1
|
Susanto TT, Hung V, Levine AG, Chen Y, Kerr CH, Yoo Y, Oses-Prieto JA, Fromm L, Zhang Z, Lantz TC, Fujii K, Wernig M, Burlingame AL, Ruggero D, Barna M. RAPIDASH: Tag-free enrichment of ribosome-associated proteins reveals composition dynamics in embryonic tissue, cancer cells, and macrophages. Mol Cell 2024; 84:3545-3563.e25. [PMID: 39260367 PMCID: PMC11460945 DOI: 10.1016/j.molcel.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024]
Abstract
Ribosomes are emerging as direct regulators of gene expression, with ribosome-associated proteins (RAPs) allowing ribosomes to modulate translation. Nevertheless, a lack of technologies to enrich RAPs across sample types has prevented systematic analysis of RAP identities, dynamics, and functions. We have developed a label-free methodology called RAPIDASH to enrich ribosomes and RAPs from any sample. We applied RAPIDASH to mouse embryonic tissues and identified hundreds of potential RAPs, including Dhx30 and Llph, two forebrain RAPs important for neurodevelopment. We identified a critical role of LLPH in neural development linked to the translation of genes with long coding sequences. In addition, we showed that RAPIDASH can identify ribosome changes in cancer cells. Finally, we characterized ribosome composition remodeling during immune cell activation and observed extensive changes post-stimulation. RAPIDASH has therefore enabled the discovery of RAPs in multiple cell types, tissues, and stimuli and is adaptable to characterize ribosome remodeling in several contexts.
Collapse
Affiliation(s)
- Teodorus Theo Susanto
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Victoria Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrew G Levine
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Craig H Kerr
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yongjin Yoo
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Fromm
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Zijian Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Travis C Lantz
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Grove DJ, Levine DJ, Kearse MG. Increased levels of eIF2A inhibit translation by sequestering 40S ribosomal subunits. Nucleic Acids Res 2023; 51:9983-10000. [PMID: 37602404 PMCID: PMC10570035 DOI: 10.1093/nar/gkad683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
eIF2A was the first eukaryotic initiator tRNA carrier discovered but its exact function has remained enigmatic. Uncharacteristic of translation initiation factors, eIF2A is reported to be non-cytosolic in multiple human cancer cell lines. Attempts to study eIF2A mechanistically have been limited by the inability to achieve high yield of soluble recombinant protein. Here, we developed a purification paradigm that yields ∼360-fold and ∼6000-fold more recombinant human eIF2A from Escherichia coli and insect cells, respectively, than previous reports. Using a mammalian in vitro translation system, we found that increased levels of recombinant human eIF2A inhibit translation of multiple reporter mRNAs, including those that are translated by cognate and near-cognate start codons, and does so prior to start codon recognition. eIF2A also inhibited translation directed by all four types of cap-independent viral IRESs, including the CrPV IGR IRES that does not require initiation factors or initiator tRNA, suggesting excess eIF2A sequesters 40S subunits. Supplementation with additional 40S subunits prevented eIF2A-mediated inhibition and pull-down assays demonstrated direct binding between recombinant eIF2A and purified 40S subunits. These data support a model that eIF2A must be kept away from the translation machinery to avoid sequestering 40S ribosomal subunits.
Collapse
Affiliation(s)
- Daisy J Grove
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel J Levine
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael G Kearse
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Narayan S, Raza A, Mahmud I, Koo N, Garrett TJ, Law ME, Law BK, Sharma AK. Sensitization of FOLFOX-resistant colorectal cancer cells via the modulation of a novel pathway involving protein phosphatase 2A. iScience 2022; 25:104518. [PMID: 35754740 PMCID: PMC9218363 DOI: 10.1016/j.isci.2022.104518] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
The treatment of colorectal cancer (CRC) with FOLFOX shows some efficacy, but these tumors quickly develop resistance to this treatment. We have observed increased phosphorylation of AKT1/mTOR/4EBP1 and levels of p21 in FOLFOX-resistant CRC cells. We have identified a small molecule, NSC49L, that stimulates protein phosphatase 2A (PP2A) activity, downregulates the AKT1/mTOR/4EBP1-axis, and inhibits p21 translation. We have provided evidence that NSC49L- and TRAIL-mediated sensitization is synergistically induced in p21-knockdown CRC cells, which is reversed in p21-overexpressing cells. p21 binds with procaspase 3 and prevents the activation of caspase 3. We have shown that TRAIL induces apoptosis through the activation of caspase 3 by NSC49L-mediated downregulation of p21 translation, and thereby cleavage of procaspase 3 into caspase 3. NSC49L does not affect global protein synthesis. These studies provide a mechanistic understanding of NSC49L as a PP2A agonist, and how its combination with TRAIL sensitizes FOLFOX-resistant CRC cells.
Collapse
Affiliation(s)
- Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Asif Raza
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA 17033, USA
| | - Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nayeong Koo
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mary E. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State University College of Medicine, Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MA. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2022; 6:36. [PMID: 34250262 PMCID: PMC8240603 DOI: 10.12688/wellcomeopenres.16430.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of
Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in
T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by
trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in
T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in
T. brucei. We also improved the annotation of the
T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in
T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J. Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A.J. Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
5
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MAJ. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2021; 6:36. [PMID: 34250262 DOI: 10.12688/wellcomeopenres.16430.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
6
|
Tinti M, Kelner-Mirôn A, Marriott LJ, Ferguson MAJ. Polysomal mRNA Association and Gene Expression in Trypanosoma brucei. Wellcome Open Res 2021; 6:36. [PMID: 34250262 DOI: 10.12688/wellcomeopenres.16430.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The contrasting physiological environments of Trypanosoma brucei procyclic (insect vector) and bloodstream (mammalian host) forms necessitates deployment of different molecular processes and, therefore, changes in protein expression. Transcriptional regulation is unusual in T. brucei because the arrangement of genes is polycistronic; however, genes which are transcribed together are subsequently cleaved into separate mRNAs by trans-splicing. Following pre-mRNA processing, the regulation of mature mRNA stability is a tightly controlled cellular process. While many stage-specific transcripts have been identified, previous studies using RNA-seq suggest that changes in overall transcript level do not necessarily reflect the abundance of the corresponding protein. Methods: To better understand the regulation of gene expression in T. brucei, we performed a bioinformatic analysis of RNA-seq on total, sub-polysomal, and polysomal mRNA samples. We further cross-referenced our dataset with a previously published proteomics dataset to identify new protein coding sequences. Results: Our analyses showed that several long non-coding RNAs are more abundant in the sub-polysome samples, which possibly implicates them in regulating cellular differentiation in T. brucei. We also improved the annotation of the T.brucei genome by identifying new putative protein coding transcripts that were confirmed by mass spectrometry data. Conclusions: Several long non-coding RNAs are more abundant in the sub-polysome cellular fractions and might pay a role in the regulation of gene expression. We hope that these data will be of wide general interest, as well as being of specific value to researchers studying gene regulation expression and life stage transitions in T. brucei.
Collapse
Affiliation(s)
- Michele Tinti
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Anna Kelner-Mirôn
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Lizzie J Marriott
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research (WCAIR), School of Life Sciences, University of Dundee, Dundee, Dundee, UK
| |
Collapse
|
7
|
Booth DS, King N. Genome editing enables reverse genetics of multicellular development in the choanoflagellate Salpingoeca rosetta. eLife 2020; 9:56193. [PMID: 32496191 PMCID: PMC7314544 DOI: 10.7554/elife.56193] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
In a previous study, we established a forward genetic screen to identify genes required for multicellular development in the choanoflagellate, Salpingoeca rosetta (Levin et al., 2014). Yet, the paucity of reverse genetic tools for choanoflagellates has hampered direct tests of gene function and impeded the establishment of choanoflagellates as a model for reconstructing the origin of their closest living relatives, the animals. Here we establish CRISPR/Cas9-mediated genome editing in S. rosetta by engineering a selectable marker to enrich for edited cells. We then use genome editing to disrupt the coding sequence of a S. rosetta C-type lectin gene, rosetteless, and thereby demonstrate its necessity for multicellular rosette development. This work advances S. rosetta as a model system in which to investigate how genes identified from genetic screens and genomic surveys function in choanoflagellates and evolved as critical regulators of animal biology.
Collapse
Affiliation(s)
- David S Booth
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
8
|
Ondracek CR, Frappier V, Ringel AE, Wolberger C, Guarente L. Mutations that Allow SIR2 Orthologs to Function in a NAD +-Depleted Environment. Cell Rep 2017; 18:2310-2319. [PMID: 28273448 DOI: 10.1016/j.celrep.2017.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/22/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Sirtuin enzymes depend on NAD+ to catalyze protein deacetylation. Therefore, the lowering of NAD+ during aging leads to decreased sirtuin activity and may speed up aging processes in laboratory animals and humans. In this study, we used a genetic screen to identify two mutations in the catalytic domain of yeast Sir2 that allow the enzyme to function in an NAD+-depleted environment. These mutant enzymes give rise to a significant increase of yeast replicative lifespan and increase deacetylation by the Sir2 ortholog, SIRT1, in mammalian cells. Our data suggest that these mutations increase the stability of the conserved catalytic sirtuin domain, thereby increasing the catalytic efficiency of the mutant enzymes. Our approach to identifying sirtuin mutants that permit function in NAD+-limited environments may inform the design of small molecules that can maintain sirtuin activity in aging organisms.
Collapse
Affiliation(s)
- Caitlin R Ondracek
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, MA 02139, USA
| | - Vincent Frappier
- Keating Laboratory, Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Alison E Ringel
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Leonard Guarente
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
9
|
Shigematsu M, Ogawa T, Kitamoto HK, Hidaka M, Masaki H. Specific phase arrest of cell cycle restores cell viability against tRNA cleavage by killer toxin. Biochem Biophys Res Commun 2012; 420:750-4. [PMID: 22450321 DOI: 10.1016/j.bbrc.2012.03.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 03/12/2012] [Indexed: 11/17/2022]
Abstract
Zymocin and PaT are killer toxins that induce cell cycle arrest of sensitive yeast cells in G1 and S phase, respectively. Recent studies have revealed that these two toxins cleave specific tRNAs, indicating that the cell growth impairment is due to the tRNA cleavage. Additionally, we have previously shown that the active domain of colicin D (D-CRD), which also cleaves specific Escherichia coli tRNAs, statically impairs growth when expressed in yeast cells. To verify that phase-specific cell cycle arrest is also induced by the expression of D-CRD, D-CRD and the subunits of zymocin and PaT that have tRNA cleaving activity were expressed in yeast cells and cell cycle status was analyzed. Our results indicate that phase-specific arrest does not commonly occur by tRNA cleavage, and it saves the cell viability. Furthermore, the extent of protein synthesis impairment may determine the phase specificity of cell cycle arrest.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Department of Biotechnology, The University of Tokyo, Yayoi, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
10
|
Abstract
Computational systems biology is empowering the study of drug action. Studies on biological effects of chemical compounds have increased in scale and accessibility, allowing integration with other large-scale experimental data types. Here, we review computational approaches for elucidating the mechanisms of both intended and undesirable effects of drugs, with the collective potential to change the nature of drug discovery and pharmacological therapy.
Collapse
Affiliation(s)
- Hon Nian Chua
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and
| | - Frederick P. Roth
- From the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and
- the Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| |
Collapse
|
11
|
Abstract
Velocity separation of translation complexes in linear sucrose gradients is the ultimate method for both analysis of the overall fitness of protein synthesis as well as for detailed investigation of physiological roles played by individual factors of the translational machinery. Polysome profile analysis is a frequently performed task in translational control research that not only enables direct monitoring of the efficiency of translation but can easily be extended with a wide range of downstream applications such as Northern and Western blotting, genome-wide microarray analysis or qRT-PCR. This chapter provides a basic overview of the polysome profile analysis technique and the RNA isolation procedure from sucrose gradients. We also discuss possible experimental pitfalls of data normalization, describe main alternatives of the basic protocol and outline a novel application of denaturing RNA electrophoresis in several steps of polysome profile analysis.
Collapse
|
12
|
Ribosome recycling step in yeast cytoplasmic protein synthesis is catalyzed by eEF3 and ATP. Proc Natl Acad Sci U S A 2010; 107:10854-9. [PMID: 20534490 DOI: 10.1073/pnas.1006247107] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After each round of protein biosynthesis, the posttermination complex (PoTC) consisting of a ribosome, mRNA, and tRNA must be disassembled into its components for a new round of translation. Here, we show that a Saccharomyces cerevisiae model PoTC was disassembled by ATP and eukaryotic elongation factor 3 (eEF3). GTP or ITP functioned with less efficiency and adenosine 5gamma'-(beta,gamma-imido)triphosphate did not function at all. The k(cat) of eEF3 was 1.12 min(-1), which is comparable to that of the in vitro initiation step. The disassembly reaction was inhibited by aminoglycosides and cycloheximide. The subunits formed from the yeast model PoTC remained separated under ionic conditions close to those existing in vivo, suggesting that they are ready to enter the initiation process. Based on our experimental techniques used in this paper, the release of mRNA and tRNA and ribosome dissociation took place simultaneously. No 40S*mRNA complex was observed, indicating that eEF3 action promotes ribosome recycling, not reinitiation.
Collapse
|
13
|
Abstract
Bacterial ribosomal RNA is the target of clinically important antibiotics, while biologically important RNAs in viral and eukaryotic genomes present a range of potential drug targets. The physicochemical properties of RNA present difficulties for medicinal chemistry, particularly when oral availability is needed. Peptidic ligands and analysis of their RNA-binding properties are providing insight into RNA recognition. RNA-binding ligands include far more chemical classes than just aminoglycosides. Chemical functionalities from known RNA-binding small molecules are being exploited in fragment- and ligand-based projects. While targeting of RNA for drug design is very challenging, continuing advances in our understanding of the principles of RNA–ligand interaction will be necessary to realize the full potential of this class of targets.
Collapse
|
14
|
Cole SE, LaRiviere FJ, Merrikh CN, Moore MJ. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol Cell 2009; 34:440-50. [PMID: 19481524 DOI: 10.1016/j.molcel.2009.04.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 02/23/2009] [Accepted: 04/13/2009] [Indexed: 11/19/2022]
Abstract
Eukaryotes possess numerous quality control systems that monitor both the synthesis of RNA and the integrity of the finished products. We previously demonstrated that Saccharomyces cerevisiae possesses a quality control mechanism, nonfunctional rRNA decay (NRD), capable of detecting and eliminating translationally defective rRNAs. Here we show that NRD can be divided into two mechanistically distinct pathways: one that eliminates rRNAs with deleterious mutations in the decoding site (18S NRD) and one that eliminates rRNAs containing deleterious mutations in the peptidyl transferase center (25S NRD). 18S NRD is dependent on translation elongation and utilizes the same proteins as those participating in no-go mRNA decay (NGD). In cells that accumulate 18S NRD and NGD decay intermediates, both RNA types can be seen in P-bodies. We propose that 18S NRD and NGD are different observable outcomes of the same initiating event: a ribosome stalled inappropriately at a sense codon during translation elongation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Biomarkers/metabolism
- Cell Nucleus/metabolism
- Exoribonucleases/genetics
- Exoribonucleases/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Humans
- In Situ Hybridization, Fluorescence
- Peptide Elongation Factors/genetics
- Peptide Elongation Factors/metabolism
- RNA Stability
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sarah E Cole
- Howard Hughes Medical Institute, Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
15
|
Croons V, Martinet W, Herman AG, Timmermans JP, De Meyer GRY. The protein synthesis inhibitor anisomycin induces macrophage apoptosis in rabbit atherosclerotic plaques through p38 mitogen-activated protein kinase. J Pharmacol Exp Ther 2009; 329:856-64. [PMID: 19286921 DOI: 10.1124/jpet.108.149948] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Because macrophages play a major role in atherosclerotic plaque destabilization, selective removal of macrophages represents a promising approach to stabilize plaques. We showed recently that the protein synthesis inhibitor cycloheximide, in contrast to puromycin, selectively depleted macrophages in rabbit atherosclerotic plaques without affecting smooth muscle cells (SMCs). The mechanism of action of these two translation inhibitors is dissimilar and could account for the differential effects on SMC viability. It is not known whether selective depletion of macrophages is confined to cycloheximide or whether it can also be achieved with translation inhibitors that have a similar mechanism of action. Therefore, in the present study, we investigated the effect of anisomycin, a translation inhibitor with a mechanism of action similar to cycloheximide, on macrophage and SMC viability. In vitro, anisomycin induced apoptosis of macrophages in a concentration-dependent manner, whereas SMCs were only affected at higher concentrations. In vivo, anisomycin selectively decreased the macrophage content of rabbit atherosclerotic plaques through apoptosis. The p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 [4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)-1H-imidazole] prevented anisomycin-induced macrophage death, without affecting SMC viability. SB202190 decreased anisomycin-induced p38 MAPK phosphorylation, did not alter c-Jun NH(2)-terminal kinase (JNK) phosphorylation, and increased extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. The latter effect was abolished by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 [1,4-diamino-2,3-dicyano-1,4-bis(2-aminophynyltio)butadiene ethanolate], although the prevention of anisomycin-induced macrophage death by SB202190 remained unchanged. The JNK phosphorylation inhibitor SP600125 did not affect anisomycin-induced macrophage or SMC death. In conclusion, anisomycin selectively decreased the macrophage content in rabbit atherosclerotic plaques, indicating that this effect is not confined to cycloheximide. p38 MAPK, but not ERK1/2 or JNK, plays a major role in anisomycin-induced macrophage death.
Collapse
Affiliation(s)
- Valerie Croons
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
16
|
Croons V, Martinet W, Herman AG, De Meyer GRY. Differential effect of the protein synthesis inhibitors puromycin and cycloheximide on vascular smooth muscle cell viability. J Pharmacol Exp Ther 2008; 325:824-32. [PMID: 18322149 DOI: 10.1124/jpet.107.132944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent evidence indicates that the protein synthesis inhibitor cycloheximide triggers selective macrophage death in rabbit atheroma-like lesions without affecting smooth muscle cells (SMCs) or the endothelium, thereby favoring a stable plaque phenotype. In this study, we report that puromycin, a protein synthesis inhibitor with a different mode of action but with similar ability to inhibit de novo protein synthesis, did not reveal plaque-stabilizing effects. The macrophage and the SMC content readily decreased in puromycin-treated atheroma-like lesions in rabbit carotid arteries. Moreover, puromycin induced apoptosis in macrophages and SMCs in vitro. Puromycin-treated SMCs showed signs of endoplasmic reticulum (ER) stress, as demonstrated by CCAAT/enhancer-binding protein homologous protein (CHOP) protein expression, splicing of X-box-binding protein 1 mRNA, and phosphorylation of eukaryotic translation initiation factor 2alpha. The ER stress inducer thapsigargin up-regulated CHOP protein expression in SMCs without affecting their viability, indicating that ER stress not necessarily results in cell death. Puromycin, but not thapsigargin, activated the ER stress-related caspase-12. Treatment of SMCs with a combination of cycloheximide and puromycin inhibited ER stress and partially improved SMC viability. In addition, puromycin, but not cycloheximide or thapsigargin, induced intracellular accumulation of polyubiquitinated proteins in SMCs, whereas the proteasome function was not affected. Taken together, puromycin, in contrast to cycloheximide, induces SMC apoptosis, thereby favoring an unstable plaque phenotype. SMC death upon puromycin treatment could only be partially prevented by cycloheximide, which completely blocked ER stress. However, other or additional mechanisms, such as increased polyubiquitination of proteins, might be involved in puromycin-induced SMC death.
Collapse
MESH Headings
- Animals
- Apoptosis
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Carotid Arteries/drug effects
- Caspase 12/metabolism
- Cell Line
- Cell Survival/drug effects
- Cycloheximide/pharmacology
- DNA Fragmentation
- DNA-Binding Proteins/genetics
- Dietary Fats/administration & dosage
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- In Vitro Techniques
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Male
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myoblasts/drug effects
- Myoblasts/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Proteins/genetics
- Protein Synthesis Inhibitors/pharmacology
- Puromycin/pharmacology
- RNA, Messenger/metabolism
- Rabbits
- Regulatory Factor X Transcription Factors
- Transcription Factors
Collapse
Affiliation(s)
- Valerie Croons
- Division of Pharmacology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.
| | | | | | | |
Collapse
|
17
|
Somolinos M, García D, Condón S, Mañas P, Pagán R. Biosynthetic requirements for the repair of sublethally injured Saccharomyces cerevisiae cells after pulsed electric fields. J Appl Microbiol 2008; 105:166-74. [PMID: 18248374 DOI: 10.1111/j.1365-2672.2008.03726.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aim was to evaluate the biosynthetic requirements for the repair of sublethal membrane damages in Saccharomyces cerevisiae cells after exposure to pulsed electric fields (PEF). METHODS AND RESULTS The partial loss of the integrity and functionality of the cytoplasmic membrane was assessed by adding sodium chloride to the recovery medium. More than 2 log(10) cycles of survivors were sublethally injured after PEF. Repair of sublethal membrane damages occurred when survivors to PEF were incubated in Sabouraud Broth for 4 h at room temperature. The addition of inhibitors, such as chloramphenicol, rifampicin, 5-fluorocytosine, nalidixic acid, cycloheximide, cerulenin, miconazol and sodium azide to the liquid repair medium showed that the repair of PEF-injured cells required energy and protein synthesis. The extent of the sublethal damages was greater in PEF-treated cells at pH 4.0 than at pH 7.0. CONCLUSIONS This work confirms that membrane damage is an important event in the PEF-inactivation of yeast. The mechanism of yeast inactivation by PEF seems to differ from that of bacteria, as the repair of sublethal damages requires protein synthesis. SIGNIFICANCE AND IMPACT OF THE STUDY Knowledge about the damages inflicted by PEF leads to a better description of the mechanism of yeast inactivation.
Collapse
Affiliation(s)
- M Somolinos
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Nishimura S, Matsunaga S, Yoshida M, Hirota H, Yokoyama S, Fusetani N. 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to the 60S large ribosomal subunit. Bioorg Med Chem 2005; 13:449-54. [PMID: 15598566 DOI: 10.1016/j.bmc.2004.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Revised: 10/05/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
13-Deoxytedanolide is a potent antitumor macrolide isolated from the marine sponge Mycale adhaerens. In spite of its remarkable activity, the mode of action of 13-deoxytedanolide has not been elucidated. [11-3H]-(11S)-13-Deoxydihydrotedanolide derived from the macrolide was used for identifying the target molecule from the yeast cell lysate. Fractionation of the binding protein revealed that the labeled 13-deoxytedanolide derivative strongly bound to the 80S ribosome as well as to the 60S large subunit, but not to the 40S small subunit. In agreement with this observation, 13-deoxytedanolide efficiently inhibited the polypeptide elongation. Interestingly, competition studies demonstrated that 13-deoxytedanolide shared the binding site on the 60S large subunit with pederin and its marine-derived analogues. These results indicate that 13-deoxytedanolide is a potent protein synthesis inhibitor and is the first macrolide to inhibit the eukaryotic ribosome.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
20
|
di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, Wojtovich AP, Elliott SJ, Schaus SE, Collins JJ. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 2005; 23:377-83. [PMID: 15765094 DOI: 10.1038/nbt1075] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major challenge in drug discovery is to distinguish the molecular targets of a bioactive compound from the hundreds to thousands of additional gene products that respond indirectly to changes in the activity of the targets. Here, we present an integrated computational-experimental approach for computing the likelihood that gene products and associated pathways are targets of a compound. This is achieved by filtering the mRNA expression profile of compound-exposed cells using a reverse-engineered model of the cell's gene regulatory network. We apply the method to a set of 515 whole-genome yeast expression profiles resulting from a variety of treatments (compounds, knockouts and induced expression), and correctly enrich for the known targets and associated pathways in the majority of compounds examined. We demonstrate our approach with PTSB, a growth inhibitory compound with a previously unknown mode of action, by predicting and validating thioredoxin and thioredoxin reductase as its target.
Collapse
|
21
|
Ramírez M, Vinagre A, Ambrona J, Molina F, Maqueda M, Rebollo JE. Genetic instability of heterozygous, hybrid, natural wine yeasts. Appl Environ Microbiol 2004; 70:4686-91. [PMID: 15294803 PMCID: PMC492439 DOI: 10.1128/aem.70.8.4686-4691.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 04/30/2004] [Indexed: 01/29/2023] Open
Abstract
We describe a genetic instability found in natural wine yeasts but not in the common laboratory strains of Saccharomyces cerevisiae. Spontaneous cyh2(R)/cyh2(R) mutants resistant to high levels of cycloheximide can be directly isolated from cyh2(S)/cyh2(S) wine yeasts. Heterozygous cyh2(R)/cyh2(S) hybrid clones vary in genetic instability as measured by loss of heterozygosity at cyh2. There were two main classes of hybrids. The lawn hybrids have high genetic instability and generally become cyh2(R)/cyh2(R) homozygotes and lose the killer phenotype under nonselective conditions. The papilla hybrids have a much lower rate of loss of heterozygosity and maintain the killer phenotype. The genetic instability in lawn hybrids is 3 to 5 orders of magnitude greater than the highest loss-of-heterozygosity rates previously reported. Molecular mechanisms such as DNA repair by break-induced replication might account for the asymmetrical loss of heterozygosity. This loss-of-heterozygosity phenomenon could be economically important if it causes sudden phenotype changes in industrial or pathogenic yeasts and of more basic importance to the degree that it influences the evolution of naturally occurring yeast populations.
Collapse
Affiliation(s)
- Manuel Ramírez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Takahashi K, Kasai K, Ochi K. Identification of the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) in plants. Proc Natl Acad Sci U S A 2004; 101:4320-4. [PMID: 15010537 PMCID: PMC384739 DOI: 10.1073/pnas.0308555101] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 01/30/2004] [Indexed: 11/18/2022] Open
Abstract
Stringent control mediated by the bacterial alarmone guanosine 5'-diphosphate 3'-diphosphate (ppGpp) is a key regulatory process governing bacterial gene expression. By devising a system to measure ppGpp in plants, we have been able to identify ppGpp in the chloroplasts of plant cells. Levels of ppGpp increased markedly when plants were subjected to such biotic and abiotic stresses as wounding, heat shock, high salinity, acidity, heavy metal, drought, and UV irradiation. Abrupt changes from light to dark also caused a substantial elevation in ppGpp levels. In vitro, chloroplast RNA polymerase activity was inhibited in the presence of ppGpp, demonstrating the existence of a bacteria-type stringent response in plants. Elevation of ppGpp levels was elicited also by treatment with plant hormones jasmonic acid, abscisic acid, and ethylene, but these effects were blocked completely by another plant hormone, indole-3-acetic acid. On the basis of these findings, we propose that ppGpp plays a critical role in systemic plant signaling in response to environmental stresses, contributing to the adaptation of plants to environmental changes.
Collapse
Affiliation(s)
- Kosaku Takahashi
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | |
Collapse
|
23
|
Buurman ET, Blodgett AE, Hull KG, Carcanague D. Pyridines and pyrimidines mediating activity against an efflux-negative strain of Candida albicans through putative inhibition of lanosterol demethylase. Antimicrob Agents Chemother 2004; 48:313-8. [PMID: 14693556 PMCID: PMC310196 DOI: 10.1128/aac.48.1.313-318.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first step in ergosterol biosynthesis in Saccharomyces cerevisiae consists of the condensation of two acetyl coenzyme A (acetyl-CoA) moieties by acetoacetyl-CoA thiolase, encoded by ERG10. The inhibition of the sterol pathway results in feedback activation of ERG10 transcription. A cell-based reporter assay, in which increased ERG10 transcription results in elevated specific beta-galactosidase activity, was used to find novel inhibitors of ergosterol biosynthesis that could serve as chemical starting points for the development of novel antifungal agents. A class of pyridines and pyrimidines identified in this way had no detectable activity against the major fungal pathogen Candida albicans (MICs > 64 micro g. ml(-1)). However, a strain of C. albicans lacking the Cdr1p and Cdr2p efflux pumps was sensitive to the compounds (with MICs ranging from 2 to 64 micro g. ml(-1)), suggesting that they are efficiently removed from wild-type cells. Quantitative analysis of sterol intermediates that accumulated during growth inhibition revealed the accumulation of lanosterol at the expense of ergosterol. Furthermore, a clear correlation was found between the 50% inhibitory concentration at which the sterol profile was altered and the antifungal activity, measured as the MIC. This finding strongly suggests that the inhibition of growth was caused by a reduction in ergosterol synthesis. The compounds described here are a novel class of antifungal pyridines and pyrimidines and the first pyri(mi)dines to be shown to putatively mediate their antifungal activity against C. albicans via lanosterol demethylase.
Collapse
Affiliation(s)
- Ed T Buurman
- Department of Microbiology. Department of Chemistry, AstraZeneca R&D Boston, Waltham, Massachusetts 02451, USA.
| | | | | | | |
Collapse
|
24
|
Lum PY, Armour CD, Stepaniants SB, Cavet G, Wolf MK, Butler JS, Hinshaw JC, Garnier P, Prestwich GD, Leonardson A, Garrett-Engele P, Rush CM, Bard M, Schimmack G, Phillips JW, Roberts CJ, Shoemaker DD. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 2004; 116:121-37. [PMID: 14718172 DOI: 10.1016/s0092-8674(03)01035-3] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Modern medicine faces the challenge of developing safer and more effective therapies to treat human diseases. Many drugs currently in use were discovered without knowledge of their underlying molecular mechanisms. Understanding their biological targets and modes of action will be essential to design improved second-generation compounds. Here, we describe the use of a genome-wide pool of tagged heterozygotes to assess the cellular effects of 78 compounds in Saccharomyces cerevisiae. Specifically, lanosterol synthase in the sterol biosynthetic pathway was identified as a target of the antianginal drug molsidomine, which may explain its cholesterol-lowering effects. Further, the rRNA processing exosome was identified as a potential target of the cell growth inhibitor 5-fluorouracil. This genome-wide screen validated previously characterized targets or helped identify potentially new modes of action for over half of the compounds tested, providing proof of this principle for analyzing the modes of action of clinically relevant compounds.
Collapse
Affiliation(s)
- Pek Yee Lum
- Rosetta Inpharmatics LLC, a wholly-owned subsidiary of Merck & Co, Inc, 12040 115th Avenue NE, Kirkland, WA 98034, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pestova TV, Hellen CUT. Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev 2003; 17:181-6. [PMID: 12533507 PMCID: PMC195975 DOI: 10.1101/gad.1040803] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reconstitution of translation elongation from purified components confirmed that ribosomes that assembled on the Cricket paralysis virus intercistronic internal ribosomal entry site (IRES) without the involvement of initiation factors or initiator tRNA were active in elongation and are, therefore, true initiation complexes. The first elongation cycle occurred without peptide bond formation on 80S ribosomes that did not contain tRNA in the P site. It required elongation factors 1A and 2 and A site-cognate aminoacylated tRNA. Cycloheximide arrested ribosomes on the IRES only after two cycles of elongation, when the first deacylated tRNA reached the E-site after translocation from the A-site.
Collapse
Affiliation(s)
- Tatyana V Pestova
- Department of Microbiology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | |
Collapse
|
26
|
Georgieva B, Rothstein R. Kar-mediated plasmid transfer between yeast strains: alternative to traditional transformation methods. Methods Enzymol 2002; 350:278-89. [PMID: 12073318 DOI: 10.1016/s0076-6879(02)50969-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Bilyana Georgieva
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
27
|
Del Pozo L, Abarca D, Hoenicka J, Lmenez A. Two different genes from Schwanniomyces occidentalis determine ribosomal resistance to cycloheximide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:849-57. [PMID: 8477754 DOI: 10.1111/j.1432-1033.1993.tb17828.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two genes (SCR1 and SCR2) encoding natural cycloheximide resistance in the budding yeast Schwanniomyces occidentalis have been cloned by expression in Saccharomyces cerevisiae. Both genes determine resistance to the inhibitory action of cycloheximide on the ribosome, SCR1 and SCR2 are present as single copies in Schwanniomyces occidentalis, where they map on chromosomes II and V, respectively. The nucleotide sequence of SCR2 contains an open reading frame of 321 nucleotides which is interrupted by an intron of 452 nucleotides. It encodes a polypeptide of 106 amino acids of molecular mass 12.25 kDa and pI 11.19. The deduced amino acid sequence shows a high degree of similarity to the L41 protein of the 60S ribosomal subunit from several eukaryotic organisms. The intron and the 5' non-coding region of SCR2 possess conserved elements which are typical of yeast ribosomal protein genes. A single amino acid change determines the resistance or sensitive phenotype to cycloheximide of the 80S ribosome since replacement of Gln56 in L41 from Schwanniomyces with Pro, by site-directed mutagenesis, confers cycloheximide sensitivity. SCR2 may serve as a practical yeast cloning marker if integrated in a multicopy plasmid.
Collapse
Affiliation(s)
- L Del Pozo
- Centro de Biología Molecular U.A.M./C.S.I.C. Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
28
|
del Pozo L, Abarca D, Claros MG, Jiménez A. Cycloheximide resistance as a yeast cloning marker. Curr Genet 1991; 19:353-8. [PMID: 1913874 DOI: 10.1007/bf00309595] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In CYH2/cyh2 heterozygous diploids of the yeast Saccharomyces cerevisiae resistance is dominant over sensitivity at low (0.5-5 micrograms/ml) cycloheximide (cyh) concentrations. The cyh-resistant haploid strain MMY1 confers relatively high (10 micrograms/ml) cyh-resistance to heterozygous diploids constructed by mating this strain with cyh-sensitive haploid strains. We present here a genetic and biochemical study of strain MMY1. Analysis of tetrads obtained from a MMY1 heterozygous diploid showed that two unlinked nuclear mutations, determining high- and low-cycloheximide resistance, were present in MMY1. From a genomic library of this strain, constructed in vector YCp50, two plasmids (pRC1 and pRC13) have been isolated which, respectively, confer high- and low-resistance phenotypes to cyh-sensitive S. cerevisiae strains. The restriction maps of pRC1 and pRC13 are totally unrelated. This finding suggests that the genes harboring the two mutations encoding cyh-resistance from MMY1 were cloned in plasmids pRC1 and pRC13, respectively. Pulse field gel electrophoresis showed that the DNA insert of pRC1 maps at either chromosome VII or XV, whereas that from pRC13 maps at chromosome XI. This latter gene appears to define a previously unreported locus and has been named cyh5. By restriction and nucleotide sequencing analysis, the cyh gene present in pRC1 has been shown to correspond to cyh2, which maps at chromosome VII. These results suggest that the dominant cyh-resistance phenotype conferred by MMY1 in heterozygous diploids is promoted by the presence of both cyh2 and cyh5.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L del Pozo
- Centro de Biología Molecular (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Canto Blanco, Spain
| | | | | | | |
Collapse
|
29
|
Fleming GH, Boynton JE, Gillham NW. The cytoplasmic ribosomes of Chlamydomonas reinhardtii: characterization of antibiotic sensitivity and cycloheximide-resistant mutants. MOLECULAR & GENERAL GENETICS : MGG 1987; 210:419-28. [PMID: 3481023 DOI: 10.1007/bf00327192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In vitro protein synthesis was used to characterize the antibiotic sensitivity of cytoplasmic ribosomes from wild-type and antibiotic-resistant strains of Chlamydomonas reinhardtii. Cytoplasmic ribosomes from two cycloheximide-resistant mutants, act-1 and act-2, were resistant to the antibiotic in vitro. The alteration effected by the act-1 mutation, which was dominant in diploids, was localized to the large subunit of the cytoplasmic ribosomes, but no ribosomal protein alterations were detected using two-dimensional gel electrophoresis. The act-2 mutation, which was semidominant in diploids, was frequently associated with a charge alteration in the large subunit ribosomal protein (r-protein) cyL38 that segregated independently from the antibiotic-resistant phenotype in crosses.
Collapse
Affiliation(s)
- G H Fleming
- Department of Botany, Duke University, Durham, NC 27706
| | | | | |
Collapse
|
30
|
Shull GE. Differential inhibition of protein synthesis: a possible biochemical mechanism of thalidomide teratogenesis. J Theor Biol 1984; 110:461-86. [PMID: 6503311 DOI: 10.1016/s0022-5193(84)80187-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A theory concerning the chemical and biochemical mechanisms of thalidomide teratogenesis is presented. A considerable body of evidence suggests that the glutarimide ring of thalidomide may exert its biological activity because of its resemblance to the imide pyrimidines thymine and uracil. In addition to the glutarimide ring, thalidomide contains a moderately reactive phthalimide moiety, which allows the spontaneous formation of various glutarimide derivatives in fetal tissues. A model is proposed in which the phthalimide group reacts with small nucleophiles, most likely the polyamines, to produce a derivative(s) having a similar biochemical potential to that of cycloheximide, a glutarimide which is a powerful inhibitor of the elongation phase of protein synthesis. Interference in the elongation phase results in the selective inhibition of the translation of messages which have a high translational efficiency. Evidence is reviewed concerning the differential inhibition or protein synthesis by cycloheximide and the effects of this inhibition on various biochemical and biological processes which are critical during development and differentiation. A similar biochemical activity by the putative thalidomide derivative(s) could explain its extreme teratogenic potential. A number of parallels between the biological effects of thalidomide and cycloheximide are discussed which support the idea that a similar biochemical activity is involved. The theory readily explains many of the observed biological effects of thalidomide including the large difference between fetal and adult toxicity. In addition, evidence is reviewed which suggests that the teratogenic properties of a number of drugs which are structurally related to thalidomide may have a common chemical basis due to the similarity of their imide core structures to thymine and uracil.
Collapse
|
31
|
Ter-Avanesyan MD, Mironova LN, Inge-Vechtomov SG, Zlatkin IV, Smirnov VN, Surguchov AP. Drug-dependent mutants in yeast Saccharomyces cerevisiae. Curr Genet 1983; 7:357-62. [PMID: 24173416 DOI: 10.1007/bf00445875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/1983] [Indexed: 11/30/2022]
Abstract
Mutations in sup1 and sup2 genes may cause cycloheximide-dependent growth in yeast Saccharomyces cerevisiae. Two classes of such mutants are described in the paper: 1) high temperature sensitive mutants, which do not express their sensitivity to nonpermissive temperature in the presence of cycloheximide (conditionally dependent) and 2) mutants unable to grow in the absence of the drug (true dependent). Some of the mutants of both classes express dependence toward another antibiotic - trichodermine. The binding of H(3)-labelled cycloheximide studied by equilibrium dialysis has demonstrated that both 80S ribosomes and 60S subunits isolated from conditionally dependent mutant showed a higher affinity for the drug compared to that of a parent strain. The number of binding sites per ribosome or per 60S subunit in the cycloheximide dependent mutant remains unchanged.Circular dichroism spectra of a mutant ribosomes in the presence as well as in the absence of antibiotic revealed that sup1 and sup2 mutations alter conformation of the yeast cytoplasmic ribosomes. The binding of cycloheximide to mutant ribosomes induces a conformational shift, which presumably compensates for their functional defect.
Collapse
Affiliation(s)
- M D Ter-Avanesyan
- Department of Genetics, Leningrad State University, 199164, Leningrad, USSR
| | | | | | | | | | | |
Collapse
|
32
|
Characterization of a cycloheximide-resistant Tetrahymena thermophila mutant which also displays altered growth properties. Mol Cell Biol 1983. [PMID: 6855768 DOI: 10.1128/mcb.3.4.503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A cycloheximide-resistant strain of Tetrahymena thermophila, expressing a mutant chx-B gene (Ares and Bruns, Genetics 90:463-474, 1978), displayed very different temperature-dependent growth characteristics than either wild-type cells or another cycloheximide-resistant strain expressing a different mutant gene. Whereas wild-type cells showed an immediate decline in ribosome translocation rates when shifted from 30 to 38 or 40 degrees C, this mutant strain (X-8) showed no such decline. These results directly correlated with the growth rate differences we found for these cells at these temperatures. By genetic analysis, we showed that the phenotype of cycloheximide resistance cosegregated with the ability to grow rapidly at 40 degrees C. Analyses, both direct and indirect, suggested that a number of functional and structural characteristics of the ribosomes from strain X-8 cells are most likely conformationally different from those of wild-type ribosomes.
Collapse
|
33
|
Käufer NF, Fried HM, Schwindinger WF, Jasin M, Warner JR. Cycloheximide resistance in yeast: the gene and its protein. Nucleic Acids Res 1983; 11:3123-35. [PMID: 6304624 PMCID: PMC325953 DOI: 10.1093/nar/11.10.3123] [Citation(s) in RCA: 168] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in the yeast gene CYH2 can lead to resistance to cycloheximide, an inhibitor of eukaryotic protein synthesis. The gene product of CYH2 is ribosomal protein L29, a component of the 60S ribosomal subunit. We have cloned the wild-type and resistance alleles of CYH2 and determined their nucleotide sequence. Transcription of CYH2 appears to initiate and terminate at multiple sites, as judged by S1 nuclease analysis. The gene is transcribed into an RNA molecule of about 1082 nucleotides, containing an intervening sequence of 510 nucleotides. The splice junction of the intron resides within a codon near the 5' end of the gene. In confirmation of peptide analysis by Stocklein et al. (1) we find that resistance to cycloheximide is due to a transversion mutation resulting in the replacement of a glutamine by glutamic acid in position 37 of L29.
Collapse
|
34
|
Hallberg RL, Hallberg EM. Characterization of a cycloheximide-resistant Tetrahymena thermophila mutant which also displays altered growth properties. Mol Cell Biol 1983; 3:503-10. [PMID: 6855768 PMCID: PMC368566 DOI: 10.1128/mcb.3.4.503-510.1983] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A cycloheximide-resistant strain of Tetrahymena thermophila, expressing a mutant chx-B gene (Ares and Bruns, Genetics 90:463-474, 1978), displayed very different temperature-dependent growth characteristics than either wild-type cells or another cycloheximide-resistant strain expressing a different mutant gene. Whereas wild-type cells showed an immediate decline in ribosome translocation rates when shifted from 30 to 38 or 40 degrees C, this mutant strain (X-8) showed no such decline. These results directly correlated with the growth rate differences we found for these cells at these temperatures. By genetic analysis, we showed that the phenotype of cycloheximide resistance cosegregated with the ability to grow rapidly at 40 degrees C. Analyses, both direct and indirect, suggested that a number of functional and structural characteristics of the ribosomes from strain X-8 cells are most likely conformationally different from those of wild-type ribosomes.
Collapse
|
35
|
St�cklein W, Jim�nez A, Littlewood B, Piepersberg W, Davies J. Multiple allelic states of the cyh2 gene cause low- and high-level cycloheximide resistance in Saccharomyces cerevisiae. Curr Genet 1982; 5:157-60. [DOI: 10.1007/bf00365708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1982] [Indexed: 10/26/2022]
|
36
|
Helinek TG, Devlin TM, Ch'ih JJ. Initial inhibition and recovery of protein synthesis in cycloheximide-treated hepatocytes. Biochem Pharmacol 1982; 31:1219-25. [PMID: 7092917 DOI: 10.1016/0006-2952(82)90007-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Previous studies conducted with intact rats had demonstrated that protein synthesis was reversibly inhibited by cycloheximide. Polysome aggregation occurred during inhibition with a return to normal during recovery. Suggesting that the block of translational activity involved termination and release of polypeptides. This study involving freshly isolated hepatocytes was undertaken to clarify the mechanism of the biphasic response to cycloheximide. Cycloheximide at 1 microM inhibited [3H]leucine incorporation into both cellular and secreted proteins by at least 86%, without having deleterious effects on membrane integrity as indicated by trypan blue uptake and lactate dehydrogenase (LDH) (EC 1.1.1.27) release. After removal of cycloheximide, incorporation of labeled amino acids into cellular protein and protein secreted into the medium returned to control levels. Kinetically, incorporation into secreted protein exhibited a lag of 30-45 min, indicating that a longer recovery period for restoration of proteosynthetic ability is required for membrane-bound polysomes. During the first 100 min of the recovery period, 30% of the cellular protein, which had been prelabeled during cycloheximide inhibition, was secreted into the medium; treated cells, however, secreted prelabeled protein at a lower initial rate. To elucidate the mechanism of action of cycloheximide, the content of the cytoplasmic ribonucleoprotein complexes (RPC), polysome size classes, and the distribution of radioactivity among the various ribosome classes were determined during inhibition and recovery. Larger size class polysomes (7+) were increased by cycloheximide treatment and remained increased during recovery. During inhibition, there was enhanced [3H]leucine labeling with increasing polysome size, implicating termination as the rate-limiting step, whereas during the recovery phase the labeled nascent polypeptides were removed from the ribonucleoprotein complex at a 3- to 4-fold greater rate than control, indicating an accelerated release of completed proteins.
Collapse
|
37
|
Stöcklein W, Piepersberg W, Böck A. Amino acid replacements in ribosomal protein YL24 of Saccharomyces cerevisiae causing resistance to cycloheximide. FEBS Lett 1981; 136:265-8. [PMID: 7035222 DOI: 10.1016/0014-5793(81)80632-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|