1
|
Pottenger AE, Roy D, Srinivasan S, Chavas TEJ, Vlaskin V, Ho DK, Livingston VC, Maktabi M, Lin H, Zhang J, Pybus B, Kudyba K, Roth A, Senter P, Tyson G, Huber HE, Wesche D, Rochford R, Burke PA, Stayton PS. Liver-targeted polymeric prodrugs delivered subcutaneously improve tafenoquine therapeutic window for malaria radical cure. SCIENCE ADVANCES 2024; 10:eadk4492. [PMID: 38640243 PMCID: PMC11029812 DOI: 10.1126/sciadv.adk4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.
Collapse
Affiliation(s)
- Ayumi E. Pottenger
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Debashish Roy
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Selvi Srinivasan
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas E. J. Chavas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Vladmir Vlaskin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Duy-Khiet Ho
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Mahdi Maktabi
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Hsiuling Lin
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jing Zhang
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Brandon Pybus
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Karl Kudyba
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - George Tyson
- George Tyson Consulting, Los Altos Hills, CA 94022, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hans E. Huber
- BioTD Strategies LLC, 213 Abbey Ln., Lansdale, PA 19446, USA
| | | | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045, USA
| | - Paul A. Burke
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Burke Bioventures LLC, 1 Broadway 14th Floor, Cambridge, MA 02142, USA
| | - Patrick S. Stayton
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Khan W, Wang YH, Chaurasiya ND, Nanayakkara NPD, Bandara Herath HM, Harrison KA, Dale G, Stanford DA, Dahl EP, McChesney JD, Gul W, ElSohly MA, Jollow D, Tekwani BL, Walker LA. Comparative metabolism and tolerability of racemic primaquine and its enantiomers in human volunteers during 7-day administration. Front Pharmacol 2023; 13:1104735. [PMID: 36726785 PMCID: PMC9885159 DOI: 10.3389/fphar.2022.1104735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Primaquine (PQ) is an 8-aminoquinoline antimalarial, active against dormant Plasmodium vivax hypnozoites and P. falciparum mature gametocytes. PQ is currently used for P. vivax radical cure and prevention of malaria transmission. PQ is a racemic drug and since the metabolism and pharmacology of PQ's enantiomers have been shown to be divergent, the objectives of this study were to evaluate the comparative tolerability and metabolism of PQ with respect to its two enantiomers in human volunteers in a 7 days' treatment schedule. Fifteen subjects with normal glucose-6-phosphate dehydrogenase (G6PDn) completed four arms, receiving each of the treatments, once daily for 7 days, in a crossover fashion, with a 7-14 days washout period in between: R-(-) enantiomer (RPQ) 22.5 mg; S-(+) enantiomer (SPQ) 22.5 mg; racemic PQ (RSPQ) 45 mg, and placebo. Volunteers were monitored for any adverse events (AEs) during the study period. PQ and metabolites were quantified in plasma and red blood cells (RBCs) by UHPLC-UV-MS/MS. Plasma PQ was significantly higher in SPQ treatment group than for RPQ. Carboxy-primaquine, a major plasma metabolite, was much higher in the RPQ treated group than SPQ; primaquine carbamoyl glucuronide, another major plasma metabolite, was derived only from SPQ. The ortho-quinone metabolites were also detected and showed differences for the two enantiomers in a similar pattern to the parent drugs. Both enantiomers and racemic PQ were well tolerated in G6PDn subjects with the 7 days regimen; three subjects showed mild AEs which did not require any intervention or discontinuation of the drug. The most consistent changes in G6PDn subjects were a gradual increase in methemoglobin and bilirubin, but these were not clinically important. However, the bilirubin increase suggests mild progressive damage to a small fraction of red cells. PQ enantiomers were also individually administered to two G6PD deficient (G6PDd) subjects, one heterozygous female and one hemizygous male. These G6PDd subjects showed similar results with the two enantiomers, but the responses in the hemizygous male were more pronounced. These studies suggest that although the metabolism profiles of individual PQ enantiomers are markedly different, they did not show significant differences in the safety and tolerability in G6PDn subjects.
Collapse
Affiliation(s)
- Washim Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Yan-Hong Wang
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Narayan D. Chaurasiya
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, United States
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - H. M. Bandara Herath
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Kerri A. Harrison
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Gray Dale
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Donald A. Stanford
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | - Eric P. Dahl
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States
| | | | - Waseem Gul
- ElSohly Laboratories Inc., Oxford, MS, United States
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States,ElSohly Laboratories Inc., Oxford, MS, United States,Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, United States
| | - David Jollow
- Professor Emeritus, Department Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, United States,*Correspondence: Babu L. Tekwani, ; Larry A. Walker,
| | - Larry A. Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, United States,*Correspondence: Babu L. Tekwani, ; Larry A. Walker,
| |
Collapse
|
3
|
Khan W, Wang YH, Chaurasiya ND, Nanayakkara NPD, Herath HMB, Harrison KA, Dale G, Stanford DA, Dahl EP, McChesney JD, Gul W, ElSohly MA, Khan SI, Fasinu PS, Khan IA, Tekwani BL, Walker LA. Comparative single dose pharmacokinetics and metabolism of racemic primaquine and its enantiomers in human volunteers. Drug Metab Pharmacokinet 2022; 45:100463. [PMID: 35709685 PMCID: PMC9789533 DOI: 10.1016/j.dmpk.2022.100463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
Abstract
Primaquine (PQ) is a racemic drug used in treatment of malaria for six decades. Recent studies suggest that the two enantiomers of PQ are differentially metabolized in animals, and this results in different pharmacological and toxicological profiles. The current study characterizes the pharmacokinetic (PK) properties, metabolism and tolerability of the individual enantiomers of PQ in healthy human volunteers with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Two cohorts (at two dose levels), each with 18 subjects, participated in three study arms in a crossover fashion: a single dose of the (-)-R enantiomer (RPQ), a single dose of the (+)-S enantiomer (SPQ), and a single dose of racemic PQ (RSPQ). PQ and its key metabolites carboxyprimaquine (cPQ) and PQ-N-carbamoyl glucuronide (PQ-N-CG) were analyzed. Clear differences were observed in PK and metabolism of the two enantiomers. Relative PQ exposure was higher with SPQ as compared to RPQ. PQ maximum plasma concentration (Cmax) and area under the plasma concentration-time curve were higher for SPQ, while the apparent volume of distribution and total body clearance were higher for RPQ. Metabolism of the two enantiomers showed dramatic differences: plasma PQ-N-CG was derived solely from SPQ, while RPQ was much more efficiently converted to cPQ than was SPQ. Cmax of cPQ and PQ-N-CG were 10 and 2 times higher, respectively, than the parent drugs. The study demonstrates that the PK properties of PQ enantiomers show clear differences, and metabolism is highly enantioselective. Such differences in metabolism suggest potentially distinct toxicity profiles in multi-dose regimens, especially in G6PD-deficient subjects.
Collapse
Affiliation(s)
- Washim Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Narayan D. Chaurasiya
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, 35205, USA
| | - NP Dhammika Nanayakkara
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - HM Bandara Herath
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Kerri A. Harrison
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Gray Dale
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Donald A. Stanford
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Eric P. Dahl
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | | | - Waseem Gul
- ElSohly Laboratories, Inc., Oxford, MS, 38655, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA,Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA,ElSohly Laboratories, Inc., Oxford, MS, 38655, USA
| | - Shabana I. Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Pius S. Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA,Departments of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, 35205, USA,Corresponding author. (B.L. Tekwani)
| | - Larry A. Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA,Corresponding author. (L.A. Walker)
| |
Collapse
|
4
|
Hanpithakpong W, Day NPJ, White NJ, Tarning J. Simultaneous and enantiospecific quantification of primaquine and carboxyprimaquine in human plasma using liquid chromatography-tandem mass spectrometry. Malar J 2022; 21:169. [PMID: 35659684 PMCID: PMC9166498 DOI: 10.1186/s12936-022-04191-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
Background The enantiomers of the 8-aminoquinoline anti-malarial primaquine have different pharmacological properties. Development of an analytical method for simultaneous quantification of the enantiomers of primaquine and its metabolite, carboxyprimaquine, will support clinical pharmacometric assessments. Methods A simple and sensitive method consisting of liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) was developed for simultaneous and enantiospecific determination of primaquine and its metabolite, carboxyprimaquine, in human plasma. Stable isotopes were used as internal standards to compensate for potential interference and matrix effects. Plasma samples (100 µL) were precipitated with 1% formic acid in acetonitrile followed by phospholipid removal solid phase extraction. Primaquine and carboxyprimaquine enantiomers were separated on a Chiralcel OD-3R (150 mm × 4.6 mm; I.D. 3 μm) column using a LC gradient mode. For separation of racemic primaquine and carboxyprimaquine, the LC method was modified and validated using a reverse phase column (Hypersil Gold 100 mm × 4.6 mm; I.D. 3 µm) and a mobile phase composed of 10 mM ammonium acetate buffer, pH 3.5 and acetonitrile in the isocratic mode. Method validation was performed according to regulatory guidelines. Results The calibration range was set to 0.571–260 ng/mL and 2.44–2,500 ng/mL for primaquine and carboxyprimaquine enantiomers, respectively, resulting in a correlation coefficient (r2) ≥ 0.0998 for all calibration curves. The intra- and inter-day assay precisions were < 10% and the accuracy was between 94.7 to 103% for all enantiomers of primaquine and carboxyprimaquine. The enantiospecific method was also modified and validated to quantify racemic primaquine and carboxyprimaquine, reducing the total run time from 30 to 8 min. The inter-, intra-day assay precision of the racemic quantification method was < 15%. The absolute recoveries of primaquine and carboxyprimaquine were between 70 and 80%. Stability was demonstrated for up to 2 years in − 80 °C. Both the enantiomeric and racemic LC–MS/MS methods were successfully implemented in pharmacokinetic studies in healthy volunteers. Conclusions Simple, sensitive and accurate LC–MS/MS methods for the quantification of enantiomeric and racemic primaquine and carboxyprimaquine in human plasma were validated successfully and implemented in clinical routine drug analysis.
Collapse
Affiliation(s)
- Warunee Hanpithakpong
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Department of Clinical Pharmacology, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Fasinu PS, Chaurasiya ND, Dhammika Nanayakkara NP, Wang YH, Bandara Herath HMT, Avula B, McChesney JD, Jollow D, Walker LA, Tekwani BL. Comparative pharmacokinetics and tissue distribution of primaquine enantiomers in mice. Malar J 2022; 21:33. [PMID: 35123453 PMCID: PMC8817607 DOI: 10.1186/s12936-022-04054-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primaquine (PQ) has been used for the radical cure of relapsing Plasmodium vivax malaria for more than 60 years. PQ is also recommended for prophylaxis and prevention of transmission of Plasmodium falciparum. However, clinical utility of PQ has been limited due to toxicity in individuals with genetic deficiencies in glucose 6-phosphate dehydrogenase (G6PD). PQ is currently approved for clinical use as a racemic mixture. Recent studies in animals as well as humans have established differential pharmacological and toxicological properties of the two enantiomers of PQ. This has been attributed to differential metabolism and pharmacokinetics of individual PQ enantiomers. The aim of the current study is to evaluate the comparative pharmacokinetics (PK), tissue distribution and metabolic profiles of the individual enantiomers in mice. METHODS Two groups of 21 male Albino ND4 Swiss mice were dosed orally with 45 mg/kg of S-(+)-PQ and R-(-)PQ respectively. Each of the enantiomers was comprised of a 50:50 mixture of 12C- and 13C- stable isotope labelled species (at 6 carbons on the benzene ring of the quinoline core). Three mice were euthanized from each group at different time points (at 0, 0.5, 1, 2, 4, 8, 24 h) and blood was collected by terminal cardiac bleed. Liver, spleen, lungs, kidneys and brain were removed, extracted and analysed using UPLC/MS. The metabolites were profiled by tandem mass (MS/MS) fragmentation profile and fragments with 12C-13C twin peaks. Non-compartmental analysis was performed using the Phoenix WinNonLin PK software module. RESULTS The plasma AUC0-last (µg h/mL) (1.6 vs. 0.6), T1/2 (h) (1.9 vs. 0.45), and Tmax (h) (1 vs. 0.5) were greater for SPQ as compared to RPQ. Generally, the concentration of SPQ was higher in all tissues. At Tmax, (0.5-1 h in all tissues), the level of SPQ was 3 times that of RPQ in the liver. Measured Cmax of SPQ and RPQ in the liver were about 100 and 40 times the Cmax values in plasma, respectively. Similar observations were recorded in other tissues where the concentration of SPQ was higher compared to RPQ (2× in the spleen, 6× in the kidneys, and 49× in the lungs) than in the plasma. CPQ, the major metabolite, was preferentially generated from RPQ, with higher levels in all tissues (> 10× in the liver, and 3.5× in the plasma) than from SPQ. The PQ-o-quinone was preferentially formed from the SPQ (> 4× compared to RPQ), with higher concentrations in the liver. CONCLUSION These studies show that in mice, PQ enantiomers are differentially biodistributed and metabolized, which may contribute to differential pharmacologic and toxicity profiles of PQ enantiomers. The findings on higher levels of PQ-o-quinone in liver and RBCs compared to plasma and preferential generation of this metabolite from SPQ are consistent with the higher anti-malarial efficacy of SPQ observed in the mouse causal prophylaxis test, and higher haemolytic toxicity in the humanized mouse model of G6PD deficiency. Potential relevance of these findings to clinical use of racemic PQ and other 8-aminoquinolines vis-à-vis need for further clinical evaluation of individual enantiomers are discussed.
Collapse
Affiliation(s)
- Pius S Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Narayan D Chaurasiya
- Department of Infectious Diseases, Division of Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - H M T Bandara Herath
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | | | - David Jollow
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC, USA
| | - Larry A Walker
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Babu L Tekwani
- Department of Infectious Diseases, Division of Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA.
| |
Collapse
|
6
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Asslan M, Lauzon N, Beus M, Maysinger D, Rousseau S. Mass spectrometry imaging in zebrafish larvae for assessing drug safety and metabolism. Anal Bioanal Chem 2021; 413:5135-5146. [PMID: 34173039 DOI: 10.1007/s00216-021-03476-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 01/16/2023]
Abstract
Drug safety assessment in the early phases of drug discovery is critical to facilitate the rapid development of novel therapeutics. Recently, teleost zebrafish (Danio rerio) has emerged as a promising vertebrate model for the assessment of drug safety. Zebrafish is a convenient model because of its small size, high fecundity, embryo transparency, and ex utero development. In this study, we developed a matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) method applied to zebrafish larvae to investigate safety and metabolism of sahaquine (Sq), an anticancer agent inhibiting histone deacetylase 6. This technique improves on prior studies using liquid chromatography-mass spectrometry (LC-MS) by adding analysis of the drug spatial distribution. Using this method, it was determined that Sq dissolved in fish water (1-2000 μM) did not reach the larval body and was mainly distributed throughout the yolk. High Sq concentration (800 μM) administered intravenously allowed the compound to reach the larval body but did not induce phenotypic abnormalities. Sq was metabolized into its glucuronidated form within 24 h and was excreted within 72 h. MALDI MSI was instrumental in showing that Sq-glucuronide was mainly formed in the gut and slightly in yolk syncytial layer, and provided valuable insights into xenobiotics elimination in zebrafish larvae. This study indicates that Sq has a good safety profile and merits further investigations in other disease models. In addition, the optimized MALDI MSI protocol provided here can be widely applied to study distribution and metabolic fate of other structurally related molecules.
Collapse
Affiliation(s)
- Mariana Asslan
- Research Institute of the McGill University Health Centre, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada.,Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Prom. Sir-William-Osler, Montreal, H3G 1Y6, Canada
| | - Nidia Lauzon
- Research Institute of the McGill University Health Centre, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada
| | - Maja Beus
- Institute for Medical Research and Occupational Health, Ksaver road 2, 10 000, Zagreb, Croatia
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Prom. Sir-William-Osler, Montreal, H3G 1Y6, Canada
| | - Simon Rousseau
- Research Institute of the McGill University Health Centre, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. .,Department of Pharmacology and Therapeutics, McGill University, McIntyre Medical Sciences Building, 3655 Prom. Sir-William-Osler, Montreal, H3G 1Y6, Canada.
| |
Collapse
|
8
|
Chaurasiya ND, Liu H, Doerksen RJ, Nanayakkara NPD, Walker LA, Tekwani BL. Enantioselective Interactions of Anti-Infective 8-Aminoquinoline Therapeutics with Human Monoamine Oxidases A and B. Pharmaceuticals (Basel) 2021; 14:ph14050398. [PMID: 33922294 PMCID: PMC8146505 DOI: 10.3390/ph14050398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
8-Aminoquinolines (8-AQs) are an important class of anti-infective therapeutics. The monoamine oxidases (MAOs) play a key role in metabolism of 8-AQs. A major role for MAO-A in metabolism of primaquine (PQ), the prototypical 8-AQ antimalarial, has been demonstrated. These investigations were further extended to characterize the enantioselective interactions of PQ and NPC1161 (8-[(4-amino-1-methylbutyl) amino]-5-[3, 4-dichlorophenoxy]-6-methoxy-4-methylquinoline) with human MAO-A and -B. NPC1161B, the (R)-(−) enantiomer with outstanding potential for malaria radical cure, treatment of visceral leishmaniasis and pneumocystis pneumonia infections is poised for clinical development. PQ showed moderate inhibition of human MAO-A and -B. Racemic PQ and (R)-(−)-PQ both showed marginally greater (1.2- and 1.6-fold, respectively) inhibition of MAO-A as compared to MAO-B. However, (S)-(+)-PQ showed a reverse selectivity with greater inhibition of MAO-B than MAO-A. Racemic NPC1161 was a strong inhibitor of MAOs with 3.7-fold selectivity against MAO-B compared to MAO-A. The (S)-(+) enantiomer (NPC1161A) was a better inhibitor of MAO-A and -B compared to the (R)-(−) enantiomer (NPC1161B), with more than 10-fold selectivity for inhibition of MAO-B over MAO-A. The enantioselective interaction of NPC1161 and strong binding of NPC1161A with MAO-B was further confirmed by enzyme-inhibitor binding and computational docking analyses. Differential interactions of PQ and NPC1161 enantiomers with human MAOs may contribute to the enantioselective pharmacodynamics and toxicity of anti-infective 8-AQs therapeutics.
Collapse
Affiliation(s)
- Narayan D. Chaurasiya
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL 35205, USA
- Correspondence: (N.D.C.); (B.L.T.); Tel.: +11-205-581-2026 (N.D.C.); +1-1-205-581-2205 (B.L.T.)
| | - Haining Liu
- Department of Bio-Molecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (H.L.); (R.J.D.)
| | - Robert J. Doerksen
- Department of Bio-Molecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA; (H.L.); (R.J.D.)
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (N.P.D.N.); (L.A.W.)
| | - N. P. Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (N.P.D.N.); (L.A.W.)
| | - Larry A. Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA; (N.P.D.N.); (L.A.W.)
| | - Babu L. Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL 35205, USA
- Correspondence: (N.D.C.); (B.L.T.); Tel.: +11-205-581-2026 (N.D.C.); +1-1-205-581-2205 (B.L.T.)
| |
Collapse
|
9
|
Avula B, Tekwani BL, Chaurasiya ND, Fasinu P, Dhammika Nanayakkara NP, Bhandara Herath HMT, Wang YH, Bae JY, Khan SI, Elsohly MA, McChesney JD, Zimmerman PA, Khan IA, Walker LA. Metabolism of primaquine in normal human volunteers: investigation of phase I and phase II metabolites from plasma and urine using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Malar J 2018; 17:294. [PMID: 30103751 PMCID: PMC6090659 DOI: 10.1186/s12936-018-2433-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Primaquine (PQ), an 8-aminoquinoline, is the only drug approved by the United States Food and Drug Administration for radical cure and prevention of relapse in Plasmodium vivax infections. Knowledge of the metabolism of PQ is critical for understanding the therapeutic efficacy and hemolytic toxicity of this drug. Recent in vitro studies with primary human hepatocytes have been useful for developing the ultra high-performance liquid chromatography coupled with high-resolution mass spectrometric (UHPLC-QToF-MS) methods for simultaneous determination of PQ and its metabolites generated through phase I and phase II pathways for drug metabolism. METHODS These methods were further optimized and applied for phenotyping PQ metabolites from plasma and urine from healthy human volunteers treated with single 45 mg dose of PQ. Identity of the metabolites was predicted by MetaboLynx using LC-MS/MS fragmentation patterns. Selected metabolites were confirmed with appropriate standards. RESULTS Besides PQ and carboxy PQ (cPQ), the major plasma metabolite, thirty-four additional metabolites were identified in human plasma and urine. Based on these metabolites, PQ is viewed as metabolized in humans via three pathways. Pathway 1 involves direct glucuronide/glucose/carbamate/acetate conjugation of PQ. Pathway 2 involves hydroxylation (likely cytochrome P450-mediated) at different positions on the quinoline ring, with mono-, di-, or even tri-hydroxylations possible, and subsequent glucuronide conjugation of the hydroxylated metabolites. Pathway 3 involves the monoamine oxidase catalyzed oxidative deamination of PQ resulting in formation of PQ-aldehyde, PQ alcohol and cPQ, which are further metabolized through additional phase I hydroxylations and/or phase II glucuronide conjugations. CONCLUSION This approach and these findings augment our understanding and provide comprehensive view of pathways for PQ metabolism in humans. These will advance the clinical studies of PQ metabolism in different populations for different therapeutic regimens and an understanding of the role these play in PQ efficacy and safety outcomes, and their possible relation to metabolizing enzyme polymorphisms.
Collapse
Affiliation(s)
- Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Babu L Tekwani
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| | - Narayan D Chaurasiya
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Pius Fasinu
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - H M T Bhandara Herath
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Ji-Yeong Bae
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Mahmoud A Elsohly
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | | | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University Cleveland, Ohio, 44106, USA
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
10
|
Moreno-Sabater A, Pérignon JL, Mazier D, Lavazec C, Soulard V. Humanized mouse models infected with human Plasmodium species for antimalarial drug discovery. Expert Opin Drug Discov 2017; 13:131-140. [DOI: 10.1080/17460441.2018.1410136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alicia Moreno-Sabater
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
- Assistance Publique - Hopitaux de Paris - Hôpitaux Universitaires Paris-Est - Site Saint-Antoine, Paris, Île-de-France France
| | | | - Dominique Mazier
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
| | - Catherine Lavazec
- Institut Cochin – INSERM U1016, Paris, Île-de-France France
- CNRS - UMR8104, Paris, France
- Universite Paris Descartes, Paris, Île-de-France France
| | - Valerie Soulard
- UPMC Faculte de Medecine - INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, Île-de-France France
| |
Collapse
|
11
|
Abstract
Introduction: Relapses are important contributors to illness and morbidity in Plasmodium vivax and P. ovale infections. Relapse prevention (radical cure) with primaquine is required for optimal management, control and ultimately elimination of Plasmodium vivax malaria. A review was conducted with publications in English, French, Portuguese and Spanish using the search terms ‘P. vivax’ and ‘relapse’. Areas covered: Hypnozoites causing relapses may be activated weeks or months after initial infection. Incidence and temporal patterns of relapse varies geographically. Relapses derive from parasites either genetically similar or different from the primary infection indicating that some derive from previous infections. Malaria illness itself may activate relapse. Primaquine is the only widely available treatment for radical cure. However, it is often not given because of uncertainty over the risks of primaquine induced haemolysis when G6PD deficiency testing is unavailable. Recommended dosing of primaquine for radical cure in East Asia and Oceania is 0.5 mg base/kg/day and elsewhere is 0.25 mg base/kg/day. Alternative treatments are under investigation. Expert commentary: Geographic heterogeneity in relapse patterns and chloroquine susceptibility of P. vivax, and G6PD deficiency epidemiology mean that radical treatment should be given much more than it is today. G6PD testing should be made widely available so primaquine can be given more safely.
Collapse
Affiliation(s)
- Cindy S Chu
- a Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Mae Sot , Thailand.,b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand
| | - Nicholas J White
- b Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine , Mahidol University , Bangkok , Thailand.,c Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| |
Collapse
|
12
|
Fasinu PS, Avula B, Tekwani BL, Nanayakkara NPD, Wang YH, Bandara Herath HMT, McChesney JD, Reichard GA, Marcsisin SR, Elsohly MA, Khan SI, Khan IA, Walker LA. Differential kinetic profiles and metabolism of primaquine enantiomers by human hepatocytes. Malar J 2016; 15:224. [PMID: 27093859 PMCID: PMC4837544 DOI: 10.1186/s12936-016-1270-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/01/2016] [Indexed: 01/02/2023] Open
Abstract
Background The clinical utility of primaquine (PQ), used as a racemic mixture of two enantiomers, is limited due to metabolism-linked hemolytic toxicity in individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. The current study investigated differential metabolism of PQ enantiomers in light of the suggestions that toxicity and efficacy might be largely enantioselective. Methods Stable isotope 13C-labelled primaquine and its two enantiomers (+)-PQ, (−)-PQ were separately incubated with cryopreserved human hepatocytes. Time-tracked substrate depletion and metabolite production were monitored via UHPLC–MS/MS. Results The initial half-life of 217 and 65 min; elimination rate constants (λ) of 0.19 and 0.64 h−1; intrinsic clearance (Clint) of 2.55 and 8.49 (µL/min)/million cells, which when up-scaled yielded Clint of 6.49 and 21.6 (mL/min)/kg body mass was obtained respectively for (+)- and (−)-PQ. The extrapolation of in vitro intrinsic clearance to in vivo human hepatic blood clearance, performed using the well-stirred liver model, showed that the rate of hepatic clearance of (+)-PQ was only 45 % that of (−)-PQ. Two major primary routes of metabolism were observed—oxidative deamination of the terminal amine and hydroxylations on the quinoline moiety of PQ. The major deaminated metabolite, carboxyprimaquine (CPQ) was preferentially generated from the (−)-PQ. Other deaminated metabolites including PQ terminal alcohol (m/z 261), a cyclized side chain derivative from the aldehyde (m/z 241), cyclized carboxylic acid derivative (m/z 257), a quinone-imine product of hydroxylated CPQ (m/z 289), CPQ glucuronide (m/z 451) and the glucuronide of PQ alcohol (m/z 437) were all preferentially generated from the (−)-PQ. The major quinoline oxidation product (m/z 274) was preferentially generated from (+)-PQ. In addition to the products of the two metabolic pathways, two other major metabolites were observed: a prominent glycosylated conjugate of PQ on the terminal amine (m/z 422), peaking by 30 min and preferentially generated by (+)-PQ; and the carbamoyl glucuronide of PQ (m/z 480) exclusively generated from (+)-PQ. Conclusion Metabolism of PQ showed enantioselectivity. These findings may provide important information in establishing clinical differences in PQ enantiomers.
Collapse
Affiliation(s)
- Pius S Fasinu
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Bharathi Avula
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Babu L Tekwani
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.,Department of BioMolecular Sciences School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - N P Dhammika Nanayakkara
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - H M T Bandara Herath
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | | | - Gregory A Reichard
- Military Malaria Research Program, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Sean R Marcsisin
- Military Malaria Research Program, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Mahmoud A Elsohly
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.,Departments of Pharmaceutical Sciences and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.,ElSohly Laboratories, Inc., 5 Industrial Park Dr, Oxford, MS, 38655, USA
| | - Shabana I Khan
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.,Department of BioMolecular Sciences School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Ikhlas A Khan
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.,Department of BioMolecular Sciences School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Larry A Walker
- The National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA. .,Department of BioMolecular Sciences School of Pharmacy, The University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
13
|
Tekwani BL, Avula B, Sahu R, Chaurasiya ND, Khan SI, Jain S, Fasinu PS, Herath HMTB, Stanford D, Nanayakkara NPD, McChesney JD, Yates TW, ElSohly MA, Khan IA, Walker LA. Enantioselective pharmacokinetics of primaquine in healthy human volunteers. Drug Metab Dispos 2015; 43:571-7. [PMID: 25637634 DOI: 10.1124/dmd.114.061127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primaquine (PQ), a racemic drug, is the only treatment available for radical cure of relapsing Plasmodium vivax malaria and blocking transmission of P. falciparum malaria. Recent studies have shown differential pharmacologic and toxicologic profiles of individual PQ enantiomers in rodent, dog, and primate animal models. This study was conducted in six healthy adult human volunteers to determine the plasma pharmacokinetic profile of enantiomers of PQ and carboxyprimaquine (cPQ), the major plasma metabolite. The individuals were orally administered PQ diphosphate, equivalent to 45-mg base, 30 minutes after a normal breakfast. Blood samples were collected at different time intervals, and plasma samples were analyzed for enantiomers of PQ and cPQ. Plasma PQ concentrations were low and variable for both parent enantiomers and peaked around 2-4 hours. Peak (-)-(R)-PQ concentrations ranged from 121 ng/ml to 221 ng/ml, and peak (+)-(S)-PQ concentrations ranged from 168 ng/ml to 299 ng/ml. The cPQ concentrations were much higher and were surprisingly consistent from subject to subject. Essentially all the cPQ detected in plasma was (-)-cPQ. The peak concentrations of (-)-cPQ were observed at 8 hours (range: 1104-1756 ng/ml); however, very high concentrations were sustained through 24 hours. (+)-cPQ was two orders of magnitude lower than (-)-cPQ, and in a few subjects it was detected but only under the limit of quantification. In vitro studies with primary human hepatocytes also suggested more rapid metabolism of (-)-PQ compared with (+)-PQ. The results suggest more rapid metabolism of (-)-PQ to (-) cPQ compared with (+)-PQ. Alternatively, (+)-PQ or (+)-cPQ could be rapidly converted to another metabolite(s) or distributed to tissues. This is the first clinical report on enantioselective pharmacokinetic profiles of PQ and cPQ and supports further clinical evaluation of individual PQ enantiomers.
Collapse
Affiliation(s)
- Babu L Tekwani
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Bharathi Avula
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Rajnish Sahu
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Narayan D Chaurasiya
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Shabana I Khan
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Surendra Jain
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Pius S Fasinu
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - H M T Bandara Herath
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Donald Stanford
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - N P Dhammika Nanayakkara
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - James D McChesney
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Travis W Yates
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Mahmoud A ElSohly
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Ikhlas A Khan
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| | - Larry A Walker
- National Center for Natural Products Research (B.L.T., B.A., R.S., N.D.C., S.I.K., S.J., P.S.F., H.M.T.B.H., D.S., N.P.D.N., M.A.E., I.A.K., L.A.W.), Departments of BioMolecular Sciences (B.L.T., S.I.K., S.J., I.A.K., L.A.W.) and Pharmaceutics (M.A.E.), School of Pharmacy, and Department of Student Health Services (T.W.Y.), University of Mississippi, University; Ironstone Separations, Inc., Etta (J.D.M.); ElSohly Laboratories, Inc., Oxford (M.A.E.), Mississippi
| |
Collapse
|
14
|
Fasinu PS, Tekwani BL, Nanayakkara NPD, Avula B, Herath HMTB, Wang YH, Adelli VR, Elsohly MA, Khan SI, Khan IA, Pybus BS, Marcsisin SR, Reichard GA, McChesney JD, Walker LA. Enantioselective metabolism of primaquine by human CYP2D6. Malar J 2014; 13:507. [PMID: 25518709 PMCID: PMC4301821 DOI: 10.1186/1475-2875-13-507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/11/2014] [Indexed: 11/15/2022] Open
Abstract
Background Primaquine, currently the only approved drug for the treatment and radical cure of Plasmodium vivax malaria, is still used as a racemic mixture. Clinical use of primaquine has been limited due to haemolytic toxicity in individuals with genetic deficiency in glucose-6-phosphate dehydrogenase. Earlier studies have linked its therapeutic effects to CYP2D6-generated metabolites. The aim of the current study was to investigate the differential generation of the CYP2D6 metabolites by racemic primaquine and its individual enantiomers. Methods Stable isotope 13C-labelled primaquine and its two enantiomers were incubated with recombinant cytochrome-P450 supersomes containing CYP2D6 under optimized conditions. Metabolite identification and time-point quantitative analysis were performed using LC-MS/MS. UHPLC retention time, twin peaks with a mass difference of 6, MS-MS fragmentation pattern, and relative peak area with respect to parent compound were used for phenotyping and quantitative analysis of metabolites. Results The rate of metabolism of (+)-(S)-primaquine was significantly higher (50% depletion of 20 μM in 120 min) compared to (−)-(R)-primaquine (30% depletion) when incubated with CYP2D6. The estimated Vmax (μmol/min/mg) were 0.75, 0.98 and 0.42, with Km (μM) of 24.2, 33.1 and 21.6 for (±)-primaquine, (+)-primaquine and (−)-primaquine, respectively. Three stable mono-hydroxylated metabolites, namely, 2-, 3- and 4-hydroxyprimaquine (2-OH-PQ, 3-OH-PQ, and 4-OH-PQ), were identified and quantified. 2-OH-PQ was preferentially formed from (+)-primaquine in a ratio of 4:1 compared to (−)-primaquine. The racemic (±)-primaquine showed a pattern similar to the (−)-primaquine; 2-OH-PQ accounted for about 15–17% of total CYP2D6-mediated conversion of (+)-primaquine. In contrast, 4-OH-PQ was preferentially formed with (−)-primaquine (5:1), accounting for 22% of the total (−)-primaquine conversion. 3-OH-PQ was generated from both enantiomers and racemate. 5-hydroxyprimaquine was unstable. Its orthoquinone degradation product (twice as abundant in (+)-primaquine compared to (−)-primaquine) was identified and accounted for 18–20% of the CYP2D6-mediated conversion of (+)-primaquine. Other minor metabolites included dihydroxyprimaquine species, two quinone-imine products of dihydroxylated primaquine, and a primaquine terminal alcohol with variable generation from the individual enantiomers. Conclusion The metabolism of primaquine by human CYP2D6 and the generation of its metabolites display enantio-selectivity regarding formation of hydroxylated product profiles. This may partly explain differential pharmacologic and toxicologic properties of primaquine enantiomers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Larry A Walker
- The National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
15
|
Pharmacokinetics and pharmacodynamics of (+)-primaquine and (-)-primaquine enantiomers in rhesus macaques (Macaca mulatta). Antimicrob Agents Chemother 2014; 58:7283-91. [PMID: 25267666 DOI: 10.1128/aac.02576-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Primaquine (PQ) remains the sole available drug to prevent relapse of Plasmodium vivax malaria more than 60 years after licensure. While this drug was administered as a racemic mixture, prior studies suggested a pharmacodynamic advantage based on differential antirelapse activity and/or toxicities of its enantiomers. Oral primaquine enantiomers prepared using a novel, easily scalable method were given for 7 days to healthy rhesus macaques in a dose-rising fashion to evaluate their effects on the blood, liver, and kidneys. The enantiomers were then administered to Plasmodium cynomolgi-infected rhesus macaques at doses of 1.3 and 0.6 mg/kg of body weight/day in combination with chloroquine. The (-)-PQ enantiomer had higher clearance and apparent volume of distribution than did (+)-PQ and was more extensively converted to the carboxy metabolite. There is evidence for differential oxidative stress with a concentration-dependent rise in methemoglobin (MetHgb) with increasing doses of (+)-PQ greater than that seen for (-)-PQ. There was a marked, reversible hepatotoxicity in 2 of 3 animals dosed with (-)-PQ at 4.5 mg/kg. (-)-PQ in combination with chloroquine was successful in preventing P. cynomolgi disease relapse at doses of 0.6 and 1.3 mg/kg/day, while 1 of 2 animals receiving (+)-PQ at 0.6 mg/kg/day relapsed. While (-)-PQ was also associated with hepatotoxicity at higher doses as seen previously, this has not been identified as a clinical concern in humans during >60 years of use. Limited evidence for increased MetHgb generation with the (+) form in the rhesus macaque model suggests that it may be possible to improve the therapeutic window for hematologic toxicity in the clinic by separating primaquine into its enantiomers.
Collapse
|