK506 are promising leads for broad-spectrum fungal multidrug efflux pump inhibitors. The characterization of naturally generated inhibitor resistant mutants is a powerful tool to elucidate structure-activity relationships in ABC transporters. We isolated twenty Saccharomyces cerevisiae mutants overexpressing Candida albicans ABC pump Cdr1 variants resistant to fluconazole efflux inhibition by milbemycin α25 (eight mutants), enniatin B (eight) or beauvericin (four). The twenty mutations were in just nine residues at the centres of transmembrane segment 1 (TMS1) (six mutations), TMS4 (four), TMS5 (four), TMS8 (one) and TMS11 (two) and in A713P (three), a previously reported FK506-resistant 'hotspot 1' mutation in extracellular loop 3. Six Cdr1-G521S/C/V/R (TMS1) variants were resistant to all four inhibitors, four Cdr1-M639I (TMS4) isolates were resistant to milbemycin α25 and enniatin B, and two Cdr1-V668I/D (TMS5) variants were resistant to enniatin B and beauvericin. The eight milbemycin α25 resistant mutants were altered in four amino acids: G521R, M639I, A713P and T1355N. These four Cdr1 variants responded differently to various types of inhibitors, and each exhibited altered substrate specificity and kinetic properties. The data infer an entry gate function for Cdr1-G521 and a role for Cdr1-A713 in the constitutively high Cdr1 ATPase activity. Cdr1-M639I and -T1355N (TMS11) possibly cause inhibitor-resistance by altering TMS-contacts near the substrate/inhibitor-binding pocket. Models for the interactions of substrates and different types of inhibitors with Cdr1 at various stages of the transport cycle are presented.
Collapse
|
21
|
Tian F, Lee SY, Woo SY, Choi HY, Park SB, Chun HS. Effect of plant-based compounds on the antifungal and antiaflatoxigenic efficiency of strobilurins against Aspergillus flavus. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125663. [PMID: 33756201 DOI: 10.1016/j.jhazmat.2021.125663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/16/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Aflatoxins are a group of carcinogenic and mutagenic fungal secondary metabolites that have threatened human health and global food security. Aflatoxin contamination can be controlled by applying fungicides, such as strobilurins. Although these compounds have been effective, they may be risky to the environment due to their wide usage. In this study, plant-based compounds were tested to promote the performance of strobilurins (azoxystrobin, pyraclostrobin) against aflatoxigenic Aspergillus flavus; six natural compounds, namely baicalein, nobiletin, meso-dihydroguaiaretic acid, pinoresinol, syringaresinol, and celastrol, were found to exhibit synergistic antifungal effects with strobilurins with fractional inhibitory concentration index < 0.5. Among them, baicalein showed no inhibitory effects on A. flavus when applied alone, but strongly enhanced the in vitro and in situ antifungal and antiaflatoxigenic efficacy of strobilurins and transformed them from fungistatic to fungicidal agents. Therefore, baicalein may be used as an effective natural chemosensitizing agent to improve the performance of strobilurins against A. flavus. The findings of this study provide novel insights for the development of safer and more effective strategies for the control of aflatoxin contamination.
Collapse
Affiliation(s)
- Fei Tian
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Hwa Young Choi
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Su Been Park
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong 17546, South Korea.
| |
Collapse
|
22
|
Khunweeraphong N, Kuchler K. Multidrug Resistance in Mammals and Fungi-From MDR to PDR: A Rocky Road from Atomic Structures to Transport Mechanisms. Int J Mol Sci 2021; 22:4806. [PMID: 33946618 PMCID: PMC8124828 DOI: 10.3390/ijms22094806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Multidrug resistance (MDR) can be a serious complication for the treatment of cancer as well as for microbial and parasitic infections. Dysregulated overexpression of several members of the ATP-binding cassette transporter families have been intimately linked to MDR phenomena. Three paradigm ABC transporter members, ABCB1 (P-gp), ABCC1 (MRP1) and ABCG2 (BCRP) appear to act as brothers in arms in promoting or causing MDR in a variety of therapeutic cancer settings. However, their molecular mechanisms of action, the basis for their broad and overlapping substrate selectivity, remains ill-posed. The rapidly increasing numbers of high-resolution atomic structures from X-ray crystallography or cryo-EM of mammalian ABC multidrug transporters initiated a new era towards a better understanding of structure-function relationships, and for the dynamics and mechanisms driving their transport cycles. In addition, the atomic structures offered new evolutionary perspectives in cases where transport systems have been structurally conserved from bacteria to humans, including the pleiotropic drug resistance (PDR) family in fungal pathogens for which high resolution structures are as yet unavailable. In this review, we will focus the discussion on comparative mechanisms of mammalian ABCG and fungal PDR transporters, owing to their close evolutionary relationships. In fact, the atomic structures of ABCG2 offer excellent models for a better understanding of fungal PDR transporters. Based on comparative structural models of ABCG transporters and fungal PDRs, we propose closely related or even conserved catalytic cycles, thus offering new therapeutic perspectives for preventing MDR in infectious disease settings.
Collapse
Affiliation(s)
| | - Karl Kuchler
- Center for Medical Biochemistry, Max Perutz Labs Vienna, Campus Vienna Biocenter, Medical University of Vienna, Dr. Bohr-Gasse 9/2, A-1030 Vienna, Austria;
| |
Collapse
|
23
|
Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem Rev 2021; 121:3390-3411. [PMID: 32441527 PMCID: PMC8519031 DOI: 10.1021/acs.chemrev.0c00199] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
24
|
Kumari S, Kumar M, Gaur NA, Prasad R. Multiple roles of ABC transporters in yeast. Fungal Genet Biol 2021; 150:103550. [PMID: 33675986 DOI: 10.1016/j.fgb.2021.103550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.
Collapse
Affiliation(s)
- Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India.
| |
Collapse
|
25
|
Engineering a Cysteine-Deficient Functional Candida albicans Cdr1 Molecule Reveals a Conserved Region at the Cytosolic Apex of ABCG Transporters Important for Correct Folding and Trafficking of Cdr1. mSphere 2021; 6:6/1/e01318-20. [PMID: 33568458 PMCID: PMC8544900 DOI: 10.1128/msphere.01318-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG family are eukaryotic membrane proteins that pump an array of compounds across organelle and cell membranes. Overexpression of the archetype fungal PDR transporter Cdr1 is a major cause of azole antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR transporter has been solved. The objective of this project was to investigate the role of the 23 Cdr1 cysteine residues in the stability, trafficking, and function of the protein when expressed in the eukaryotic model organism, Saccharomyces cerevisiae. The biochemical characterization of 18 partially cysteine-deficient Cdr1 variants revealed that the six conserved extracellular cysteines were critical for proper expression, localization, and function of Cdr1. They are predicted to form three covalent disulfide bonds that stabilize the large extracellular domains of fungal PDR transporters. Our investigations also revealed a novel nucleotide-binding domain motif, GX2[3]CPX3NPAD/E, at the peripheral cytosolic apex of ABCG transporters that possibly contributes to the unique ABCG transport cycle. With this knowledge, we engineered an “almost cysteine-less,” yet fully functional, Cdr1 variant, Cdr1P-CID, that had all but the six extracellular cysteines replaced with serine, alanine, or isoleucine (C1106I of the new motif). It is now possible to perform cysteine-cross-linking studies that will enable more detailed biochemical investigations of fungal PDR transporters and confirm any future structure(s) solved for this important protein family. IMPORTANCE Overexpression of the fungal pleiotropic drug resistance (PDR) transporter Cdr1 is a major cause of antifungal drug resistance in Candida albicans, a significant fungal pathogen that can cause life-threatening invasive infections in immunocompromised individuals. To date, no structure for any PDR ABC transporter has been solved. Cdr1 contains 23 cysteines; 10 are cytosolic and 13 are predicted to be in the transmembrane or the extracellular domains. The objective of this project was to create, and biochemically characterize, CDR1 mutants to reveal which cysteines are most important for Cdr1 stability, trafficking, and function. During this process we discovered a novel motif at the cytosolic apex of PDR transporters that ensures the structural and functional integrity of the ABCG transporter family. The creation of a functional Cys-deficient Cdr1 molecule opens new avenues for cysteine-cross-linking studies that will facilitate the detailed characterization of an important ABCG transporter family member.
Collapse
|
26
|
Víglaš J, Olejníková P. An update on ABC transporters of filamentous fungi - from physiological substrates to xenobiotics. Microbiol Res 2021; 246:126684. [PMID: 33529790 DOI: 10.1016/j.micres.2020.126684] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 02/02/2023]
Abstract
The superfamily of ATP-binding cassette (ABC) transporters is a large family of proteins with a wide substrate repertoire and range of functions. The main role of these proteins is in the transportation of different molecules across biological membranes. Due to the broad range of substrates, ABC transporters can transport not only natural metabolites but also various xenobiotics, including antifungal compounds, which makes some ABC transporters key players in antifungal resistance. Alternatively, ABC proteins without transport function seem to be essential for fungal cell viability. In this work, we review the individual subfamilies of ABC transporters in filamentous fungi regarding physiological substrates, clinical and agricultural significance. Subfamilies are defined using well-studied transporters in yeast, which may help to clarify their role in filamentous fungi.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| |
Collapse
|
27
|
Tits J, Cammue BPA, Thevissen K. Combination Therapy to Treat Fungal Biofilm-Based Infections. Int J Mol Sci 2020; 21:ijms21228873. [PMID: 33238622 PMCID: PMC7700406 DOI: 10.3390/ijms21228873] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
An increasing number of people is affected by fungal biofilm-based infections, which are resistant to the majority of currently-used antifungal drugs. Such infections are often caused by species from the genera Candida, Aspergillus or Cryptococcus. Only a few antifungal drugs, including echinocandins and liposomal formulations of amphotericin B, are available to treat such biofilm-based fungal infections. This review discusses combination therapy as a novel antibiofilm strategy. More specifically, in vitro methods to discover new antibiofilm combinations will be discussed. Furthermore, an overview of the main modes of action of promising antibiofilm combination treatments will be provided as this knowledge may facilitate the optimization of existing antibiofilm combinations or the development of new ones with a similar mode of action.
Collapse
|
28
|
Kim JH, Cheng LW, Chan KL, Tam CC, Mahoney N, Friedman M, Shilman MM, Land KM. Antifungal Drug Repurposing. Antibiotics (Basel) 2020; 9:antibiotics9110812. [PMID: 33203147 PMCID: PMC7697925 DOI: 10.3390/antibiotics9110812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Control of fungal pathogens is increasingly problematic due to the limited number of effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger human cytotoxicity associated with the kidneys and liver, including the generation of reactive oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin, anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need for the development of new antifungals and/or alternative therapies for effective control of fungal pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the recent drug repurposing endeavors as alternative methods for fungal pathogen control.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
- Correspondence: ; Tel.: +1-510-559-5841
| | - Luisa W. Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Mendel Friedman
- Healthy Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | | | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
29
|
Víglaš J, Olejníková P. Signalling mechanisms involved in stress response to antifungal drugs. Res Microbiol 2020; 172:103786. [PMID: 33038529 DOI: 10.1016/j.resmic.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023]
Abstract
The emergence of antifungal resistance is a serious threat in the treatment of mycoses. The primary susceptible fungal cells may evolve a resistance after longer exposure to antifungal agents. The exposure itself causes stress condition, to which the fungus needs to adapt. This review provides detailed description of evolutionary conserved molecular mechanisms contributing to the adaptation response to stress caused by antifungal agents as well as their interconnection. The knowledge may help us to find new ways to delay the emergence of drug resistance as the same mechanisms are used regardless of what antifungal compound causes stress.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| |
Collapse
|
30
|
Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3-GENES GENOMES GENETICS 2020; 10:3099-3108. [PMID: 32631950 PMCID: PMC7466979 DOI: 10.1534/g3.120.401340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Candida albicans is an opportunistic yeast pathogen within the human microbiota with significant medical importance because of its pathogenic potential. The yeast produces highly resistant biofilms, which are crucial for maintaining infections. Though antifungals are available, their effectiveness is dwindling due to resistance. Alternate options that comprise the combination of existing azoles and polyunsaturated fatty acids, such as arachidonic acid (AA), have been shown to increase azoles susceptibility of C. albicans biofilms; however, the mechanisms are still unknown. Therefore, transcriptome analysis was conducted on biofilms exposed to sub-inhibitory concentrations of AA alone, fluconazole alone, and AA combined with fluconazole to understand the possible mechanism involved with the phenomenon. Protein ANalysis THrough Evolutionary Relationships (PANTHER) analysis from the differentially expressed genes revealed that the combination of AA and fluconazole influences biological processes associated with essential processes including methionine synthesis and those involved in ATP generation, such as AMP biosynthesis, fumarate metabolism and fatty acid oxidation. These observations suggests that the interference of AA with these processes may be a possible mechanisms to induce increased antifungal susceptibility.
Collapse
|
31
|
Enhanced Efflux Pump Expression in Candida Mutants Results in Decreased Manogepix Susceptibility. Antimicrob Agents Chemother 2020; 64:AAC.00261-20. [PMID: 32179530 PMCID: PMC7179633 DOI: 10.1128/aac.00261-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Manogepix is a broad-spectrum antifungal agent that inhibits glycosylphosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we characterized two efflux-mediated mechanisms in the fungal pathogens Candida albicans and Candida parapsilosis that resulted in decreased manogepix susceptibility. In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 activated expression of ATP-binding cassette transporter genes CDR11 and SNQ2. Manogepix is a broad-spectrum antifungal agent that inhibits glycosylphosphatidylinositol (GPI) anchor biosynthesis. Using whole-genome sequencing, we characterized two efflux-mediated mechanisms in the fungal pathogens Candida albicans and Candida parapsilosis that resulted in decreased manogepix susceptibility. In C. albicans, a gain-of-function mutation in the transcription factor gene ZCF29 activated expression of ATP-binding cassette transporter genes CDR11 and SNQ2. In C. parapsilosis, a mitochondrial deletion activated expression of the major facilitator superfamily transporter gene MDR1.
Collapse
|
32
|
Oxadiazole-Containing Macrocyclic Peptides Potentiate Azole Activity against Pathogenic Candida Species. mSphere 2020; 5:5/2/e00256-20. [PMID: 32269162 PMCID: PMC7142304 DOI: 10.1128/msphere.00256-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fungal infections, such as those caused by pathogenic Candida species, pose a serious threat to human health. Treating these infections relies heavily on the use of azole antifungals; however, resistance to these drugs develops readily, demanding novel therapeutic strategies. This study characterized the antifungal activity of a series of molecules that possess unique chemical attributes and the ability to traverse cellular membranes. We observed that many of the compounds increased the activity of the azole fluconazole against Candida albicans, without blocking the action of drug efflux pumps. These molecules also increased the efficacy of azoles against other Candida species, including the emerging azole-resistant pathogen Candida auris. Thus, we describe a novel chemical scaffold with broad-spectrum bioactivity against clinically important fungal pathogens. Opportunistic pathogens of the genus Candida reign as the leading cause of mycotic disease and are associated with mortality rates greater than 40%, even with antifungal intervention. This is in part due to the limited arsenal of antifungals available to treat systemic fungal infections. Azoles have been the most widely deployed class of antifungal drug for decades and function by targeting the biosynthesis of ergosterol, a key component of the fungal cell membrane. However, their utility is compromised by their fungistatic nature, which favors the development of resistance. Combination therapy has the potential to confer enhanced efficacy as well as mitigate the evolution of resistance. Previously, we described the generation of structurally diverse macrocyclic peptides with a 1,3,4-oxadiazole and an endocyclic amine grafted within the peptide backbone. Importantly, this noncanonical backbone displayed high membrane permeability, an important attribute for compounds that need to permeate across the fungal cell wall and membrane in order to reach their intracellular target. Here, we explored the bioactivity of this novel chemical scaffold on its own and in combination with the azole fluconazole. Although few of the oxadiazole-containing macrocyclic peptides displayed activity against Candida albicans on their own, many increased the efficacy of fluconazole, resulting in a synergistic combination that was independent of efflux inhibition. Interestingly, these molecules also enhanced azole activity against several non-albicans Candida species, including the azole-resistant pathogens Candida glabrata and Candida auris. This work characterizes a novel chemical scaffold that possesses azole-potentiating activity against clinically important Candida species. IMPORTANCE Fungal infections, such as those caused by pathogenic Candida species, pose a serious threat to human health. Treating these infections relies heavily on the use of azole antifungals; however, resistance to these drugs develops readily, demanding novel therapeutic strategies. This study characterized the antifungal activity of a series of molecules that possess unique chemical attributes and the ability to traverse cellular membranes. We observed that many of the compounds increased the activity of the azole fluconazole against Candida albicans, without blocking the action of drug efflux pumps. These molecules also increased the efficacy of azoles against other Candida species, including the emerging azole-resistant pathogen Candida auris. Thus, we describe a novel chemical scaffold with broad-spectrum bioactivity against clinically important fungal pathogens.
Collapse
|
33
|
Caplan T, Lorente-Macías Á, Stogios PJ, Evdokimova E, Hyde S, Wellington MA, Liston S, Iyer KR, Puumala E, Shekhar-Guturja T, Robbins N, Savchenko A, Krysan DJ, Whitesell L, Zuercher WJ, Cowen LE. Overcoming Fungal Echinocandin Resistance through Inhibition of the Non-essential Stress Kinase Yck2. Cell Chem Biol 2020; 27:269-282.e5. [PMID: 31924499 DOI: 10.1016/j.chembiol.2019.12.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023]
Abstract
New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.
Collapse
Affiliation(s)
- Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Álvaro Lorente-Macías
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicinal & Organic Chemistry and Excellence Research Unit of "Chemistry Applied to Biomedicine and the Environment", Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - Peter J Stogios
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Elena Evdokimova
- Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5G 1M1, Canada; Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Melanie A Wellington
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sean Liston
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Kali R Iyer
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Emily Puumala
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Tanvi Shekhar-Guturja
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID), Toronto, ON, M5G 1M1, Canada; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Damian J Krysan
- Departments of Pediatrics and Microbiology/Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - William J Zuercher
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
34
|
Celaj A, Gebbia M, Musa L, Cote AG, Snider J, Wong V, Ko M, Fong T, Bansal P, Mellor JC, Seesankar G, Nguyen M, Zhou S, Wang L, Kishore N, Stagljar I, Suzuki Y, Yachie N, Roth FP. Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network. Cell Syst 2019; 10:25-38.e10. [PMID: 31668799 PMCID: PMC6989212 DOI: 10.1016/j.cels.2019.09.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/14/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022]
Abstract
Many traits are complex, depending non-additively on variant combinations. Even in model systems, such as the yeast S. cerevisiae, carrying out the high-order variant-combination testing needed to dissect complex traits remains a daunting challenge. Here, we describe “X-gene” genetic analysis (XGA), a strategy for engineering and profiling highly combinatorial gene perturbations. We demonstrate XGA on yeast ABC transporters by engineering 5,353 strains, each deleted for a random subset of 16 transporters, and profiling each strain’s resistance to 16 compounds. XGA yielded 85,648 genotype-to-resistance observations, revealing high-order genetic interactions for 13 of the 16 transporters studied. Neural networks yielded intuitive functional models and guided exploration of fluconazole resistance, which was influenced non-additively by five genes. Together, our results showed that highly combinatorial genetic perturbation can functionally dissect complex traits, supporting pursuit of analogous strategies in human cells and other model systems. Celaj et al. introduce “X-gene” genetic analysis (XGA), a strategy for modeling complex systems by engineering and profiling highly combinatorial genetic perturbations. They apply XGA to 16 yeast ABC transporters, revealing many high-order genetic interactions. Neural network models yielded intuitive functional models and illuminated an ABC transporter influence network, supporting application of XGA to other organisms and processes.
Collapse
Affiliation(s)
- Albi Celaj
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Marinella Gebbia
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Louai Musa
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Atina G Cote
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Minjeong Ko
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Tiffany Fong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Paul Bansal
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Joseph C Mellor
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gireesh Seesankar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Maria Nguyen
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shijie Zhou
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liangxi Wang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada
| | - Nishka Kishore
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Mediterranean Institute for Life Sciences, Split 21 000, Croatia
| | - Yo Suzuki
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nozomu Yachie
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Synthetic Biology Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan; Department of Biological Sciences, School of Science, University of Tokyo, Tokyo 113-0033, Japan; Institute for Advanced Biosciences, Keio University, Yamagata 997-0035, Japan; PRESTO, Japan Science and Technology Agency, Tokyo 153-8904, Japan.
| | - Frederick P Roth
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1, Canada; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Moreno A, Banerjee A, Prasad R, Falson P. PDR-like ABC systems in pathogenic fungi. Res Microbiol 2019; 170:417-425. [PMID: 31562919 DOI: 10.1016/j.resmic.2019.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
ABC transporters of the Pleiotropic Drug Resistance (PDR) family are the main actors of antifungal resistance in pathogenic fungi. While their involvement in clinical resistant strains has been proven, their transport mechanism remains unclear. Notably, one hallmark of PDR transporters is their asymmetry, with one canonical nucleotide-binding site capable of ATP hydrolysis while the other site is not. Recent publications reviewed here show that the so-called "deviant" site is of crucial importance for drug transport and is a step towards alleviating the mystery around the existence of non-catalytic binding sites.
Collapse
Affiliation(s)
- Alexis Moreno
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| | - Atanu Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurgaon, India.
| | - Pierre Falson
- Drug Resistance & Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS-Lyon 1 University Research Lab n° 5086, Institut de Biologie et Chimie des Protéines, Lyon, France.
| |
Collapse
|
36
|
Correlating Genotype and Phenotype in the Asexual Yeast Candida orthopsilosis Implicates ZCF29 in Sensitivity to Caffeine. G3-GENES GENOMES GENETICS 2019; 9:3035-3043. [PMID: 31352406 PMCID: PMC6723125 DOI: 10.1534/g3.119.400348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Candida orthopsilosis is diploid asexual yeast that causes human disease. Most C. orthopsilosis isolates arose from at least four separate hybridizations between related, but not identical, parents. Here, we used population genomics data to correlate genotypic and phenotypic variation in 28 C. orthopsilosis isolates. We used cosine similarity scores to identify 65 variants with potential high-impact (deleterious effects) that correlated with specific phenotypes. Of these, 19 were Single Nucleotide Polymorphisms (SNPs) that changed stop or start codons, or splice sites. One variant resulted in a premature stop codon in both alleles of the gene ZCF29 in C. orthopsilosis isolate 185, which correlated with sensitivity to nystatin and caffeine. We used CRISPR-Cas9 editing to introduce this polymorphism into two resistant C. orthopsilosis isolates. Introducing the stop codon resulted in sensitivity to caffeine and to ketoconazole, but not to nystatin. Our analysis shows that it is possible to associate genomic variants with phenotype in asexual Candida species, but that only a small amount of genomic variation can be easily explored.
Collapse
|
37
|
Wasi M, Khandelwal NK, Moorhouse AJ, Nair R, Vishwakarma P, Bravo Ruiz G, Ross ZK, Lorenz A, Rudramurthy SM, Chakrabarti A, Lynn AM, Mondal AK, Gow NAR, Prasad R. ABC Transporter Genes Show Upregulated Expression in Drug-Resistant Clinical Isolates of Candida auris: A Genome-Wide Characterization of ATP-Binding Cassette (ABC) Transporter Genes. Front Microbiol 2019; 10:1445. [PMID: 31379756 PMCID: PMC6647914 DOI: 10.3389/fmicb.2019.01445] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
ATP-binding cassette (ABC) superfamily members have a key role as nutrient importers and exporters in bacteria. However, their role as drug exporters in eukaryotes brought this superfamily member to even greater prominence. The capacity of ABC transporters to efflux a broad spectrum of xenobiotics represents one of the major mechanisms of clinical multidrug resistance in pathogenic fungi including Candida species. Candida auris, a newly emerged multidrug-resistant fungal pathogen of humans, has been responsible for multiple outbreaks of drug-resistant infections in hospitals around the globe. Our study has analyzed the entire complement of ABC superfamily transporters to assess whether these play a major role in drug resistance mechanisms of C. auris. Our bioinformatics analyses identified 28 putative ABC proteins encoded in the genome of the C. auris type-strain CBS 10913T; 20 of which contain transmembrane domains (TMDs). Quantitative real-time PCR confirmed the expression of all 20 TMD transporters, underlining their potential in contributing to the C. auris drug-resistant phenotype. Changes in transcript levels after short-term exposure of drugs and in drug-resistant C. auris isolates suggested their importance in the drug resistance phenotype of this pathogen. CAUR_02725 orthologous to CDR1, a major multidrug exporter in other yeasts, showed consistently higher expression in multidrug-resistant strains of C. auris. Homologs of other ABC transporter genes, such as CDR4, CDR6, and SNQ2, also displayed raised expression in a sub-set of clinical isolates. Together, our analysis supports the involvement of these transporters in multidrug resistance in C. auris.
Collapse
Affiliation(s)
- Mohd Wasi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Remya Nair
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| | - Poonam Vishwakarma
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Gustavo Bravo Ruiz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Zoe K. Ross
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Alexander Lorenz
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Shivaprakash M. Rudramurthy
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Andrew M. Lynn
- School of Computational and Integrative Science, Jawaharlal Nehru University, New Delhi, India
| | - Alok K. Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
- The Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- School of Biosciences, University of Exeter, Exeter, United Kingdom
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Sciences and Health, Amity University Gurugram, Gurgaon, India
| |
Collapse
|
38
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
39
|
Polvi EJ, Veri AO, Liu Z, Hossain S, Hyde S, Kim SH, Tebbji F, Sellam A, Todd RT, Xie JL, Lin ZY, Wong CJ, Shapiro RS, Whiteway M, Robbins N, Gingras AC, Selmecki A, Cowen LE. Functional divergence of a global regulatory complex governing fungal filamentation. PLoS Genet 2019; 15:e1007901. [PMID: 30615616 PMCID: PMC6336345 DOI: 10.1371/journal.pgen.1007901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 12/16/2018] [Indexed: 01/17/2023] Open
Abstract
Morphogenetic transitions are prevalent in the fungal kingdom. For a leading human fungal pathogen, Candida albicans, the capacity to transition between yeast and filaments is key for virulence. For the model yeast Saccharomyces cerevisiae, filamentation enables nutrient acquisition. A recent functional genomic screen in S. cerevisiae identified Mfg1 as a regulator of morphogenesis that acts in complex with Flo8 and Mss11 to mediate transcriptional responses crucial for filamentation. In C. albicans, Mfg1 also interacts physically with Flo8 and Mss11 and is critical for filamentation in response to diverse cues, but the mechanisms through which it regulates morphogenesis remained elusive. Here, we explored the consequences of perturbation of Mfg1, Flo8, and Mss11 on C. albicans morphogenesis, and identified functional divergence of complex members. We observed that C. albicans Mss11 was dispensable for filamentation, and that overexpression of FLO8 caused constitutive filamentation even in the absence of Mfg1. Harnessing transcriptional profiling and chromatin immunoprecipitation coupled to microarray analysis, we identified divergence between transcriptional targets of Flo8 and Mfg1 in C. albicans. We also established that Flo8 and Mfg1 cooperatively bind to promoters of key regulators of filamentation, including TEC1, for which overexpression was sufficient to restore filamentation in the absence of Flo8 or Mfg1. To further explore the circuitry through which Mfg1 regulates morphogenesis, we employed a novel strategy to select for mutations that restore filamentation in the absence of Mfg1. Whole genome sequencing of filamentation-competent mutants revealed chromosome 6 amplification as a conserved adaptive mechanism. A key determinant of the chromosome 6 amplification is FLO8, as deletion of one allele blocked morphogenesis, and chromosome 6 was not amplified in evolved lineages for which FLO8 was re-located to a different chromosome. Thus, this work highlights rewiring of key morphogenetic regulators over evolutionary time and aneuploidy as an adaptive mechanism driving fungal morphogenesis. Fungal infections pose a severe burden to human health worldwide. Candida albicans is a leading cause of systemic fungal infections, with mortality rates approaching 40%. One of the key virulence traits of this fungus is its ability to transition between yeast and filamentous forms in response to diverse host-relevant cues. The model yeast Saccharomyces cerevisiae is also capable of filamentous growth in certain conditions, and previous work has identified a key transcriptional complex required for filamentation in both species. However, here we discover that the circuitry governed by this complex in C. albicans is largely distinct from that in the non-pathogenic S. cerevisiae. We also employ a novel selection strategy to perform experimental evolution, identifying chromosome triplication as a mechanism to restore filamentation in a non-filamentous mutant. This work reveals unique circuitry governing a key virulence trait in a leading fungal pathogen, identifying potential therapeutic targets to combat these life-threatening infections.
Collapse
Affiliation(s)
- Elizabeth J. Polvi
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Amanda O. Veri
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhongle Liu
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Saif Hossain
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Sabrina Hyde
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Sang Hu Kim
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Faiza Tebbji
- Infectious Disease Research Centre, Université Laval, Quebec, Canada
| | - Adnane Sellam
- Infectious Disease Research Centre, Université Laval, Quebec, Canada
| | - Robert T. Todd
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Jinglin L. Xie
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Cassandra J. Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Rebecca S. Shapiro
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | | | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Ontario, Canada
| | - Anna Selmecki
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
FK506 Resistance of Saccharomyces cerevisiae Pdr5 and Candida albicans Cdr1 Involves Mutations in the Transmembrane Domains and Extracellular Loops. Antimicrob Agents Chemother 2018; 63:AAC.01146-18. [PMID: 30348662 DOI: 10.1128/aac.01146-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022] Open
Abstract
The 23-membered-ring macrolide tacrolimus, a commonly used immunosuppressant, also known as FK506, is a broad-spectrum inhibitor and an efflux pump substrate of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters. Little, however, is known about the molecular mechanism by which FK506 inhibits PDR transporter drug efflux. Thus, to obtain further insights we searched for FK506-resistant mutants of Saccharomyces cerevisiae cells overexpressing either the endogenous multidrug efflux pump Pdr5 or its Candida albicans orthologue, Cdr1. A simple but powerful screen gave 69 FK506-resistant mutants with, between them, 72 mutations in either Pdr5 or Cdr1. Twenty mutations were in just three Pdr5/Cdr1 equivalent amino acid positions, T550/T540 and T552/S542 of extracellular loop 1 (EL1) and A723/A713 of EL3. Sixty of the 72 mutations were either in the ELs or the extracellular halves of individual transmembrane spans (TMSs), while 11 mutations were found near the center of individual TMSs, mostly in predicted TMS-TMS contact points, and only two mutations were in the cytosolic nucleotide-binding domains of Pdr5. We propose that FK506 inhibits Pdr5 and Cdr1 drug efflux by slowing transporter opening and/or substrate release, and that FK506 resistance of Pdr5/Cdr1 drug efflux is achieved by modifying critical intramolecular contact points that, when mutated, enable the cotransport of FK506 with other pump substrates. This may also explain why the 35 Cdr1 mutations that caused FK506 insensitivity of fluconazole efflux differed from the 13 Cdr1 mutations that caused FK506 insensitivity of cycloheximide efflux.
Collapse
|
41
|
A Hyperactive Form of the Zinc Cluster Transcription Factor Stb5 Causes YOR1 Overexpression and Beauvericin Resistance in Candida albicans. Antimicrob Agents Chemother 2018; 62:AAC.01655-18. [PMID: 30249688 DOI: 10.1128/aac.01655-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/14/2018] [Indexed: 11/20/2022] Open
Abstract
Gain-of-function mutations in the zinc cluster transcription factors Mrr1, Tac1, and Upc2, which result in constitutive overexpression of their target genes, are a frequent cause of fluconazole resistance in the pathogenic yeast Candida albicans In this study, we show that an activated form of another zinc cluster transcription factor, Stb5, confers resistance to the natural compound beauvericin via the overexpression of YOR1, encoding an efflux pump of the ATP-binding cassette transporter superfamily. Beauvericin was recently shown to potentiate the activity of azole drugs against C. albicans Although Yor1 did not contribute to fluconazole resistance when C. albicans cells were treated with the drug alone, Stb5-mediated YOR1 overexpression diminished the synergistic effect of the fluconazole-beauvericin combination, thereby enhancing fluconazole resistance in beauvericin-treated C. albicans cells. Stb5-mediated YOR1 overexpression also suppressed the inhibition of hyphal growth, an important virulence trait of C. albicans, by beauvericin. Therefore, activating mutations in Stb5, which result in constitutive YOR1 overexpression, may enable C. albicans to acquire resistance to beauvericin and thereby overcome both the sensitization to azole drugs and the inhibition of morphogenesis caused by this compound.
Collapse
|
42
|
Wu Q, Patocka J, Nepovimova E, Kuca K. A Review on the Synthesis and Bioactivity Aspects of Beauvericin, a Fusarium Mycotoxin. Front Pharmacol 2018; 9:1338. [PMID: 30515098 PMCID: PMC6256083 DOI: 10.3389/fphar.2018.01338] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 10/30/2018] [Indexed: 11/30/2022] Open
Abstract
Beauvericin (BEA) is an emerging Fusarium mycotoxin that contaminates food and feeds globally. BEA biosynthesis is rapidly catalyzed by BEA synthetase through a nonribosomal, thiol-templated mechanism. This mycotoxin has cytotoxicity and is capable of increasing oxidative stress to induce cell apoptosis. Recently, large evidence further shows that this mycotoxin has a variety of biological activities and is being considered a potential candidate for medicinal and pesticide research. It is noteworthy that BEA is a potential anticancer agent since it can increase the intracellular Ca2+ levels and induce the cancer cell death through oxidative stress and apoptosis. BEA has exhibited effective antibacterial activities against both pathogenic Gram-positive and Gram-negative bacteria. Importantly, BEA exhibits an effective capacity to inhibit the human immunodeficiency virus type-1 integrase. Moreover, BEA can simultaneously target drug resistance and morphogenesis which provides a promising strategy to combat life-threatening fungal infections. Thus, in this review, the synthesis and the biological activities of BEA, as well as, the underlying mechanisms, are fully analyzed. The risk assessment of BEA in food and feed are also discussed. We hope this review will help to further understand the biological activities of BEA and cast some new light on drug discovery.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Jiri Patocka
- Toxicology and Civil Protection, Faculty of Health and Social Studies, Institute of Radiology, University of South Bohemia České Budějovice, České Budějovice, Czechia.,Biomedical Research Centre, University Hospital, Hradec Kralove, Czechia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
43
|
Abstract
The fungal pathogens Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus have transitioned from a rare curiosity to a leading cause of human mortality. The management of infections caused by these organisms is intimately dependent on the efficacy of antifungal agents; however, fungi that are resistant to these treatments are regularly isolated in the clinic, impeding our ability to control infections. Given the significant impact fungal pathogens have on human health, it is imperative to understand the molecular mechanisms that govern antifungal drug resistance. This review describes our current knowledge of the mechanisms by which antifungal drug resistance evolves in experimental populations and clinical settings. We explore current antifungal treatment options and discuss promising strategies to impede the evolution of drug resistance. By tackling antifungal drug resistance as an evolutionary problem, there is potential to improve the utility of current treatments and accelerate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Tavia Caplan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; , ,
| |
Collapse
|
44
|
Systematic Complex Haploinsufficiency-Based Genetic Analysis of Candida albicans Transcription Factors: Tools and Applications to Virulence-Associated Phenotypes. G3-GENES GENOMES GENETICS 2018; 8:1299-1314. [PMID: 29472308 PMCID: PMC5873919 DOI: 10.1534/g3.117.300515] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genetic interaction analysis is a powerful approach to the study of complex biological processes that are dependent on multiple genes. Because of the largely diploid nature of the human fungal pathogen Candida albicans, genetic interaction analysis has been limited to a small number of large-scale screens and a handful for gene-by-gene studies. Complex haploinsufficiency, which occurs when a strain containing two heterozygous mutations at distinct loci shows a phenotype that is distinct from either of the corresponding single heterozygous mutants, is an expedient approach to genetic interactions analysis in diploid organisms. Here, we describe the construction of a barcoded-library of 133 heterozygous TF deletion mutants and deletion cassettes for designed to facilitate complex haploinsufficiency-based genetic interaction studies of the TF networks in C. albicans. We have characterized the phenotypes of these heterozygous mutants under a broad range of in vitro conditions using both agar-plate and pooled signature tag-based assays. Consistent with previous studies, haploinsufficiency is relative uncommon. In contrast, a set of 12 TFs enriched in mutants with a role in adhesion were found to have altered competitive fitness at early time points in a murine model of disseminated candidiasis. Finally, we characterized the genetic interactions of a set of biofilm related TFs in the first two steps of biofilm formation, adherence and filamentation of adherent cells. The genetic interaction networks at each stage of biofilm formation are significantly different indicating that the network is not static but dynamic.
Collapse
|
45
|
Resistance to antifungal therapies. Essays Biochem 2017; 61:157-166. [DOI: 10.1042/ebc20160067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/02/2017] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
Abstract
The evolution of antifungal resistance among fungal pathogens has rendered the limited arsenal of antifungal drugs futile. Considering the recent rise in the number of nosocomial fungal infections in immunocompromised patients, the emerging clinical multidrug resistance (MDR) has become a matter of grave concern for medical professionals. Despite advances in therapeutic interventions, it has not yet been possible to devise convincing strategies to combat antifungal resistance. Comprehensive understanding of the molecular mechanisms of antifungal resistance is essential for identification of novel targets that do not promote or delay emergence of drug resistance. The present study discusses features and limitations of the currently available antifungals, mechanisms of antifungal resistance and highlights the emerging therapeutic strategies that could be deployed to combat MDR.
Collapse
|
46
|
Staurosporine Induces Filamentation in the Human Fungal Pathogen Candida albicans via Signaling through Cyr1 and Protein Kinase A. mSphere 2017; 2:mSphere00056-17. [PMID: 28261668 PMCID: PMC5332603 DOI: 10.1128/msphere.00056-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/09/2017] [Indexed: 01/10/2023] Open
Abstract
The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream infections. Treatment of these infections is extremely difficult, as fungi are closely related to humans, and there are limited drugs that kill the fungus without host toxicity. The capacity of C. albicans to transition between yeast and filamentous forms is a key virulence trait. Thus, understanding the genetic pathways that regulate morphogenesis could provide novel therapeutic targets to treat C. albicans infections. Here, we establish the small molecule staurosporine as an inducer of filamentous growth. We unveil distinct regulatory circuitry required for staurosporine-induced filamentation that appears to be unique to this filament-inducing cue. Thus, this work highlights the fact that small molecules, such as staurosporine, can improve our understanding of the pathways required for key virulence programs, which may lead to the development of novel therapeutics. Protein kinases are key regulators of signal transduction pathways that participate in diverse cellular processes. In fungal pathogens, kinases regulate signaling pathways that govern drug resistance, stress adaptation, and pathogenesis. The impact of kinases on the fungal regulatory circuitry has recently garnered considerable attention in the opportunistic fungal pathogen Candida albicans, which is a leading cause of human morbidity and mortality. Complex regulatory circuitry governs the C. albicans morphogenetic transition between yeast and filamentous growth, which is a key virulence trait. Here, we report that staurosporine, a promiscuous kinase inhibitor that abrogates fungal drug resistance, also influences C. albicans morphogenesis by inducing filamentation in the absence of any other inducing cue. We further establish that staurosporine exerts its effect via the adenylyl cyclase Cyr1 and the cyclic AMP (cAMP)-dependent protein kinase A (PKA). Strikingly, filamentation induced by staurosporine does not require the known upstream regulators of Cyr1, Ras1 or Pkc1, or effectors downstream of PKA, including Efg1. We further demonstrate that Cyr1 is capable of activating PKA to enable filamentation in response to staurosporine through a mechanism that does not require degradation of the transcriptional repressor Nrg1. We establish that staurosporine-induced filamentation is accompanied by a defect in septin ring formation, implicating cell cycle kinases as potential staurosporine targets underpinning this cellular response. Thus, we establish staurosporine as a chemical probe to elucidate the architecture of cellular signaling governing fungal morphogenesis and highlight the existence of novel circuitry through which the Cyr1 and PKA govern a key virulence trait. IMPORTANCE The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream infections. Treatment of these infections is extremely difficult, as fungi are closely related to humans, and there are limited drugs that kill the fungus without host toxicity. The capacity of C. albicans to transition between yeast and filamentous forms is a key virulence trait. Thus, understanding the genetic pathways that regulate morphogenesis could provide novel therapeutic targets to treat C. albicans infections. Here, we establish the small molecule staurosporine as an inducer of filamentous growth. We unveil distinct regulatory circuitry required for staurosporine-induced filamentation that appears to be unique to this filament-inducing cue. Thus, this work highlights the fact that small molecules, such as staurosporine, can improve our understanding of the pathways required for key virulence programs, which may lead to the development of novel therapeutics.
Collapse
|
47
|
Scorzoni L, de Paula E Silva ACA, Marcos CM, Assato PA, de Melo WCMA, de Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM. Antifungal Therapy: New Advances in the Understanding and Treatment of Mycosis. Front Microbiol 2017; 8:36. [PMID: 28167935 PMCID: PMC5253656 DOI: 10.3389/fmicb.2017.00036] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The high rates of morbidity and mortality caused by fungal infections are associated with the current limited antifungal arsenal and the high toxicity of the compounds. Additionally, identifying novel drug targets is challenging because there are many similarities between fungal and human cells. The most common antifungal targets include fungal RNA synthesis and cell wall and membrane components, though new antifungal targets are being investigated. Nonetheless, fungi have developed resistance mechanisms, such as overexpression of efflux pump proteins and biofilm formation, emphasizing the importance of understanding these mechanisms. To address these problems, different approaches to preventing and treating fungal diseases are described in this review, with a focus on the resistance mechanisms of fungi, with the goal of developing efficient strategies to overcoming and preventing resistance as well as new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers have sought to improve treatment via different approaches, and the synergistic effect obtained by the combination of antifungals contributes to reducing toxicity and could be an alternative for treatment. Another important issue is the development of new formulations for antifungal agents, and interest in nanoparticles as new types of carriers of antifungal drugs has increased. In addition, modifications to the chemical structures of traditional antifungals have improved their activity and pharmacokinetic parameters. Moreover, a different approach to preventing and treating fungal diseases is immunotherapy, which involves different mechanisms, such as vaccines, activation of the immune response and inducing the production of host antimicrobial molecules. Finally, the use of a mini-host has been encouraging for in vivo testing because these animal models demonstrate a good correlation with the mammalian model; they also increase the speediness of as well as facilitate the preliminary testing of new antifungal agents. In general, many years are required from discovery of a new antifungal to clinical use. However, the development of new antifungal strategies will reduce the therapeutic time and/or increase the quality of life of patients.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Wanessa C M A de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Caroline B Costa-Orlandi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Farmacêuticas Araraquara, Brasil
| |
Collapse
|