1
|
Butler T. Plague Gives Surprises in the Second Decade of the Twenty-First Century. Am J Trop Med Hyg 2023; 109:985-988. [PMID: 37748767 PMCID: PMC10622459 DOI: 10.4269/ajtmh.23-0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/27/2023] Open
Abstract
From 2010 through 2019, the six leading countries by numbers of human plague cases reported to the WHO were, in order from highest to lowest, Madagascar, Congo, Uganda, Peru, Tanzania, and the United States. From these countries, there was a total of 4,547 cases, of whom 786 (17%) died. Top plague events were four outbreaks of primary pneumonic plague in Madagascar that affected 1,936 persons, including index cases, of whom 137 died. One of the outbreaks was caused by a streptomycin-resistant strain of Yersinia pestis. Person-to-person transmission occurred in a taxi, in households with family caregivers, at burial ceremonies and wakes for victims, and at a hospital where cases were treated. Unique clinical presentations in the United States included a dog owner who acquired pneumonic plague from his sick dog, a boy with septicemic plague who developed complications of osteomyelitis and arthritis that required surgery for bone removal and bone grafting, and a prairie dog handler who acquired bubonic plague from a bite by a sick prairie dog. Efficacy of antibiotics in a model of pneumonic plague in African green monkeys for use in bioterrorism revealed the most effective drugs to be gentamicin, ciprofloxacin, and levofloxacin. A recombinant vaccine containing Fraction 1 antigen and V antigen of Y. pestis designed for first responders during a bioterrorism attack and military personnel was tested for safety and immunogenicity but was not licensed for use by the end of the decade.
Collapse
Affiliation(s)
- Thomas Butler
- Ross University School of Medicine, Bridgetown, Barbados, West Indies, Retired
| |
Collapse
|
2
|
Deng YP, Fu YT, Yao C, Shao R, Zhang XL, Duan DY, Liu GH. Emerging bacterial infectious diseases/pathogens vectored by human lice. Travel Med Infect Dis 2023; 55:102630. [PMID: 37567429 DOI: 10.1016/j.tmaid.2023.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Human lice have always been a major public health concern due to their vector capacity for louse-borne infectious diseases, like trench fever, louse-borne relapsing fever, and epidemic fever, which are caused by Bartonella quintana, Borrelia recurrentis, and Rickettsia prowazekii, respectively. Those diseases are currently re-emerging in the regions of poor hygiene, social poverty, or wars with life-threatening consequences. These louse-borne diseases have also caused outbreaks among populations in jails and refugee camps. In addition, antibodies and DNAs to those pathogens have been steadily detected in homeless populations. Importantly, more bacterial pathogens have been detected in human lice, and some have been transmitted by human lice in laboratories. Here, we provide a comprehensive review and update on louse-borne infectious diseases/bacterial pathogens.
Collapse
Affiliation(s)
- Yuan-Ping Deng
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Yi-Tian Fu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China; Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Chaoqun Yao
- Department of Biomedical Sciences and One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis.
| | - Renfu Shao
- Centre for Bioinnovation, School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Xue-Ling Zhang
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - De-Yong Duan
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Guo-Hua Liu
- Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Amemiya K, Rozak DA, Dankmeyer JL, Dorman WR, Marchand C, Fetterer DP, Worsham PL, Purcell BK. Shiga-Toxin-Producing Strains of Escherichia coli O104:H4 and a Strain of O157:H7, Which Can Cause Human Hemolytic Uremic Syndrome, Differ in Biofilm Formation in the Presence of CO 2 and in Their Ability to Grow in a Novel Cell Culture Medium. Microorganisms 2023; 11:1744. [PMID: 37512916 PMCID: PMC10384166 DOI: 10.3390/microorganisms11071744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
One pathogen that commonly causes gastrointestinal illnesses from the consumption of contaminated food is Escherichia coli O157:H7. In 2011 in Germany, however, there was a prominent outbreak of bloody diarrhea with a high incidence of hemolytic uremic syndrome (HUS) caused by an atypical, more virulent E. coli O104:H4 strain. To facilitate the identification of this lesser-known, atypical E. coli O104:H4 strain, we wanted to identify phenotypic differences between it and a strain of O157:H7 in different media and culture conditions. We found that E. coli O104:H4 strains produced considerably more biofilm than the strain of O157:H7 at 37 °C (p = 0.0470-0.0182) Biofilm production was significantly enhanced by the presence of 5% CO2 (p = 0.0348-0.0320). In our study on the innate immune response to the E. coli strains, we used HEK293 cells that express Toll-like receptors (TLRs) 2 or 4. We found that E. coli O104:H4 strains had the ability to grow in a novel HEK293 cell culture medium, while the E. coli O157:H7 strain could not. Thus, we uncovered previously unknown phenotypic properties of E. coli O104:H4 to further differentiate this pathogen from E. coli O157:H7.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David A Rozak
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - William R Dorman
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles Marchand
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Brett K Purcell
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Department of Medicine, University of Florida, Orlando, FL 32816, USA
| |
Collapse
|
4
|
Efficacy of Treatment with the Antibiotic Novobiocin against Infection with Bacillus anthracis or Burkholderia pseudomallei. Antibiotics (Basel) 2022; 11:antibiotics11121685. [PMID: 36551342 PMCID: PMC9774170 DOI: 10.3390/antibiotics11121685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
The microbial pathogens Burkholderia pseudomallei and Bacillus anthracis are unrelated bacteria, yet both are the etiologic agents of naturally occurring diseases in animals and humans and are classified as Tier 1 potential biothreat agents. B. pseudomallei is the gram-negative bacterial agent of melioidosis, a major cause of sepsis and mortality globally in endemic tropical and subtropical regions. B. anthracis is the gram-positive spore-forming bacterium that causes anthrax. Infections acquired by inhalation of these pathogens are challenging to detect early while the prognosis is best; and they possess innate multiple antibiotic resistance or are amenable to engineered resistance. Previous studies showed that the early generation, rarely used aminocoumarin novobiocin was very effective in vitro against a range of highly disparate biothreat agents. The objective of the current research was to begin to characterize the therapeutic efficacy of novobiocin in mouse models of anthrax and melioidosis. The antibiotic was highly efficacious against infections by both pathogens, especially B. pseudomallei. Our results supported the concept that specific older generation antimicrobials can be effective countermeasures against infection by bacterial biothreat agents. Finally, novobiocin was shown to be a potential candidate for inclusion in a combined pre-exposure vaccination and post-exposure treatment strategy designed to target bacterial pathogens refractory to a single medical countermeasure.
Collapse
|
5
|
Phage Therapy Potentiates Second-Line Antibiotic Treatment against Pneumonic Plague. Viruses 2022; 14:v14040688. [PMID: 35458417 PMCID: PMC9024586 DOI: 10.3390/v14040688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Plague pandemics and outbreaks have killed millions of people during the history of humankind. The disease, caused by the bacteria Yersinia pestis, is currently treated effectively with antibiotics. However, in the case of multidrug-resistant (MDR) bacteria, alternative treatments are required. Bacteriophage (phage) therapy has shown efficient antibacterial activity in various experimental animal models and in human patients infected with different MDR pathogens. Here, we evaluated the efficiency of фA1122 and PST phage therapy, alone or in combination with second-line antibiotics, using a well-established mouse model of pneumonic plague. Phage treatment significantly delayed mortality and limited bacterial proliferation in the lungs. However, the treatment did not prevent bacteremia, suggesting that phage efficiency may decrease in the circulation. Indeed, in vitro phage proliferation assays indicated that blood exerts inhibitory effects on lytic activity, which may be the major cause of treatment inefficiency. Combining phage therapy and second-line ceftriaxone treatment, which are individually insufficient, provided protection that led to the survival of all infected animals—a synergistic protective effect that represents a proof of concept for efficient combinatorial therapy in an emergency event of a plague outbreak involving MDR Y. pestis strains.
Collapse
|
6
|
Andrianaivoarimanana V, Wagner DM, Birdsell DN, Nikolay B, Rakotoarimanana F, Randriantseheno LN, Vogler AJ, Sahl JW, Hall CM, Somprasong N, Cauchemez S, Schweizer HP, Razafimandimby H, Rogier C, Rajerison M. Transmission of antimicrobial resistant Yersinia pestis during a pneumonic plague outbreak. Clin Infect Dis 2021; 74:695-702. [PMID: 34244722 PMCID: PMC8886911 DOI: 10.1093/cid/ciab606] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pneumonic plague (PP), caused by Yersinia pestis, is the most feared clinical form of plague due to its rapid lethality and potential to cause outbreaks. PP outbreaks are now rare due to antimicrobial therapy. METHODS A PP outbreak in Madagascar involving transmission of a Y. pestis strain resistant to streptomycin, the current recommended first-line treatment in Madagascar, was retrospectively characterized using epidemiology, clinical diagnostics, molecular characterization, and animal studies. RESULTS The outbreak occurred in February 2013 in the Faratsiho district of Madagascar and involved 22 cases, including three untreated fatalities. The 19 other cases participated in funeral practices for the fatal cases and fully recovered after combination antimicrobial therapy: intramuscular streptomycin followed by oral co-trimoxazole. The Y. pestis strain that circulated during this outbreak is resistant to streptomycin resulting from a spontaneous point mutation in the 30S ribosomal protein S12 (rpsL) gene. This same mutation causes streptomycin resistance in two unrelated Y. pestis strains, one isolated from a fatal PP case in a different region of Madagascar in 1987 and another isolated from a fatal PP case in China in 1996, documenting this mutation has occurred independently at least three times in Y. pestis. Laboratory experiments revealed this mutation has no detectable impact on fitness or virulence, and revertants to wild-type are rare in other species containing it, suggesting Y. pestis strains containing it could persist in the environment. CONCLUSION Unique AMR strains of Y. pestis continue to arise in Madagascar and can be transmitted during PP outbreaks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amy J Vogler
- Northern Arizona University, Flagstaff, Arizona, USA
| | - Jason W Sahl
- Northern Arizona University, Flagstaff, Arizona, USA
| | - Carina M Hall
- Northern Arizona University, Flagstaff, Arizona, USA
| | - Nawarat Somprasong
- Northern Arizona University, Flagstaff, Arizona, USA.,University of Florida, Gainesville, Florida, USA
| | | | - Herbert P Schweizer
- Northern Arizona University, Flagstaff, Arizona, USA.,University of Florida, Gainesville, Florida, USA
| | | | | | | |
Collapse
|
7
|
Rotem S, Shifman O, Aftalion M, Gur D, Aminov T, Aloni-Grinstein R. Rapid Antibiotic Susceptibility Testing of Tier-1 Agents Bacillus anthracis, Yersinia pestis, and Francisella tularensis Directly From Whole Blood Samples. Front Microbiol 2021; 12:664041. [PMID: 34305832 PMCID: PMC8299750 DOI: 10.3389/fmicb.2021.664041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/10/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid antibiotic susceptibility tests, performed directly on whole blood samples, will offer great clinical advantages. This issue is of considerable importance when it comes to bioterror pathogens where prompt antibiotic treatment should be offered to infected patients as well as prophylaxis to suspected exposed individuals. Herein, we describe a novel and rapid method, named MAPt, that is based on the direct application of a blood sample onto solid agar that has been embedded with different concentrations of the tested antibiotic. Following a short incubation, bacterial growth is monitored by qPCR. The method was applied on blood cultures and whole blood samples inoculated with the Tier-1 pathogens Bacillus anthracis, Yersinia pestis, and Francisella tularensis. The use of agar medium, which better supports the growth of bacteria at low concentrations, together with the use of qPCR, which provides sensitivity and specificity, allowed minimal inhibitory concentration (MIC) determination to a wide range of bacterial concentrations, ranging from ∼5 × 102 cfu/ml up to 108 cfu/ml. The omission of the enrichment procedure in blood culture and the isolation step, both required in standard antibiotic susceptibility tests (ASTs), allowed a dramatic reduction in time to answer, from a few days to a few hours. The total time required for MIC determination was ∼6 h for fast-growing bacteria, such as B. anthracis, and 12-16 h for slow-growing bacteria, represented by Y. pestis and F. tularensis. Accordingly, MAPt may offer health authorities means for public preparedness in the case of a bioterror attack as well as prompt clinical treatment options in common blood stream infections.
Collapse
Affiliation(s)
- Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | | | | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
8
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
9
|
Clayton NP, Jain A, Halasohoris SA, Pysz LM, Lembirik S, Zumbrun SD, Kane CD, Hackett MJ, Pfefferle D, Smiley MA, Anderson MS, Heine H, Meister GT, Pucci MJ. In Vitro and In Vivo Characterization of Tebipenem (TBP), an Orally Active Carbapenem, against Biothreat Pathogens. Antimicrob Agents Chemother 2021; 65:AAC.02385-20. [PMID: 33593844 PMCID: PMC8092902 DOI: 10.1128/aac.02385-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis and Yersinia pestis, causative pathogens for anthrax and plague, respectively, along with Burkholderia mallei and B. pseudomallei are potential bioterrorism threats. Tebipenem pivoxil hydrobromide (TBP HBr, formerly SPR994), is an orally available prodrug of tebipenem, a carbapenem with activity versus multidrug-resistant (MDR) gram-negative pathogens, including quinolone-resistant and extended-spectrum-β-lactamase-producing Enterobacterales. We evaluated the in vitro activity and in vivo efficacy of tebipenem against biothreat pathogens. Tebipenem was active in vitro against 30-strain diversity sets of B. anthracis, Y. pestis, B. mallei, and B. pseudomallei with minimum inhibitory concentration (MIC) values of 0.001 - 0.008 μg/ml for B. anthracis, ≤0.0005 - 0.03 μg/ml for Y. pestis, 0.25 - 1 μg/ml for B. mallei, and 1 - 4 μg/ml for B. pseudomallei In a B. anthracis murine model, all control animals died within 52 h post challenge. The survival rates in the groups treated with tebipenem were 75% and 73% when dosed at 12 h and 24 h post challenge, respectively. The survival rates in the positive control groups treated with ciprofloxacin were 75% and when dosed 12 h and 25% when dosed 24 h post challenge, respectively. Survival rates were significantly (p=0.0009) greater in tebipenem groups treated at 12 h and 24 h post challenge and in the ciprofloxacin group 12 h post-challenge vs. the vehicle-control group. For Y. pestis, survival rates for all animals in the tebipenem and ciprofloxacin groups were significantly (p<0.0001) greater than the vehicle-control group. These results support further development of tebipenem for treating biothreat pathogens.
Collapse
Affiliation(s)
| | | | | | - Lisa M Pysz
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Sanae Lembirik
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Steven D Zumbrun
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Christopher D Kane
- US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | | | | | | | | | - Henry Heine
- Institute for Therapeutic Innovation, Department of Medicine, University of Florida, Orlando, FL
| | | | | |
Collapse
|
10
|
Dai R, He J, Zha X, Wang Y, Zhang X, Gao H, Yang X, Li J, Xin Y, Wang Y, Li S, Jin J, Zhang Q, Bai J, Peng Y, Wu H, Zhang Q, Wei B, Xu J, Li W. A novel mechanism of streptomycin resistance in Yersinia pestis: Mutation in the rpsL gene. PLoS Negl Trop Dis 2021; 15:e0009324. [PMID: 33886558 PMCID: PMC8096067 DOI: 10.1371/journal.pntd.0009324] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/04/2021] [Accepted: 03/23/2021] [Indexed: 12/28/2022] Open
Abstract
Streptomycin is considered to be one of the effective antibiotics for the treatment of plague. In order to investigate the streptomycin resistance of Y. pestis in China, we evaluated streptomycin susceptibility of 536 Y. pestis strains in China in vitro using the minimal inhibitory concentration (MIC) and screened streptomycin resistance-associated genes (strA and strB) by PCR method. A clinical Y. pestis isolate (S19960127) exhibited high-level resistance to streptomycin (the MIC was 4,096 mg/L). The strain (biovar antiqua) was isolated from a pneumonic plague outbreak in 1996 in Tibet Autonomous Region, China, belonging to the Marmota himalayana Qinghai–Tibet Plateau plague focus. In contrast to previously reported streptomycin resistance mediated by conjugative plasmids, the genome sequencing and allelic replacement experiments demonstrated that an rpsL gene (ribosomal protein S12) mutation with substitution of amino-acid 43 (K43R) was responsible for the high-level resistance to streptomycin in strain S19960127, which is consistent with the mutation reported in some streptomycin-resistant Mycobacterium tuberculosis strains. Streptomycin is used as the first-line treatment against plague in many countries. The emergence of streptomycin resistance in Y. pestis represents a critical public health problem. So streptomycin susceptibility monitoring of Y. pestis isolates should not only include plasmid-mediated resistance but also include the ribosomal protein S12 gene (rpsL) mutation, especially when treatment failure is suspected due to antibiotic resistance. The plague natural foci are widely distributed in the world, and correspondingly, the plague still poses a significant threat to human health in some countries with endemic plague foci. Streptomycin is used as the first-line treatment against plague in many countries for the antibiotic is considered to be one of the effective antibiotics, particularly for the treatment of pneumonic plague. The resistance to streptomycin had been reported in Y. pestis strains from Madagascar in previous studies. In this study, we reported the high-level resistance to streptomycin in a clinical isolate of Y. pestis from a pneumonic patient in Tibet Autonomous Region, China, and a novel mechanism of streptomycin resistance, i.e. mutation in the rpsL gene were identified. The knowledge acquired about streptomycin resistance in Y. pestis will remain of great practical value. For the emergence of resistance to streptomycin in Y. pestis would render the treatment failure, thus corresponding antibiotic monitoring should be routinely carried out in countries threatened by plague. In addition, based on our further understanding about streptomycin resistance of Y. pestis isolates, such monitoring should not only include plasmid-mediated resistance but also include the ribosomal protein S12 gene (rpsL) mutation in Y. pestis isolates.
Collapse
Affiliation(s)
- Ruixia Dai
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Jian He
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Xi Zha
- Center for Disease Control and Prevention of Tibet Autonomous Region, Lhasa, China
| | - Yiting Wang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xuefei Zhang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - He Gao
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Xiaoyan Yang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Juan Li
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Youquan Xin
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Yumeng Wang
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Sheng Li
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Juan Jin
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Qi Zhang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Jixiang Bai
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Yao Peng
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Hailian Wu
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Qingwen Zhang
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Baiqing Wei
- Qinghai Institute for Endemic Disease Control and Prevention, Xining, China
- Key Laboratory of the National Health Commission for Plague Control and Prevention, Xining, China
| | - Jianguo Xu
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
| | - Wei Li
- National Institute for Communicable Disease Control and Prevention, China CDC, Changping, Beijing, China
- State Key Laboratory of Infectious Disease Prevention and Control, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Yang J, Zhu Q, Xu F, Yang M, Du H, Bian X, Lu Z, Lu Y, Lu F. Genome Mining, Heterologous Expression, Antibacterial and Antioxidant Activities of Lipoamides and Amicoumacins from Compost-Associated Bacillus subtilis fmb60. Molecules 2021; 26:molecules26071892. [PMID: 33810551 PMCID: PMC8036425 DOI: 10.3390/molecules26071892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Bacillus subtilis fmb60, which has broad-spectrum antimicrobial activities, was isolated from plant straw compost. A hybrid NRPS/PKS cluster was screened from the genome. Sixteen secondary metabolites produced by the gene cluster were isolated and identified using LC-HRMS and NMR. Three lipoamides D–F (1–3) and two amicoumacin derivatives, amicoumacins D, E (4, 5), were identified, and are reported here for the first time. Lipoamides D–F exhibited strong antibacterial activities against harmful foodborne bacteria, with the MIC ranging from 6.25 to 25 µg/mL. Amicoumacin E scavenged 38.8% of ABTS+ radicals at 1 mg/mL. Direct cloning and heterologous expression of the NRPS/PKS and ace gene cluster identified its importance for the biosynthesis of amicoumacins. This study demonstrated that there is a high potential for biocontrol utilization of B. subtilis fmb60, and genome mining for clusters of secondary metabolites of B. subtilis fmb60 has revealed a greater biosynthetic potential for the production of novel natural products than previously anticipated.
Collapse
Affiliation(s)
- Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (J.Y.); (Q.Z.); (F.X.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Marine Resources Development Research Institute, Lianyungang 222000, China
| | - Qingzheng Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (J.Y.); (Q.Z.); (F.X.)
| | - Feng Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (J.Y.); (Q.Z.); (F.X.)
| | - Ming Yang
- Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (M.Y.); (X.B.)
| | - Hechao Du
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (H.D.); (Z.L.)
| | - Xiaoying Bian
- Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (M.Y.); (X.B.)
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (H.D.); (Z.L.)
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210003, China
- Correspondence: (Y.L.); (F.L.); Tel./Fax: +86-258-439-5155 (Y.L.); +86-258-439-5963 (F.L.)
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (H.D.); (Z.L.)
- Correspondence: (Y.L.); (F.L.); Tel./Fax: +86-258-439-5155 (Y.L.); +86-258-439-5963 (F.L.)
| |
Collapse
|
12
|
Nelson CA, Fleck-Derderian S, Cooley KM, Meaney-Delman D, Becksted HA, Russell Z, Renaud B, Bertherat E, Mead PS. Antimicrobial Treatment of Human Plague: A Systematic Review of the Literature on Individual Cases, 1937-2019. Clin Infect Dis 2021; 70:S3-S10. [PMID: 32435802 DOI: 10.1093/cid/ciz1226] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Yersinia pestis remains endemic in Africa, Asia, and the Americas and is a known bioterrorism agent. Treatment with aminoglycosides such as streptomycin or gentamicin is effective when initiated early in illness but can have serious side effects. Alternatives such as fluoroquinolones, tetracyclines, and sulfonamides are potentially safer but lack robust human data on efficacy. METHODS We searched PubMed Central, Medline, Embase, and other databases for articles in any language with terms related to plague and antimicrobials. Articles that contained case-level information on antimicrobial treatment and patient outcome were included. We abstracted information related to patient demographics, clinical features, treatment, and fatality. RESULTS Among 5837 articles screened, we found 762 published cases of treated plague reported from 1937 to 2019. Fifty-nine percent were male; median age was 22 years (range, 8 days-80 years). The case fatality rate was 20% overall. Most patients had primary bubonic (63%), pneumonic (21%), or septicemic (5%) plague, with associated case fatality rates of 17%, 27%, and 38%, respectively. Among those treated with an aminoglycoside (n = 407 [53%]), the case fatality rate was 13%. Among those treated with a sulfonamide (n = 322 [42%]), tetracycline (n = 171 [22%]), or fluoroquinolone (n = 61 [8%]), fatality was 23%, 10%, and 12%, respectively. Case fatality rate did not substantially differ between patients treated with 1 vs 2 classes of antimicrobials considered to be effective for plague. CONCLUSIONS In addition to aminoglycosides, other classes of antimicrobials including tetracyclines, fluoroquinolones, and sulfonamides are effective for plague treatment, although publication bias and low numbers in certain treatment groups may limit interpretation.
Collapse
Affiliation(s)
- Christina A Nelson
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Shannon Fleck-Derderian
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.,Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention Fellowship Program, Oak Ridge, Tennessee, USA
| | - Katharine M Cooley
- Synergy America, Contracting Agency for Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Dana Meaney-Delman
- Infant Outcomes Monitoring, Research and Prevention Branch, Division of Birth Defects and Infant Disorders, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Heidi A Becksted
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.,Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention Fellowship Program, Oak Ridge, Tennessee, USA
| | - Zachary Russell
- Oak Ridge Institute for Science and Education, Centers for Disease Control and Prevention Fellowship Program, Oak Ridge, Tennessee, USA.,Emergency Preparedness and Response Branch, Division of Preparedness and Emerging Infections, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Paul S Mead
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Aloni-Grinstein R, Shifman O, Gur D, Aftalion M, Rotem S. MAPt: A Rapid Antibiotic Susceptibility Testing for Bacteria in Environmental Samples as a Means for Bioterror Preparedness. Front Microbiol 2020; 11:592194. [PMID: 33224128 PMCID: PMC7674193 DOI: 10.3389/fmicb.2020.592194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022] Open
Abstract
Antibiotic resistance of bio-threat agents holds major concerns especially in light of advances in methods for engineering pathogens with antibiotic resistance. Preparedness means for rapid identification and prompt proper medical treatment are of need to contain the event and prevent morbidity and spreading of the disease by properly treating exposed individuals before symptoms appearance. Herein, we describe a novel, rapid, simple, specific, and sensitive method named Micro-Agar-PCR-test (MAPt), which determines antibiotic susceptibility of bio-terror pathogens, directly from environmental samples, with no need for any prior isolation, quantification, or enrichment steps. As proof of concept, we have used this approach to obtain correct therapeutic antibiotic minimal inhibitory concentration (MIC) values for the Tier-1 select agents, Bacillus anthracis, Yersinia pestis, and Francisella tularensis, spiked in various environmental samples recapitulating potential bioterror scenarios. The method demonstrated efficiency for a broad dynamic range of bacterial concentrations, both for fast-growing as well as slow-growing bacteria and most importantly significantly shortening the time for accurate results from days to a few hours. The MAPt allows us to address bioterror agents-contaminated environmental samples, offering rational targeted prophylactic treatment, before the onset of morbidity in exposed individuals. Hence, MAPt is expected to provide data for decision-making personal for treatment regimens before the onset of symptoms in infected individuals.
Collapse
Affiliation(s)
- Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
14
|
Zauberman A, Gur D, Levy Y, Aftalion M, Vagima Y, Tidhar A, Chitlaru T, Mamroud E. Postexposure Administration of a Yersinia pestis Live Vaccine for Potentiation of Second-Line Antibiotic Treatment Against Pneumonic Plague. J Infect Dis 2020; 220:1147-1151. [PMID: 31095689 DOI: 10.1093/infdis/jiz260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 01/08/2023] Open
Abstract
Pneumonic plague, caused by Yersinia pestis, is a rapidly progressing contagious disease. In the plague mouse model, a single immunization with the EV76 live attenuated Y. pestis strain rapidly induced the expression of hemopexin and haptoglobin in the lung and serum, both of which are important in iron sequestration. Immunization against a concomitant lethal Y. pestis respiratory challenge was correlated with temporary inhibition of disease progression. Combining EV76-immunization and second-line antibiotic treatment, which are individually insufficient, led to a synergistic protective effect that represents a proof of concept for efficient combinational therapy in cases of infection with antibiotic-resistant strains.
Collapse
Affiliation(s)
- Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Yinon Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona
| |
Collapse
|
15
|
A Survey of Antimicrobial Resistance Determinants in Category A Select Agents, Exempt Strains, and Near-Neighbor Species. Int J Mol Sci 2020; 21:ijms21051669. [PMID: 32121349 PMCID: PMC7084191 DOI: 10.3390/ijms21051669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/02/2023] Open
Abstract
A dramatic increase in global antimicrobial resistance (AMR) has been well documented. Of particular concern is the dearth of information regarding the spectrum and prevalence of AMR within Category A Select Agents. Here, we performed a survey of horizontally and vertically transferred AMR determinants among Category A agents and their near neighbors. Microarrays provided broad spectrum screening of 127 Francisella spp., Yersinia spp., and Bacillus spp. strains for the presence/absence of 500+ AMR genes (or families of genes). Detecting a broad variety of AMR genes in each genus, microarray analysis also picked up the presence of an engineered plasmid in a Y. pestis strain. High resolution melt analysis (HRMA) was also used to assess the presence of quinolone resistance-associated mutations in 100 of these strains. Though HRMA was able to detect resistance-causing point mutations in B. anthracis strains, it was not capable of discriminating these point mutations from other nucleotide substitutions (e.g., arising from sequence differences in near neighbors). Though these technologies are well-established, to our knowledge, this is the largest survey of Category A agents and their near-neighbor species for genes covering multiple mechanisms of AMR.
Collapse
|
16
|
Cote CK, Blanco II, Hunter M, Shoe JL, Klimko CP, Panchal RG, Welkos SL. Combinations of early generation antibiotics and antimicrobial peptides are effective against a broad spectrum of bacterial biothreat agents. Microb Pathog 2020; 142:104050. [PMID: 32050093 DOI: 10.1016/j.micpath.2020.104050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
The misuse of infectious disease pathogens as agents of deliberate attack on civilians and military personnel is a serious national security concern, which is exacerbated by the emergence of natural or genetically engineered multidrug resistant strains. In this study, the therapeutic potential of combinations of an antibiotic and a broad-spectrum antimicrobial peptide (AMP) was evaluated against five bacterial biothreats, the etiologic agents of glanders (Burkholderia mallei), melioidosis (Burkholderia pseudomallei), plague (Yersinia pestis), tularemia (Francisella tularensis), and anthrax (Bacillus anthracis). The therapeutics included licensed early generation antibiotics which are now rarely used. Three antibiotics and one 24- amino acid AMP were selected based on MIC assay data. Combinations of the AMP and tigecycline, minocycline, or novobiocin were screened for synergistic activity by checkerboard MIC assay. The combinations each enhanced the susceptibility of several strains. The tetracycline-peptide combinations increased the sensitivities of Y. pestis, F. tularensis, B. anthracis and B. pseudomallei, and the novobiocin-AMP combination augmented the sensitivity of all five. In time-kill assays, down-selected combinations of the peptide and minocycline or tigecycline enhanced killing of B. anthracis, Y. pestis, F. tularensis, and Burkholderia mallei but not B. pseudomallei. The novobiocin-AMP pair significantly reduced viability of all strains except B. mallei, which was very sensitive to the antibiotic alone. The results suggested that antibiotic-AMP combinations are useful tools for combating diverse pathogens. Future studies employing cell culture and animal models will utilize virulent strains of the agents to investigate the in vivo availability, host cytotoxicity, and protective efficacy of these therapeutics.
Collapse
Affiliation(s)
- Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| | - Irma I Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | | | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
17
|
Hidalgo J, Woc-Colburn L. Zoonotic Infections and Biowarfare Agents in Critical Care: Anthrax, Plague, and Tularemia. HIGHLY INFECTIOUS DISEASES IN CRITICAL CARE 2020. [PMCID: PMC7122055 DOI: 10.1007/978-3-030-33803-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Bacterial zoonotic infections are rare in developed countries in the twenty-first century but may cause major morbidity and mortality in developing regions of the world. In addition, their potential use as biological weapons makes early recognition and effective empiric therapy important for the critical care practitioner. Anthrax, plague, and tularemia share overlapping presenting syndromes, including fulminant respiratory infections and less severe but still highly morbid lymphocutaneous infections. Although all three may be transmitted as infectious aerosols, only plague has a risk of direct human-to-human transmission. Diagnostic testing will require special precautions for laboratory staff and most often involvement of regional and national reference laboratories. Empiric therapy with aminoglycosides may be life-saving for plague and tularemia, while the treatment of anthrax is complex and varies depending on the site of infection. In outbreaks or for post-exposure prophylaxis, treatment with doxycycline or a fluoroquinolone is recommended for all three diseases.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Division of Critical Care, Karl Heusner Memorial Hospital, Belize City, Belize
| | - Laila Woc-Colburn
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
18
|
Shifman O, Steinberger-Levy I, Aloni-Grinstein R, Gur D, Aftalion M, Ron I, Mamroud E, Ber R, Rotem S. A Rapid Antimicrobial Susceptibility Test for Determining Yersinia pestis Susceptibility to Doxycycline by RT-PCR Quantification of RNA Markers. Front Microbiol 2019; 10:754. [PMID: 31040834 PMCID: PMC6477067 DOI: 10.3389/fmicb.2019.00754] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Great efforts are being made to develop new rapid antibiotic susceptibility tests to meet the demand for clinical relevance versus disease progression. This is important especially in diseases caused by bacteria such as Yersinia pestis, the causative agent of plague, which grows rapidly in vivo but relatively slow in vitro. This compromises the ability to use standard growth-based susceptibility tests to obtain rapid and proper antibiotic treatment guidance. Using our previously described platform of quantifying antibiotic-specific transcriptional changes, we developed a molecular test based on changes in expression levels of doxycycline response-dependent marker genes that we identified by transcriptomic analysis. This enabled us to determine the minimal inhibitory concentration of doxycycline within 7 h compared to the 24 h required by the standard CLSI test. This assay was validated with various Y. pestis strains. Moreover, we demonstrated the applicability of the molecular test, combined with a new rapid bacterial isolation step from blood cultures, and show its relevance as a rapid test in clinical settings.
Collapse
Affiliation(s)
- Ohad Shifman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ida Steinberger-Levy
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Ronit Aloni-Grinstein
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Izhar Ron
- Department of Physical Chemistry, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Raphael Ber
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| |
Collapse
|
19
|
Serio AW, Keepers T, Andrews L, Krause KM. Aminoglycoside Revival: Review of a Historically Important Class of Antimicrobials Undergoing Rejuvenation. EcoSal Plus 2018; 8. [PMID: 30447062 PMCID: PMC11575671 DOI: 10.1128/ecosalplus.esp-0002-2018] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/04/2023]
Abstract
Aminoglycosides are cidal inhibitors of bacterial protein synthesis that have been utilized for the treatment of serious bacterial infections for almost 80 years. There have been approximately 15 members of this class approved worldwide for the treatment of a variety of infections, many serious and life threatening. While aminoglycoside use declined due to the introduction of other antibiotic classes such as cephalosporins, fluoroquinolones, and carbapenems, there has been a resurgence of interest in the class as multidrug-resistant pathogens have spread globally. Furthermore, aminoglycosides are recommended as part of combination therapy for empiric treatment of certain difficult-to-treat infections. The development of semisynthetic aminoglycosides designed to overcome common aminoglycoside resistance mechanisms, and the shift to once-daily dosing, has spurred renewed interest in the class. Plazomicin is the first new aminoglycoside to be approved by the FDA in nearly 40 years, marking the successful start of a new campaign to rejuvenate the class.
Collapse
|
20
|
Therapeutic effects of 5,2'-dibromo-2,4',5'-trihydroxydiphenylmethanone (LM49) in an experimental rat model of acute pyelonephritis by immunomodulation and anti-inflammation. Int Immunopharmacol 2018; 62:155-164. [PMID: 30007245 DOI: 10.1016/j.intimp.2018.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 01/05/2023]
Abstract
Antibiotics are still the primary therapy for acute pyelonephritis (APN); rarely, natural polyphenols are also used. LM49 is a novel marine bromophenol derivative displaying strong anti-inflammatory effects. We investigated the therapeutic efficacy of LM49 in an experimental rat model of APN. The model was established by injecting 0.5 mL Escherichia coli (ATCC 25922, 108 CFU/mL) into the urinary bladders of Sprague Dawley rats. This model showed increased kidney viscera indices and renal bacterial growth scores, as well as pathological changes in kidneys. We also performed a broth microdilution antimicrobial susceptibility test of the E. coli strain. Both norfloxacin and LM49 treatment reduced kidney viscera indices and decreased microbial counts in urine cultures and kidney homogenates in APN rats. However, in vitro experiments showed that LM49 did not directly inhibit bacteria. Rather, LM49 treatment inhibited inflammatory cell infiltration or abscess and improved tissue lesions in the renal medullary junction, renal pelvis, and calyx, and high-dose LM49 treatment inhibited the production of inflammatory interleukin-1β (IL-1β) and interleukin-6 (IL-6) in serum. CD4+ T cells were higher in the LM49 groups treated with high, medium, and low doses than in the model group, whereas only high-dose LM49 treatment increased the number of CD8+ T cells, as compared with that in the model group. However, LM49 treatment did not influence hematological parameters. Our results show that LM49 therapeutic effects in an APN animal model may be achieved by regulating immune responses and inhibiting inflammatory mediators, suggesting it as a candidate APN treatment.
Collapse
|
21
|
Andrianaivoarimanana V, Bertherat E, Rajaonarison R, Rakotondramaro T, Rogier C, Rajerison M. Mixed pneumonic plague and nosocomial MDR-bacterial infection of lung: a rare case report. BMC Pulm Med 2018; 18:92. [PMID: 29843675 PMCID: PMC5975559 DOI: 10.1186/s12890-018-0656-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Madagascar is the leading country for human plague cases worldwide. Human plague is a serious disease, particularly in its septicaemic and pneumonic forms. We report a case of pneumonic plague co-infected by a MDR-Stenotrophomonas maltophilia. CASE PRESENTATION A 24 year-old man originated from Soavinandriana, a plague focus, felt uneasy and developed high fever with chills. He started treatment by himself, by private medical care and by a traditional healer for nine days moving several times from place to place. His condition had deteriorated when he presented to a district hospital with a syndrome of dyspnea, bronchial rale and altered state of consciousness. Two days later, plague diagnosis, performed as a last resort, revealed a positive F1 antigen on rapid diagnostic test. Additional tests (pla PCR and plague serology) evidenced a Y. pestis infection. However, streptomycin treatment did not achieve a complete recovery as the course of disease was complicated by the presence of MDR-S. maltophilia in his lung. This opportunistic infection could have been favored by an immunosuppression due to Y. pestis pulmonary infection and probably been acquired during his stay at a District Hospital. He was treated with a combination of ciprofloxacin and gentamycin and recovered fully. CONCLUSIONS Pneumonic plague infection may promote another virulent or avirulent bacterial infection particularly when it is not initially suspected. However, coinfection is rarely described and its occurrence frequency is unknown. In middle or low resources areas, which is the case of most plague endemic countries, control and prevention of infections in health facilities is not optimal. Co-infection with an opportunistic pathogen agent, such as S. maltophilia, is a risk which must not be disregarded as demonstrated by this case report. When deciding of a national control strategy, it should be taken into account in the choice of the first line treatment.
Collapse
Affiliation(s)
| | - Eric Bertherat
- Department of Infectious Hazard Management, World Health Organization, Avenue Appia 20, CH-1211, 27 Geneva, Switzerland
| | - Rojo Rajaonarison
- Centre Hospitalier Anti-pesteux d’Ambohimiandra, 101 Antananarivo, Madagascar
| | | | - Christophe Rogier
- Institut Pasteur de Madagascar, BP1274 Ambatofotsikely, 101 Antananarivo, Madagascar
- Present address: Service de Santé des Armées, Direction Centrale, Division Expertise et Stratégie Santé de Défense, 60 Boulevard du Général Martial Valin – CS21623, 75509 Paris Cedex 15, France
| | - Minoarisoa Rajerison
- Plague Unit- Institut Pasteur de Madagascar, BP1274 Ambatofotsikely, 101 Antananarivo, Madagascar
| |
Collapse
|
22
|
In Vitro Antibiotic Susceptibilities of Francisella tularensis Determined by Broth Microdilution following CLSI Methods. Antimicrob Agents Chemother 2017; 61:AAC.00612-17. [PMID: 28674048 DOI: 10.1128/aac.00612-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/24/2017] [Indexed: 11/20/2022] Open
Abstract
In vitro susceptibilities for 47 antibiotics were determined in 30 genetic diverse strains of Francisella tularensis by the broth microdilution method following Clinical and Laboratory Standards Institute (CLSI) methods. The F. tularensis strains demonstrated susceptibility to aminoglycosides, fluoroquinolones, and tetracyclines. There was a distinct difference in macrolide susceptibilities between A and B type strains, as has been noted previously. The establishment and comparison of antibiotic susceptibilities of a diverse but specific set of F. tularensis strains by standardized methods and the establishment of population ranges and MIC50/90 values provide reference information for assessing new antibiotic agents and a baseline to monitor any future emergence of resistance, whether natural or intentional.
Collapse
|
23
|
Steenbergen J, Tanaka SK, Miller LL, Halasohoris SA, Hershfield JR. In Vitro and In Vivo Activity of Omadacycline against Two Biothreat Pathogens, Bacillus anthracis and Yersinia pestis. Antimicrob Agents Chemother 2017; 61:e02434-16. [PMID: 28223382 PMCID: PMC5404541 DOI: 10.1128/aac.02434-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/05/2017] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity and in vivo efficacy of omadacycline (OMC) were evaluated against the causative pathogens of anthrax and plague, Bacillus anthracis and Yersinia pestis, respectively. MICs of OMC were determined by broth microdilution according to CLSI guidelines for 30 isolates each of Y. pestis and B. anthracis The in vivo efficacy of omadacycline was studied at a range of dosages in both a postexposure prophylaxis (PEP) murine model of anthrax and plague as well as in a delayed treatment model of inhalational anthrax. Omadacycline was active in vitro against Y. pestis (MIC90 of 1 μg/ml) and B. anthracis (MIC90 of 0.06 μg/ml). Omadacycline was less active in vitro than ciprofloxacin (CIP) against Y. pestis (CIP MIC90 of 0.03 μg/ml) but was more potent in vitro against B. anthracis (CIP MIC90 of 0.12 μg/ml). In the mouse model of infection, the survival curves for all treatment cohorts differed significantly from the vehicle control (P = 0.004). The median survival for the vehicle-treated controls was 6 days postchallenge, while all antibiotic-treated mice survived the entire study. Omadacycline treatment with 5, 10, or 20 mg/kg of body weight twice daily for 14 days had significant efficacy over the vehicle control in the treatment of aerosolized B. anthracis Additionally, for postexposure prophylaxis treatment of mice infected with Y. pestis, the survival curves for omadacycline (40 mg/kg twice daily), ciprofloxacin, and doxycycline cohorts differed significantly from the vehicle control (P < 0.0001). Omadacycline is potent and demonstrates efficacy against both B. anthracis and Y. pestis The well-characterized oral and intravenous pharmacokinetics, safety, and tolerability warrant further assessment of the potential utility of omadacycline in combating these serious biothreat organisms.
Collapse
Affiliation(s)
| | - S Ken Tanaka
- Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
| | - Lynda L Miller
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Stephanie A Halasohoris
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| | - Jeremy R Hershfield
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA
| |
Collapse
|
24
|
Yang J, Zhu X, Cao M, Wang C, Zhang C, Lu Z, Lu F. Genomics-Inspired Discovery of Three Antibacterial Active Metabolites, Aurantinins B, C, and D from Compost-Associated Bacillus subtilis fmb60. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8811-8820. [PMID: 27806569 DOI: 10.1021/acs.jafc.6b04455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fmb60 is a wild-type Bacillus subtilis isolated from compost with significant broad-spectrum antimicrobial activities. Two novel PKS clusters were recognized in the genome sequence of fmb60, and then three polyene antibiotics, aurantinins B, C, and D, 1-3, were obtained by bioactivity-guided isolation from the fermentation of fmb60. The structures of aurantinins B-D were elucidated by LC-HRMS and NMR data analysis. Aurantinins C and D were identified as new antimicrobial compounds. The three aurantinins showed significant activity against multidrug-resistant Staphylococcus aureus and Clostridium sporogenes. However, aurantinins B-D did not exhibit any cytotoxicity (IC50 > 100 μg/mL) against LO2 and Caco2 cell lines by MTT assay. Furthermore, using S. aureus as a model bacterium to explore the antibacterial mechanism of aurantinins B-D, it was revealed that the bactericidal activity of aurantinins B-D was related to their ability to disrupt the cell membrane.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Changbao Wang
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| |
Collapse
|