1
|
Sotorilli GE, Gravina HD, de Carvalho AC, Shimizu JF, Fontoura MA, Melo-Hanchuk TD, Cordeiro AT, Marques RE. Phenotypical Screening of an MMV Open Box Library and Identification of Compounds with Antiviral Activity against St. Louis Encephalitis Virus. Viruses 2023; 15:2416. [PMID: 38140657 PMCID: PMC10747599 DOI: 10.3390/v15122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/02/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne Flavivirus that may cause severe neurological disease in humans and other animals. There are no specific treatments against SLEV infection or disease approved for human use, and drug repurposing may represent an opportunity to accelerate the development of treatments against SLEV. Here we present a scalable, medium-throughput phenotypic cell culture-based screening assay on Vero CCL81 cells to identify bioactive compounds that could be repurposed against SLEV infection. We screened eighty compounds from the Medicines for Malaria Venture (MMV) COVID Box library to identify nine (11%) compounds that protected cell cultures from SLEV-induced cytopathic effects, with low- to mid-micromolar potencies. We validated six hit compounds using viral plaque-forming assays to find that the compounds ABT-239, Amiodarone, Fluphenazine, Posaconazole, Triparanol, and Vidofludimus presented varied levels of antiviral activity and selectivity depending on the mammalian cell type used for testing. Importantly, we identified and validated the antiviral activity of the anti-flavivirus nucleoside analog 7DMA against SLEV. Triparanol and Fluphenazine reduced infectious viral loads in both Vero CCL81 and HBEC-5i cell cultures and, similar to the other validated compounds, are likely to exert antiviral activity through a molecular target in the host.
Collapse
Affiliation(s)
- Giuliana Eboli Sotorilli
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Genetics, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Humberto Doriguetto Gravina
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Ana Carolina de Carvalho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Genetics, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Marina Alves Fontoura
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
- Department of Cellular and Structural Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas 13083-100, Brazil
| | - Talita Diniz Melo-Hanchuk
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Artur Torres Cordeiro
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| | - Rafael Elias Marques
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; (G.E.S.); (H.D.G.); (A.C.d.C.); (J.F.S.); (M.A.F.); (T.D.M.-H.); (A.T.C.)
| |
Collapse
|
2
|
Bozzola E, Barni S, Barone C, Perno CF, Maggioni A, Villani A. Human parechovirus meningitis in children: state of the art. Ital J Pediatr 2023; 49:144. [PMID: 37880789 PMCID: PMC10601212 DOI: 10.1186/s13052-023-01550-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023] Open
Abstract
Human Parechovirus is a common cause of infection occurring especially during the first years of life. It may present with a broad spectrum of manifestations, ranging from a pauci-symptomatic infection to a sepsis-like or central nervous system disease. Aim of this study is to explore the knowledge on Parechovirus meningitis. According to the purpose of the study, a systematic review of the literature focusing on reports on central nervous system. Parechovirus infection of children was performed following PRISMA criteria. Out of the search, 304 papers were identified and 81 records were included in the revision dealing with epidemiology, clinical manifestations, laboratory findings, imaging, therapy and outcome. Parechovirus meningitis incidence may vary all over the world and outbreaks may occur. Fever is the most common symptom, followed by other non-specific signs and symptoms including irritability, poor feeding, skin rash or seizures. Although several reports describe favourable short-term neurodevelopmental outcomes at discharge after Parechovirus central nervous system infection, a specific follow up and the awareness on the risk of sequelae should be underlined in relation to the reported negative outcome. Evidence seems to suggest a correlation between magnetic imaging resonance alteration and a poor outcome.
Collapse
Affiliation(s)
- Elena Bozzola
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Sarah Barni
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Barone
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Carlo Federico Perno
- Multimodal Research Area, Microbiology and Diagnostics of Immunology Unit, Bambino Gesù Children Hospital IRCCS, Rome, Italy
| | | | - Alberto Villani
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
Synergistic Interaction of Caspofungin Combined with Posaconazole against FKS Wild-Type and Mutant Candida auris Planktonic Cells and Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11111601. [PMID: 36421245 PMCID: PMC9686983 DOI: 10.3390/antibiotics11111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to cause biofilm-associated outbreaks, where frequently indwelling devices are the source of infections. The number of effective therapies is limited; thus, new, even-combination-based strategies are needed. Therefore, the in vitro efficacy of caspofungin with posaconazole against FKS wild-type and mutant Candida auris isolates was determined. The interactions were assessed utilizing the fractional inhibitory concentration indices (FICIs), the Bliss model, and a LIVE/DEAD assay. Planktonic minimum inhibitory concentrations (pMICs) for the caspofungin-posaconazole combination showed a 4- to 256-fold and a 2- to 512-fold decrease compared to caspofungin and posaconazole alone, respectively. Sessile minimum inhibitory concentrations (sMICs) for caspofungin and posaconazole in combination showed an 8- to 128-fold and a 4- to 512-fold decrease, respectively. The combination showed synergy, especially against biofilms (FICIs were 0.033-0.375 and 0.091-0.5, and Bliss cumulative synergy volumes were 6.96 and 32.39 for echinocandin-susceptible and -resistant isolates, respectively). The caspofungin-exposed (4 mg/L) C. auris biofilms exhibited increased cell death in the presence of posaconazole (0.03 mg/L) compared to untreated, caspofungin-exposed and posaconazole-treated biofilms. Despite the favorable effect of caspofungin with posaconazole, in vivo studies are needed to confirm the therapeutic potential of this combination in C. auris-associated infections.
Collapse
|
4
|
Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: Past, present, and future. Acta Pharm Sin B 2022; 12:1542-1566. [PMID: 35847514 PMCID: PMC9279511 DOI: 10.1016/j.apsb.2021.08.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Enterovirus A71 (EV-A71) is a significant human pathogen, especially in children. EV-A71 infection is one of the leading causes of hand, foot, and mouth diseases (HFMD), and can lead to neurological complications such as acute flaccid myelitis (AFM) in severe cases. Although three EV-A71 vaccines are available in China, they are not broadly protective and have reduced efficacy against emerging strains. There is currently no approved antiviral for EV-A71. Significant progress has been made in developing antivirals against EV-A71 by targeting both viral proteins and host factors. However, viral capsid inhibitors and protease inhibitors failed in clinical trials of human rhinovirus infection due to limited efficacy or side effects. This review discusses major discoveries in EV-A71 antiviral development, analyzes the advantages and limitations of each drug target, and highlights the knowledge gaps that need to be addressed to advance the field forward.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| | - Madeleine Zheng
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
5
|
Repurposing Antifungals for Host-Directed Antiviral Therapy? Pharmaceuticals (Basel) 2022; 15:ph15020212. [PMID: 35215323 PMCID: PMC8878022 DOI: 10.3390/ph15020212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Because of their epidemic and pandemic potential, emerging viruses are a major threat to global healthcare systems. While vaccination is in general a straightforward approach to prevent viral infections, immunization can also cause escape mutants that hide from immune cell and antibody detection. Thus, other approaches than immunization are critical for the management and control of viral infections. Viruses are prone to mutations leading to the rapid emergence of resistant strains upon treatment with direct antivirals. In contrast to the direct interference with pathogen components, host-directed therapies aim to target host factors that are essential for the pathogenic replication cycle or to improve the host defense mechanisms, thus circumventing resistance. These relatively new approaches are often based on the repurposing of drugs which are already licensed for the treatment of other unrelated diseases. Here, we summarize what is known about the mechanisms and modes of action for a potential use of antifungals as repurposed host-directed anti-infectives for the therapeutic intervention to control viral infections.
Collapse
|
6
|
Nagaraj S, Manivannan S, Narayan S. Potent antifungal agents and use of nanocarriers to improve delivery to the infected site: A systematic review. J Basic Microbiol 2021; 61:849-873. [PMID: 34351655 DOI: 10.1002/jobm.202100204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 01/30/2023]
Abstract
There are four major classes of antifungals with the predominant mechanism of action being targeting of cell wall or cell membrane. As in other drugs, low solubility of these compounds has led to low bioavailability in target tissues. Enhanced drug dosages have effects such as toxicity, drug-drug interactions, and increased drug resistance by fungi. This article reviews the current state-of-the-art of antifungals, structure, mechanism of action, other usages, and toxic side effects. The emergence of nanoformulations to transport and uniformly release cargo at the target site is a boon in antifungal treatment. The article details research that lead to the development of nanoformulations of antifungals and potential advantages and avoidance of the lacunae characterizing conventional drugs. A range of nanoformulations based on liposomes, polymers are in various stages of research and their potential advantages have been brought out. It could be observed that under similar dosages, test models, and duration, nanoformulations provided enhanced activity, reduced toxicity, higher uptake and higher immunostimulatory effects. In most instances, the mechanism of antifungal activity of nanoformulations was similar to that of regular antifungal. There are possibilities of coupling multiple antifungals on the same nano-platform. Increased activity coupled with multiple mechanisms of action presents for nanoformulations a tremendous opportunity to overcome antifungal resistance. In the years to come, robust methods for the preparation of nanoformulations taking into account the repeatability and reproducibility in action, furthering the studies on nanoformulation toxicity and studies of human models are required before extensive use of nanoformulations as a prescribed drug.
Collapse
Affiliation(s)
- Saraswathi Nagaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamilnadu, India
| | - Sivakami Manivannan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, Tamilnadu, India
| |
Collapse
|
7
|
Kovács R, Nagy F, Tóth Z, Forgács L, Tóth L, Váradi G, Tóth GK, Vadászi K, Borman AM, Majoros L, Galgóczy L. The Neosartorya fischeri Antifungal Protein 2 (NFAP2): A New Potential Weapon against Multidrug-Resistant Candida auris Biofilms. Int J Mol Sci 2021; 22:771. [PMID: 33466640 PMCID: PMC7828714 DOI: 10.3390/ijms22020771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
Candida auris is a potential multidrug-resistant pathogen able to persist on indwelling devices as a biofilm, which serve as a source of catheter-associated infections. Neosartorya fischeri antifungal protein 2 (NFAP2) is a cysteine-rich, cationic protein with potent anti-Candida activity. We studied the in vitro activity of NFAP2 alone and in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin against C. auris biofilms. The nature of interactions was assessed utilizing the fractional inhibitory concentration index (FICI), a Bliss independence model, and LIVE/DEAD viability assay. NFAP2 exerted synergy with all tested antifungals with FICIs ranging between 0.312-0.5, 0.155-0.5, 0.037-0.375, 0.064-0.375, and 0.064-0.375 for fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. These results were confirmed using a Bliss model, where NFAP2 produced 17.54 μM2%, 2.16 μM2%, 33.31 μM2%, 10.72 μM2%, and 111.19 μM2% cumulative synergy log volume in combination with fluconazole, amphotericin B, anidulafungin, caspofungin, and micafungin, respectively. In addition, biofilms exposed to echinocandins (32 mg/L) showed significant cell death in the presence of NFAP2 (128 mg/L). Our study shows that NFAP2 displays strong potential as a novel antifungal compound in alternative therapies to combat C. auris biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- Department of Metagenomics, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Liliána Tóth
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (L.T.); (L.G.)
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| | - Györgyi Váradi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary; (G.V.); (G.K.T.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary; (G.V.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, 6720 Szeged, Hungary
| | - Karina Vadászi
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
| | - Andrew M. Borman
- UK National Mycology Reference Laboratory, Public Health England, Science Quarter, Southmead Hospital, Bristol BS10 5NB, UK;
- Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter EX4 4QD, UK
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (F.N.); (Z.T.); (L.F.); (K.V.); (L.M.)
| | - László Galgóczy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (L.T.); (L.G.)
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary
| |
Collapse
|