1
|
Nichols WW, Lahiri SD, Bradford PA, Stone GG. The primary pharmacology of ceftazidime/avibactam: resistance in vitro. J Antimicrob Chemother 2023; 78:569-585. [PMID: 36702744 DOI: 10.1093/jac/dkac449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This article reviews resistance to ceftazidime/avibactam as an aspect of its primary pharmacology, linked thematically with recent reviews of the basic in vitro and in vivo translational biology of the combination (J Antimicrob Chemother 2022; 77: 2321-40 and 2341-52). In Enterobacterales or Pseudomonas aeruginosa, single-step exposures to 8× MIC of ceftazidime/avibactam yielded frequencies of resistance from <∼0.5 × 10-9 to 2-8 × 10-9, depending on the host strain and the β-lactamase harboured. β-Lactamase structural gene mutations mostly affected the avibactam binding site through changes in the Ω-loop: e.g. Asp179Tyr (D179Y) in KPC-2. Other mutations included ones proposed to reduce the permeability to ceftazidime and/or avibactam through changes in outer membrane structure, up-regulated efflux, or both. The existence, or otherwise, of cross-resistance between ceftazidime/avibactam and other antibacterial agents was also reviewed as a key element of the preclinical primary pharmacology of the new agent. Cross-resistance between ceftazidime/avibactam and other β-lactam-based antibacterial agents was caused by MBLs. Mechanism-based cross-resistance was not observed between ceftazidime/avibactam and fluoroquinolones, aminoglycosides or colistin. A low level of general co-resistance to ceftazidime/avibactam was observed in MDR Enterobacterales and P. aeruginosa. For example, among 2821 MDR Klebsiella spp., 3.4% were resistant to ceftazidime/avibactam, in contrast to 0.07% of 8177 non-MDR isolates. Much of this was caused by possession of MBLs. Among 1151 MDR, XDR and pandrug-resistant isolates of P. aeruginosa from the USA, 11.1% were resistant to ceftazidime/avibactam, in contrast to 3.0% of 7452 unselected isolates. In this case, the decreased proportion susceptible was not due to MBLs.
Collapse
Affiliation(s)
| | - Sushmita D Lahiri
- Infectious Diseases and Vaccines, Johnson & Johnson, Cambridge, MA, USA
| | | | | |
Collapse
|
2
|
Kempf M, Arhin FF, Stone G, Utt E. Ceftazidime-avibactam activity against Gram-negative respiratory isolates collected between 2018 and 2019. J Glob Antimicrob Resist 2022; 31:239-247. [PMID: 36208850 DOI: 10.1016/j.jgar.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The objective of this study was to assess the in vitro activity of ceftazidime-avibactam (CAZ-AVI) and a panel of comparator agents against isolates of Enterobacter spp., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa collected in 2018 and 2019 by different centres worldwide from patients with respiratory tract infections. METHODS Susceptibility and minimum inhibitory concentration (MIC) of all organisms were determined using broth microdilution methodology for CAZ-AVI, and a panel of comparator antimicrobial agents by a central reference laboratory according to Clinical and Laboratory Standards Institute guidelines and European Committee on Antimicrobial Susceptibility Testing guidelines. RESULTS CAZ-AVI demonstrated potent antimicrobial activity against isolates of Enterobacter spp. (97.6% susceptibility, MIC90, 1 µg/ml), E. coli (98.5% susceptibility, MIC90, 0.25 µg/ml), K. pneumoniae (94.7% susceptibility, MIC90 2 µg/ml), and P. aeruginosa (91.2% susceptibility, MIC90 8 µg/ml). CAZ-AVI was also active (susceptibility >85%) against MDR isolates for all organisms except P. aeruginosa. Only a small proportion (<10%) of all isolates of Enterobacter spp. and E. coli were identified as XDR compared to isolates of K. pneumoniae and P. aeruginosa isolates (>20%). Susceptibility to CAZ-AVI was high (>70%) among XDR isolates of Enterobacter spp., K. pneumoniae, and E. coli, compared to P. aeruginosa (<70%). Among the comparator agents, only colistin showed consistent activity across all the organisms (>85%). CONCLUSION Gram-negative respiratory isolates collected in 2018-2019 showed high susceptibility to CAZ-AVI; CAZ-AVI represents a potential treatment option against infection caused by these organisms.
Collapse
Affiliation(s)
- Marie Kempf
- University Hospital Angers, Laboratory of Bacteriology, France; CRCINA, INSERM U1232, Université d'Angers, Angers, France
| | | | | | - Eric Utt
- Pfizer, Inc., Groton, Connecticut.
| |
Collapse
|
3
|
Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022; 14:pharmaceutics14081749. [PMID: 36015376 PMCID: PMC9414178 DOI: 10.3390/pharmaceutics14081749] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of bacterial resistance has motivated researchers to discover new antibacterial agents. Nowadays, fluoroquinolones keep their status as one of the essential classes of antibacterial agents. The new generations of fluoroquinolones are valuable therapeutic tools with a spectrum of activity, including Gram-positive, Gram-negative, and atypical bacteria. This review article surveys the design of fluoroquinolone hybrids with other antibacterial agents or active compounds and underlines the new hybrids' antibacterial properties. Antibiotic fluoroquinolone hybrids have several advantages over combined antibiotic therapy. Thus, some challenges related to joining two different molecules are under study. Structurally, the obtained hybrids may contain a cleavable or non-cleavable linker, an essential element for their pharmacokinetic properties and mechanism of action. The design of hybrids seems to provide promising antibacterial agents helpful in the fight against more virulent and resistant strains. These hybrid structures have proven superior antibacterial activity and less susceptibility to bacterial resistance than the component molecules. In addition, fluoroquinolone hybrids have demonstrated other biological effects such as anti-HIV, antifungal, antiplasmodic/antimalarial, and antitumor activity. Many fluoroquinolone hybrids are in various phases of clinical trials, raising hopes that new antibacterial agents will be approved shortly.
Collapse
|
4
|
Kozlov R, Kuzmenkov A. The Dynamics of Antimicrobial Resistance among Enterobacteriaceae Isolates in Russia: Results of the 2012-2018 INFORM and ATLAS International Program Studies. Antibiotics (Basel) 2022; 11:antibiotics11060790. [PMID: 35740196 PMCID: PMC9220778 DOI: 10.3390/antibiotics11060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background: The increasing prevalence of multidrug-resistant Enterobacteriaceae limits the range of active antimicrobial agents, thus worsening clinical outcomes. The objective of this study was to identify the trends in antimicrobial resistance for Enterobacteriaceae in Russia using the databases for the International Network for Optimal Resistance Monitoring (INFORM) and Antimicrobial Testing Leadership and Surveillance (ATLAS) studies between 2012 and 2018. Methods: This subanalysis was performed for 3811 non-duplicate clinical isolates of Enterobacteriaceae to evaluate the in vitro activity of the main classes of antibiotics against relevant clinical isolates from hospitalized patients with complicated infections of different anatomical locations. Results: The lowest susceptibility was observed for colistin (0%), ampicillin (16.4%), and ampicillin/sulbactam (31.1%), whereas the best susceptibility was observed for all combinations containing avibactam (>96%). Among individual antimicrobials, doripenem (3.2%), tigecycline (1.6%), and meropenem (5.9%) exhibited the lowest resistance. Important trends included the decreasing resistance of Enterobacteriaceae to glycylcyclines and the increasing resistance to aminoglycosides and carbapenems. K. pneumoniae strains were most aggressive in terms of the percentage of strains having multidrug resistance (8.3−18.3%, depending on location) and the percentage of ESBL-positive strains (44.8−86.8%). Conclusions: The current patterns and trends of antimicrobial resistance in different bacterial species should be taken into consideration for timely updating of clinical guidelines and local treatment protocols to ensure effective antimicrobial therapy.
Collapse
|
5
|
Catalán P, Wood E, Blair JMA, Gudelj I, Iredell JR, Beardmore RE. Seeking patterns of antibiotic resistance in ATLAS, an open, raw MIC database with patient metadata. Nat Commun 2022; 13:2917. [PMID: 35614098 PMCID: PMC9133080 DOI: 10.1038/s41467-022-30635-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance represents a growing medical concern where raw, clinical datasets are under-exploited as a means to track the scale of the problem. We therefore sought patterns of antibiotic resistance in the Antimicrobial Testing Leadership and Surveillance (ATLAS) database. ATLAS holds 6.5M minimal inhibitory concentrations (MICs) for 3,919 pathogen-antibiotic pairs isolated from 633k patients in 70 countries between 2004 and 2017. We show most pairs form coherent, although not stationary, timeseries whose frequencies of resistance are higher than other databases, although we identified no systematic bias towards including more resistant strains in ATLAS. We sought data anomalies whereby MICs could shift for methodological and not clinical or microbiological reasons and found artefacts in over 100 pathogen-antibiotic pairs. Using an information-optimal clustering methodology to classify pathogens into low and high antibiotic susceptibilities, we used ATLAS to predict changes in resistance. Dynamics of the latter exhibit complex patterns with MIC increases, and some decreases, whereby subpopulations' MICs can diverge. We also identify pathogens at risk of developing clinical resistance in the near future.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911, Leganés, Spain.
| | - Emily Wood
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ivana Gudelj
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Hospital,Western Sydney Local Health District, Sydney, NSW, Australia
- School of Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Robert E Beardmore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
6
|
Karlowsky JA, Bouchillon SK, El Mahdy Kotb R, Mohamed N, Stone GG, Sahm DF. Carbapenem-resistant Enterobacterales and Pseudomonas aeruginosa causing infection in Africa and the Middle East: a surveillance study from the ATLAS programme (2018–20). JAC Antimicrob Resist 2022; 4:dlac060. [PMID: 35733913 PMCID: PMC9204471 DOI: 10.1093/jacamr/dlac060] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To determine the in vitro susceptibility of Enterobacterales (n = 5457) and Pseudomonas aeruginosa (n = 1949) isolated from hospitalized patients in Africa (three countries) and the Middle East (five countries) in 2018–20 to a panel of 11 antimicrobials and to identify β-lactamase/carbapenemase genes in isolates with meropenem-non-susceptible and/or ceftazidime/avibactam-resistant phenotypes. Methods CLSI broth microdilution testing generated MICs that were interpreted using CLSI (2021) breakpoints. β-Lactamase/carbapenemase genes were identified using multiplex PCR assays. Results Enterobacterales isolates were highly susceptible to amikacin (96.7%), ceftazidime/avibactam (96.6%) and tigecycline (96.0%), and slightly less susceptible to meropenem (94.3%). In total, 337 Enterobacterales isolates (6.2% of all Enterobacterales isolates) carried one or more carbapenemase genes: 188 isolates carried a serine carbapenemase (178 OXA, 10 KPC) and 167 isolates carried an MBL (18 isolates carried both an MBL and an OXA). NDM-1 was the most common MBL identified (64.1% of NDM enzymes; 59.9% of all MBLs). OXA-48 (47.8%) and OXA-181 (38.8%) were the most common OXAs detected. P. aeruginosa isolates were most susceptible to ceftazidime/avibactam (89.1%) and amikacin (88.9%). Only 73.1% of P. aeruginosa isolates were meropenem susceptible. The majority (68.1%) of P. aeruginosa isolates tested for carbapenemase/β-lactamase genes were negative. In total, 88 isolates (4.5% of all P. aeruginosa isolates) carried one or more carbapenemase genes: 81 isolates carried an MBL and 8 carried a GES carbapenemase (1 isolate carried genes for both). Conclusions Carbapenemase detection was closely associated with meropenem-non-susceptible phenotypes for Enterobacterales (89.1%) but not for P. aeruginosa (24.2%). Wide geographic variation in carbapenemase type and frequency of detection was observed.
Collapse
Affiliation(s)
- James A Karlowsky
- IHMA , Schaumburg, IL , USA
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba , Winnipeg, Manitoba , Canada
| | | | | | | | | | | |
Collapse
|
7
|
Liao Q, Deng J, Feng Y, Zhang W, Wu S, Liu Y, Che H, Xie Y. Emergence of Ceftazidime-Avibactam Resistance Due to A Novel blaKPC-2 Mutation during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. J Infect Public Health 2022; 15:545-549. [DOI: 10.1016/j.jiph.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/16/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
|
8
|
Zhang J, Li G, Zhang G, Kang W, Duan S, Wang T, Li J, Huangfu Z, Yang Q, Xu Y, Jia W, Sun H. Performance Evaluation of the Gradient Diffusion Strip Method and Disk Diffusion Method for Ceftazidime-Avibactam Against Enterobacterales and Pseudomonas aeruginosa: A Dual-Center Study. Front Microbiol 2021; 12:710526. [PMID: 34603236 PMCID: PMC8481768 DOI: 10.3389/fmicb.2021.710526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Objectives: Ceftazidime–avibactam is a novel synthetic beta-lactam + beta-lactamase inhibitor combination. We evaluated the performance of the gradient diffusion strip method and the disk diffusion method for the determination of ceftazidime–avibactam against Enterobacterales and Pseudomonas aeruginosa. Methods: Antimicrobial susceptibility testing of 302 clinical Enterobacterales and Pseudomonas aeruginosa isolates from two centers were conducted by broth microdilution (BMD), gradient diffusion strip method, and disk diffusion method for ceftazidime–avibactam. Using BMD as a gold standard, essential agreement (EA), categorical agreement (CA), major error (ME), and very major error (VME) were determined according to CLSI guidelines. CA and EA rate > 90%, ME rate < 3%, and VME rate < 1.5% were considered as acceptable criteria. Polymerase chain reaction and Sanger sequencing were performed to determine the carbapenem resistance genes of all 302 isolates. Results: A total of 302 strains were enrolled, among which 182 strains were from center 1 and 120 strains were from center 2. A percentage of 18.21% (55/302) of the enrolled isolates were resistant to ceftazidime–avibactam. The CA rates of the gradient diffusion strip method for Enterobacterales and P. aeruginosa were 100% and 98.65% (73/74), respectively, and the EA rates were 97.37% (222/228) and 98.65% (73/74), respectively. The CA rates of the disk diffusion method for Enterobacterales and P. aeruginosa were 100% and 95.95% (71/74), respectively. No VMEs were found by using the gradient diffusion strip method, while the ME rate was 0.40% (1/247). No MEs were found by using the disk diffusion method, but the VME rate was 5.45% (3/55). Therefore, all the parameters of the gradient diffusion strip method were in line with acceptable criteria. For 31 blaKPC, 33 blaNDM, 7 blaIMP, and 2 blaVIM positive isolates, both CA and EA rates were 100%; no MEs or VMEs were detected by either method. For 15 carbapenemase-non-producing resistant isolates, the CA and EA rates of the gradient diffusion strips method were 100%. Whereas the CA rate of the disk diffusion method was 80.00% (12/15), the VME rate was 20.00% (3/15). Conclusion: The gradient diffusion strip method can meet the needs of clinical microbiological laboratories for testing the susceptibility of ceftazidime–avibactam drugs. However, the VME rate > 1.5% (5.45%) by the disk diffusion method. By comparison, the performance of the gradient diffusion strip method was better than that of the disk diffusion method.
Collapse
Affiliation(s)
- Jingjia Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Li
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ge Zhang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Kang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Simeng Duan
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tong Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhiru Huangfu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Jia
- Medical Experimental Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongli Sun
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Moreira NK, Caierão J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers' infections? Folia Microbiol (Praha) 2021; 66:879-896. [PMID: 34505209 DOI: 10.1007/s12223-021-00918-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.
Collapse
Affiliation(s)
- Natália Kehl Moreira
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil.
| | - Juliana Caierão
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal Do Rio Grande Do Sul, Avenida Ipiranga, Porto Alegre, RS, 2752, 90610-000, Brazil
| |
Collapse
|
10
|
Chatzidimitriou M, Chatzivasileiou P, Sakellariou G, Kyriazidi M, Kavvada A, Chatzidimitriou D, Chatzopoulou F, Meletis G, Mavridou M, Rousis D, Katsifa E, Vagdatli E, Mitka S, Theodoros L. Ceftazidime/avibactam and eravacycline susceptibility of carbapenem-resistant Klebsiella pneumoniae in two Greek tertiary teaching hospitals. Acta Microbiol Immunol Hung 2021; 68:65-72. [PMID: 33522985 DOI: 10.1556/030.2021.01364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022]
Abstract
The present study evaluated the carbapenem resistance mechanisms of Klebsiella pneumoniae strains isolated in two Greek tertiary teaching hospitals and their susceptibility to currently used and novel antimicrobial agents.Forty-seven carbapenem resistant K. pneumoniae strains were collected in G. Papanikolaou and Ippokrateio hospital of Thessaloniki between 2016 and 2018. Strain identification and antimicrobial susceptibility was conducted by Vitek 2 system (Biomérieux France). Susceptibility against new antimicrobial agents was examined by disk diffusion method. Polymerase chain reaction (PCR) was used to detect blaKPC, blaVIM, blaNDM and blaOXA-48 genes.The meropenem-EDTA and meropenem-boronic acid synergy test performed on the 24 K. pneumoniae strains demonstrated that 8 (33.3%) yielded positive for metallo-beta-lactamases (MBL) and 16 (66.6%) for K. pneumonia carbapenemases (KPC) production. Colistin demonstrated the highest in vitro activity (87.7%) among the 47 K. pneumoniae strains followed by gentamicin (76.5%) and tigecycline (51%). Among new antibiotics ceftazidime/avibactam showed the highest sensitivity (76.6%) in all strains followed by eravacycline (66.6%). The blaKPC gene was present in 30 strains (63.8%), the blaNDM in 11 (23.4%) and the blaVIM in 6 (12.8%). The blaOXA-48 gene was not detected.Well established antimicrobial agents such as colistin, gentamicin and tigecycline and novel antibiotics like ceftazidime/avibactam and eravacycline can be reliable options for the treatment of invasive infections caused by carbapenem-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Maria Chatzidimitriou
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | | | | | | - Asimoula Kavvada
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | | - Fani Chatzopoulou
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Meletis
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Mavridou
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | - Dimitris Rousis
- 2Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Katsifa
- 4General Teaching Hospital “G. Papanikolaou”, Thessaloniki, Greece
| | - Eleni Vagdatli
- 5General Teaching Hospital “Ippokrateio”, Thessaloniki, Greece
| | - Stella Mitka
- 1School of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | | |
Collapse
|
11
|
Le Run E, Atze H, Arthur M, Mainardi JL. Impact of relebactam-mediated inhibition of Mycobacterium abscessus BlaMab β-lactamase on the in vitro and intracellular efficacy of imipenem. J Antimicrob Chemother 2021; 75:379-383. [PMID: 31637424 DOI: 10.1093/jac/dkz433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Imipenem is one of the recommended β-lactams for the treatment of Mycobacterium abscessus pulmonary infections in spite of the production of BlaMab β-lactamase. Avibactam, a second-generation β-lactamase inhibitor, was previously shown to inactivate BlaMab, but its partner drug, ceftazidime, is devoid of any antibacterial activity against M. abscessus. Here, we investigate whether relebactam, a novel second-generation inhibitor developed in combination with imipenem, improves the activity of this carbapenem against M. abscessus. METHODS The impact of BlaMab inhibition by relebactam was evaluated by determining MICs, time-kill curves and M. abscessus intracellular proliferation in human macrophages. Kinetic parameters for the inhibition of BlaMab by relebactam were determined by spectrophotometry using nitrocefin as the substrate. The data were compared with those obtained with avibactam. RESULTS Combination of relebactam (4 mg/L) with β-lactams led to >128- and 2-fold decreases in the MICs of amoxicillin (from >4096 to 32 mg/L) and imipenem (from 8 to 4 mg/L). In vitro, M. abscessus was not killed by the imipenem/relebactam combination. In contrast, relebactam increased the intracellular activity of imipenem, leading to 88% killing. Relebactam and avibactam similarly potentiated the antibacterial activities of β-lactams although BlaMab was inactivated 150-fold less effectively by relebactam than by avibactam. CONCLUSIONS Inhibition of BlaMab by relebactam improves the efficacy of imipenem against M. abscessus in macrophages, indicating that the imipenem/relebactam combination should be clinically considered for the treatment of infections due to M. abscessus.
Collapse
Affiliation(s)
- Eva Le Run
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Heiner Atze
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Michel Arthur
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, F-75006, Paris, France
| | - Jean-Luc Mainardi
- Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, F-75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris, Service de Microbiologie, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
12
|
Karlowsky JA, Bouchillon SK, El Mahdy Kotb R, Mohamed N, Stone GG, Sahm DF. In vitro activity of ceftazidime/avibactam against clinical isolates of Enterobacterales and Pseudomonas aeruginosa from Middle Eastern and African countries: ATLAS global surveillance programme 2015-18. JAC Antimicrob Resist 2021; 3:dlab067. [PMID: 34223129 PMCID: PMC8251253 DOI: 10.1093/jacamr/dlab067] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives To assess the in vitro activity of ceftazidime/avibactam
against a recent, 2015–18, collection of clinical isolates of
Gram-negative bacilli from Middle Eastern and African countries with a focus
on isolates from ICUs and with MDR and difficult-to-treat resistance (DTR)
phenotypes. Methods Antimicrobial susceptibility testing of 4608 isolates of Enterobacterales
(997 isolates from ICU patients) and 1358 isolates of Pseudomonas
aeruginosa (374 isolates from ICU patients) was performed by
CLSI broth microdilution methodology in a central laboratory. MICs were
interpreted using both CLSI (2020) and EUCAST (2020) MIC breakpoints. Results Most isolates of Enterobacterales (Middle East: ICU, 99.1%
susceptible, non-ICU, 99.1%; Africa: ICU, 96.9% susceptible,
non-ICU, 98.3%) and P. aeruginosa (Middle East: ICU,
93.4%, non-ICU, 92.1%; Africa: ICU, 89.8%; non-ICU,
94.1%) were susceptible to ceftazidime/avibactam. Applying CLSI and
EUCAST breakpoints, MDR rates were similar for Enterobacterales
(27.8%–36.0% of isolates) and P.
aeruginosa (25.0%–36.4%) while DTR rates
were lower for Enterobacterales (1.6%–1.8%) than for
P. aeruginosa (5.2%–7.4%).
Percentage susceptible rates for ceftazidime/avibactam for MDR
Enterobacterales were 96.8%–97.5% (Middle East) and
92.5%–94.3% (Africa) while rates for P.
aeruginosa were 70.1%–80.0% (Middle East)
and 69.5%–78.2% (Africa).
60.5%–65.8% (Middle East) and
38.9%–52.2% (Africa) of isolates of Enterobacterales
with DTR phenotypes were ceftazidime/avibactam susceptible as were
29.2%–31.1% (Middle East) and
28.2%–35.8% (Africa) of DTR P.
aeruginosa. Conclusions Overall, the isolates of Enterobacterales and P. aeruginosa
tested from Middle Eastern and African countries were highly susceptible to
ceftazidime/avibactam. Most MDR and many DTR isolates of Enterobacterales
and P. aeruginosa were susceptible to
ceftazidime/avibactam.
Collapse
Affiliation(s)
- James A Karlowsky
- IHMA, Schaumburg, IL, USA.,Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Yahav D, Giske CG, Grāmatniece A, Abodakpi H, Tam VH, Leibovici L. New β-Lactam-β-Lactamase Inhibitor Combinations. Clin Microbiol Rev 2020; 34:e00115-20. [PMID: 33177185 PMCID: PMC7667665 DOI: 10.1128/cmr.00115-20] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The limited armamentarium against drug-resistant Gram-negative bacilli has led to the development of several novel β-lactam-β-lactamase inhibitor combinations (BLBLIs). In this review, we summarize their spectrum of in vitro activities, mechanisms of resistance, and pharmacokinetic-pharmacodynamic (PK-PD) characteristics. A summary of available clinical data is provided per drug. Four approved BLBLIs are discussed in detail. All are options for treating multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa Ceftazidime-avibactam is a potential drug for treating Enterobacterales producing extended-spectrum β-lactamase (ESBL), Klebsiella pneumoniae carbapenemase (KPC), AmpC, and some class D β-lactamases (OXA-48) in addition to carbapenem-resistant Pseudomonas aeruginosa Ceftolozane-tazobactam is a treatment option mainly for carbapenem-resistant P. aeruginosa (non-carbapenemase producing), with some activity against ESBL-producing Enterobacterales Meropenem-vaborbactam has emerged as treatment option for Enterobacterales producing ESBL, KPC, or AmpC, with similar activity as meropenem against P. aeruginosa Imipenem-relebactam has documented activity against Enterobacterales producing ESBL, KPC, and AmpC, with the combination having some additional activity against P. aeruginosa relative to imipenem. None of these drugs present in vitro activity against Enterobacterales or P. aeruginosa producing metallo-β-lactamase (MBL) or against carbapenemase-producing Acinetobacter baumannii Clinical data regarding the use of these drugs to treat MDR bacteria are limited and rely mostly on nonrandomized studies. An overview on eight BLBLIs in development is also provided. These drugs provide various levels of in vitro coverage of carbapenem-resistant Enterobacterales, with several drugs presenting in vitro activity against MBLs (cefepime-zidebactam, aztreonam-avibactam, meropenem-nacubactam, and cefepime-taniborbactam). Among these drugs, some also present in vitro activity against carbapenem-resistant P. aeruginosa (cefepime-zidebactam and cefepime-taniborbactam) and A. baumannii (cefepime-zidebactam and sulbactam-durlobactam).
Collapse
Affiliation(s)
- Dafna Yahav
- Infectious Diseases Unit, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Christian G Giske
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - Alise Grāmatniece
- Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
- Pauls Stradins University Hospital, University of Latvia, Riga, Latvia
| | - Henrietta Abodakpi
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Vincent H Tam
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Leonard Leibovici
- Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, Israel
- Medicine E, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
| |
Collapse
|
14
|
Adler A, Katz DE, Marchaim D. The Continuing Plague of Extended-Spectrum β-Lactamase Producing Enterbacterales Infections: An Update. Infect Dis Clin North Am 2020; 34:677-708. [PMID: 33011052 DOI: 10.1016/j.idc.2020.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is a common iatrogenic complication of modern life and medical care. One of the most demonstrative examples is the exponential increase in the incidence of extended-spectrum β-lactamases (ESBLs) production among Enterobacteriaceae, that is, the most common human pathogens outside of the hospital setting. Infections resulting from ESBL-producing bacteria are associated with devastating outcomes, now affecting even previously healthy individuals. This poses an enormous burden and threat to public health. This article aims to narrate the evolving epidemiology of ESBL infections and highlights current challenges in terms of management and prevention of these common infections.
Collapse
Affiliation(s)
- Amos Adler
- Clinical Microbiology Laboratory, Tel-Aviv Sourasky Medical Center, 6 Weizmann Street, Tel-Aviv 6423906 Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - David E Katz
- Division of Internal Medicine, Shaare Zedek Medical Center, 12 Shmuel Bait Street, Jerusalem 9103102, Israel
| | - Dror Marchaim
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Unit of Infection Control, Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel.
| |
Collapse
|
15
|
Papp-Wallace KM, Mack AR, Taracila MA, Bonomo RA. Resistance to Novel β-Lactam-β-Lactamase Inhibitor Combinations: The "Price of Progress". Infect Dis Clin North Am 2020; 34:773-819. [PMID: 33011051 DOI: 10.1016/j.idc.2020.05.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Significant advances were made in antibiotic development during the past 5 years. Novel agents were added to the arsenal that target critical priority pathogens, including multidrug-resistant Pseudomonas aeruginosa and carbapenem-resistant Enterobacterales. Of these, 4 novel β-lactam-β-lactamase inhibitor combinations (ceftolozane-tazobactam, ceftazidime-avibactam, meropenem-vaborbactam, and imipenem-cilastatin-relebactam) reached clinical approval in the United States. With these additions comes a significant responsibility to reduce the possibility of emergence of resistance. Reports in the rise of resistance toward ceftolozane-tazobactam and ceftazidime-avibactam are alarming. Clinicians and scientists must make every attempt to reverse or halt these setbacks.
Collapse
Affiliation(s)
- Krisztina M Papp-Wallace
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA.
| | - Andrew R Mack
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Magdalena A Taracila
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs, 151W, 10701 East Boulevard, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Rossolini GM, Stone GG. Assessment of the in vitro activity of ceftazidime/avibactam against a global collection of multidrug-resistant Klebsiella spp. from the INFORM surveillance programme (2015–2017). Int J Antimicrob Agents 2020; 56:106111. [DOI: 10.1016/j.ijantimicag.2020.106111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 07/07/2020] [Accepted: 07/19/2020] [Indexed: 12/18/2022]
|
17
|
Wang Y, Wang J, Wang R, Cai Y. Resistance to ceftazidime–avibactam and underlying mechanisms. J Glob Antimicrob Resist 2020; 22:18-27. [DOI: 10.1016/j.jgar.2019.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 01/08/2023] Open
|
18
|
Choi M, Hegerle N, Nkeze J, Sen S, Jamindar S, Nasrin S, Sen S, Permala-Booth J, Sinclair J, Tapia MD, Johnson JK, Mamadou S, Thaden JT, Fowler VG, Aguilar A, Terán E, Decre D, Morel F, Krogfelt KA, Brauner A, Protonotariou E, Christaki E, Shindo Y, Lin YT, Kwa AL, Shakoor S, Singh-Moodley A, Perovic O, Jacobs J, Lunguya O, Simon R, Cross AS, Tennant SM. The Diversity of Lipopolysaccharide (O) and Capsular Polysaccharide (K) Antigens of Invasive Klebsiella pneumoniae in a Multi-Country Collection. Front Microbiol 2020; 11:1249. [PMID: 32595624 PMCID: PMC7303279 DOI: 10.3389/fmicb.2020.01249] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Klebsiella pneumoniae is a common cause of sepsis and is particularly associated with healthcare-associated infections. New strategies are needed to prevent or treat infections due to the emergence of multi-drug resistant K. pneumoniae. The goal of this study was to determine the diversity and distribution of O (lipopolysaccharide) and K (capsular polysaccharide) antigens on a large (>500) global collection of K. pneumoniae strains isolated from blood to inform vaccine development efforts. A total of 645 K. pneumoniae isolates were collected from the blood of patients in 13 countries during 2005-2017. Antibiotic susceptibility was determined using the Kirby-Bauer disk diffusion method. O antigen types including the presence of modified O galactan types were determined by PCR. K types were determined by multiplex PCR and wzi capsular typing. Sequence types of isolates were determined by multilocus sequence typing (MLST) targeting seven housekeeping genes. Among 591 isolates tested for antimicrobial resistance, we observed that 19.3% of isolates were non-susceptible to carbapenems and 62.1% of isolates were multidrug resistant (from as low as 16% in Sweden to 94% in Pakistan). Among 645 isolates, four serotypes, O1, O2, O3, and O5, accounted for 90.1% of K. pneumoniae strains. Serotype O1 was associated with multidrug resistance. Fifty percent of 199 tested O1 and O2 strains were gmlABC-positive, indicating the presence of the modified polysaccharide subunit D-galactan III. The most common K type was K2 by both multiplex PCR and wzi capsular typing. Of 39 strains tested by MLST, 36 strains were assigned to 26 known sequence types of which ST14, ST25, and ST258 were the most common. Given the limited number of O antigen types, diverse K antigen types and the high multidrug resistance, we believe that an O antigen-based vaccine would offer an excellent prophylactic strategy to prevent K. pneumoniae invasive infection.
Collapse
Affiliation(s)
- Myeongjin Choi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicolas Hegerle
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Nkeze
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shaichi Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sanchita Jamindar
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shamima Nasrin
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sunil Sen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jasnehta Permala-Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James Sinclair
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Milagritos D Tapia
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sylla Mamadou
- Centre pour le Développement des Vaccins, Bamako, Mali
| | - Joshua T Thaden
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, United States.,Duke Clinical Research Institute, Durham, NC, United States
| | - Ana Aguilar
- Colegio de Ciencias de la Salud e Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Enrique Terán
- Colegio de Ciencias de la Salud e Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Dominique Decre
- Département de Bactériologie, Centre d'Immunologie et des Maladies Infectieuses-Paris, Cimi-Paris, INSERM U1135, AP-HP, Sorbonne Université, Hôpitaux Universitaires Est Parisien, Paris, France
| | - Florence Morel
- Département de Bactériologie, Centre d'Immunologie et des Maladies Infectieuses-Paris, Cimi-Paris, INSERM U1135, AP-HP, Sorbonne Université, Hôpitaux Universitaires Est Parisien, Paris, France
| | | | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Division of Clinical Microbiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | | | - Eirini Christaki
- Department of Medicine, AHEPA University Hospital, Thessaloniki, Greece.,Medical School, University of Cyprus, Nicosia, Cyprus
| | - Yuichiro Shindo
- Department of Respiratory Medicine, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Andrea L Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Sadia Shakoor
- Departments of Pathology and Pediatrics, Aga Khan University, Karachi, Pakistan
| | - Ashika Singh-Moodley
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| | - Olga Perovic
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Octavie Lunguya
- Department of Clinical Microbiology and Microbiology, National Institute for Biomedical Research, University Hospital of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Raphael Simon
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alan S Cross
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Pharmacodynamics of Cefepime Combined with the Novel Extended-Spectrum-β-Lactamase (ESBL) Inhibitor Enmetazobactam for Murine Pneumonia Caused by ESBL-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00180-20. [PMID: 32253209 DOI: 10.1128/aac.00180-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/17/2020] [Indexed: 01/15/2023] Open
Abstract
Klebsiella pneumoniae strains that produce extended-spectrum beta lactamases (ESBLs) are a persistent public health threat. There are relatively few therapeutic options, and there is undue reliance on carbapenems. Alternative therapeutic options are urgently required. A combination of cefepime and the novel beta lactamase inhibitor enmetazobactam is being developed for the treatment of serious infections caused by ESBL-producing organisms. The pharmacokinetics-pharmacodynamics (PK-PD) of cefepime-enmetazobactam against ESBL-producing K. pneumoniae was studied in a neutropenic murine pneumonia model. Dose-ranging studies were performed. Dose fractionation studies were performed to define the relevant PD index for the inhibitor. The partitioning of cefepime and enmetazobactam into the lung was determined by comparing the area under the concentration-time curve (AUC) in plasma and epithelial lining fluid. The magnitude of drug exposure for cefepime-enmetazobactam required for logarithmic killing in the lung was defined using 3 ESBL-producing strains. Cefepime, given as 100 mg/kg of body weight every 8 h intravenously (q8h i.v.), had minimal antimicrobial effect. When this background regimen of cefepime was combined with enmetazobactam, a half-maximal effect was induced with enmetazobactam at 4.71 mg/kg q8h i.v. The dose fractionation study suggested both fT > threshold and fAUC:MIC are relevant PD indices. The AUCELF:AUCplasma ratio for cefepime and enmetazobactam was 73.4% and 61.5%, respectively. A ≥2-log kill in the lung was achieved with a plasma and ELF cefepime fT > MIC of ≥20% and enmetazobactam fT > 2 mg/liter of ≥20% of the dosing interval. These data and analyses provide the underpinning evidence for the combined use of cefepime and enmetazobactam for nosocomial pneumonia.
Collapse
|
20
|
Chiotos K, Hayes M, Gerber JS, Tamma PD. Treatment of Carbapenem-Resistant Enterobacteriaceae Infections in Children. J Pediatric Infect Dis Soc 2020; 9:56-66. [PMID: 31872226 PMCID: PMC7047006 DOI: 10.1093/jpids/piz085] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/27/2019] [Indexed: 12/15/2022]
Abstract
Infections due to carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent in children and are associated with poor clinical outcomes. Optimal treatment strategies for CRE infections continue to evolve. A lack of pediatric-specific comparative effectiveness data, uncertain pediatric dosing regimens for several agents, and a relative lack of new antibiotics with pediatric indications approved by the US Food and Drug Administration (FDA) collectively present unique challenges for children. In this review, we provide a framework for antibiotic treatment of CRE infections in children, highlighting relevant microbiologic considerations and summarizing available data related to the evaluation of FDA-approved antibiotics (as of September 2019) with CRE activity, including carbapenems, ceftazidime-avibactam, meropenem-vaborbactam, imipenem/cilastatin-relebactam, polymyxins, tigecycline, eravacycline, and plazomicin.
Collapse
Affiliation(s)
- Kathleen Chiotos
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Molly Hayes
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jeffrey S Gerber
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Antimicrobial Stewardship Program, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Pranita D Tamma
- Division of Pediatric Infectious Diseases, Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Veeraraghavan B, Pragasam AK, Bakthavatchalam YD, Anandan S, Swaminathan S, Sundaram B. Colistin-sparing approaches with newer antimicrobials to treat carbapenem-resistant organisms: Current evidence and future prospects. Indian J Med Microbiol 2019; 37:72-90. [PMID: 31424014 DOI: 10.4103/ijmm.ijmm_19_215] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antimicrobial resistance is on the rise across the globe. Increasing incidence of infections due to carbapenem resistance organisms is becoming difficult to treat, due to the limited availability of therapeutic agents. Very few agents such as colistin, fosfomycin, tigecycline and minocycline are widely used, despite its toxicity. However, with the availability of novel antimicrobials, beta-lactam/beta-lactamase inhibitor-based and non-beta-lactam-based agents could be of great relief. This review covers three important aspects which include (i) current management of carbapenem-resistant infections, (ii) determination of specific types of carbapenemases produced by multidrug-resistant and extensively drug-resistant Gram-negative pathogens and (iii) the currently available novel beta-lactam/beta-lactamase inhibitors and non-beta-lactam-based agents' laboratory findings, clinical outcome and implications.
Collapse
Affiliation(s)
- Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
22
|
Ceftazidime-Avibactam versus Meropenem for the Treatment of Complicated Intra-Abdominal Infections. Antibiotics (Basel) 2019; 8:antibiotics8040255. [PMID: 31817727 PMCID: PMC6963975 DOI: 10.3390/antibiotics8040255] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022] Open
Abstract
This study reports an integrated analysis of three randomized controlled trials to compare the clinical efficacies and safety of the ceftazidime–avibactam (CAZ–AVI) combination and meropenem in the treatment of adult patients with complicated intra-abdominal infections (cIAIs). Overall, a total of 1677 patients (CAZ–AVI: 835 patients; meropenem: 842 patients) were included in this analysis. CAZ–AVI had a clinical cure rate at test of cure in the clinically evaluable (CE) population similar to that of meropenem (OR, 0.88; 95% CI, 0.58–1.32; I2 = 0%). Similar trends were also observed in the modified intent-to-treat (MITT) population (OR, 0.80; 95% CI, 0.59–1.09; I2 = 0%) and microbiological evaluable (ME) population (OR, 0.73; 95% CI, 0.32–1.68; I2 = 0%). In terms of clinical cure rate at the end of treatment, the efficacy of CAZ–AVI was comparable to that of meropenem in the CE population (OR, 0.77; 95% CI, 0.47–1.25; I2 = 0%), MITT population (OR, 0.70; 95% CI, 0.47–1.06; I2 = 5%), and ME population (OR, 1.26; 95% CI, 0.39–4.08; I2 = 0%). CAZ–AVI had a similar risk of (i) treatment emergent adverse events (TEAEs) (OR, 1.03; 95% CI, 0.79–1.36; I2 = 38%), (ii) any serious adverse events (OR, 0.97; 95% CI, 0.67–1.40; I2 = 0%), (iii) discontinuation of study drug due to TEAE (OR, 2.14; 95% CI, 1.00–4.57), and iv) all-cause mortality (OR, 1.66; 95% CI, 0.78–3.53; I2 = 0%) when compared with meropenem. In conclusion, CAZ–AVI had comparable efficacy and safety profile to those of meropenem in the treatment of cIAI.
Collapse
|
23
|
Aslan AT, Akova M. Extended spectrum β-lactamase producing enterobacteriaceae: carbapenem sparing options. Expert Rev Anti Infect Ther 2019; 17:969-981. [PMID: 31722185 DOI: 10.1080/14787210.2019.1693258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Carbapenems have an important place in our antibiotic armamentarium and have been trusted to effectively treat infections caused by ESBL-producing Enterobacteriaceae for many years. However, the utility of carbapenems has been compromised by the emergence of resistance especially in Enterobacteriaceae. Therefore, carbapenem-sparing alternative antibiotics are of extreme importance in clinical practice.Areas covered: We reviewed studies addressing currently available antibiotic options used as both empiric and definitive therapy for the treatment of infections due to ESBL-producing Enterobacteriaceae published in the PubMed/MEDLINE, Web of Science and Scopus databases without any date restriction. Current treatment alternatives included beta-lactam/beta-lactamase inhibitor combinations, cefepime, cephamycins, fluoroquinolones, aminoglycosides, fosfomycin, pivmecillinam, temocillin and, various oral alternative agents. We also summarized the clinical and molecular epidemiology, early prediction methods and impact of initial empirical therapy and de-escalation approach for ESBL-producing Enterobacteriaceae infections.Expert opinion: The current literature would endorse the carbapenem utilization for patients with severe and high inoculum-high risk infections. However, for milder infections particularly for urinary tract infections, various carbapenem-sparing antibiotics can be considered in selected cases. For infections including easily drainable intra-abdominal infections and catheter-related infections in which catheter removal is readily available more reliable data are needed to recommend non-carbapenem antibiotics confidently.
Collapse
Affiliation(s)
| | - Murat Akova
- Hacettepe University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Hacettepe University Sıhhıye Campus, Sihhiye, Ankara, Turkey
| |
Collapse
|
24
|
Dose Selection and Validation for Ceftazidime-Avibactam in Adults with Complicated Intra-abdominal Infections, Complicated Urinary Tract Infections, and Nosocomial Pneumonia. Antimicrob Agents Chemother 2019; 63:AAC.02187-18. [PMID: 30670413 DOI: 10.1128/aac.02187-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Avibactam is a non-β-lactam β-lactamase inhibitor that has been approved in combination with ceftazidime for the treatment of complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia, including ventilator-associated pneumonia. In Europe, ceftazidime-avibactam is also approved for the treatment of Gram-negative infections with limited treatment options. Selection and validation of the ceftazidime-avibactam dosage regimen was guided by an iterative process of population pharmacokinetic (PK) modelling, whereby population PK models for ceftazidime and avibactam were developed using PK data from clinical trials and updated periodically. These models were used in probability of target attainment (PTA) simulations using joint pharmacodynamic (PD) targets for ceftazidime and avibactam derived from preclinical data. Joint PTA was calculated based on the simultaneous achievement of the individual PK/PD targets (50% free time above the ceftazidime-avibactam MIC for ceftazidime and free time above a critical avibactam threshold concentration of 1 mg/liter for avibactam). The joint PTA analyses supported a ceftazidime-avibactam dosage regimen of 2,000 + 500 mg every 8 h by 2-h intravenous infusion for patients with creatinine clearance (CLCR) >50 ml/min across all approved indications and modified dosage regimens for patients with CLCR ≤50 ml/min. Subgroup simulations for individual phase 3 patients showed that the dosage regimen was robust, with high target attainment (>95%) against MICs ≤8 mg/liter achieved regardless of older age, obesity, augmented renal clearance, or severity of infection. This review summarizes how the approved ceftazidime-avibactam dosage regimens were developed and validated using PK/PD targets, population PK modeling, and PTA analyses.
Collapse
|
25
|
Pragasam AK, Veeraraghavan B, Nalini E, Anandan S, Kaye KS. An update on antimicrobial resistance and the role of newer antimicrobial agents for Pseudomonas aeruginosa. Indian J Med Microbiol 2019; 36:303-316. [PMID: 30429381 DOI: 10.4103/ijmm.ijmm_18_334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infections due to Pseudomonas aeruginosa is a major health concern, especially hospital-acquired infections, in critically ill individuals. Antimicrobial resistance (AMR) increases the morbidity and mortality rates associated with pseudomonal infections. In this review, we aim to address two major aspects of P. aeruginosa. The first part of the review will focus on the burden of AMR and its prevailing mechanisms seen in India, while the second part will focus on the challenges and approaches in the management with special emphasis on the role of newer antimicrobial agents.
Collapse
Affiliation(s)
- Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - E Nalini
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Keith S Kaye
- Division of Infectious Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
26
|
Ceftazidime-Avibactam Susceptibility Breakpoints against Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2018; 62:AAC.02590-17. [PMID: 30061279 DOI: 10.1128/aac.02590-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/16/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical susceptibility breakpoints against Enterobacteriaceae and Pseudomonas aeruginosa for the ceftazidime-avibactam dosage regimen of 2,000/500 mg every 8 h (q8h) by 2-h intravenous infusion (adjusted for renal function) have been established by the FDA, CLSI, and EUCAST as susceptible (MIC, ≤8 mg/liter) and resistant (MIC, >8 mg/liter). The key supportive data from pharmacokinetic/pharmacodynamic analyses, in vitro surveillance, including molecular understanding of relevant resistance mechanisms, and efficacy in regulatory clinical trials are collated and analyzed here.
Collapse
|
27
|
Forero Doria O, Castro R, Gutierrez M, Gonzalez Valenzuela D, Santos L, Ramirez D, Guzman L. Novel Alkylimidazolium Ionic Liquids as an Antibacterial Alternative to Pathogens of the Skin and Soft Tissue Infections. Molecules 2018; 23:molecules23092354. [PMID: 30223457 PMCID: PMC6225289 DOI: 10.3390/molecules23092354] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023] Open
Abstract
Keeping in mind the concept of green chemistry, this research aims to synthesize and characterize new ionic liquids (ILs) derived from N-cinnamyl imidazole with different sizes of alkyl chains (1, 6, 8, and 10 carbon atoms), and evaluate their antibacterial activity against Skin and soft tissue infections (SSTIs) causative bacteria. The antibacterial screening was carried out by agar well diffusion and the Minimum Inhibitory Concentration (MIC) and Half Maximum Inhibitory Concentration (IC50) of the different ILs were determined by microdilution in broth, also Molecular dynamics simulations were performed to study the interaction mechanism between ILs and membranes. The MIC value in Gram-positive bacteria showed that as the hydrocarbon chain increases, the MIC value decreases with a dose-dependent effect. Furthermore, Gram-negative bacteria showed high MIC values, which were also evidenced in the antibacterial screening. The molecular dynamics showed an incorporation of the ILs with the longer chain (10 C), corresponding to a passive diffusion towards the membrane surface, for its part, the ILs with the shorter chain due to its lack of hydrophobicity was not incorporated into the bilayer. Finally, the new ILs synthesized could be an alternative for the treatment of Gram-positive bacteria causative of SSTIs.
Collapse
Affiliation(s)
- Oscar Forero Doria
- Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile.
| | - Ricardo Castro
- Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca 3460000, Chile.
- Carrera de Ingeniería en Construcción e Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile.
| | - Margarita Gutierrez
- Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile.
| | | | - Leonardo Santos
- Instituto de Química de Recursos Naturales, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile.
| | - David Ramirez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3460000, Chile.
| | - Luis Guzman
- Departamento de Bioquímica Clínica e Inmunohematología, Facultad de Ciencias de la Salud, Universidad de Talca, P.O. Box 747, Talca 3460000, Chile.
| |
Collapse
|
28
|
Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): a randomised, double-blind, phase 3 non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2018; 18:285-295. [DOI: 10.1016/s1473-3099(17)30747-8] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 12/20/2022]
|
29
|
Abstract
Klebsiella pneumoniae, a gram-negative bacillus of the Enterobacteriaceae family, is a component of the normal human microbiota and a common cause of community- and healthcare-associated infections. The increasing prevalence of antimicrobial resistance among
K. pneumoniae isolates, particularly among those causing healthcare-associated infections, is an important public health concern. Infections caused by these multidrug-resistant organisms, for which safe and effective antimicrobial therapy options are extremely limited, are associated with poor outcomes for patients. The optimal approach to the treatment of infections caused by these multidrug-resistant strains remains undefined, and treatment decisions for an individual patient should be based on a number of organism- (for example, minimum inhibitory concentration) and patient-specific (for example, site of infection) factors. The emergence of pandrug-resistant strains of
K. pneumoniae highlights the critical need for consistent implementation of effective strategies for prevention of transmission and infection and for the development of new antimicrobials with activity against these emerging pathogens.
Collapse
|
30
|
Identifying Spectra of Activity and Therapeutic Niches for Ceftazidime-Avibactam and Imipenem-Relebactam against Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2017. [PMID: 28630202 DOI: 10.1128/aac.00642-17] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined imipenem, imipenem-relebactam, ceftazidime, and ceftazidime-avibactam MICs against 100 CRE isolates that underwent whole-genome sequencing. Klebsiella pneumoniae carbapenemases (KPCs) were the most common carbapenemases. Forty-six isolates carried extended-spectrum β-lactamases (ESBLs). With the addition of relebactam, imipenem susceptibility increased from 8% to 88%. With the addition of avibactam, ceftazidime susceptibility increased from 0% to 85%. Neither imipenem-relebactam nor ceftazidime-avibactam was active against metallo-β-lactamase (MBL) producers. Ceftazidime-avibactam (but not imipenem-relebactam) was active against OXA-48-like producers, including a strain not harboring any ESBL. Major OmpK36 porin mutations were independently associated with higher imipenem-relebactam MICs (P < 0.0001) and showed a trend toward independent association with higher ceftazidime-avibactam MICs (P = 0.07). The presence of variant KPC-3 was associated with ceftazidime-avibactam resistance (P < 0.0001). In conclusion, imipenem-relebactam and ceftazidime-avibactam had overlapping spectra of activity and niches in which each was superior. Major OmpK36 mutations in KPC-K. pneumoniae may provide a foundation for stepwise emergence of imipenem-relebactam and ceftazidime-avibactam resistance.
Collapse
|
31
|
Gugliandolo A, Caio C, Mezzatesta ML, Rifici C, Bramanti P, Stefani S, Mazzon E. Successful ceftazidime-avibactam treatment of MDR-KPC-positive Klebsiella pneumoniae infection in a patient with traumatic brain injury: A case report. Medicine (Baltimore) 2017; 96:e7664. [PMID: 28767588 PMCID: PMC5626142 DOI: 10.1097/md.0000000000007664] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
RATIONALE Carbapenem-resistant Enterobacteriaceae infections are a serious health care problem, because of the high mortality. Carbapenem resistance is mainly caused by carbapenemases production, including Klebsiella pneumoniae carbapenemase (KPC). Ceftazidime-avibactam is a new cephalosporin/β-lactamase inhibitor combination for the treatment of complicated urinary, intra-abdominal infections, and nosocomial pneumonia caused by gram negative, or other serious gram-negative infections. PATIENT CONCERNS We showed the case of a 27-year-old patient, hospitalized for traumatic brain injury and chest trauma, with KPC-producing Klebsiella pneumoniae infection. DIAGNOSES Blood and bronchial aspirate culture analysis detected an infection caused by MDR Klebsiella pneumoniae, resistant to meropenem, ertapenem, piperacillin/tazobactam, amoxicillin/clavulanic acid, aztreonam, ceftazidime, cefotaxime, cefepime, amikacin, ciprofloxacin, trimethoprim/sulfamethoxazole, colistin while it showed an intermediate sensitivity to gentamicin and was sensitive to ceftazidime-avibactam. Molecular analyses revealed that the isolate belonged to the epidemic clone sequence type 258 (ST258) carrying blaKPC-3, blaTEM-1, and blaSHV-11genes. INTERVENTIONS After various combined antibiotic therapies without improvements, he was treated with ceftazidime-avibactam, on a compassionate-use basis. OUTCOMES With ceftazidime-avibactam monotherapy clinical and microbiological clearance was obtained. A week after the end of the therapy microbiological analysis was repeated and a positive rectal swab for KPC-Klebsiella pneumoniae was found, becoming negative after 1 month. Moreover, the patient did not show any relapses for up to 18 weeks. LESSONS This case indicates that ceftazidime-avibactam monotherapy could be efficacious against KPC positive Klebsiella pneumoniae infections.
Collapse
Affiliation(s)
- Agnese Gugliandolo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Messina
| | - Carla Caio
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Maria Lina Mezzatesta
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carmela Rifici
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Messina
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Messina
| | - Stefania Stefani
- Section of Microbiology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Messina
| |
Collapse
|
32
|
Castón JJ, Lacort-Peralta I, Martín-Dávila P, Loeches B, Tabares S, Temkin L, Torre-Cisneros J, Paño-Pardo JR. Clinical efficacy of ceftazidime/avibactam versus other active agents for the treatment of bacteremia due to carbapenemase-producing Enterobacteriaceae in hematologic patients. Int J Infect Dis 2017; 59:118-123. [DOI: 10.1016/j.ijid.2017.03.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022] Open
|
33
|
Neuner EA, Gallagher JC. Pharmacodynamic and pharmacokinetic considerations in the treatment of critically Ill patients infected with carbapenem-resistant Enterobacteriaceae. Virulence 2017; 8:440-452. [PMID: 27589330 PMCID: PMC5477717 DOI: 10.1080/21505594.2016.1221021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 01/20/2023] Open
Abstract
Carbapenem-Resistant Enterobacteriaceae (CRE) are an emerging healthcare crisis. Infections due to CRE are associated with high morbidity and mortality, especially in critically ill patients. Due to the multi-drug resistant nature of these infections only limited treatment options are available. Antimicrobials that have been described for the treatment of CRE infections include carbapenems, polymyxins, fosfomycin, tigecycline, aminoglycosides, and ceftazidime-avibactam. Given the limited treatment options it is imperative the pharmacokinetic and pharmacodynamics (PK-PD) characteristics of these agents are considered to optimize treatment regimens. This review will focus on the PK-PD challenges of the current treatment options for CRE infections.
Collapse
Affiliation(s)
| | - Jason C. Gallagher
- Department of Pharmacy Practice, Infectious Diseases, Temple University, Philadelphia, PA, USA
| |
Collapse
|
34
|
Inhibition of the β-Lactamase Bla Mab by Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother 2017; 61:AAC.02440-16. [PMID: 28096155 DOI: 10.1128/aac.02440-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium abscessus pulmonary infections are treated with a macrolide (clarithromycin or azithromycin), an aminoglycoside (amikacin), and a β-lactam (cefoxitin or imipenem). The triple combination is used without any β-lactamase inhibitor, even though Mabscessus produces the broad-spectrum β-lactamase BlaMab We determine whether inhibition of BlaMab by avibactam improves the activity of imipenem against M. abscessus The bactericidal activity of drug combinations was assayed in broth and in human macrophages. The in vivo efficacy of the drugs was tested by monitoring the survival of infected zebrafish embryos. The level of BlaMab production in broth and in macrophages was compared by quantitative reverse transcription-PCR and Western blotting. The triple combination of imipenem (8 or 32 μg/ml), amikacin (32 μg/ml), and avibactam (4 μg/ml) was bactericidal in broth (<0.1% survival), with 3.2- and 4.3-log10 reductions in the number of CFU being achieved at 72 h when imipenem was used at 8 and 32 μg/ml, respectively. The triple combination achieved significant intracellular killing, with the bacterial survival rates being 54% and 7% with the low (8 μg/ml) and high (32 μg/ml) dosages of imipenem, respectively. In vivo inhibition of BlaMab by avibactam improved the survival of zebrafish embryos treated with imipenem. Expression of the gene encoding BlaMab was induced (20-fold) in the infected macrophages. Inhibition of BlaMab by avibactam improved the efficacy of imipenem against M. abscessusin vitro, in macrophages, and in zebrafish embryos, indicating that this β-lactamase inhibitor should be clinically evaluated. The in vitro evaluation of imipenem may underestimate the impact of BlaMab, since the production of the β-lactamase is inducible in macrophages.
Collapse
|
35
|
Ourghanlian C, Soroka D, Arthur M. Inhibition by Avibactam and Clavulanate of the β-Lactamases KPC-2 and CTX-M-15 Harboring the Substitution N 132G in the Conserved SDN Motif. Antimicrob Agents Chemother 2017; 61:e02510-16. [PMID: 28069651 PMCID: PMC5328567 DOI: 10.1128/aac.02510-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/04/2017] [Indexed: 11/20/2022] Open
Abstract
The substitution N132G in the SDN motif of class A β-lactamases from rapidly growing mycobacteria was previously shown to impair their inhibition by avibactam but to improve the stability of acyl-enzymes formed with clavulanate. The same substitution was introduced in KPC-2 and CTX-M-15 to assess its impact on β-lactamases from Enterobacteriaceae and evaluate whether it may lead to resistance to the ceftazidime-avibactam combination. Kinetic parameters for the inhibition of the β-lactamases by avibactam and clavulanate were determined by spectrophotometry using nitrocefin as the substrate. The substitution N132G impaired (>1,000-fold) the efficacy of carbamylation of KPC-2 and CTX-M-15 by avibactam. The substitution improved the inhibition of KPC-2 by clavulanate due to reduced deacylation, whereas the presence or absence of N132G resulted in the inhibition of CTX-M-15 by clavulanate. The hydrolysis of amoxicillin and nitrocefin by KPC-2 and CTX-M-15 was moderately affected by the substitution N132G, but that of ceftazidime, ceftaroline, and aztreonam was drastically reduced. Isogenic strains producing KPC-2 and CTX-M-15 were constructed to assess the impact of the substitution N132G on the antibacterial activities of β-lactam-inhibitor combinations. For amoxicillin, the substitution resulted in resistance and susceptibility for avibactam and clavulanate, respectively. For ceftazidime, ceftaroline, and aztreonam, the negative impact of the substitution on β-lactamase activity prevented resistance to the β-lactam-avibactam combinations. In conclusion, the N132G substitution has profound effects on the substrate and inhibition profiles of class A β-lactamases, which are largely conserved in distantly related enzymes. Fortunately, the substitution does not lead to resistance to the ceftazidime-avibactam combination.
Collapse
Affiliation(s)
- Clément Ourghanlian
- INSERM, U1138, LRMA, Equipe 12 du Centre de Recherche des Cordeliers, Paris, France, Université Pierre et Marie Curie, UMR S 1138, Paris, France, and Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| | - Daria Soroka
- INSERM, U1138, LRMA, Equipe 12 du Centre de Recherche des Cordeliers, Paris, France, Université Pierre et Marie Curie, UMR S 1138, Paris, France, and Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| | - Michel Arthur
- INSERM, U1138, LRMA, Equipe 12 du Centre de Recherche des Cordeliers, Paris, France, Université Pierre et Marie Curie, UMR S 1138, Paris, France, and Université Paris Descartes, Sorbonne Paris Cité, UMR S 1138, Paris, France
| |
Collapse
|
36
|
Mischnik A, Baumert P, Hamprecht A, Rohde A, Peter S, Feihl S, Knobloch J, Gölz H, Kola A, Obermann B, Querbach C, Willmann M, Gebhardt F, Tacconelli E, Gastmeier P, Seifert H, Kern WV. Susceptibility to cephalosporin combinations and aztreonam/avibactam among third-generation cephalosporin-resistant Enterobacteriaceae recovered on hospital admission. Int J Antimicrob Agents 2016; 49:239-242. [PMID: 27939093 DOI: 10.1016/j.ijantimicag.2016.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 11/17/2022]
Abstract
As part of the multicentre Antibiotic Therapy Optimisation Study (ATHOS), minimum inhibitory concentrations (MICs) were determined for cephalosporins alone and in combination with the β-lactamase inhibitors tazobactam, clavulanic acid and avibactam against third-generation cephalosporin-resistant Escherichia coli, Klebsiella spp. and Enterobacter spp. isolates collected in German hospitals. MIC50/90 values were 0.25-4 mg/L for cefepime/tazobactam, 0.25-2 mg/L for ceftazidime/avibactam, 0.125-0.5 mg/L for ceftaroline/avibactam, 0.5-4 mg/L for cefpodoxime/clavulanic acid and 0.25-1 mg/L for aztreonam/avibactam, depending on the underlying resistance mechanism and organism. Based on in vitro testing, β-lactam antibiotics play an important role in the treatment of infections due to β-lactamase-producing organisms.
Collapse
Affiliation(s)
- Alexander Mischnik
- German Center for Infection Research (DZIF), Germany; Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Philipp Baumert
- German Center for Infection Research (DZIF), Germany; Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Axel Hamprecht
- German Center for Infection Research (DZIF), Germany; Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
| | - Anna Rohde
- German Center for Infection Research (DZIF), Germany; Institute for Hygiene and Environmental Medicine, National Reference Centre for the Surveillance of Nosocomial Infections, Charité-University Hospital Berlin, Berlin, Germany
| | - Silke Peter
- German Center for Infection Research (DZIF), Germany; Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Susanne Feihl
- German Center for Infection Research (DZIF), Germany; Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Johannes Knobloch
- German Center for Infection Research (DZIF), Germany; Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Gölz
- German Center for Infection Research (DZIF), Germany; Institute for Medical Microbiology and Hygiene, University Medical Centre Freiburg, Freiburg, Germany
| | - Axel Kola
- German Center for Infection Research (DZIF), Germany; Institute for Hygiene and Environmental Medicine, National Reference Centre for the Surveillance of Nosocomial Infections, Charité-University Hospital Berlin, Berlin, Germany
| | - Birgit Obermann
- German Center for Infection Research (DZIF), Germany; Institute for Medical Microbiology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Christiane Querbach
- German Center for Infection Research (DZIF), Germany; Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Matthias Willmann
- German Center for Infection Research (DZIF), Germany; Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Friedemann Gebhardt
- German Center for Infection Research (DZIF), Germany; Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Evelina Tacconelli
- German Center for Infection Research (DZIF), Germany; Division of Infectious Diseases, Department of Internal Medicine 1, University Hospital Tübingen, Tübingen, Germany
| | - Petra Gastmeier
- German Center for Infection Research (DZIF), Germany; Institute for Hygiene and Environmental Medicine, National Reference Centre for the Surveillance of Nosocomial Infections, Charité-University Hospital Berlin, Berlin, Germany
| | - Harald Seifert
- German Center for Infection Research (DZIF), Germany; Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
| | - Winfried V Kern
- German Center for Infection Research (DZIF), Germany; Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | | |
Collapse
|