1
|
Long H, Feng Y, Zong Z. Global molecular epidemiology of the incomplete CirA protein related to cefiderocol resistance in Klebsiella pneumoniae: a genome-based study. Microbiol Spectr 2025:e0141024. [PMID: 40105357 DOI: 10.1128/spectrum.01410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Abstract
CirA is an iron transporter comprising 657 amino acids in Klebsiella pneumoniae, and incomplete CirA alone leads to reduced susceptibility to cefiderocol. We performed a genome-based analysis to study the prevalence of incomplete CirA in K. pneumoniae through analyzing all genomes of this species (n = 55,517, as of 26 October 2023) available in NCBI. We detected incomplete CirA in 633 (1.27%) genomes with the corresponding strains collected since 1911, across 44 countries on six continents, and mostly (n = 563, 88.94%) from humans. Notably, 77 (12.16%) genomes had incomplete CirA in combination with β-lactamases (NDM-1, NDM-5, NDM-7, or KPC-3 plus SHV-11) known to confer cefiderocol resistance. We identified 189 variants of incomplete CirA, including two particularly common ones, a 362-amino-acid remnant due to frameshift by a deletion at cirA nucleotide position 1,083 (116/633, 18.33%) and a 562-amino-acid remnant due to premature stop resulting from a mutation at nucleotide position 1,684 (71/633, 11.22%). The 362-amino-acid remnant was mainly found in ST26 (39/116), ST34 (36/116), and ST359 (31/116) strains. The 562-amino-acid remnant was almost exclusive to ST86 (69/71), particularly related to the hypervirulent capsule type K2. Clonal outbreaks (ST26 in USA, ST34 in UK, and ST86 in Vietnam) and cross-border transmission (ST34 in UK and Portugal) were observed. However, this study has limitations, as the analyzed publicly available K. pneumoniae assemblies are biased, and only mutations resulting in incomplete CirA were considered. In conclusion, K. pneumoniae with incomplete CirA is a global concern, highlighting the urgent need for heightened vigilance and further studies.IMPORTANCECefiderocol is a critically important antimicrobial agent against multidrug-resistant organisms including carbapenem-resistant Klebsiella pneumoniae. We performed a genome-mining study and found incomplete CirA (an iron transporter), which is related to cefiderocol resistance, in a small proportion (1.27%) of publicly available K. pneumoniae genomes. However, K. pneumoniae strains with incomplete CirA are globally distributed and have been present for over a century, well before the clinical use of cefiderocol. One hundred eighty-nine incomplete CirA variants were identified, suggesting multifactorial causes. Almost all publicly available genomes of ST26, ST34, and ST86 K. pneumoniae strains with incomplete CirA have a wide geographic distribution, pointing to the potential existence of particular lineages prone to develop resistance to cefiderocol. Clonal outbreaks and cross-border transmission of strains with incomplete CirA were detected. Incomplete CirA was associated with the hypervirulent K2-ST86 lineage or high-risk multidrug resistance ST16 clone, posing an increased threat or challenge to treatment and infection control.
Collapse
Affiliation(s)
- Haiyan Long
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| | - Yu Feng
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Michels R, Papan C, Boutin S, Alhussein F, Becker SL, Nurjadi D, Last K. Clinical relevance of Staphylococcus saccharolyticus detection in human samples: a retrospective cohort study. Infection 2025; 53:145-153. [PMID: 38963607 PMCID: PMC11825615 DOI: 10.1007/s15010-024-02334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
PURPOSE To characterize the clinical relevance of S. saccharolyticus and to identify criteria to distinguish between infection and contamination. METHODS We retrospectively investigated clinical features of patients with S. saccharolyticus detection between June 2009 and July 2021. Based on six criteria, infection was considered likely for patients with a score from 3 to 6 points, infection was considered unlikely for patients with a score from 0 to 2 points. We performed group comparison and logistic regression to identify factors than are associated with likely infection. In addition, whole genome sequencing (WGS) of 22 isolates was performed. RESULTS Of 93 patients in total, 44 were assigned to the group "infection likely" and 49 to the group "infection unlikely". Multiple regression analysis revealed "maximum body temperature during hospital stay" to have the strongest predictive effect on likely infection (adjusted odds ratio 4.40, 95% confidence interval 2.07-9.23). WGS revealed two different clades. Compared to isolates from clade A, isolates from clade B were more frequently associated with implanted medical devices (3/10 vs. 9/12, p = 0.046) and a shorter time to positivity (TTP) (4.5 vs. 3, p = 0.016). Both clades did neither differ significantly in terms of causing a likely infection (clade A 7/10 vs. clade B 5/12, p = 0.23) nor in median length of hospital stay (28 vs. 15.5 days, p = 0.083) and length of stay at the ICU (21 vs. 3.5 days, p = 0.14). CONCLUSION These findings indicate that S. saccharolyticus can cause clinically relevant infections. Differentiation between infection and contamination remains challenging.
Collapse
Affiliation(s)
- Ricarda Michels
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Cihan Papan
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany.
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- Airway Research Center North (ARCN), German center for Lung Research (DZL), Lübeck, Germany
| | - Farah Alhussein
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Sören L Becker
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Katharina Last
- Center for Infectious Diseases, Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
3
|
Bianco G, Boattini M, Cricca M, Diella L, Gatti M, Rossi L, Bartoletti M, Sambri V, Signoretto C, Fonnesu R, Comini S, Gaibani P. Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol. Curr Issues Mol Biol 2024; 46:14132-14153. [PMID: 39727974 DOI: 10.3390/cimb46120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
In recent years, novel antimicrobials have been developed to counter the emergence of antimicrobial resistance and provide effective therapeutic options against multidrug-resistant (MDR) Gram-negative bacilli (GNB). Cefiderocol, a siderophore cephalosporin, represents a novel valuable antimicrobial drug for the treatment of infections caused by MDR-GNB. The mechanism of cefiderocol to penetrate through the outer membrane of bacterial cells, termed "Trojan horse", makes this antimicrobial drug unique and immune to the various resistance strategies adopted by GNB. Its broad spectrum of action, potent antibacterial activity, pharmacokinetics properties, safety, and tolerability make cefiderocol a key drug for the treatment of infections due to MDR strains. Although this novel antimicrobial molecule contributed to revolutionizing the therapeutic armamentarium against MDR-GNB, the recent emergence of cefiderocol-resistant strains has redefined its role in clinical practice and required new strategies to preserve its antibacterial activity. In this review, we provide an updated discussion regarding the mechanism of action, emerging mechanisms of resistance, pharmacokinetic/pharmacodynamic (PK/PD) properties, and efficacy data of cefiderocol against the major Gram-negative bacteria and future prospects.
Collapse
Affiliation(s)
- Gabriele Bianco
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy
| | - Matteo Boattini
- Department of Public Health and Paediatrics, University of Torino, 10124 Turin, Italy
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10129 Turin, Italy
- Lisbon Academic Medical Centre, 1000-001 Lisbon, Portugal
| | - Monica Cricca
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, Section Microbiology, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Cesena, Italy
| | - Lucia Diella
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Milo Gatti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, Section Pharmacology, University of Bologna, 40138 Bologna, Italy
| | - Luca Rossi
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| | - Michele Bartoletti
- Department of Biomedical Sciences, Humanitas University, 20089 Milan, Italy
| | - Vittorio Sambri
- Department of Medical and Surgical Sciences-DIMEC, Alma Mater Studiorum, Section Microbiology, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiology, The Great Romagna Hub Laboratory, 47522 Cesena, Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| | - Rossella Fonnesu
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| | - Sara Comini
- Operative Unit of Clinical Pathology, Carlo Urbani Hospital, 60035 Jesi, Italy
| | - Paolo Gaibani
- Department of Diagnostics and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
- Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata Di Verona, 37134 Verona, Italy
| |
Collapse
|
4
|
Kocer K, Boutin S, Moll M, Nurjadi D. Investigation of cefiderocol resistance prevalence and resistance mechanisms in carbapenem-resistant Pseudomonas aeruginosa, Germany 2019-21. JAC Antimicrob Resist 2024; 6:dlae183. [PMID: 39582836 PMCID: PMC11584512 DOI: 10.1093/jacamr/dlae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Background Cefiderocol, a novel siderophore cephalosporin, is a promising therapeutic option for infections caused by multidrug-resistant Pseudomonas aeruginosa. We evaluated the activity of cefiderocol against carbapenem-resistant P. aeruginosa (Cr-Pa) isolates and investigated the potential mechanisms involved in resistance. Methods 108 CR-Pa isolates collected from patients without prior exposure to the substance were studied. MICs of cefiderocol were determined by broth microdilution using iron-depleted cation-adjusted Mueller-Hinton broth. Whole genome sequencing was performed to investigate the potential resistance mechanisms by comparing resistant and susceptible P. aeruginosa isolates and identifying unique mutations in the resistant group. Results Of the 108 isolates, nine were resistant to cefiderocol with MIC values ranging from 4 to 32 mg/L. The genetic analysis revealed a broad spectrum of mutations in the resistant isolates associated with iron uptake systems, efflux pumps, AmpC β-lactamase and penicillin-binding proteins. The most frequently observed mutations among the resistant isolates were located in fptA, fpvB and chtA. Notably, the presence of carbapenemases did not correlate with cefiderocol resistance. Conclusions Our findings show the low prevalence of cefiderocol resistance among CR-Pa isolates, showing its potential as an effective treatment option. However, the complex genetic landscape of resistance mechanisms, particularly mutations affecting iron transport and other TonB-dependent receptors, requires continuous monitoring and functional analyses to identify and manage potential resistance mechanisms. This study provides a foundation for future research to improve antimicrobial resistance prediction and develop targeted therapies against CR-Pa.
Collapse
Affiliation(s)
- Kaan Kocer
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Institute of Medical Microbiology, University of Lübeck and University Medical Center of Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Sébastien Boutin
- Institute of Medical Microbiology, University of Lübeck and University Medical Center of Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Maximilian Moll
- Medical Microbiology and Hygiene, Department of Infectious Diseases, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dennis Nurjadi
- Institute of Medical Microbiology, University of Lübeck and University Medical Center of Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
5
|
Song X, Zhang J, Hua W, Zheng Y, Liu X, Zhu Y, Bin S, Ding J, Sun S. Bio inspired microfluidic-based analysis of Klebsiella pneumoniae virulence factors and antimicrobial resistance. SLAS Technol 2024; 29:100209. [PMID: 39396730 DOI: 10.1016/j.slast.2024.100209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The objective of this research was to examine the antibiotic resistance and microbiological traits of Klebsiella pneumoniae isolates that were responsible for liver abscesses in Qingdao, China. Between April and September 2022, isolates were taken from 120 patients at three tertiary hospitals. Rapid detection of capsule serotypes (K1, K2) and virulence genes (rmpA, aerobactin) was achieved by using microfluidic-based techniques. Testing for antimicrobial susceptibility was done with the VITEK 2 Compact system. The findings showed that there was a high frequency of extremely virulent K. pneumoniae strains, which are often linked to bacteremia and higher death rates. These strains belonged to the K1 and K2 serotypes and were primarily carrying the aerobactin and rmpA genes. The majority of isolates were antibiotic-sensitive, but the emergence of resistant strains emphasizes the necessity of continuing surveillance. The efficiency of microfluidic platforms for the quick and precise characterization of K. pneumoniae is demonstrated in this work, enabling prompt clinical interventions.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Jun Zhang
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Weihong Hua
- Department of Hospital Infection Management,Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Yan Zheng
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Xiaolin Liu
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Yuanqi Zhu
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sun Bin
- Department of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Jian Ding
- Department of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Suling Sun
- Department of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China.
| |
Collapse
|
6
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024; 22:1055-1071. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
7
|
Hu L, Gao Q, Ji Y, Dong X, Zhu Q, Cheng T, Zhao L, Yang M, Zhen Zhai, Dai H, Liang T, Xue C. Complete genome sequencing of Enterobacter ludwigii strain T977 revealed its great ability for starch degradation of Nicotiana tabacum L. Yunyan 97. BMC Microbiol 2024; 24:491. [PMID: 39578758 PMCID: PMC11583658 DOI: 10.1186/s12866-024-03613-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Enterobacter ludwigii has been proven by numerous studies to be an effective plant growth promoter. Enterobacter ludwigii T977 was isolated from leaves of Nicotiana tabacum L. Yunyan 97 which showing high starch degrading ability. The optimal fermentation carbon source of strain T977 was starch, with optimal starch concentration as 2.5 g/L, and the most suitable fermentation nitrogen source for the strain T977 was ammonium acetate, with optimal concentration as 0.25 g/L. The spaying treatment of strain T977 could reduce the starch content of upper leaves from 3.77% to 1.43%, the total sugar and reducing sugar decreased slightly, the starch content of middle leaves decreased from 5.63% to 3.18%, the content of total sugar and reducing sugar increased in middle leaves, and the other chemical components were in the appropriate range. Here, we reported 4.77 MB whole genome of a starch-degrading E. ludwigii T977 that encodes 4501 proteins, 11 α-amylases in GH13 family were identified, and the amylase (GM000159) with signal peptide may play important role in degradation of starch in tobacco leaves. Our study may provide an effective microbiological mean for reducing starch content in tobacco leaves.
Collapse
Affiliation(s)
- Liwei Hu
- Zhengzhou Tobacco Research Institute of CNTC, Henan Province, Zhengzhou, 450001, PR China.
| | - Qin Gao
- Anhui Wannan Tobacco Co. Ltd, Xuancheng, An'Hui province, 242000, PR China.
| | - Yuan Ji
- Shandong Institute for Food and Drug Control, Jinan, Shandong Province, 250101, PR China
| | - Xiangzhou Dong
- Anhui Wannan Tobacco Co. Ltd, Xuancheng, An'Hui province, 242000, PR China
| | - Qifa Zhu
- Anhui Wannan Tobacco Co. Ltd, Xuancheng, An'Hui province, 242000, PR China
| | - Tingming Cheng
- Anhui Wannan Tobacco Co. Ltd, Xuancheng, An'Hui province, 242000, PR China
| | - Limei Zhao
- Anhui Wannan Tobacco Co. Ltd, Xuancheng, An'Hui province, 242000, PR China
| | - Mengmeng Yang
- Zhengzhou Tobacco Research Institute of CNTC, Henan Province, Zhengzhou, 450001, PR China
| | - Zhen Zhai
- Zhengzhou Tobacco Research Institute of CNTC, Henan Province, Zhengzhou, 450001, PR China
| | - Huaxin Dai
- Zhengzhou Tobacco Research Institute of CNTC, Henan Province, Zhengzhou, 450001, PR China
| | - Taibo Liang
- Zhengzhou Tobacco Research Institute of CNTC, Henan Province, Zhengzhou, 450001, PR China
| | - Chaoqun Xue
- Zhengzhou Tobacco Research Institute of CNTC, Henan Province, Zhengzhou, 450001, PR China
| |
Collapse
|
8
|
Kimbrough JH, Maher JM, Sader HS, Castanheira M, Mendes RE. In vitro activity assessment of cefiderocol against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp., including β-lactam nonsusceptible molecularly characterized isolates, collected from 2020 to 2021 in the United States and European hospitals. Microbiol Spectr 2024; 12:e0147424. [PMID: 39387599 PMCID: PMC11537082 DOI: 10.1128/spectrum.01474-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
This study reports the activity of cefiderocol against Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp. isolates collected from the United States and Europe, including Israel and Turkey, from 2020 to 2021. Among Enterobacterales, 2.8% were carbapenem nonsusceptible (CNSE); cefiderocol inhibited 96.6%/85.1% [Clinical Laboratory Standards Institute (CLSI)/European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoints] of these isolates. Imipenem-relebactam, meropenem-vaborbactam, and ceftazidime-avibactam displayed susceptibilities lower than cefiderocol against CNSE isolates (67.4-84.6% susceptible, CLSI). Cefiderocol was the only agent active against CNSE isolates carrying metallo-β-lactamase (MBL) carbapenemase or multiple carbapenemase genes (84.6%-92.3% susceptible, CLSI). Approximately 18% of carbapenem-susceptible Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis carried extended-spectrum-β-lactamases and/or plasmid-borne AmpC-encoding genes; cefiderocol inhibited 99.8%-100.0% (CLSI) of these genotypic groups. Multi-drug resistance (MDR) phenotypes were observed in 16.9% and 52.5% of P. aeruginosa and A. baumannii-calcoaceticus isolates, respectively. Carbapenemase genes were rare (4.9%) among cephalosporin and/or carbapenem nonsusceptible P. aeruginosa, compared to 87.6% carriage in A. baumannii-calcoaceticus, respectively. Against the MDR and carbapenemase-carrying P. aeruginosa and A. baumannii-calcoaceticus subsets, cefiderocol was active against 98.6%/98.7% and 97.1%/97.4% (CLSI), respectively. Only 69 isolates (0.3%) across all species groups were identified as cefiderocol nonsusceptible per CLSI criteria (>4 mg/L). Cefiderocol was the most active agent in vitro against Enterobacterales, P. aeruginosa, and Acinetobacter spp., with uniform activity against all phenotypic- and genotypic-resistant subsets. Coupled with the low incidence of nonsusceptibility observed across species groups, these results demonstrate cefiderocol as an important option for treating infections caused by pathogens with diverse mechanisms of resistance in US and European hospitals.IMPORTANCEThe worldwide spread of multi-drug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacterales and Acinetobacter spp. poses a serious challenge in healthcare settings as infections caused by these organisms are commonly refractory to many frontline therapeutic agents. Multiple global health organizations highlighted these pathogens as critical priorities for new antibiotic development, thus necessitating continued surveillance of the activities of currently available antimicrobial agents and circulating mechanisms of resistance. To meet this need, this study phenotypically and genotypically characterized priority Gram-negative pathogens collected from patients in US and European hospitals to examine the activity of cefiderocol and other currently available treatment options, including carbapenems and β-lactam-β-lactamase inhibitor combinations. The results presented here provide a detailed perspective to healthcare practitioners of cefiderocol's broad applicability, manifested in high activity and low nonsusceptibility rates, across phenotypic and genotypic organism groups relative to other agents and further support its use against the most intransigent infections.
Collapse
Affiliation(s)
| | - Joshua M. Maher
- JMI Laboratories/Element Iowa City, North Liberty, Iowa, USA
| | - Helio S. Sader
- JMI Laboratories/Element Iowa City, North Liberty, Iowa, USA
| | | | | |
Collapse
|
9
|
Moulin E, Filippidis P, Paire-Ficout CA, Blanc DS, Grandbastien B, Senn L. Successful control of an environmental reservoir of NDM-producing Klebsiella pneumoniae associated with nosocomial transmissions in a low-incidence setting. Antimicrob Resist Infect Control 2024; 13:130. [PMID: 39468652 PMCID: PMC11520856 DOI: 10.1186/s13756-024-01488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The hospital wastewater system has been reported as a source of nosocomial acquisition of carbapenemase producing Enterobacteriaceae (CPE) in various settings. Cleaning and disinfection protocols or replacement of contaminated equipment often fail to eradicate these environmental reservoirs, which can lead to long-term transmission of CPE. We report a successful multimodal approach to control a New Delhi metallo-beta-lactamase positive Klebsiella pneumoniae (NDM-KP) nosocomial outbreak implicating contamination of sink traps in a low-incidence setting. METHODS Following the incidental identification of NDM-KP in a urine culture of an inpatient, we performed an epidemiological investigation, including patient and environmental CPE screening, and whole genome sequencing (WGS) of strains. We also implemented multimodal infection prevention and control (IPC) measures, namely the isolation of cases, waterless patient care, replacement of contaminated P-traps and connecting pieces, and bleach and steam disinfection of sinks for 6 months, followed by patient and environmental screenings for eradication. RESULTS Between February and May 2022, five NDM-KP cases were identified in an eight-bed neurosurgical intermediate care unit. Among the eight sink traps of the unit, three were positive for NDM-KP. Patient and environmental isolates belonged to multilocus sequence typing ST-268. All isolate genomes were genetically very similar suggesting cross-transmission and a potential role of the environment as the source of transmissions. Following the introduction of combined IPC measures, no new case was subsequently detected and sink traps remained negative for NDM-KP within 6 months after the intervention. CONCLUSION The implementation of multimodal IPC measures, including waterless patient care combined with the replacement and disinfection of P-traps and connecting pieces, was successful in the control of NDM-KP after eight months. In a low-incidence setting, this approach has made it possible to pursue the objective of zero transmission of carbapenemase-producing Enterobacteriaceae (CPE).
Collapse
Affiliation(s)
- Estelle Moulin
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland.
| | - Paraskevas Filippidis
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Corinne Aymon Paire-Ficout
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
| | - Dominique S Blanc
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
- Swiss National Reference Center for Emerging Antibiotic Resistance, (NARA), University of Fribourg, Fribourg, Switzerland
| | - Bruno Grandbastien
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
| | - Laurence Senn
- Infection Prevention and Control Unit, Infectious Diseases Service, Lausanne University Hospital, University of Lausanne, Lausanne, 1011, Switzerland
| |
Collapse
|
10
|
Brauncajs M, Bielec F, Macieja A, Pastuszak-Lewandoska D. Cefiderocol - An effective antimicrobial for MDR infections but a challenge for routine antimicrobial susceptibility testing. Adv Med Sci 2024; 69:256-263. [PMID: 38782257 DOI: 10.1016/j.advms.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Cefiderocol is a novel cephalosporin-siderophore conjugate antibiotic that holds promise to thwart infections caused by multi-drug-resistant gram-negative bacilli. Its antibacterial activity against normally susceptible species is not affected by most β-lactamases, including metallo-β-lactamases. Due to the siderophore-mediated entry into the cell, the activity of cefiderocol is less affected by porin loss or active efflux resistance than many other β-lactam antibiotics. The aim of this study was to assess in vitro susceptibility to the cefiderocol of carbapenemase-producing gram-negative bacilli from clinical samples of hospitalized patients. MATERIALS AND METHODS We analyzed 102 clinical strains of carbapenemase-producing Enterobacterales and non-fermentives from hospital centers in Łódź, Poland. Antimicrobial susceptibility to cefiderocol was tested by the minimum inhibitory concentration test strips and disc diffusion methods. RESULTS The obtained results turned out to be ambiguous, and the area of technical uncertainty made their interpretation very difficult. CONCLUSIONS The cost of therapy with this antibiotic, and difficulties in interpreting the drug susceptibility are the limitations to the use of cefiderocol. Intensive work should be carried out to finally standardize an easily accessible and reliable method for the determination of susceptibility to cefiderocol.
Collapse
Affiliation(s)
- Małgorzata Brauncajs
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland; Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland
| | - Filip Bielec
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland; Medical Microbiology Laboratory, Central Teaching Hospital of Medical University of Lodz, Lodz, Poland.
| | - Anna Macieja
- Department of Microbiology and Laboratory Medical Immunology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
11
|
Santerre Henriksen A, Arena F, Attwood M, Canton R, Gatermann S, Naas T, Morrissey I, Longshaw C. In vitro activity of cefiderocol against European Enterobacterales, including isolates resistant to meropenem and recentβ-lactam/β-lactamase inhibitor combinations. Microbiol Spectr 2024; 12:e0418123. [PMID: 38904361 PMCID: PMC11302063 DOI: 10.1128/spectrum.04181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024] Open
Abstract
Carbapenem-resistant Enterobacterales represent a major health threat and have few approved therapeutic options. Enterobacterales isolates were collected from hospitalized inpatients from 49 sites in six European countries (1 January-31 December 2020) and underwent susceptibility testing to cefiderocol and β-lactam/β-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L) and cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates by whole-genome sequencing, to identify resistance mechanisms. Overall, 1,909 isolates (including 970 Klebsiella spp., 382 Escherichia coli, and 244 Enterobacter spp.) were collected, commonly from bloodstream infections (43.6%). Cefiderocol susceptibility was higher than approved β-lactam/β-lactamase inhibitor combinations and largely comparable to cefepime-taniborbactam and aztreonam-avibactam against all Enterobacterales (98.1% vs 78.1%-97.4% and 98.7%-99.1%, respectively) and Enterobacterales resistant to meropenem (n = 148, including 125 Klebsiella spp.; 87.8% vs 0%-71.6% and 93.2%-98.6%, respectively), β-lactam/β-lactamase inhibitor combinations (66.7%-92.1% vs 0%-88.1% and 66.7%-97.9%, respectively), and to both meropenem and β-lactam/β-lactamase inhibitor combinations (61.9%-65.9% vs 0%-20.5% and 76.2%-97.7%, respectively). Susceptibilities to approved and developmental β-lactam/β-lactamase inhibitor combinations against cefiderocol-resistant Enterobacterales (n = 37) were 10.8%-56.8% and 78.4%-94.6%, respectively. Most meropenem-resistant Enterobacterales harbored Klebsiella pneumoniae carbapenemase (110/148) genes, although metallo-β-lactamase (35/148) and oxacillinase (OXA) carbapenemase (6/148) genes were less common; cefiderocol susceptibility was retained in β-lactamase producers, other than NDM, AmpC, and non-carbapenemase OXA producers. Most cefiderocol-resistant Enterobacterales had multiple resistance mechanisms, including ≥1 iron uptake-related mutation (37/37), carbapenemase gene (33/37), and ftsI mutation (24/37). The susceptibility to cefiderocol was higher than approved β-lactam/β-lactamase inhibitor combinations against European Enterobacterales, including meropenem- and β-lactam/β-lactamase inhibitor combination-resistant isolates. IMPORTANCE This study collected a notably large number of Enterobacterales isolates from Europe, including meropenem- and β-lactam/β-lactamase inhibitor combination-resistant isolates against which the in vitro activities of cefiderocol and developmental β-lactam/β-lactamase inhibitor combinations were directly compared for the first time. The MIC breakpoint for high-dose meropenem was used to define meropenem resistance, so isolates that would remain meropenem resistant with doses clinically available to patients were included in the data. Susceptibility to cefiderocol, as a single active compound, was high against Enterobacterales and was higher than or comparable to available β-lactam/β-lactamase inhibitor combinations. These results provide insights into the treatment options for infections due to Enterobacterales with resistant phenotypes. Early susceptibility testing of cefiderocol in parallel with β-lactam/β-lactamase inhibitor combinations will allow patients to receive the most appropriate treatment option(s) available in a timely manner. This is particularly important when options are more limited, such as against metallo-β-lactamase-producing Enterobacterales.
Collapse
Affiliation(s)
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marie Attwood
- PK/PD Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Sören Gatermann
- Department for Medical Microbiology, Ruhr University, Bochum, Germany
| | - Thierry Naas
- Department of Bacteriology-Hygiene, Hôpital Bicêtre, AP-HP Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Ian Morrissey
- Antimicrobial Focus Ltd., Sawbridgeworth, United Kingdom
| | | | - ARTEMIS Study InvestigatorsWillingerBirgitLeysseneDavidCattoenChristianAlauzetCorentineBoyerPierreDuboisVéroniqueJeannotKatyCorvecStephanePantelAlixGuillardThomasGontierAudrey MerensNaasThierryRohdeHolgerZiesingStefanImirzaliogluCanHunfeldKlaus-PeterJungJetteGatermannSörenPletzMathiasBiancoGabrieleGiammancoAnnaCarcioneDavideRaponiGiammarcoMatinatoCaterinaDomenicoEnea Gino DiGaibaniPaoloMarcheseAnnaArenaFabioNiccolaiClaudiaStefaniStefaniaPitartCristinaBarriosJose LuisCercenadoEmiliaBouGermanLopezAlicia BetetaCantonRafaelHontangasJose LopezGracia-AhufingerIreneOliverAntonioLopez-CereroLorenaLarrosaNievesWarehamDavidPerryJohnCaseyAnnaNahlJasvirHughesDanielCoyneMichaelListerMichelleAttwoodMarie
- Medical Affairs, Shionogi B.V., London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- PK/PD Laboratory, North Bristol NHS Trust, Bristol, United Kingdom
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department for Medical Microbiology, Ruhr University, Bochum, Germany
- Department of Bacteriology-Hygiene, Hôpital Bicêtre, AP-HP Paris-Saclay, Le Kremlin-Bicêtre, France
- Antimicrobial Focus Ltd., Sawbridgeworth, United Kingdom
| |
Collapse
|
12
|
Amábile-Cuevas CF, Lund-Zaina S. Non-Canonical Aspects of Antibiotics and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:565. [PMID: 38927231 PMCID: PMC11200725 DOI: 10.3390/antibiotics13060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The understanding of antibiotic resistance, one of the major health threats of our time, is mostly based on dated and incomplete notions, especially in clinical contexts. The "canonical" mechanisms of action and pharmacodynamics of antibiotics, as well as the methods used to assess their activity upon bacteria, have not changed in decades; the same applies to the definition, acquisition, selective pressures, and drivers of resistance. As a consequence, the strategies to improve antibiotic usage and overcome resistance have ultimately failed. This review gathers most of the "non-canonical" notions on antibiotics and resistance: from the alternative mechanisms of action of antibiotics and the limitations of susceptibility testing to the wide variety of selective pressures, lateral gene transfer mechanisms, ubiquity, and societal factors maintaining resistance. Only by having a "big picture" view of the problem can adequate strategies to harness resistance be devised. These strategies must be global, addressing the many aspects that drive the increasing prevalence of resistant bacteria aside from the clinical use of antibiotics.
Collapse
Affiliation(s)
| | - Sofia Lund-Zaina
- Department of Public Health, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
13
|
Cismaru IM, Văcăroiu MC, Soium E, Holban T, Radu AM, Melinte V, Gheorghiță V. Synergistic Combination of Aztreonam and Ceftazidime-Avibactam-A Promising Defense Strategy against OXA-48 + NDM Klebsiella pneumoniae in Romania. Antibiotics (Basel) 2024; 13:550. [PMID: 38927216 PMCID: PMC11201077 DOI: 10.3390/antibiotics13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
With the increasing burden of carbapenem-resistant Klebsiella pneumoniae (CR-Kp), including high rates of healthcare-associated infections, treatment failure, and mortality, a good therapeutic strategy for attacking this multi-resistant pathogen is one of the main goals in current medical practice and necessitates the use of novel antibiotics or new drug combinations. OBJECTIVES We reviewed the clinical and microbiological outcomes of seven patients treated at the "Agrippa Ionescu" Clinical Emergency Hospital between October 2023 and January 2024, aiming to demonstrate the synergistic activity of the ceftazidime-avibactam (C/A) plus aztreonam (ATM) combination against the co-producers of blaNDM + blaOXA-48-like CR-Kp. MATERIAL AND METHODS Seven CR-Kp with blaNDM and blaOXA-48 as resistance mechanisms were tested. Seven patients treated with C/A + ATM were included. The synergistic activity of C/A + ATM was proven through double-disk diffusion in all seven isolates. Resistance mechanisms like KPC, VIM, OXA-48, NDM, IMP, and CTX-M were assessed through immunochromatography. RESULTS With a mean of nine days of treatment with the synergistic combination C/A + ATM, all patients achieved clinical recovery, and five achieved microbiological recovery. CONCLUSIONS With the emerging co-occurrence of blaOXA-48 and blaNDM among Kp in Romania, the combination of C/A and ATM could be a promising therapeutic option.
Collapse
Affiliation(s)
- Ioana Miriana Cismaru
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania; (I.M.C.); (E.S.); (T.H.); (A.M.R.); (V.M.); (V.G.)
| | - Maria Cristina Văcăroiu
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania; (I.M.C.); (E.S.); (T.H.); (A.M.R.); (V.M.); (V.G.)
| | - Elif Soium
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania; (I.M.C.); (E.S.); (T.H.); (A.M.R.); (V.M.); (V.G.)
| | - Tiberiu Holban
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania; (I.M.C.); (E.S.); (T.H.); (A.M.R.); (V.M.); (V.G.)
| | - Adelina Maria Radu
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania; (I.M.C.); (E.S.); (T.H.); (A.M.R.); (V.M.); (V.G.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Violeta Melinte
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania; (I.M.C.); (E.S.); (T.H.); (A.M.R.); (V.M.); (V.G.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Valeriu Gheorghiță
- Agrippa Ionescu Clinical Emergency Hospital, 011356 Bucharest, Romania; (I.M.C.); (E.S.); (T.H.); (A.M.R.); (V.M.); (V.G.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
14
|
Pals MJ, Wijnberg L, Yildiz Ç, Velema WA. Catechol-Siderophore Mimics Convey Nucleic Acid Therapeutics into Bacteria. Angew Chem Int Ed Engl 2024; 63:e202402405. [PMID: 38407513 DOI: 10.1002/anie.202402405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
Antibacterial resistance is a major threat for human health. There is a need for new antibacterials to stay ahead of constantly-evolving resistant bacteria. Nucleic acid therapeutics hold promise as powerful antibiotics, but issues with their delivery hamper their applicability. Here, we exploit the siderophore-mediated iron uptake pathway to efficiently transport antisense oligomers into bacteria. We appended a synthetic siderophore to antisense oligomers targeting the essential acpP gene in Escherichia coli. Siderophore-conjugated PNA and PMO antisense oligomers displayed potent antibacterial properties. Conjugates bearing a minimal siderophore consisting of a mono-catechol group showed equally effective. Targeting the lacZ transcript resulted in dose-dependent decreased β-galactosidase production, demonstrating selective protein downregulation. Applying this concept to Acinetobacter baumannii also showed concentration-dependent growth inhibition. Whole-genome sequencing of resistant mutants and competition experiments with the endogenous siderophore verified selective uptake through the siderophore-mediated iron uptake pathway. Lastly, no toxicity towards mammalian cells was found. Collectively, we demonstrate for the first time that large nucleic acid therapeutics can be efficiently transported into bacteria using synthetic siderophore mimics.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Luuk Wijnberg
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Çağlar Yildiz
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Mezcord V, Traglia GM, Pasteran F, Escalante J, Lopez C, Wong O, Rojas L, Marshall SH, Tolmasky ME, Bonomo RA, Ramirez MS. Characterisation of cefiderocol-resistant spontaneous mutant variants of Klebsiella pneumoniae-producing NDM-5 with a single mutation in cirA. Int J Antimicrob Agents 2024; 63:107131. [PMID: 38432605 PMCID: PMC11973935 DOI: 10.1016/j.ijantimicag.2024.107131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - German Matias Traglia
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay
| | - Fernando Pasteran
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Christina Lopez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Olivia Wong
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Laura Rojas
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Steven H Marshall
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, California, USA.
| |
Collapse
|
16
|
Boutin S, Scherrer M, Späth I, Kocer K, Heeg K, Nurjadi D. Cross-contamination of carbapenem-resistant Gram-negative bacteria between patients and the hospital environment in the first year of a newly built surgical ward. J Hosp Infect 2024; 144:118-127. [PMID: 38081456 DOI: 10.1016/j.jhin.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Transmission and outbreaks of carbapenem-resistant Gram-negative bacteria (CRGN) in hospitals are often associated with contamination of the wastewater environment. We performed a prospective observational study to investigate the colonization of the hospital wastewater environment during the first year of occupancy of the surgical intermediate and intensive care units of a newly constructed building at the University Hospital of Heidelberg, Germany. METHODS We performed monthly screening of the wastewater system (toilets and sinks) for 12 months, starting 1 month before opening (1st October 2020 to 30th October 2021). Admission and weekly rectal screening of patients for CRGN were also performed in parallel. Bacterial isolates were characterized by whole-genome sequencing. RESULTS Twenty-seven of 1978 (1.4%) admitted patients were colonized/infected with CRGN. A total of 29 CRGN isolates from 24 patients and 52 isolates were available for sequencing. Within the first month of occupancy, we identified seven patients colonized/infected with CRGN, while none were found in the environmental reservoirs. The first detection of CRGN isolates in the sewage system started five months after the first occupancy. Two previously non-colonized patients were colonized/infected with Pseudomonas aeruginosa strains colonizing the sewage system. The significant identity of plasmids carrying the carbapenemase gene suggests that long-term colonization of the sewage system facilitates the emergence of new carbapenem-resistant clones. CONCLUSION Cross-contamination between patients and the hospital environment is bidirectional. Our study demonstrated that contamination of the hospital wastewater environment may lead to persistent colonization and may serve as a reservoir for nosocomial acquisition of CRGN.
Collapse
Affiliation(s)
- S Boutin
- University of Lübeck and University Medical Center Schleswig-Holstein, Department of Infectious Diseases and Microbiology, Lübeck, Germany; Heidelberg University Hospital, Department of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - M Scherrer
- Heidelberg University Hospital, Department of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - I Späth
- Heidelberg University Hospital, Department of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - K Kocer
- Heidelberg University Hospital, Department of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - K Heeg
- Heidelberg University Hospital, Department of Medical Microbiology and Hygiene, Heidelberg, Germany
| | - D Nurjadi
- University of Lübeck and University Medical Center Schleswig-Holstein, Department of Infectious Diseases and Microbiology, Lübeck, Germany; Heidelberg University Hospital, Department of Medical Microbiology and Hygiene, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Germany.
| |
Collapse
|
17
|
Wang L, Zhu J, Chen L, Du H. Cefiderocol: Clinical application and emergence of resistance. Drug Resist Updat 2024; 72:101034. [PMID: 38134561 DOI: 10.1016/j.drup.2023.101034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Antibacterial drug resistance of gram-negative bacteria (GNB) results in high morbidity and mortality of GNB infection, seriously threaten human health globally. Developing new antibiotics has become the critical need for dealing with drug-resistant bacterial infections. Cefiderocol is an iron carrier cephalosporin that achieves drug accumulation through a unique "Trojan horse" strategy into the bacterial periplasm. It shows high antibacterial activity against multidrug-resistant (MDR) Enterobacteriaceae and MDR non-fermentative bacteria. The application of cefiderocol offers new hope for treating clinical drug-resistant bacterial infections. However, limited clinical data and uncertainties about its resistance mechanisms constrain the choice of its therapeutic use. This review aimed to summarize the clinical applications, drug resistance mechanisms, and co-administration of cefiderocol.
Collapse
Affiliation(s)
- Liang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123 China
| | - Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States; Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China; MOE Key Laboratory of Geriatric Diseases and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123 China.
| |
Collapse
|
18
|
Bellinzona G, Merla C, Corbella M, Iskandar EN, Seminari E, Di Matteo A, Gaiarsa S, Petazzoni G, Sassera D, Baldanti F, Piazza A, Cambieri P. Concomitant Resistance to Cefiderocol and Ceftazidime/Avibactam in Two Carbapenemase-Producing Klebsiella pneumoniae Isolates from Two Lung Transplant Patients. Microb Drug Resist 2024; 30:21-26. [PMID: 37870558 DOI: 10.1089/mdr.2023.0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this study, we present two cases of Klebsiella pneumoniae, one KPC-33- and one NDM-1-producing, showing resistance to cefiderocol and ceftazidime/avibactam, collected in the intensive care unit of a hospital in Northern Italy from two patients who had recently undergone lung transplantation. Whole-genome sequencing was performed to investigate the molecular features of these strains.
Collapse
Affiliation(s)
- Greta Bellinzona
- Department of Biology and Biotechnology, and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Cristina Merla
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Corbella
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elizabeth Nagy Iskandar
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Specialization School of Microbiology and Virology, Microbiology and Virology Department, University of Pavia, Pavia, Italy
| | - Elena Seminari
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Angela Di Matteo
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefano Gaiarsa
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Greta Petazzoni
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Aurora Piazza
- Department of Clinical, Surgical, Diagnostic, and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Patrizia Cambieri
- Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
19
|
Gutiérrez Cano JR, Paulina Morales-Sandoval I, Gnecco D, Carrasco-Carballo A, Terán JL. L-Aspartic acid pyridinium salts: In silico, synthesis and adjuvant vs antibiotic antibacterial evaluation. RESULTS IN CHEMISTRY 2024; 7:101366. [DOI: 10.1016/j.rechem.2024.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
|
20
|
Schaufler K, Echelmeyer T, Schwabe M, Guenther S, Bohnert JA, Becker K, Fickenscher H, Bueter A, Maschkowitz G, Krumbholz A, Nurjadi D, Heiden SE, Eger E. Convergent Klebsiella pneumoniae strains belonging to a sequence type 307 outbreak clone combine cefiderocol and carbapenem resistance with hypervirulence. Emerg Microbes Infect 2023; 12:2271096. [PMID: 37842870 PMCID: PMC10619465 DOI: 10.1080/22221751.2023.2271096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Affiliation(s)
- Katharina Schaufler
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Institute of Pharmacy, Pharmaceutical Microbiology, University of Greifswald, Greifswald, Germany
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research HZI, Greifswald, Germany
- University Medicine Greifswald, Greifswald, Germany
| | - Thaddäus Echelmeyer
- Institute of Pharmacy, Pharmaceutical Microbiology, University of Greifswald, Greifswald, Germany
| | - Michael Schwabe
- Institute of Pharmacy, Pharmaceutical Microbiology, University of Greifswald, Greifswald, Germany
| | - Sebastian Guenther
- Institute of Pharmacy, Pharmaceutical Biology, University of Greifswald, Greifswald, Germany
| | - Jürgen A. Bohnert
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Karsten Becker
- Friedrich Loeffler-Institute of Medical Microbiology, University Medicine Greifswald, Greifswald, Germany
| | - Helmut Fickenscher
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Aike Bueter
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Gregor Maschkowitz
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andi Krumbholz
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Labor Dr. Krause und Kollegen MVZ GmbH, Kiel, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Stefan E. Heiden
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research HZI, Greifswald, Germany
| | - Elias Eger
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Department of Epidemiology and Ecology of Antimicrobial Resistance, Helmholtz Institute for One Health, Helmholtz Centre for Infection Research HZI, Greifswald, Germany
| |
Collapse
|
21
|
Daoud L, Al-Marzooq F, Ghazawi A, Anes F, Collyns T. High efficacy and enhanced synergistic activity of the novel siderophore-cephalosporin cefiderocol against multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae from inpatients attending a single hospital in the United Arab Emirates. J Infect Public Health 2023; 16 Suppl 1:33-44. [PMID: 37953111 DOI: 10.1016/j.jiph.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Cefiderocol (CFDC) is a novel siderophore-cephalosporin, which usually penetrates the bacteria through the iron-uptake pathways. Data is limited on the factors affecting CFDC activity and methods for overcoming resistance development. Synergistic approaches are needed to tackle antimicrobial resistance. This study aimed to determine CFDC activity on Klebsiella pneumoniae isolates from patients attending a single hospital in the United Arab Emirates (UAE), to explore the effect of β-lactamases on CFDC activity and to enhance CFDC susceptibility in both iron-depleted and iron-enriched conditions. METHODS We investigated 238 K. pneumoniae strains from diverse clinical sources. β-lactamase genes were detected by PCR. Susceptibility to CFDC and 12 comparator antibiotics were tested. Combinations of CFDC with β-lactamase inhibitors (BLIs) and/or an outer membrane (OM) permeabilizer (polymyxin B nonapeptide) were tested in iron-depleted and iron-enriched conditions. RESULTS CFDC exhibited efficacy of 97.9%, against multidrug-resistant (MDR), and extensively drug-resistant (XDR) strains, in addition to strains resistant to the last resort drugs such as colistin and tigecycline, including dual carbapenemase-producers (blaNDM and blaOXA-48-like) with MIC ≤ 0.06-8 µg/ml. It was effective in killing strains with single and multiple β-lactamases; however, it lost activity in iron-enriched conditions. Synergy was achieved with dual combination of CFDC and BLIs, especially avibactam, which caused a significant reduction in MICs even in iron-enriched conditions. A significant reduction was seen with the triple combination including an OM permeabilizer plus avibactam. Killing-kinetic studies proved that the combination therapy caused dose reduction and faster killing by CFDC than the monotherapy. CONCLUSIONS CFDC was deemed effective against MDR and XDR K. pneumoniae. Synergistic combination of CFDC with BLIs and OM permeabilizers could be effective to treat infections in iron-rich sites, but this should be investigated in vivo.
Collapse
Affiliation(s)
- Lana Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Febin Anes
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | |
Collapse
|
22
|
Piccica M, Spinicci M, Botta A, Bianco V, Lagi F, Graziani L, Faragona A, Parrella R, Giani T, Bartolini A, Morroni G, Bernardo M, Rossolini GM, Tavio M, Giacometti A, Bartoloni A. Cefiderocol use for the treatment of infections by carbapenem-resistant Gram-negative bacteria: an Italian multicentre real-life experience. J Antimicrob Chemother 2023; 78:2752-2761. [PMID: 37807834 PMCID: PMC10631827 DOI: 10.1093/jac/dkad298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Cefiderocol is a novel siderophore cephalosporin with promising activity against most carbapenem-resistant Gram-negative bacteria (CRGNB). However, extensive postmarketing experiences are lacking. This study aimed to analyse the early experience on cefiderocol postmarketing use at three tertiary care hospitals in Italy. METHODS We retrospectively included patients with infections caused by CRGNB treated with cefiderocol at three Italian tertiary care hospitals from 1 March 2021 to 30 June 2022. A multivariate Cox model was used to identify predictors of 30 day mortality. A propensity score (PS) analysis with inverse probability weighting (IPW) was also performed to compare the treatment effect of cefiderocol monotherapy (CM) versus combination regimens (CCRs). RESULTS The cohort included 142 patients (72% male, median age 67 years, with 89 cases of Acinetobacter baumannii infection, 22 cases of Klebsiella pneumoniae, 27 cases of Pseudomonas aeruginosa and 4 of other pathogens). The 30 day all-cause mortality was 37% (52/142). We found no association between bacterial species and mortality. In multivariate analysis, a Charlson Comorbidity Index >3 was an independent predictor of mortality (HR 5.02, 95% CI 2.37-10.66, P < 0.001). In contrast, polymicrobial infection (HR 0.41, 95% CI 0.21-0.82, P < 0.05) was associated with lower mortality. There was no significant difference in mortality between patients receiving CM (n = 70) and those receiving a CCR (n = 72) (33% versus 40%, respectively), even when adjusted for IPW-PS (HR 1.11, 95% CI 0.63-1.96, P = 0.71). CONCLUSIONS Real-life data confirm that cefiderocol is a promising option against carbapenem-resistant Gram-negative infections, even as monotherapy.
Collapse
Affiliation(s)
- Matteo Piccica
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele Spinicci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Annarita Botta
- Department of Infectious Disease and Infectious Emergencies, AORN dei Colli, Cotugno Hospital, Naples, Italy
| | - Vincenzo Bianco
- Department of Infectious Disease and Infectious Emergencies, AORN dei Colli, Cotugno Hospital, Naples, Italy
| | - Filippo Lagi
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Lucia Graziani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Faragona
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
| | - Roberto Parrella
- Department of Infectious Disease and Infectious Emergencies, AORN dei Colli, Cotugno Hospital, Naples, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Andrea Bartolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianluca Morroni
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - Mariano Bernardo
- Microbiology Unit, AORN Ospedali dei Colli-Monaldi Hospital, Naples, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Clinical Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Marcello Tavio
- Unit of Emerging and Immunosuppressed Infectious Diseases, Department of Gastroenterology and Transplantation, Azienda Ospedaliero-Universitaria ‘Ospedali Riuniti’, Ancona, Italy
| | - Andrea Giacometti
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona, Italy
- Clinic of Infectious Diseases, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Infectious and Tropical Diseases Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
23
|
Daoud L, Allam M, Collyns T, Ghazawi A, Saleem A, Al-Marzooq F. Extreme resistance to the novel siderophore-cephalosporin cefiderocol in an extensively drug-resistant Klebsiella pneumoniae strain causing fatal pneumonia with sepsis: genomic analysis and synergistic combinations for resistance reversal. Eur J Clin Microbiol Infect Dis 2023; 42:1395-1400. [PMID: 37828413 DOI: 10.1007/s10096-023-04671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023]
Abstract
Cefiderocol (CFDC) is the first-in-class siderophore-cephalosporin. Klebsiella pneumoniae strain that is extremely resistant to CFDC (MIC: 256 µg/ml) was isolated for the first time in the United Arab Emirates from a patient with pneumonia and sepsis. It belonged to sequence-type 14 (ST14), with a novel core genome ST. Resistance was driven by the co-expression of β-lactamases (blaNDM-1, blaOXA-232 and blaCTX-M-15) and a mutation in catecholate-siderophore receptor, utilized by CFDC to enter the bacterial cell. Synergistic combinations (β-lactamase inhibitors, aztreonam plus CFDC) re-sensitized the bacteria to CFDC. Although CFDC resistance is multifactorial, the combination with β-lactamase inhibitors represents a promising approach in resistance reversal for fighting superbugs.
Collapse
Affiliation(s)
- Land Daoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
24
|
Dettori S, Portunato F, Vena A, Giacobbe DR, Bassetti M. Severe infections caused by difficult-to-treat Gram-negative bacteria. Curr Opin Crit Care 2023; 29:438-445. [PMID: 37641512 PMCID: PMC10919274 DOI: 10.1097/mcc.0000000000001074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Antimicrobial resistance (AMR) in Gram-negative bacteria (GNB) poses a significant global health concern, contributing to increased infections, mortality rates, and healthcare costs. This review discusses the main clinical manifestations, therapeutic options, and recent findings in managing antibiotic-resistant GNB, with a focus on difficult-to-treat infections. RECENT FINDINGS Difficult-to-treat resistance (DTR) is a novel classification that identifies GNB exhibiting intermediate or resistant phenotypes to first-line agents in the carbapenem, beta-lactam, and fluoroquinolone categories. The main pathogens implicated in severe infections include DTR Enterobacterales, DTR Pseudomonas aeruginosa , and DTR Acinetobacter baumannii. Although the clinical implications of DTR strains are still under investigation, certain studies have linked them to prolonged hospital stays and poor patient outcomes. SUMMARY Severe infections caused by DTR-GNB pose a formidable challenge for healthcare providers and represent a growing global health issue. The proper administration and optimization of novel antibiotics at our disposal are of paramount importance for combating bacterial resistance and improving patient prognosis.
Collapse
Affiliation(s)
- Silvia Dettori
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Federica Portunato
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
| | - Antonio Vena
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neuroscience
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| |
Collapse
|
25
|
Nurjadi D, Eichel VM, Pöschl J, Gille C, Kranig S, Heeg K, Boutin S. Monocentric observational cohort study to investigate the transmission of third-generation cephalosporin-resistant Enterobacterales in a neonatal intensive care unit in Heidelberg, Germany. Microbiol Spectr 2023; 11:e0203823. [PMID: 37737640 PMCID: PMC10581168 DOI: 10.1128/spectrum.02038-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/04/2023] [Indexed: 09/23/2023] Open
Abstract
Third-generation cephalosporin-resistant Enterobacterales is a major threat for newborns in neonatal intensive care units (NICUs). The route of acquisition in a non-outbreak setting should be investigated to implement adequate infection prevention measures. To identify risk factors for colonization with and to investigate the transmission pattern of third-generation cephalosporin-resistant Enterobacterales in a NICU setting. This monocentric observational cohort study in a tertiary NICU in Heidelberg, Germany, enrolled all hospitalized neonates screened for cephalosporin-resistant Enterobacterales. Data were collected from 1 January 2018 to 31 December 2021. Weekly screening by rectal swabs for colonization with third-generation cephalosporin-resistant Enterobacterales was performed for all newborns until discharge. Whole-genome sequencing was performed for molecular characterization and transmission analysis. In total, 1,287 newborns were enrolled. The median length of stay was 20 (range 1-250) days. Eighy-eight infants (6.8%) were colonized with third-generation cephalosporin-resistant Enterobacterales. Low birth weight [<1500 g (adjusted odds ratio, 5.1; 95% CI 2.2-11.5; P < 0.001)] and longer hospitalization [per 30 days (adjusted odds ratio, 1.7; 95% CI 1.5-2.0; P < 0.001)] were associated with colonization or infection with drug-resistant Enterobacterales in a multivariate analysis. Enterobacter cloacae complex was the most prevalent third-generation cephalosporin-resistant Enterobacterales detected, 64.8% (59 of 91). Whole-genome sequencing, performed for the available 85 of 91 isolates, indicated 12 transmission clusters involving 37 patients. This cohort study suggests that transmissions of third-generation cephalosporin-resistant Enterobacterales in newborns occur frequently in a non-outbreak NICU setting, highlighting the importance of surveillance and preventive measures in this vulnerable patient group. IMPORTANCE Preterm newborns are prone to infections. Therefore, infection prevention should be prioritized in this vulnerable patient group. However, outbreaks involving drug-resistant bacteria, such as third-generation resistant Enterobacterales, are often reported. Our study aims to investigate transmission and risk factors for acquiring third-generation cephalosporin-resistant Enterobacterales in a non-outbreak NICU setting. Our data indicated that premature birth and low birth weight are significant risk factors for colonization/infection with third-generation cephalosporin-resistant Enterobacterales. Furthermore, we could identify putative transmission clusters by whole-genome sequencing, highlighting the importance of preemptive measures to prevent infections in this patient collective.
Collapse
Affiliation(s)
- Dennis Nurjadi
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Vanessa M. Eichel
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Pöschl
- Department of Neonatology, Heidelberg University Hospital, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Hospital, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Simon Kranig
- Department of Neonatology, Heidelberg University Hospital, Heidelberg University Children’s Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- Department of Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
26
|
Egge SL, Lewis JS, Hakki M. Case Commentary: Successful Use of Cefepime/Zidebactam (WCK 5222) as a Salvage Therapy for the Treatment of Disseminated Extensively Drug-Resistant New Delhi Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Infection in an Adult Patient with Acute T-Cell Leukemia. Antimicrob Agents Chemother 2023; 67:e0066323. [PMID: 37395652 PMCID: PMC10433852 DOI: 10.1128/aac.00663-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Multidrug-resistant/extensively drug-resistant (MDR/XDR) Pseudomonas aeruginosa (PA) are critical antimicrobial resistance threats. Despite their increasing prevalence, treatment options for metallo-β-lactamase (MBL)-producing PA are limited, especially for New Delhi metallo-β-lactamase (NDM) producers. Pending further clinical studies, this case provides support for limited-scope use of cefepime-zidebactam for treating disseminated infections secondary to NDM-producing XDR PA. Susceptibilities should be tested and/or alternative regimens considered when treating isolates with alternative MBLs or increased efflux pump expression because some in vitro data suggest associated loss of cefepime-zidebactam susceptibility.
Collapse
Affiliation(s)
- Stephanie L. Egge
- Division of Infectious Diseases, Department of Internal Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - James S. Lewis
- Division of Infectious Diseases, Department of Internal Medicine, Oregon Health and Science University, Portland, Oregon, USA
- Department of Pharmacy, Oregon Health and Science University, Portland, Oregon, USA
| | - Morgan Hakki
- Division of Infectious Diseases, Department of Internal Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
27
|
Hogan AM, Rahman ASMZ, Motnenko A, Natarajan A, Maydaniuk DT, León B, Batun Z, Palacios A, Bosch A, Cardona ST. Profiling cell envelope-antibiotic interactions reveals vulnerabilities to β-lactams in a multidrug-resistant bacterium. Nat Commun 2023; 14:4815. [PMID: 37558695 PMCID: PMC10412643 DOI: 10.1038/s41467-023-40494-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The cell envelope of Gram-negative bacteria belonging to the Burkholderia cepacia complex (Bcc) presents unique restrictions to antibiotic penetration. As a consequence, Bcc species are notorious for causing recalcitrant multidrug-resistant infections in immunocompromised individuals. Here, we present the results of a genome-wide screen for cell envelope-associated resistance and susceptibility determinants in a Burkholderia cenocepacia clinical isolate. For this purpose, we construct a high-density, randomly-barcoded transposon mutant library and expose it to 19 cell envelope-targeting antibiotics. By quantifying relative mutant fitness with BarSeq, followed by validation with CRISPR-interference, we profile over a hundred functional associations and identify mediators of antibiotic susceptibility in the Bcc cell envelope. We reveal connections between β-lactam susceptibility, peptidoglycan synthesis, and blockages in undecaprenyl phosphate metabolism. The synergy of the β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is primarily mediated by inhibition of the PenB carbapenemase. In comparison with ceftazidime, avibactam more strongly potentiates the activity of aztreonam and meropenem in a panel of Bcc clinical isolates. Finally, we characterize in Bcc the iron and receptor-dependent activity of the siderophore-cephalosporin antibiotic, cefiderocol. Our work has implications for antibiotic target prioritization, and for using additional combinations of β-lactam/β-lactamase inhibitors that can extend the utility of current antibacterial therapies.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aakash Natarajan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin T Maydaniuk
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beltina León
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Zayra Batun
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Armando Palacios
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alejandra Bosch
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
28
|
Yang Y, Yan YH, Schofield CJ, McNally A, Zong Z, Li GB. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol 2023; 31:735-748. [PMID: 36858862 DOI: 10.1016/j.tim.2023.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Resistance to β-lactam antibiotics is rapidly growing, substantially due to the spread of serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which efficiently catalyse β-lactam hydrolysis. Combinations of a β-lactam antibiotic with an SBL inhibitor have been clinically successful; however, no MBL inhibitors have been developed for clinical use. MBLs are a worrying resistance vector because they catalyse hydrolysis of all β-lactam antibiotic classes, except the monobactams, and they are being disseminated across many bacterial species worldwide. Here we review the classification, structures, substrate profiles, and inhibition mechanisms of MBLs, highlighting current clinical problems due to MBL-mediated resistance and progress in understanding and combating MBL-mediated resistance.
Collapse
Affiliation(s)
- Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
29
|
Simner PJ, Bergman Y, Conzemius R, Jacobs E, Tekle T, Beisken S, Tamma PD. An NDM-Producing Escherichia coli Clinical Isolate Exhibiting Resistance to Cefiderocol and the Combination of Ceftazidime-Avibactam and Aztreonam: Another Step Toward Pan-β-Lactam Resistance. Open Forum Infect Dis 2023; 10:ofad276. [PMID: 37416757 PMCID: PMC10319620 DOI: 10.1093/ofid/ofad276] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023] Open
Abstract
Background Cefiderocol and ceftazidime-avibactam plus aztreonam (CZA-ATM) are preferred treatment regimens for New Delhi metallo-β-lactamase (NDM)-producing infections. Methods We report the case of a US patient who traveled to India to receive a renal transplant. He subsequently experienced pyelonephritis by an NDM-producing Escherichia coli. Broth microdilution and the broth disk elution method indicated resistance to all β-lactams, including cefiderocol and CZA-ATM. Whole-genome sequencing investigations were undertaken to identify resistance mechanisms. Results An E. coli isolate belonging to sequence type (ST) 167 containing a blaNDM-5 gene was identified on a plasmid of the IncFIA/IncFIB/IncFIC replicon groups. When compared with the genome of another ST167 E. coli clinical isolate containing blaNDM-5 and exhibiting susceptibility to cefiderocol and CZA-ATM, a 12-base pair insertion in ftsI, translating to a 4-amino acid duplication in PBP3, was identified. Moreover, a blaCMY-59 gene was harbored on an IncI-γ replicon type, and frameshift mutations were identified in the cirA iron transport gene. Conclusions This is the first clinical case of a US patient harboring an NDM-producing isolate exhibiting resistance to all available β-lactam agents. The isolate's unexpected resistance to cefiderocol and CZA-ATM was likely due to a combination of (1) a modified PBP3 (increased MICs to both regimens), (2) truncated iron-binding protein (increased cefiderocol MIC), and (3) a blaCMY gene (reduced CZA-ATM activity). E. coli ST167 clinical isolates harboring blaNDM-5 genes are a recognized international high-risk clone. When coupled with the additional mechanisms identified in our patient's isolate, which is not uncommon for this high-risk clone, pan-β-lactam resistance may occur.
Collapse
Affiliation(s)
- Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yehudit Bergman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Emily Jacobs
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tsigereda Tekle
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Pranita D Tamma
- Correspondence: Pranita D. Tamma, MD, MHS, Johns Hopkins University School of Medicine, 200 N. Wolfe Street, Room 3149, Baltimore, MD 21287 ()
| |
Collapse
|
30
|
Ayipo YO, Chong CF, Mordi MN. Small-molecule inhibitors of bacterial-producing metallo-β-lactamases: insights into their resistance mechanisms and biochemical analyses of their activities. RSC Med Chem 2023; 14:1012-1048. [PMID: 37360393 PMCID: PMC10285742 DOI: 10.1039/d3md00036b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/31/2023] [Indexed: 09/20/2023] Open
Abstract
Antibiotic resistance (AR) remains one of the major threats to the global healthcare system, which is associated with alarming morbidity and mortality rates. The defence mechanisms of Enterobacteriaceae to antibiotics occur through several pathways including the production of metallo-β-lactamases (MBLs). The carbapenemases, notably, New Delhi MBL (NDM), imipenemase (IMP), and Verona integron-encoded MBL (VIM), represent the critical MBLs implicated in AR pathogenesis and are responsible for the worst AR-related clinical conditions, but there are no approved inhibitors to date, which needs to be urgently addressed. Presently, the available antibiotics including the most active β-lactam-types are subjected to deactivation and degradation by the notorious superbug-produced enzymes. Progressively, scientists have devoted their efforts to curbing this global menace, and consequently a systematic overview on this topic can aid the timely development of effective therapeutics. In this review, diagnostic strategies for MBL strains and biochemical analyses of potent small-molecule inhibitors from experimental reports (2020-date) are overviewed. Notably, N1 and N2 from natural sources, S3-S7, S9 and S10 and S13-S16 from synthetic routes displayed the most potent broad-spectrum inhibition with ideal safety profiles. Their mechanisms of action include metal sequestration from and multi-dimensional binding to the MBL active pockets. Presently, some β-lactamase (BL)/MBL inhibitors have reached the clinical trial stage. This synopsis represents a model for future translational studies towards the discovery of effective therapeutics to overcome the challenges of AR.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
- Department of Chemistry and Industrial Chemistry, Kwara State University P. M. B., 1530, Malete Ilorin Nigeria
| | - Chien Fung Chong
- Department of Allied Health Sciences, Universiti Tunku Abdul Rahman 31900 Kampar Perak Malaysia
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia USM 11800 Pulau Pinang Malaysia
| |
Collapse
|
31
|
Domingues S, Lima T, Saavedra MJ, Da Silva GJ. An Overview of Cefiderocol's Therapeutic Potential and Underlying Resistance Mechanisms. Life (Basel) 2023; 13:1427. [PMID: 37511802 PMCID: PMC10382032 DOI: 10.3390/life13071427] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance continues to increase globally and treatment of difficult-to-treat (DTT) infections, mostly associated with carbapenem-resistant (CR) Pseudomonas aeruginosa, CR Acinetobacter baumannii, and CR- and third-generation-cephalosporins-resistant Enterobacterales remains a challenge for the clinician. The recent approval of cefiderocol has broaden the armamentarium for the treatment of patients with DTT infections. Cefiderocol is a siderophore cephalosporin that has shown excellent antibacterial activity, in part due to its innovative way of cell permeation. It is relatively stable compared to most commonly found carbapenamases. However, some resistant mechanisms to cefiderocol have already been identified and reduced susceptibility has developed during patient treatment, highlighting that the clinical use of cefiderocol must be rational. In this review, we summarize the current available treatments against the former resistant bacteria, and we revise and discuss the mechanism of action of cefiderocol, underlying the biological function of siderophores, the therapeutic potential of cefiderocol, and the mechanisms of resistance reported so far.
Collapse
Affiliation(s)
- Sara Domingues
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Tiago Lima
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria José Saavedra
- CITAB-Inov4Agro, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- CECAV-AL4AnimalS, Animal and Veterinary Research Center, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge Da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
32
|
Delgado-Valverde M, Portillo-Calderón I, Recacha E, Pérez-Palacios P, Pascual A. In Vitro Activity of Cefiderocol Compared to Other Antimicrobials against a Collection of Metallo-Beta-Lactamase-Producing Gram-Negative Bacilli from Southern Spain. Microbiol Spectr 2023; 11:e0493622. [PMID: 37249425 PMCID: PMC10269457 DOI: 10.1128/spectrum.04936-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
In this study, we aimed to comparatively evaluate the in vitro activity of cefiderocol versus other antimicrobials against a well-characterized collection of metallo-beta-lactamase (MBL)-producing Gram-negative bacilli (MBL-GNB) isolates from hospitals in Andalusia, Spain. We recovered 232 MBL-GNB from Andalusian hospitals, including 160 Enterobacterales and 72 nonfermenting Gram-negative bacilli belonging to 44 different clones (2015 to 2020). Cefiderocol and comparator MICs were determined with commercial methods (UMIC [Bruker] and EUMDROXF [Sensititre; Thermo Fisher], respectively). EUCAST breakpoints were used for all antimicrobials tested, and CLSI also was used for cefiderocol. Control strains used were E. coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. Cefiderocol showed potent in vitro activity against isolates tested, regardless of breakpoint (susceptibility rates, 85.3% for EUCAST versus 96.6% for CLSI, P < 0.001). MIC ranges for Enterobacterales and nonfermenting Gram-negative bacilli (NF-GNB) were ≤0.03 to 1 mg/L and 0.06 to 2 (IMP), 0.06 to 8 mg/L and 0.06 to 16 (VIM), 0.25 to 16 mg/L and 2 to 16 mg/L (NDM), respectively, and 0.25 to 8 mg/L for double MBL-producing Enterobacterales. By species, all cefiderocol-susceptible rates were over 90%, except Klebsiella oxytoca, Enterobacter cloacae, Escherichia coli, and Acinetobacter spp. Significant differences were observed comparing resistant isolates between Enterobacterales and NF-GNB by EUCAST (19.4% versus 4.2%, P < 0.01), but not by CLSI (4.4% versus 1.4%, P = 0.2). Cefiderocol was the most active antimicrobial tested. Cefiderocol showed excellent in vitro activity against MBL-GNB, especially NF-GNB; almost all isolates resistant to comparators were susceptible. IMPORTANCE This article demonstrates the efficacy of cefiderocol against a large collection of well-characterized metallo-beta-lactamase-producing isolates, some of them even producing double carbapenemases. Furthermore, cefiderocol activity is compared to other novel broad-spectrum antimicrobials with activity against carbapenemases.
Collapse
Affiliation(s)
- M. Delgado-Valverde
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - I. Portillo-Calderón
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - E. Recacha
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - P. Pérez-Palacios
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - A. Pascual
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Microbiología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
33
|
Huang YS, Chen PY, Chou PC, Wang JT. In Vitro Activities and Inoculum Effects of Cefiderocol and Aztreonam-Avibactam against Metallo-β-Lactamase-Producing Enterobacteriaceae. Microbiol Spectr 2023; 11:e0056923. [PMID: 37154758 PMCID: PMC10269523 DOI: 10.1128/spectrum.00569-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Cefiderocol and aztreonam-avibactam (ATM-AVI) both had activity against carbapenem-resistant Gram-negative bacilli, including those that produce metallo-β-lactamases (MBLs). We compared the in vitro activities and inoculum effects of these antibiotics against carbapenemase-producing Enterobacteriaceae (CPE), especially MBL-producing isolates. The MICs of cefiderocol and ATM-AVI were determined using broth microdilution method for a 2016 to 2021 collection of Enterobacteriaceae isolates which produced MBL, KPC, or OXA-48-like carbapenemases. MICs with high bacteria inoculum were also evaluated for susceptible isolates. A total of 195 CPE were tested, including 143 MBL- (74 NDM, 42 IMP, and 27 VIM), 38 KPC-, and 14 OXA-48-like-producing isolates. The susceptible rates of MBL-, KPC-, and OXA-48-like producers to cefiderocol were 86.0%, 92.1%, and 92.9%, respectively, and that to ATM-AVI were 95.8%, 100%, and 100%, respectively. NDM producers displayed lower susceptibility and higher MIC50s/MIC90s of cefiderocol (78.4%, 2/16 mg/L) than IMP (92.9%, 0.375/4 mg/L) and VIM (96.3%, 1/4 mg/L) producers. NDM- and VIM-producing Escherichia coli showed lower susceptibility to ATM-AVI (77.3% and 75.0%, respectively) compared to MBL-CPE of other species (100% susceptible). Inoculum effects for cefiderocol and ATM-AVI were observed among 95.9% and 95.2% of susceptible CPE, respectively. A switch from susceptible to resistant category was observed in 83.6% (143/171) of isolates for cefiderocol and 94.7% (179/189) for ATM-AVI. Our results revealed that NDM-producing Enterobacteriaceae had lower susceptibility to cefiderocol and ATM-AVI. Prominent inoculum effects on both antibiotics were observed for CPE, which suggested a risk of microbiological failure when they were used for CPE infections with high bacteria burden. IMPORTANCE The prevalence of infections caused by carbapenem-resistant Enterobacteriaceae is increasing worldwide. Currently, therapeutic options for metallo-β-lactamase (MBL)-producing Enterobacteriaceae remain limited. We demonstrated that clinical metallo-β-lactamase (MBL)-producing Enterobacteriaceae isolates were highly susceptible to cefiderocol (86.0%) and aztreonam-avibactam (ATM-AVI) (95.8%). However, inoculum effects on cefiderocol and ATM-AVI were observed for over 90% of susceptible carbapenemase-producing Enterobacteriaceae (CPE) isolates. Our findings highlight a potential risk of microbiological failure when using monotherapy with cefiderocol or ATM-AVI to treat severe CPE infection.
Collapse
Affiliation(s)
- Yu-Shan Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Chun Chou
- Laboratory of Infectious Disease, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
34
|
Kocer K, Boudour-Halil D, Chanthalangsy Q, Sähr A, Heeg K, Boutin S, Nurjadi D. Genomic Modification of TonB and Emergence of Small-Colony Phenotype in VIM- and NDM-Producing Escherichia coli following Cefiderocol Exposure In Vitro. Antimicrob Agents Chemother 2023; 67:e0011823. [PMID: 37022155 PMCID: PMC10190670 DOI: 10.1128/aac.00118-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Knowledge on resistance mechanisms toward cefiderocol, a novel siderophore-conjugated cephalosporin antibiotic, is still limited. Although the presence of New-Delhi metallo-β-lactamase has been demonstrated to facilitate the resistance development toward cefiderocol via siderophore receptor mutations in Enterobacter cloacae and Klebsiella pneumoniae, the impact of metallo-β-lactamases on facilitating such mutations in Escherichia coli is not yet elucidated. Our study aimed to study the effect of the presence of various β-lactamases, such as NDM-5, VIM-1, KPC-2, and OXA-48, on the development of cefiderocol resistance in E. coli. To this end, we performed liquid mating to transfer these β-lactamases onto a defined K-12 E. coli background (J53) and exposed these transconjugants to increasing cefiderocol concentrations in a serial passage experiment. Cefiderocol-resistant isolates were genotyped by whole-genome sequencing to investigate the underlying resistance mechanism. Cefiderocol-resistant isolates emerged only in isolates producing VIM-1 and NDM-5 metallo-β-lactamase, but not in those producing the serine β-lactamases KPC-2 and OXA-48. We observed two distinct morphological changes of the J53 E. coli strain exhibiting reduced colony size after insertions of transposable elements in the tonB gene leading to alterations in the TonB binding site and morphological changes consistent with the small-colony variant (SCV) phenotype due to mutations in the hemB and hemH genes. Passaging experiments suggested that these phenotypes were highly plastic. The SCV phenotype is attributed to immune evasion and decreased susceptibility toward antibiotics. The emergence of SCV following cefiderocol exposure may have clinical implications for bacterial clearance and warrants further investigation.
Collapse
Affiliation(s)
- Kaan Kocer
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Deniz Boudour-Halil
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Quan Chanthalangsy
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Aline Sähr
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hospital Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg-Lübeck-Borstel-Riems, Germany
| |
Collapse
|
35
|
Lasarte-Monterrubio C, Guijarro-Sánchez P, Vázquez-Ucha JC, Alonso-Garcia I, Alvarez-Fraga L, Outeda M, Martinez-Guitian M, Peña-Escolano A, Maceiras R, Lence E, González-Bello C, Arca-Suárez J, Bou G, Beceiro A. Antimicrobial Activity of Cefiderocol against the Carbapenemase-Producing Enterobacter cloacae Complex and Characterization of Reduced Susceptibility Associated with Metallo-β-Lactamase VIM-1. Antimicrob Agents Chemother 2023; 67:e0150522. [PMID: 37195077 PMCID: PMC10190674 DOI: 10.1128/aac.01505-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/16/2023] [Indexed: 05/18/2023] Open
Abstract
Emergence of cefiderocol resistance among carbapenemase-producing Enterobacterales, particularly those in the Enterobacter cloacae complex (ECC), is becoming of alarming concern; however, the mechanistic basis of this phenomenon remains poorly understood. We describe the acquisition of VIM-1-mediated reduced cefiderocol susceptibility (MICs 0.5 to 4 mg/L) in a collection of 54 carbapenemase-producing isolates belonging to the ECC. MICs were determined by reference methodologies. Antimicrobial resistance genomic analysis was performed through hybrid WGS. The impact of VIM-1 production on cefiderocol resistance in the ECC background was examined at microbiological, molecular, biochemical, and atomic levels. Antimicrobial susceptibility testing yielded 83.3% susceptible isolates and MIC50/90 values of 1/4 mg/L. Decreased susceptibility to cefiderocol was mainly associated with isolates producing VIM-1, with cefiderocol MICs 2- to 4-fold higher than for isolates carrying other types of carbapenemases. E. cloacae and Escherichia coli VIM-1 transformants displayed significantly enhanced cefiderocol MICs. Biochemical assays with purified VIM-1 protein revealed low but detectable cefiderocol hydrolysis. Simulation studies revealed how cefiderocol is anchored to the VIM-1 active site. Additional molecular assays and WGS data analysis highlighted the implication of SHV-12 coproduction and suggested the inactivation of the FcuA-like siderophore receptor as further contributors to the higher cefiderocol MICs. Our findings warn of the potential of the VIM-1 carbapenemase to at least partly limit the activity of cefiderocol in the ECC. This effect is probably enhanced due to combination with additional mechanisms, such as ESBL production and siderophore inactivation, and indicates the need for active surveillance to extend the life span of this promising cephalosporin.
Collapse
Affiliation(s)
- Cristina Lasarte-Monterrubio
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Paula Guijarro-Sánchez
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Juan Carlos Vázquez-Ucha
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Isaac Alonso-Garcia
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Laura Alvarez-Fraga
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Michelle Outeda
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Marta Martinez-Guitian
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
- NANOBIOFAR, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Peña-Escolano
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Romina Maceiras
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Emilio Lence
- Centre for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Concepción González-Bello
- Centre for Research in Biological Chemistry and Molecular Materials (CiQUS), Department of Organic Chemistry, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jorge Arca-Suárez
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - German Bou
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| | - Alejandro Beceiro
- Microbiology Department, A Coruña University Hospital Complex (CHUAC), A Coruña Institute for Biomedical Research (INIBIC), CIBER de Enfermedades Infecciosas (CIBERINFEC), A Coruña, Spain
| |
Collapse
|
36
|
Kaye KS, Naas T, Pogue JM, Rossolini GM. Cefiderocol, a Siderophore Cephalosporin, as a Treatment Option for Infections Caused by Carbapenem-Resistant Enterobacterales. Infect Dis Ther 2023; 12:777-806. [PMID: 36847998 PMCID: PMC10017908 DOI: 10.1007/s40121-023-00773-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) remain a significant public health threat, and, despite recent approvals, new antibiotics are needed. Severe infections caused by CRE, such as nosocomial pneumonia and bloodstream infections, are associated with a relatively high risk of morbidity and mortality. The recent approval of ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, plazomicin, eravacycline and cefiderocol has broadened the armamentarium for the treatment of patients with CRE infections. Cefiderocol is a siderophore cephalosporin with overall potent in vitro activity against CRE. It is taken up via iron transport channels through active transport, with some entry into bacteria through traditional porin channels. Cefiderocol is relatively stable against hydrolysis by most serine- and metallo-beta-lactamases, including KPC, NDM, VIM, IMP and OXA carbapenemases-the most frequent carbapenemases detected in CRE. The efficacy and safety of cefiderocol has been demonstrated in three randomised, prospective, parallel group or controlled clinical studies in patients at risk of being infected by multidrug-resistant or carbapenem-resistant Gram-negative bacteria. This paper reviews the in vitro activity, emergence of resistance, preclinical effectiveness, and clinical experience for cefiderocol, and its role in the management of patients with CRE infections.
Collapse
Affiliation(s)
- Keith S Kaye
- Division of Allergy, Immunology and Infectious Diseases, Department of Medicine, Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Thierry Naas
- Team ReSIST, UMR1184, INSERM, CEA, University Paris-Saclay, Translational Research Building, Faculty of Medicine, Hopital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France
| | - Jason M Pogue
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, and Microbiology and Virology Unit, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy.
| |
Collapse
|
37
|
Almeida MC, da Costa PM, Sousa E, Resende DISP. Emerging Target-Directed Approaches for the Treatment and Diagnosis of Microbial Infections. J Med Chem 2023; 66:32-70. [PMID: 36586133 DOI: 10.1021/acs.jmedchem.2c01212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With the rising levels of drug resistance, developing efficient antimicrobial therapies has become a priority. A promising strategy is the conjugation of antibiotics with relevant moieties that can potentiate their activity by target-directing. The conjugation of siderophores with antibiotics allows them to act as Trojan horses by hijacking the microorganisms' highly developed iron transport systems and using them to carry the antibiotic into the cell. Through the analysis of relevant examples of the past decade, this Perspective aims to reveal the potential of siderophore-antibiotic Trojan horses for the treatment of infections and the role of siderophores in diagnostic techniques. Other conjugated molecules will be the subject of discussion, namely those involving vitamin B12, carbohydrates, and amino acids, as well as conjugated compounds targeting protein degradation and β-lactamase activated prodrugs.
Collapse
Affiliation(s)
- Mariana C Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Paulo M da Costa
- CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Diana I S P Resende
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, FFUP - Faculdade de Farmácia, Universidade do Porto, Rua de Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.,CIIMAR- Centro Interdisciplinar de Investigação Marinha e Ambiental, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| |
Collapse
|
38
|
Larcher R, Laffont-Lozes P, Roger C, Doncesco R, Groul-Viaud C, Martin A, Loubet P, Lavigne JP, Pantel A, Sotto A. Last resort beta-lactam antibiotics for treatment of New-Delhi Metallo-Beta-Lactamase producing Enterobacterales and other Difficult-to-Treat Resistance in Gram-negative bacteria: A real-life study. Front Cell Infect Microbiol 2022; 12:1048633. [PMID: 36544909 PMCID: PMC9762507 DOI: 10.3389/fcimb.2022.1048633] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Novel last resort beta-lactam antibiotics are now available for management of infections due to New-Delhi Metallo-Beta-Lactamase (NDM) producing Enterobacterales and non-fermenters with Difficult-to-Treat Resistance. However, data regarding the use of imipenem-cilastatin-relebactam (IMI-REL), cefiderocol (CFD) and ceftazidime-avibactam plus aztreonam (CAZ-AVI-ATM) are scarce in real-life settings. This study aimed to describe the use of last resort beta-lactam antibiotics, the microbiology and the outcome, in patients hospitalized in a tertiary hospital. Methods We conducted a monocentric observational cohort study from 2020/01/01, to 2022/08/31. We screened all patients admitted to Nimes University Hospital who have received ≥ 1 dose of last resort beta-lactam antibiotics during the study period, using the Pharmacy database. We included patients treated with IMI-REL, CFD and CAZ-AVI-ATM. The primary endpoint was the infection-free survival rate. We also calculated rates of microbiological and clinical cure, recurrent infection, death and adverse events. Results Twenty-seven patients were included in the study and 30 treatment courses were analyzed: CFD (N=24; 80%), CAZ-AVI-ATM (N=3; 10%) and IMI-REL (N=3; 10%). Antibiotics were used in 21 males (70%) and 9 females (30%) with a median age at 65-year-old [50-73.5] and a median Charlson index at 1 [0-2]. Almost all the patients had ≥ 1 risk factor for carbapenem resistant bacteria, a half of them was hospitalized for severe COVID-19, and most of antibiotic courses (N=26; 87%) were associated with ICU admission. In the study population, the probability of infection-free survival at day-90 after last resort beta-lactam therapy initiation was 48.4% CI95% [33.2-70.5]. Clinical failure rate was at 30%, microbiological failure rate at 33% and mortality rate at 23%. Adverse events were documented in 5 antibiotic courses (17%). In details, P. aeruginosa were mainly treated with CFD and IMI-REL, S. maltophilia with CFD and CAZ-AVI-ATM, A. baumannii with CFD, and NDM producing-K. pneumoniae with CAZ-AVI-ATM and CFD. After a treatment course with CFD, CAZ-AVI-ATM and IMI-REL, the probability of infection-free survival was 48% CI95% [10.4-73.5], 33.3% CI95% [6.7-100], 66.7% CI95% [30-100], respectively. Discussion/conclusion Use of last resort beta-lactam antimicrobials in real-life settings was a safe and efficient therapeutic option for severe infections related to Gram-negative bacteria with Difficult-to-Treat Resistance.
Collapse
Affiliation(s)
- Romaric Larcher
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,PhyMedExp (Physiology and Experimental Medicine), INSERM (French Institute of Health and Medical Research), CNRS (French National Centre for Scientific Research), University of Montpellier, Montpellier, France,*Correspondence: Romaric Larcher,
| | | | - Claire Roger
- Anesthesiology and Critical Care Medicine, Nimes University Hospital, Nimes, France
| | - Regine Doncesco
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Celine Groul-Viaud
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France
| | - Aurelie Martin
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France
| | - Paul Loubet
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| | - Albert Sotto
- Department of Infectious and Tropical Diseases, Nimes University Hospital, Nimes, France,VBIC (Bacterial Virulence and Chronic Infection), INSERM (French Institute of Health and Medical Research), Montpellier University, Nimes, France
| |
Collapse
|
39
|
Kocer K, Boutin S, Heeg K, Nurjadi D. The acquisition of transferable extrachromosomal fec operon is associated with a cefiderocol MIC increase in Enterobacterales. J Antimicrob Chemother 2022; 77:3487-3495. [PMID: 36245258 DOI: 10.1093/jac/dkac347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cefiderocol is a novel siderophore cephalosporin active against MDR Gram-negative bacilli, including MBL-harbouring Enterobacterales. The detection of multiple cefiderocol-resistant blaVIM-carrying Enterobacterales isolates (MIC = 4 mg/L) from a single patient suggested an additional, potentially transferable, resistance determinant as blaVIM typically does not elevate cefiderocol MIC above the resistance threshold. METHODS Transfer of a mobile genetic element was performed in liquid mating experiments. All donor isolates and transconjugants were characterized by short-read WGS to identify potential resistance determinants. mRNA expression of siderophore receptors was determined by quantitative RT-PCR. Validation was performed by transformation. Antibiotic susceptibility was determined by broth microdilution. RESULTS Liquid mating experiments indicated the presence of transferable resistance determinants. Comparative genomic analysis of the clinical isolates and their respective transconjugants revealed the transfer of an accessory fec operon (fecABCDEIR). Transformation of the fec operon-containing vector into a TOP10 Escherichia coli led to an elevation of the cefiderocol MIC by at least 16-fold. Higher expression of fecA as a proxy for the fec operon mRNA expression was associated with phenotypic cefiderocol resistance. Both VIM and the accessory fec operon contribute to the elevation of cefiderocol MIC beyond the resistance threshold. The acquisition of an accessory fec operon via liquid mating confers phenotypic cefiderocol resistance in both E. coli J53 and Pseudomonas aeruginosa PAO1, indicating a broad-host-range nature of this mobile resistance determinant. CONCLUSIONS The emergence of a transferable cefiderocol resistance determinant without prior exposure to the substance is worrisome and should be monitored closely.
Collapse
Affiliation(s)
- Kaan Kocer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, Heidelberg 69120, Germany.,Member of the German Center for Lung Research (DZL), Translational Lung Research Center (TLRC), Im Neuenheimer Feld 130.3, Heidelberg, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, Heidelberg 69120, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Ratzeburger Allee 160, Lübeck 23538, Germany
| |
Collapse
|
40
|
Coppola N, Maraolo AE, Onorato L, Scotto R, Calò F, Atripaldi L, Borrelli A, Corcione A, De Cristofaro MG, Durante-Mangoni E, Filippelli A, Franci G, Galdo M, Guglielmi G, Pagliano P, Perrella A, Piazza O, Picardi M, Punzi R, Trama U, Gentile I. Epidemiology, Mechanisms of Resistance and Treatment Algorithm for Infections Due to Carbapenem-Resistant Gram-Negative Bacteria: An Expert Panel Opinion. Antibiotics (Basel) 2022; 11:1263. [PMID: 36140042 PMCID: PMC9495208 DOI: 10.3390/antibiotics11091263] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Antimicrobial resistance represents a serious threat for global health, causing an unacceptable burden in terms of morbidity, mortality and healthcare costs. In particular, in 2017, carbapenem-resistant organisms were listed by the WHO among the group of pathogens for which novel treatment strategies are urgently needed. Fortunately, several drugs and combinations have been introduced in recent years to treat multi-drug-resistant (MDR) bacteria. However, a correct use of these molecules is needed to preserve their efficacy. In the present paper, we will provide an overview on the epidemiology and mechanisms of resistance of the most common MDR Gram-negative bacteria, proposing a treatment algorithm for the management of infections due to carbapenem-resistant bacteria based on the most recent clinical evidence.
Collapse
Affiliation(s)
- Nicola Coppola
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Alberto Enrico Maraolo
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Lorenzo Onorato
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Riccardo Scotto
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Federica Calò
- Infectious Diseases Unit, Department of Mental Health and Public Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Luigi Atripaldi
- Clinical Pathology Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Anna Borrelli
- Direzione Sanitaria, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Antonio Corcione
- Intensive Care Unit, Monaldi Hospital, AORN Dei Colli, 80131 Naples, Italy
| | | | - Emanuele Durante-Mangoni
- Department of Precision Medicine, University of Campania ‘L. Vanvitelli’ and Unit of Infectious and Transplant Medicine, Monaldi Hospital, AORN Ospedali dei Colli, 80131 Naples, Italy
| | - Amelia Filippelli
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pharmacology and Pharmacogenetics Unit, “San Giovanni di Dio e Ruggi d’Aragona” University Hospital, 84125 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine Surgery and Dentistry, University of Salerno and Clinical Pathology and Microbiology Unit, “San Giovanni di Dio e Ruggi D’Aragona” University Hospital, 84125 Salerno, Italy
| | - Maria Galdo
- Pharmacy Unit, AORN Dei Colli, 80131 Naples, Italy
| | | | - Pasquale Pagliano
- Department of Medicine Surgery and Dentistry, University of Salerno, Infectious Diseases Unit, 84125 Salerno, Italy
| | - Alessandro Perrella
- Emerging Infectious Disease with High Contagiousness Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry, University of Salerno, Unit of Anesthesiology, 84125 Salerno, Italy
| | - Marco Picardi
- Department of Clinical Medicine and Surgery, Hematology Unit, Federico II University, 80131 Naples, Italy
| | - Rodolfo Punzi
- Hepatic Infectious Disease Unit, Cotugno Hospital, AORN Dei Colli, 80131 Naples, Italy
| | - Ugo Trama
- UOSD Politica del Farmaco e Dispositivi, Campania region, 80143 Naples, Italy
| | - Ivan Gentile
- Infectious Diseases Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
41
|
Fröhlich C, Sørum V, Tokuriki N, Johnsen PJ, Samuelsen Ø. Evolution of β-lactamase-mediated cefiderocol resistance. J Antimicrob Chemother 2022; 77:2429-2436. [PMID: 35815680 PMCID: PMC9410664 DOI: 10.1093/jac/dkac221] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cefiderocol is a novel siderophore β-lactam with improved hydrolytic stability toward β-lactamases, including carbapenemases, achieved by combining structural moieties of two clinically efficient cephalosporins, ceftazidime and cefepime. Consequently, cefiderocol represents a treatment alternative for infections caused by MDR Gram-negatives. OBJECTIVES To study the role of cefiderocol on resistance development and on the evolution of β-lactamases from all Ambler classes, including KPC-2, CTX-M-15, NDM-1, CMY-2 and OXA-48. METHODS Directed evolution, using error-prone PCR followed by selective plating, was utilized to investigate how the production and the evolution of different β-lactamases cause changes in cefiderocol susceptibility determined using microbroth dilution assays (MIC and IC50). RESULTS We found that the expression of blaOXA-48 did not affect cefiderocol susceptibility. On the contrary, the expression of blaKPC-2, blaCMY-2, blaCTX-M-15 and blaNDM-1 substantially reduced cefiderocol susceptibility by 4-, 16-, 8- and 32-fold, respectively. Further, directed evolution on these enzymes showed that, with the acquisition of only 1-2 non-synonymous mutations, all β-lactamases were evolvable to further cefiderocol resistance by 2- (NDM-1, CTX-M-15), 4- (CMY-2), 8- (OXA-48) and 16-fold (KPC-2). Cefiderocol resistance development was often associated with collateral susceptibility changes including increased resistance to ceftazidime and ceftazidime/avibactam as well as functional trade-offs against different β-lactam drugs. CONCLUSIONS The expression of contemporary β-lactamase genes can potentially contribute to cefiderocol resistance development and the acquisition of mutations in these genes results in enzymes adapting to increasing cefiderocol concentrations. Resistance development caused clinically important cross-resistance, especially against ceftazidime and ceftazidime/avibactam.
Collapse
Affiliation(s)
| | - Vidar Sørum
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Pål Jarle Johnsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
42
|
NDM-35-Producing ST167 Escherichia coli Highly Resistant to β-Lactams Including Cefiderocol. Antimicrob Agents Chemother 2022; 66:e0031122. [PMID: 35867524 PMCID: PMC9380521 DOI: 10.1128/aac.00311-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A multidrug-resistant (carbapenems, aztreonam + avibactam, and cefiderocol) ST167 Escherichia coli clinical isolate recovered from a patient hospitalized in Switzerland produced NDM-35 showing ca. 10-fold increased hydrolytic activity toward cefiderocol compared to NDM-1. The isolate co-produced a CMY-type β-lactamase, exhibited a four amino-acid insertion in PBP3, and possessed a truncated iron transporter CirA protein. Our study identified an association of unrelated resistance mechanisms leading to resistance to virtually all β-lactams in a high-risk E. coli clone.
Collapse
|
43
|
Babidhan R, Lewis A, Atkins C, Jozefczyk NJ, Nemecek BD, Montepara CA, Gionfriddo MR, Zimmerman DE, Covvey JR, Guarascio AJ. Safety and efficacy of cefiderocol for off-label treatment indications: A systematic review. Pharmacotherapy 2022; 42:549-566. [PMID: 35611627 DOI: 10.1002/phar.2704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Cefiderocol is a siderophore cephalosporin recently approved by the United States Food and Drug Administration for the treatment of hospital- and ventilator-acquired bacterial pneumonia and complicated urinary tract infections. However, there is potential for cefiderocol utility for a variety of other infections. The purpose of this systematic review was to identify literature examining the safety and efficacy of cefiderocol for off-label indications. METHODS The PRISMA guidelines were utilized for reporting. Databases searched included PubMed, Scopus, and Embase, from inception to September 2021. Manuscripts describing cefiderocol off-label use in clinical settings were included. Exclusion criteria were studies focused on labeled indications, animal studies, pharmacodynamic/pharmacokinetic studies, in vitro or laboratory studies, and manuscripts in languages other than English or Arabic. Each stage of review utilized two independent investigators, with conflicts resolved and critical appraisal performed. Data regarding presentation, clinical course, and infection characteristics were extracted and descriptively analyzed. RESULTS The search identified a total of 985 records, narrowed to a final set of 27 studies. Among studies included were 18 (66.7%) case reports, 8 (29.6%) case series, and 1 (3.7%) phase 3 clinical trial. Cefiderocol was most frequently used off-label for bacteremia/sepsis with or without an identified source in 51 (67.1%) out of a total of 76 included patients. Among case series/reports with available data, 43 of 53 patients (81.1%) received combination antibiotic therapy. The most common pathogens identified included multi/extensively drug-resistant Pseudomonas aeruginosa and/or Acinetobacter baumannii. Various clinical end points were reported, while microbiological end points were reported in 18 (66.7%) studies. Cefiderocol-related side effects were uncommon and rarely use-limiting. CONCLUSIONS This systematic review depicts relative clinical effectiveness of off-label cefiderocol, most commonly for P. aeruginosa and A. baumannii infections as combination antibiotic therapy. Further study is needed to elucidate the safety and efficacy of cefiderocol across an expanded set of patients and indications.
Collapse
Affiliation(s)
- Riyan Babidhan
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Abigale Lewis
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Cailin Atkins
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | | | - Branden D Nemecek
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Medical Center - Mercy Hospital, Pittsburgh, Pennsylvania, USA
| | - Courtney A Montepara
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
- Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | | | - David E Zimmerman
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Medical Center - Mercy Hospital, Pittsburgh, Pennsylvania, USA
| | - Jordan R Covvey
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Anthony J Guarascio
- Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
- Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
44
|
Wang Q, Jin L, Sun S, Yin Y, Wang R, Chen F, Wang X, Zhang Y, Hou J, Zhang Y, Zhang Z, Luo L, Guo Z, Li Z, Lin X, Bi L, Wang H. Occurrence of High Levels of Cefiderocol Resistance in Carbapenem-Resistant Escherichia coli before Its Approval in China: a Report from China CRE-Network. Microbiol Spectr 2022; 10:e0267021. [PMID: 35481835 PMCID: PMC9241927 DOI: 10.1128/spectrum.02670-21] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Cefiderocol has been approved in the United States and Europe but not in China. We aim to evaluate carbapenem-resistant Enterobacterales (CRE) susceptibility to cefiderocol to provide baseline data and investigate the resistance mechanism. From 2018 to 2019, 1,158 CRE isolates were collected from 23 provinces and municipalities across China. The MICs of antimicrobials were determined via the agar dilution and broth microdilution methods. Whole-genome sequencing was performed for 26 cefiderocol-resistant Escherichia coli isolates to investigate the resistance mechanism. Clone transformations were used to explore the function of cirA, pbp3, and blaNDM-5 in resistance. Among the 21 antimicrobials tested, aztreonam-avibactam had the highest antibacterial activity (98.3%), followed by cefiderocol (97.3%) and colistin (95.3%). A total of 26 E. coli isolates harboring New Delhi metallo-beta-lactamase 5 (NDM-5) showed high levels of cefiderocol resistance, of which sequence type 167 (ST167) accounted for 76.9% (20/26). We found 4 amino-acid insertions (YRIN/YRIK) at position 333 of penicillin-binding protein 3 (PBP3) in the 26 E. coli isolates, and 22 isolates had a siderophore receptor cirA premature stop codon. After obtaining the wild-type cirA supplementation, the MIC of the transformants decreased by 8 to 16 times in two cefiderocol-resistant isolates. A cefiderocol-susceptible isolate harboring NDM-5 has an MIC increased from 1 μg/mL to 64 μg/mL after cirA deletion, and the MIC decreased from 64 μg/mL to 0.5 μg/mL after blaNDM-5 deletion. The MIC of the E. coli DH5α, from which the pbp3 mutant was obtained, increased from 0.064 μg/mL to 0.25 μg/mL. Cefiderocol showed activity against most CRE in China. The resistance of ST167 E. coli to cefiderocol is a combination of the premature stop codon of cirA, pbp3 mutation, and blaNDM-5 existence. IMPORTANCE Cefiderocol, a new siderophore cephalosporin, has been approved in the United States and Europe but not in China. At present, there are almost no antimicrobial susceptibility evaluation data on cefiderocol in China. We evaluated the in vitro susceptibility of 1,158 strains of carbapenem-resistant Enterobacterales to cefiderocol and other antibiotics. We found that a high proportion of Escherichia coli showed high-level resistance to cefiderocol. Whole-genome sequencing (WGS) and molecular cloning experiments confirmed that the synergistic effect of the cirA gene premature stop codon, blaNDM-5 existence, and the pbp3 mutation is associated with high levels of cefiderocol resistance.
Collapse
Affiliation(s)
- Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jun Hou
- Department of Clinical Laboratory, The Third Hospital of Mianyang, Sichuan, China
| | - Yumei Zhang
- Department of Clinical Laboratory, People’s Hospital of Zunhua, Hebei, China
| | - Zhijie Zhang
- Department of Clinical Laboratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liuchun Luo
- Department of Clinical Laboratory, Liuzhou People’s Hospital, Guangxi, China
| | - Zhusheng Guo
- Department of Clinical Laboratory, Dongguan Donghua Hospital, Guangdong, China
| | - Zhenpeng Li
- Department of Clinical Laboratory, Wanbei Coal-Electricity Group General Hospital, Anhui, China
| | - Xin Lin
- Department of Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lei Bi
- Department of Clinical Laboratory, Zibo Central Hospital, Shandong, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
45
|
Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics (Basel) 2022; 11:antibiotics11060723. [PMID: 35740130 PMCID: PMC9220290 DOI: 10.3390/antibiotics11060723] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Cefiderocol appears promising, as it can overcome most β-lactam resistance mechanisms (including β-lactamases, porin mutations, and efflux pumps). Resistance is uncommon according to large multinational cohorts, including against isolates resistant to carbapenems, ceftazidime/avibactam, ceftolozane/tazobactam, and colistin. However, alarming proportions of resistance have been reported in some recent cohorts (up to 50%). A systematic review was conducted in PubMed and Scopus from inception to May 2022 to review mechanisms of resistance, prevalence of heteroresistance, and in vivo emergence of resistance to cefiderocol during treatment. A variety of mechanisms, typically acting in concert, have been reported to confer resistance to cefiderocol: β-lactamases (especially NDM, KPC and AmpC variants conferring resistance to ceftazidime/avibactam, OXA-427, and PER- and SHV-type ESBLs), porin mutations, and mutations affecting siderophore receptors, efflux pumps, and target (PBP-3) modifications. Coexpression of multiple β-lactamases, often in combination with permeability defects, appears to be the main mechanism of resistance. Heteroresistance is highly prevalent (especially in A. baumannii), but its clinical impact is unclear, considering that in vivo emergence of resistance appears to be low in clinical studies. Nevertheless, cases of in vivo emerging cefiderocol resistance are increasingly being reported. Continued surveillance of cefiderocol’s activity is important as this agent is introduced in clinical practice.
Collapse
|
46
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
47
|
Lan P, Lu Y, Chen Z, Wu X, Hua X, Jiang Y, Zhou J, Yu Y. Emergence of High-Level Cefiderocol Resistance in Carbapenem-Resistant Klebsiella pneumoniae from Bloodstream Infections in Patients with Hematologic Malignancies in China. Microbiol Spectr 2022; 10:e0008422. [PMID: 35323031 PMCID: PMC9045219 DOI: 10.1128/spectrum.00084-22] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cefiderocol is a novel siderophore cephalosporin exhibiting potent antimicrobial activities. Although cefiderocol has not been approved in China, resistance is emerging. A multicenter study was performed to evaluate the cefiderocol resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains from bloodstream infections in patients with hematologic malignancies in China. Clinical data analysis and whole-genome sequencing were conducted for collected cefiderocol-resistant CRKP strains. CRISPR-Cas9 system was employed to construct site-specific mutagenesis for gene cirA. Plasmid curing and cloning were performed to assess the effect of β-lactamases on cefiderocol resistance. Total 86 CRKP strains were collected. The MICs of cefiderocol ranged from 0.06 to >256 mg/L. Among four cefiderocol-nonsusceptible strains (4/86, 4.7%), two cefiderocol-resistant strains AR8538 (MIC = 32 mg/L) and AR8416 (MIC > 256 mg/L) were isolated from two patients with acute lymphocytic leukemia (frequency of resistance, 2/86, 2.3%). Metallo- and serine-β-lactamase inhibitors addition would decrease the MIC of cefiderocol from 32 to 1 mg/L in AR8538, which harbors blaSHV-12, blaDHA-1, and two copies of blaNDM-1 in different plasmids. Avibactam did not impact cefiderocol susceptibility of AR8416, which produces NDM-5. However, we found a deficient CirA in AR8416. Using the same K serotype strain D3, we proved CirA deficiency or carrying NDM individually reduced cefiderocol susceptibility, but their simultaneously existence rendered a high-level cefiderocol resistance. In summary, the resistance of CRKP against cefiderocol is mediated by multiple factors, including the deficiency of CirA, metallo- or serine-β-lactamases, while a high-level cefiderocol resistance could be rendered by the combined effect of NDM expression and CirA deficiency. IMPORTANCE Cefiderocol-resistant CRKP strains are emerging in bloodstream infections in Chinese patients with hematologic malignancies, although cefiderocol has not been approved for clinical use in China. Our study proved that the resistance of CRKP against cefiderocol is mediated by multiple factors, including the deficiency of CirA, metallo- or serine-β-lactamases, while a high-level cefiderocol resistance could be rendered by the combined effect of NDM expression and CirA deficiency. As NDM production is one of the most critical mechanisms resulting in carbapenem resistance, it would pose great challenges on the clinical efficacy of cefiderocol in future.
Collapse
Affiliation(s)
- Peng Lan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Ye Lu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueqing Wu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Yunsong Yu
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, China
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
48
|
Treatment of Severe Infections Due to Metallo-Betalactamases Enterobacterales in Critically Ill Patients. Antibiotics (Basel) 2022; 11:antibiotics11020144. [PMID: 35203747 PMCID: PMC8868391 DOI: 10.3390/antibiotics11020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Metallo-beta-lactamases-producing (MBL) Enterobacterales is a growing problem worldwide. The optimization of antibiotic therapy is challenging. The pivotal available therapeutic options are either the combination of ceftazidime/avibactam and aztreonam or cefiderocol. Colistin, fosfomycin, tetracyclines and aminoglycosides are also frequently effective in vitro, but are associated with less bactericidal activity or more toxicity. Prior to the availability of antibiotic susceptibility testing, severe infections should be treated with a combination therapy. A careful optimization of the pharmacokinetic/pharmacodynamic properties of antimicrobials is instrumental in severe infections. The rules of antibiotic therapy are also reported and discussed. To conclude, treatment of severe MBL infections in critically ill patients is difficult. It should be individualized with a close collaboration of intensivists with microbiologists, pharmacists and infection control practitioners.
Collapse
|