1
|
Zhang Y, Cai Y, Jin X, Wu Q, Bai F, Liu J. Persistent glucose consumption under antibiotic treatment protects bacterial community. Nat Chem Biol 2025; 21:238-246. [PMID: 39138382 DOI: 10.1038/s41589-024-01708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Antibiotics typically induce major physiological changes in bacteria. However, their effect on nutrient consumption remains unclear. Here we found that Escherichia coli communities can sustain normal levels of glucose consumption under a broad range of antibiotics. The community-living resulted in a low membrane potential in the bacteria, allowing slow antibiotic accumulation on treatment and better adaptation. Through multi-omics analysis, we identified a prevalent adaptive response characterized by the upregulation of lipid synthesis, which substantially contributes to sustained glucose consumption. The consumption was maintained by the periphery region of the community, thereby restricting glucose penetration into the community interior. The resulting spatial heterogeneity in glucose availability protected the interior from antibiotic accumulation in a membrane potential-dependent manner, ensuring rapid recovery of the community postantibiotic treatment. Our findings unveiled a community-level antibiotic response through spatial regulation of metabolism and suggested new strategies for antibiotic therapies.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yumin Cai
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xin Jin
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Qile Wu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Horak RD, Ciemniecki JA, Newman DK. Bioenergetic suppression by redox-active metabolites promotes antibiotic tolerance in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2406555121. [PMID: 39503891 PMCID: PMC11573671 DOI: 10.1073/pnas.2406555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/01/2024] [Indexed: 11/21/2024] Open
Abstract
The proton-motive force (PMF), consisting of a pH gradient and a membrane potential (ΔΨ) underpins many processes essential to bacterial growth and/or survival. Yet bacteria often enter a bioenergetically diminished state characterized by a low PMF. Consequently, they have increased tolerance for diverse stressors, including clinical antibiotics. Despite the ubiquity of low metabolic rates in the environment, the extent to which bacteria have agency over entry into such a low-bioenergetic state has received relatively little attention. Here, we tested the hypothesis that production of redox-active metabolites (RAMs) could drive such a physiological transition. Pseudomonas aeruginosa is an opportunistic pathogen that produces phenazines, model RAMs that are highly toxic in the presence of molecular oxygen (O2). Under oxic conditions, the phenazines pyocyanin and phenazine-1-carboximide, as well as toxoflavin-a RAM produced by Burkholderia species-suppress the ΔΨ in distinct ways across distributions of single cells, reduce the efficiency of proton pumping, and lower cellular adenosine-triphosphate (ATP) levels. In planktonic culture, the degree and rate by which each RAM lowers the ΔΨ correlates with the protection it confers against antibiotics that strongly impact cellular energy flux. This bioenergetic suppression requires the RAM's presence and corresponds to its cellular reduction rate and abiotic oxidation rate by O2; it can be reversed by increasing the ΔΨ with nigericin. RAMs similarly impact the bioenergetic state of cells in (hyp)oxic biofilm aggregates. Collectively, these findings demonstrate that bacteria can suppress their bioenergetic state by the production of endogenous toxins in a manner that bolsters stress resilience.
Collapse
Affiliation(s)
- Richard D. Horak
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - John A. Ciemniecki
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
3
|
Zhang Y, Cai Y, Zhang B, Zhang YHPJ. Spatially structured exchange of metabolites enhances bacterial survival and resilience in biofilms. Nat Commun 2024; 15:7575. [PMID: 39217184 PMCID: PMC11366000 DOI: 10.1038/s41467-024-51940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Biofilm formation enhances bacterial survival and antibiotic tolerance, but the underlying mechanisms are incompletely understood. Here, we show that biofilm growth is accompanied by a reduction in bacterial energy metabolism and membrane potential, together with metabolic exchanges between the inner and outer regions in biofilms. More specifically, nutrient-starved cells in the interior supply amino acids to cells in the periphery, while peripheral cells experience a decrease in membrane potential and provide fatty acids to interior cells. Fatty acids facilitate the repair of starvation-induced membrane damage in inner cells and enhance their survival in the presence of antibiotics. Thus, metabolic exchanges between inner and outer cells contribute to survival of the nutrient-starved inner cells and contribute to antibiotic tolerance within the biofilm.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| | - Yukmi Cai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bing Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
| | - Yi-Heng P Job Zhang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, In Vitro Synthetic Biology Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
4
|
Wang F, Xiao M, Qi J, Zhu L. Paper-based fluorescence sensor array with functionalized carbon quantum dots for bacterial discrimination using a machine learning algorithm. Anal Bioanal Chem 2024; 416:3139-3148. [PMID: 38632131 PMCID: PMC11068836 DOI: 10.1007/s00216-024-05262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The rapid discrimination of bacteria is currently an emerging trend in the fields of food safety, medical detection, and environmental observation. Traditional methods often require lengthy culturing processes, specialized analytical equipment, and bacterial recognition receptors. In response to this need, we have developed a paper-based fluorescence sensor array platform for identifying different bacteria. The sensor array is based on three unique carbon quantum dots (CQDs) as sensing units, each modified with a different antibiotic (polymyxin B, ampicillin, and gentamicin). These antibiotic-modified CQDs can aggregate on the bacterial surface, triggering aggregation-induced fluorescence quenching. The sensor array exhibits varying fluorescent responses to different bacterial species. To achieve low-cost and portable detection, CQDs were formulated into fluorescent ink and used with an inkjet printer to manufacture paper-based sensor arrays. A smartphone was used to collect the responses generated by the bacteria and platform. Diverse machine learning algorithms were utilized to discriminate bacterial types. Our findings showcase the platform's remarkable capability to differentiate among five bacterial strains, within a detection range spanning from 1.0 × 103 CFU/mL to 1.0 × 107 CFU/mL. Its practicality is further validated through the accurate identification of blind bacterial samples. With its cost-effectiveness, ease of fabrication, and high degree of integration, this platform holds significant promise for on-site detection of diverse bacteria.
Collapse
Affiliation(s)
- Fangbin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Minghui Xiao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing Qi
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore.
| | - Liang Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China.
| |
Collapse
|
5
|
Uneme M, Ishikawa K, Furuta K, Yamashita A, Kaito C. Overexpression of the flagellar motor protein MotB sensitizes Bacillus subtilis to aminoglycosides in a motility-independent manner. PLoS One 2024; 19:e0300634. [PMID: 38669243 PMCID: PMC11051680 DOI: 10.1371/journal.pone.0300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/02/2024] [Indexed: 04/28/2024] Open
Abstract
The flagellar motor proteins, MotA and MotB, form a complex that rotates the flagella by utilizing the proton motive force (PMF) at the bacterial cell membrane. Although PMF affects the susceptibility to aminoglycosides, the effect of flagellar motor proteins on the susceptibility to aminoglycosides has not been investigated. Here, we found that MotB overexpression increased susceptibility to aminoglycosides, such as kanamycin and gentamicin, in Bacillus subtilis without affecting swimming motility. MotB overexpression did not affect susceptibility to ribosome-targeting antibiotics other than aminoglycosides, cell wall-targeting antibiotics, DNA synthesis-inhibiting antibiotics, or antibiotics inhibiting RNA synthesis. Meanwhile, MotB overexpression increased the susceptibility to aminoglycosides even in the motA-deletion mutant, which lacks swimming motility. Overexpression of the MotB mutant protein carrying an amino acid substitution at the proton-binding site (D24A) resulted in the loss of the enhanced aminoglycoside-sensitive phenotype. These results suggested that MotB overexpression sensitizes B. subtilis to aminoglycosides in a motility-independent manner. Notably, the aminoglycoside-sensitive phenotype induced by MotB requires the proton-binding site but not the MotA/MotB complex formation.
Collapse
Affiliation(s)
- Mio Uneme
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuya Ishikawa
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazuyuki Furuta
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Chikara Kaito
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
Davis KP, Morales Y, Ende RJ, Peters R, McCabe AL, Mecsas J, Aldridge BB. Critical role of growth medium for detecting drug interactions in Gram-negative bacteria that model in vivo responses. mBio 2024; 15:e0015924. [PMID: 38364199 PMCID: PMC10936441 DOI: 10.1128/mbio.00159-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
The rise in infections caused by multidrug-resistant (MDR) bacteria has necessitated a variety of clinical approaches, including the use of antibiotic combinations. Here, we tested the hypothesis that drug-drug interactions vary in different media, and determined which in vitro models best predict drug interactions in the lungs. We systematically studied pair-wise antibiotic interactions in three different media, CAMHB, (a rich lab medium standard for antibiotic susceptibility testing), a urine mimetic medium (UMM), and a minimal medium of M9 salts supplemented with glucose and iron (M9Glu) with three Gram-negative ESKAPE pathogens, Acinetobacter baumannii (Ab), Klebsiella pneumoniae (Kp), and Pseudomonas aeruginosa (Pa). There were pronounced differences in responses to antibiotic combinations between the three bacterial species grown in the same medium. However, within species, PaO1 responded to drug combinations similarly when grown in all three different media, whereas Ab17978 and other Ab clinical isolates responded similarly when grown in CAMHB and M9Glu medium. By contrast, drug interactions in Kp43816, and other Kp clinical isolates poorly correlated across different media. To assess whether any of these media were predictive of antibiotic interactions against Kp in the lungs of mice, we tested three antibiotic combination pairs. In vitro measurements in M9Glu, but not rich medium or UMM, predicted in vivo outcomes. This work demonstrates that antibiotic interactions are highly variable across three Gram-negative pathogens and highlights the importance of growth medium by showing a superior correlation between in vitro interactions in a minimal growth medium and in vivo outcomes. IMPORTANCE Drug-resistant bacterial infections are a growing concern and have only continued to increase during the SARS-CoV-2 pandemic. Though not routinely used for Gram-negative bacteria, drug combinations are sometimes used for serious infections and may become more widely used as the prevalence of extremely drug-resistant organisms increases. To date, reliable methods are not available for identifying beneficial drug combinations for a particular infection. Our study shows variability across strains in how drug interactions are impacted by growth conditions. It also demonstrates that testing drug combinations in tissue-relevant growth conditions for some strains better models what happens during infection and may better inform combination therapy selection.
Collapse
Affiliation(s)
- Kathleen P. Davis
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Yoelkys Morales
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Rachel J. Ende
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Ryan Peters
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
| | - Anne L. McCabe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Department of Basic and Clinical Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Bree B. Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, & Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance Boston, Boston, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, Massachusetts, USA
| |
Collapse
|
7
|
Lang M, Carvalho A, Baharoglu Z, Mazel D. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Microbiol Mol Biol Rev 2023; 87:e0003622. [PMID: 38047635 PMCID: PMC10732077 DOI: 10.1128/mmbr.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.
Collapse
Affiliation(s)
- Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
8
|
Rivetti S, Romano A, Mastrangelo S, Attinà G, Maurizi P, Ruggiero A. Aminoglycosides-Related Ototoxicity: Mechanisms, Risk Factors, and Prevention in Pediatric Patients. Pharmaceuticals (Basel) 2023; 16:1353. [PMID: 37895824 PMCID: PMC10610175 DOI: 10.3390/ph16101353] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aminoglycosides are broad-spectrum antibiotics largely used in children, but they have potential toxic side effects, including ototoxicity. Ototoxicity from aminoglycosides is permanent and is a consequence of its action on the inner ear cells via multiple mechanisms. Both uncontrollable risk factors and controllable risk factors are involved in the pathogenesis of aminoglycoside-related ototoxicity and, because of the irreversibility of ototoxicity, an important undertaking for preventing ototoxicity includes antibiotic stewardship to limit the use of aminoglycosides. Aminoglycosides are fundamental in the treatment of numerous infectious conditions at neonatal and pediatric age. In childhood, normal auditory function ensures adequate neurocognitive and social development. Hearing damage from aminoglycosides can therefore strongly affect the normal growth of the child. This review describes the molecular mechanisms of aminoglycoside-related ototoxicity and analyzes the risk factors and the potential otoprotective strategies in pediatric patients.
Collapse
Affiliation(s)
- Serena Rivetti
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.R.); (A.R.); (S.M.); (G.A.); (P.M.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
9
|
Pierlé SA, Lang M, López-Igual R, Krin E, Fourmy D, Kennedy SP, Val ME, Baharoglu Z, Mazel D. Identification of the active mechanism of aminoglycoside entry in V. cholerae through characterization of sRNA ctrR, regulating carbohydrate utilization and transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549712. [PMID: 37502966 PMCID: PMC10370196 DOI: 10.1101/2023.07.19.549712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The possible active entry of aminoglycosides in bacterial cells has been debated since the development of this antibiotic family. Here we report the identification of their active transport mechanism in Vibrio species. We combined genome-wide transcriptional analysis and fitness screens to identify alterations driven by treatment of V. cholerae with sub-minimum inhibitory concentrations (sub-MIC) of the aminoglycoside tobramycin. RNA-seq data showed downregulation of the small non-coding RNA ncRNA586 during such treatment, while Tn-seq revealed that inactivation of this sRNA was associated with improved fitness in the presence of tobramycin. This sRNA is located near sugar transport genes and previous work on a homologous region in Vibrio tasmaniensis suggested that this sRNA stabilizes gene transcripts for carbohydrate transport and utilization, as well as phage receptors. The role for ncRNA586, hereafter named ctrR, in the transport of both carbohydrates and aminoglycosides, was further investigated. Flow cytometry on cells treated with a fluorescent aminoglycoside confirmed the role of ctrR and of carbohydrate transporters in differential aminoglycoside entry. Despite sequence diversity, ctrR showed functional conservation across the Vibrionales. This system in directly modulated by carbon sources, suggesting regulation by carbon catabolite repression, a widely conserved mechanism in Gram-negative bacteria, priming future research on aminoglycoside uptake by sugar transporters in other bacterial species.
Collapse
Affiliation(s)
- Sebastian A. Pierlé
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Rocío López-Igual
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Evelyne Krin
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Dominique Fourmy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sean P. Kennedy
- Institut Pasteur, Université Paris Cité, USR 3756 CNRS, Department of Computational Biology, 75015 Paris, France
| | - Marie-Eve Val
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
| |
Collapse
|
10
|
Adenosine Awakens Metabolism to Enhance Growth-Independent Killing of Tolerant and Persister Bacteria across Multiple Classes of Antibiotics. mBio 2022; 13:e0048022. [PMID: 35575513 PMCID: PMC9239199 DOI: 10.1128/mbio.00480-22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolic and growth arrest are primary drivers of antibiotic tolerance and persistence in clinically diverse bacterial pathogens. We recently showed that adenosine (ADO) suppresses bacterial growth under nutrient-limiting conditions. In the current study, we show that despite the growth-suppressive effect of ADO, extracellular ADO enhances antibiotic killing in both Gram-negative and Gram-positive bacteria by up to 5 orders of magnitude. The ADO-potentiated antibiotic activity is dependent on purine salvage and is paralleled with a suppression of guanosine tetraphosphate synthesis and the massive accumulation of ATP and GTP. These changes in nucleoside phosphates coincide with transient increases in rRNA transcription and proton motive force. The potentiation of antibiotic killing by ADO is manifested against bacteria grown under both aerobic and anaerobic conditions, and it is exhibited even in the absence of alternative electron acceptors such as nitrate. ADO potentiates antibiotic killing by generating proton motive force and can occur independently of an ATP synthase. Bacteria treated with an uncoupler of oxidative phosphorylation and NADH dehydrogenase-deficient bacteria are refractory to the ADO-potentiated killing, suggesting that the metabolic awakening induced by this nucleoside is intrinsically dependent on an energized membrane. In conclusion, ADO represents a novel example of metabolite-driven but growth-independent means to reverse antibiotic tolerance. Our investigations identify the purine salvage pathway as a potential target for the development of therapeutics that may improve infection clearance while reducing the emergence of antibiotic resistance. IMPORTANCE Antibiotic tolerance, which is a hallmark of persister bacteria, contributes to treatment-refractory infections and the emergence of heritable antimicrobial resistance. Drugs that reverse tolerance and persistence may become part of the arsenal to combat antimicrobial resistance. Here, we demonstrate that salvage of extracellular ADO reduces antibiotic tolerance in nutritionally stressed Escherichia coli, Salmonella enterica, and Staphylococcus aureus. ADO potentiates bacterial killing under aerobic and anaerobic conditions and takes place in bacteria lacking the ATP synthase. However, the sensitization to antibiotic killing elicited by ADO requires an intact NADH dehydrogenase, suggesting a requirement for an energized electron transport chain. ADO antagonizes antibiotic tolerance by activating ATP and GTP synthesis, promoting proton motive force and cellular respiration while simultaneously suppressing the stringent response. These investigations reveal an unprecedented role for purine salvage stimulation as a countermeasure of antibiotic tolerance and the emergence of antimicrobial resistance.
Collapse
|
11
|
Espinosa-Pereiro J, Sánchez-Montalvá A, Aznar ML, Espiau M. MDR Tuberculosis Treatment. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:188. [PMID: 35208510 PMCID: PMC8878254 DOI: 10.3390/medicina58020188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Multidrug-resistant (MDR) tuberculosis (TB), resistant to isoniazid and rifampicin, continues to be one of the most important threats to controlling the TB epidemic. Over the last few years, there have been promising pharmacological advances in the paradigm of MDR TB treatment: new and repurposed drugs have shown excellent bactericidal and sterilizing activity against Mycobacterium tuberculosis and several all-oral short regimens to treat MDR TB have shown promising results. The purpose of this comprehensive review is to summarize the most important drugs currently used to treat MDR TB, the recommended regimens to treat MDR TB, and we also summarize new insights into the treatment of patients with MDR TB.
Collapse
Affiliation(s)
- Juan Espinosa-Pereiro
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Adrian Sánchez-Montalvá
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Luisa Aznar
- Infectious Diseases Department, Vall d’Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain; (J.E.-P.); (A.S.-M.)
- Mycobacteria Infection Study Group from Spanish Society of Infectious Diseases and Clinical Microbiology, 28003 Madrid, Spain
| | - Maria Espiau
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, 08135 Barcelona, Spain;
| |
Collapse
|
12
|
Lin Q, Pilewski JM, Di YP. Acidic Microenvironment Determines Antibiotic Susceptibility and Biofilm Formation of Pseudomonas aeruginosa. Front Microbiol 2021; 12:747834. [PMID: 34867864 PMCID: PMC8640179 DOI: 10.3389/fmicb.2021.747834] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is the most prevalent bacterial species that contribute to cystic fibrosis (CF) respiratory failure. The impaired function of CF transmembrane conductance regulator leads to abnormal epithelial Cl-/HCO3 - transport and acidification of airway surface liquid. However, it remains unclear why the CF lung is most commonly infected by Pseudomonas aeruginosa versus other pathogens. We carried out studies to investigate if lower pH helps Pseudomonas aeruginosa adapt and thrive in the CF-like acidic lung environment. Our results revealed that Pseudomonas aeruginosa generally forms more biofilm, induces antibiotic resistance faster in acidic conditions, and can be reversed by returning the acidic environment to physiologically neutral conditions. Pseudomonas aeruginosa appears to be highly adaptive to the CF-like acidic pH environment. By studying the effects of an acidic environment on bacterial response, we may provide a new therapeutic option in preventing chronic Pseudomonas aeruginosa infection and colonization.
Collapse
Affiliation(s)
- Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Becker K, Cao S, Nilsson A, Erlandsson M, Hotop SK, Kuka J, Hansen J, Haldimann K, Grinberga S, Berruga-Fernández T, Huseby DL, Shariatgorji R, Lindmark E, Platzack B, Böttger EC, Crich D, Friberg LE, Vingsbo Lundberg C, Hughes D, Brönstrup M, Andrén PE, Liepinsh E, Hobbie SN. Antibacterial activity of apramycin at acidic pH warrants wide therapeutic window in the treatment of complicated urinary tract infections and acute pyelonephritis. EBioMedicine 2021; 73:103652. [PMID: 34740109 PMCID: PMC8577399 DOI: 10.1016/j.ebiom.2021.103652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Background The clinical-stage drug candidate EBL-1003 (apramycin) represents a distinct new subclass of aminoglycoside antibiotics for the treatment of drug-resistant infections. It has demonstrated best-in-class coverage of resistant isolates, and preclinical efficacy in lung infection models. However, preclinical evidence for its utility in other disease indications has yet to be provided. Here we studied the therapeutic potential of EBL-1003 in the treatment of complicated urinary tract infection and acute pyelonephritis (cUTI/AP). Methods A combination of data-base mining, antimicrobial susceptibility testing, time-kill experiments, and four murine infection models was used in a comprehensive assessment of the microbiological coverage and efficacy of EBL-1003 against Gram-negative uropathogens. The pharmacokinetics and renal toxicology of EBL-1003 in rats was studied to assess the therapeutic window of EBL-1003 in the treatment of cUTI/AP. Findings EBL-1003 demonstrated broad-spectrum activity and rapid multi-log CFU reduction against a phenotypic variety of bacterial uropathogens including aminoglycoside-resistant clinical isolates. The basicity of amines in the apramycin molecule suggested a higher increase in positive charge at urinary pH when compared to gentamicin or amikacin, resulting in sustained drug uptake and bactericidal activity, and consequently in potent efficacy in mouse infection models. Renal pharmacokinetics, biomarkers for toxicity, and kidney histopathology in adult rats all indicated a significantly lower nephrotoxicity of EBL-1003 than of gentamicin. Interpretation This study provides preclinical proof-of-concept for the efficacy of EBL-1003 in cUTI/AP. Similar efficacy but lower nephrotoxicity of EBL-1003 in comparison to gentamicin may thus translate into a higher safety margin and a wider therapeutic window in the treatment of cUTI/API. Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Katja Becker
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Maria Erlandsson
- RISE Research Institutes of Sweden, Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Sven-Kevin Hotop
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Janis Kuka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Jon Hansen
- Statens Serum Institute, Artillerivej 5, DK-2300 Copenhagen, Denmark
| | - Klara Haldimann
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | - Solveiga Grinberga
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Talia Berruga-Fernández
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Reza Shariatgorji
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Evelina Lindmark
- RISE Research Institutes of Sweden, Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Björn Platzack
- RISE Research Institutes of Sweden, Forskargatan 20G, 151 36 Södertälje, Sweden
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 W. Green Street, Athens, GA 30602, USA
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Box 580, 751 23 Uppsala, Sweden
| | | | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden
| | - Mark Brönstrup
- Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Edgars Liepinsh
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 30, CH-8006 Zurich, Switzerland.
| |
Collapse
|
14
|
EFSA Panel on Biological Hazards (BIOHAZ), Allende A, Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Andersson DI, Bampidis V, Bengtsson‐Palme J, Bouchard D, Ferran A, Kouba M, López Puente S, López‐Alonso M, Nielsen SS, Pechová A, Petkova M, Girault S, Broglia A, Guerra B, Innocenti ML, Liébana E, López‐Gálvez G, Manini P, Stella P, Peixe L. Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed.
Part 2: Aminoglycosides/aminocyclitols: apramycin, paromomycin, neomycin and spectinomycin. EFSA J 2021; 19:e06853. [PMID: 34729082 PMCID: PMC8546520 DOI: 10.2903/j.efsa.2021.6853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The specific concentrations of apramycin, paromomycin, neomycin and spectinomycin in non-target feed for food-producing animals, below which there would not be an effect on the emergence of, and/or selection for, resistance in bacteria relevant for human and animal health, as well as the specific antimicrobial concentrations in feed which have an effect in terms of growth promotion/increased yield, were assessed by EFSA in collaboration with EMA. Details of the methodology used for this assessment, associated data gaps and uncertainties, are presented in a separate document. To address antimicrobial resistance, the Feed Antimicrobial Resistance Selection Concentration (FARSC) model developed specifically for the assessment was applied. However, due to the lack of data on the parameters required to calculate the FARSC for these antimicrobials, it was not possible to conclude the assessment until further experimental data become available. To address growth promotion, data from scientific publications obtained from an extensive literature review were used. Levels in feed that showed to have an effect on growth promotion/increased yield were reported for apramycin and neomycin, whilst for paromomycin and spectinomycin, no suitable data for the assessment were available. It was recommended to carry out studies to generate the data that are required to fill the gaps which prevented the calculation of the FARSC for these four antimicrobials.
Collapse
|
15
|
Frimodt-Møller J, Koulouktsis A, Charbon G, Otterlei M, Nielsen PE, Løbner-Olesen A. Activating the Cpx response induces tolerance to antisense PNA delivered by an arginine-rich peptide in Escherichia coli. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 25:444-454. [PMID: 34484867 PMCID: PMC8403718 DOI: 10.1016/j.omtn.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/16/2021] [Indexed: 01/20/2023]
Abstract
Cell-penetrating peptides (CPPs) are increasingly used for cellular drug delivery in both pro- and eukaryotic cells, and oligoarginines have attracted special attention. How arginine-rich CPPs translocate across the cell envelope, particularly for prokaryotes, is still unknown. Arginine-rich CPPs efficiently deliver antimicrobial peptide nucleic acid (PNA) to its intracellular mRNA target in bacteria. We show that resistance to PNA conjugated to an arginine-rich CPP in Escherichia coli requires multiple genetic modifications and is specific for the CPP part and not to the PNA part. An integral part of the resistance was the constitutively activated Cpx-envelope stress response system (cpx∗), which decreased the cytoplasmic membrane potential. This indicates an indirect energy-dependent uptake mechanism for antimicrobials conjugated to arginine-rich CPPs. In agreement, cpx∗ mutants showed low-level resistance to aminoglycosides and an arginine-rich CPP conjugated to a peptide targeting the DNA sliding clamp, i.e., similar uptake in E. coli for these antimicrobial compounds.
Collapse
Affiliation(s)
- Jakob Frimodt-Møller
- Department of Biology, Center for Peptide-Based Antibiotics, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Andreas Koulouktsis
- Department of Biology, Center for Peptide-Based Antibiotics, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Godefroid Charbon
- Department of Biology, Center for Peptide-Based Antibiotics, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, NO-7489 Trondheim, Norway
| | - Peter E. Nielsen
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Center for Peptide-Based Antibiotics, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
16
|
Xing Y, Kang X, Zhang S, Men Y. Specific phenotypic, genomic, and fitness evolutionary trajectories toward streptomycin resistance induced by pesticide co-stressors in Escherichia coli. ISME COMMUNICATIONS 2021; 1:39. [PMID: 37938677 PMCID: PMC9723568 DOI: 10.1038/s43705-021-00041-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 04/27/2023]
Abstract
To explore how co-occurring non-antibiotic environmental stressors affect evolutionary trajectories toward antibiotic resistance, we exposed susceptible Escherichia coli K-12 populations to environmentally relevant levels of pesticides and streptomycin for 500 generations. The coexposure substantially changed the phenotypic, genotypic, and fitness evolutionary trajectories, resulting in much stronger streptomycin resistance (>15-fold increase) of the populations. Antibiotic target modification mutations in rpsL and rsmG, which emerged and dominated at late stages of evolution, conferred the strong resistance even with less than 1% abundance, while the off-target mutations in nuoG, nuoL, glnE, and yaiW dominated at early stages only led to mild resistance (2.5-6-fold increase). Moreover, the strongly resistant mutants exhibited lower fitness costs even without the selective pressure and had lower minimal selection concentrations than the mildly resistant ones. Removal of the selective pressure did not reverse the strong resistance of coexposed populations at a later evolutionary stage. The findings suggest higher risks of the selection and propagation of strong antibiotic resistance in environments potentially impacted by antibiotics and pesticides.
Collapse
Affiliation(s)
- Yue Xing
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xiaoxi Kang
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Siwei Zhang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
17
|
Molina-Santiago C, Vela-Corcía D, Petras D, Díaz-Martínez L, Pérez-Lorente AI, Sopeña-Torres S, Pearson J, Caraballo-Rodríguez AM, Dorrestein PC, de Vicente A, Romero D. Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Rep 2021; 36:109449. [PMID: 34320359 PMCID: PMC8333196 DOI: 10.1016/j.celrep.2021.109449] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/18/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial communities are in a continuous adaptive and evolutionary race for survival. In this work we expand our knowledge on the chemical interplay and specific mutations that modulate the transition from antagonism to co-existence between two plant-beneficial bacteria, Pseudomonas chlororaphis PCL1606 and Bacillus amyloliquefaciens FZB42. We reveal that the bacteriostatic activity of bacillaene produced by Bacillus relies on an interaction with the protein elongation factor FusA of P. chlororaphis and how mutations in this protein lead to tolerance to bacillaene and other protein translation inhibitors. Additionally, we describe how the unspecific tolerance of B. amyloliquefaciens to antimicrobials associated with mutations in the glycerol kinase GlpK is provoked by a decrease of Bacillus cell membrane permeability, among other pleiotropic responses. We conclude that nutrient specialization and mutations in basic biological functions are bacterial adaptive dynamics that lead to the coexistence of two primary competitive bacterial species rather than their mutual eradication. Bacillus and Pseudomonas interaction ranges from antagonism to co-existence Bacillaene from Bacillus is a bacteriostatic that targets FusA of Pseudomonas GlpK mutations in Bacillus confer unspecific antimicrobial resistance
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - David Vela-Corcía
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Daniel Petras
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA; University of California San Diego, Collaborative Mass Spectrometry Innovation Center, La Jolla, CA, USA
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Alicia Isabel Pérez-Lorente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Sara Sopeña-Torres
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - John Pearson
- Nano-imaging Unit, Andalusian Centre for Nanomedicine and Biotechnology, BIONAND, Málaga, Spain
| | | | - Pieter C Dorrestein
- University of California San Diego, Collaborative Mass Spectrometry Innovation Center, La Jolla, CA, USA
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento de Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de Teatinos), 29071 Málaga, Spain.
| |
Collapse
|
18
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
19
|
Abstract
During the past 85 years of antibiotic use, we have learned a great deal about how these 'miracle' drugs work. We know the molecular structures and interactions of these drugs and their targets and the effects on the structure, physiology and replication of bacteria. Collectively, we know a great deal about these proximate mechanisms of action for virtually all antibiotics in current use. What we do not know is the ultimate mechanism of action; that is, how these drugs irreversibly terminate the 'individuality' of bacterial cells by removing barriers to the external world (cell envelopes) or by destroying their genetic identity (DNA). Antibiotics have many different 'mechanisms of action' that converge to irreversible lethal effects. In this Perspective, we consider what our knowledge of the proximate mechanisms of action of antibiotics and the pharmacodynamics of their interaction with bacteria tell us about the ultimate mechanisms by which these antibiotics kill bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain.
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA, USA.
- Antibiotic Resistance Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
20
|
Broad-Spectrum Antimicrobial Activity and Improved Stability of a D-Amino Acid Enantiomer of DMPC-10A, the Designed Derivative of Dermaseptin Truncates. Antibiotics (Basel) 2020; 9:antibiotics9090627. [PMID: 32967333 PMCID: PMC7557582 DOI: 10.3390/antibiotics9090627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
DMPC-10A (ALWKKLLKK-Cha-NH2) is a 10-mer peptide derivative from the N-terminal domain of Dermaseptin-PC which has shown broad-spectrum antimicrobial activity as well as a considerable hemolytic effect. In order to reduce hemolytic activity and improve stability to endogenous enzymes, a D-amino acid enantiomer (DMPC-10B) was designed by substituting all L-Lys and L-Leu with their respective D-form amino acid residues, while the Ala1 and Trp3 remained unchanged. The D-amino acid enantiomer exhibited similar antimicrobial potency to the parent peptide but exerted lower cytotoxicity and hemolytic activity. Meanwhile, DMPC-10B exhibited remarkable resistance to hydrolysis by trypsin and chymotrypsin. In addition to these advantages, DMPC-10B exhibited an outstanding antibacterial effect against Methicillin-resistant Staphylococcus aureus (MRSA) and Klebsiella pneumoniae using the Galleria mellonella larva model and displayed synergistic activities with gentamicin against carbapenem-resistant K. pneumoniae strains. This indicates that DMPC-10B would be a promising alternative for treating antibiotic-resistant pathogens.
Collapse
|
21
|
Balaure PC, Grumezescu AM. Recent Advances in Surface Nanoengineering for Biofilm Prevention and Control. Part I: Molecular Basis of Biofilm Recalcitrance. Passive Anti-Biofouling Nanocoatings. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1230. [PMID: 32599948 PMCID: PMC7353097 DOI: 10.3390/nano10061230] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/17/2022]
Abstract
Medical device-associated infections are becoming a leading cause of morbidity and mortality worldwide, prompting researchers to find new, more effective ways to control the bacterial colonisation of surfaces and biofilm development. Bacteria in biofilms exhibit a set of "emergent properties", meaning those properties that are not predictable from the study of free-living bacterial cells. The social coordinated behaviour in the biofilm lifestyle involves intricate signaling pathways and molecular mechanisms underlying the gain in resistance and tolerance (recalcitrance) towards antimicrobial agents as compared to free-floating bacteria. Nanotechnology provides powerful tools to disrupt the processes responsible for recalcitrance development in all stages of the biofilm life cycle. The present paper is a state-of-the-art review of the surface nanoengineering strategies currently used to design antibiofilm coatings. The review is structurally organised in two parts according to the targeted biofilm life cycle stages and molecular mechanisms intervening in recalcitrance development. Therefore, in the present first part, we begin with a presentation of the current knowledge of the molecular mechanisms responsible for increased recalcitrance that have to be disrupted. Further, we deal with passive surface nanoengineering strategies that aim to prevent bacterial cells from settling onto a biotic or abiotic surface. Both "fouling-resistant" and "fouling release" strategies are addressed as well as their synergic combination in a single unique nanoplatform.
Collapse
Affiliation(s)
- Paul Cătălin Balaure
- “Costin Nenitzescu” Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1-7, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, G. Polizu Street 1-7, 011061 Bucharest, Romania
| |
Collapse
|
22
|
Baral B, Mozafari MR. Strategic Moves of "Superbugs" Against Available Chemical Scaffolds: Signaling, Regulation, and Challenges. ACS Pharmacol Transl Sci 2020; 3:373-400. [PMID: 32566906 PMCID: PMC7296549 DOI: 10.1021/acsptsci.0c00005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Indexed: 12/12/2022]
Abstract
Superbugs' resistivity against available natural products has become an alarming global threat, causing a rapid deterioration in public health and claiming tens of thousands of lives yearly. Although the rapid discovery of small molecules from plant and microbial origin with enhanced bioactivity has provided us with some hope, a rapid hike in the resistivity of superbugs has proven to be the biggest therapeutic hurdle of all times. Moreover, several distinct mechanisms endowed by these notorious superbugs make them immune to these antibiotics subsequently causing our antibiotic wardrobe to be obsolete. In this unfortunate situation, though the time frame for discovering novel "hit molecules" down the line remains largely unknown, our small hope and untiring efforts injected in hunting novel chemical scaffolds with unique molecular targets using high-throughput technologies may safeguard us against these life-threatening challenges to some extent. Amid this crisis, the current comprehensive review highlights the present status of knowledge, our search for bacteria Achilles' heel, distinct molecular signaling that an opportunistic pathogen bestows to trespass the toxicity of antibiotics, and facile strategies and appealing therapeutic targets of novel drugs. Herein, we also discuss multidimensional strategies to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Bikash Baral
- Department
of Biochemistry, University of Turku, Tykistökatu 6, Turku, Finland
| | - M. R. Mozafari
- Australasian
Nanoscience and Nanotechnology Initiative, 8054 Monash University LPO, Clayton, Victoria 3168, Australia
| |
Collapse
|
23
|
Abstract
The rise of antimicrobial resistance is a leading medical threat, motivating efforts to forecast both its evolutionary dynamics and its genetic causes. Aminoglycosides are a major class of antibiotics that disrupt translation, but resistance may occur by a number of mechanisms. Here, we show the repeated evolution of resistance to the aminoglycoside tobramycin in both P. aeruginosa and A. baumannii via mutations in fusA1, encoding elongation factor G, and ptsP, encoding the nitrogen-specific phosphotransferase system. Laboratory evolution and whole-population genome sequencing were used to identify these targets, but mutations at identical amino acid positions were also found in published genomes of diverse bacterial species and clinical isolates. We also identified other resistance mechanisms associated with growth in biofilms that likely interfere with drug binding or uptake. Characterizing the evolution of multiple species in the presence of antibiotics can identify new, repeatable causes of resistance that may be predicted and counteracted by alternative treatment. Different species exposed to a common stress may adapt by mutations in shared pathways or in unique systems, depending on how past environments have molded their genomes. Understanding how diverse bacterial pathogens evolve in response to an antimicrobial treatment is a pressing example of this problem, where discovery of molecular parallelism could lead to clinically useful predictions. Evolution experiments with pathogens in environments containing antibiotics, combined with periodic whole-population genome sequencing, can be used to identify many contending routes to antimicrobial resistance. We separately propagated two clinically relevant Gram-negative pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii, in increasing concentrations of tobramycin in two different environments each: planktonic and biofilm. Independently of the pathogen, the populations adapted to tobramycin selection by parallel evolution of mutations in fusA1, encoding elongation factor G, and ptsP, encoding phosphoenolpyruvate phosphotransferase. As neither gene is a direct target of this aminoglycoside, mutations to either are unexpected and underreported causes of resistance. Additionally, both species acquired antibiotic resistance-associated mutations that were more prevalent in the biofilm lifestyle than in the planktonic lifestyle; these mutations were in electron transport chain components in A. baumannii and lipopolysaccharide biosynthesis enzymes in P. aeruginosa populations. Using existing databases, we discovered site-specific parallelism of fusA1 mutations that extends across bacterial phyla and clinical isolates. This study suggests that strong selective pressures, such as antibiotic treatment, may result in high levels of predictability in molecular targets of evolution, despite differences between organisms’ genetic backgrounds and environments.
Collapse
|
24
|
Richter A, Feßler AT, Böttner A, Köper LM, Wallmann J, Schwarz S. Reasons for antimicrobial treatment failures and predictive value of in-vitro susceptibility testing in veterinary practice: An overview. Vet Microbiol 2020; 245:108694. [PMID: 32456814 DOI: 10.1016/j.vetmic.2020.108694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
The choice of the most suitable antimicrobial agent for the treatment of an animal suffering from a bacterial infection is a complex issue. The results of bacteriological diagnostics and the in-vitro antimicrobial susceptibility testing (AST) provide guidance of potentially suitable antimicrobials. However, harmonized AST methods, veterinary-specific interpretive criteria and quality control ranges, which are essential to conduct AST in-vitro and to evaluate the corresponding results lege artis, are not available for all antimicrobial compounds, bacterial pathogens, animal species and sites of infection of veterinary relevance. Moreover, the clinical benefit of an antimicrobial agent (defined as its in vivo efficacy) is not exclusively dependent on the in-vitro susceptibility of the target pathogen. Apart from the right choice of an antibacterial drug with suitable pharmacokinetic properties and an appropriate pharmaceutical formulation, the success of treatment depends substantially on its adequate use. Even if this is ensured and in-vitro susceptibility confirmed, an insufficient improvement of clinical signs might be caused by biofilm-forming bacteria, persisters, or specific physicochemical conditions at the site of infection, such as pH value, oxygen partial pressure and perfusion rate. This review summarizes relevant aspects that have an impact on the predictive value of in-vitro AST and points out factors, potentially leading to an ineffective outcome of antibacterial treatment in veterinary practice. Knowing the reasons of inadequate beneficial effects can help to understand possible discrepancies between in-vitro susceptibility and in vivo efficacy and aid in undertaking strategies for an avoidance of treatment failures.
Collapse
Affiliation(s)
- Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | - Jürgen Wallmann
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre of Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
25
|
Benarroch JM, Asally M. The Microbiologist’s Guide to Membrane Potential Dynamics. Trends Microbiol 2020; 28:304-314. [DOI: 10.1016/j.tim.2019.12.008] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/25/2019] [Accepted: 12/09/2019] [Indexed: 10/25/2022]
|
26
|
Grijalva-Hernández F, Vega-Estrada J, Escobar-Rosales M, Ortega-López J, Aguilar-López R, Lara AR, Montes-Horcasitas MDC. High Kanamycin Concentration as Another Stress Factor Additional to Temperature to Increase pDNA Production in E. coli DH5α Batch and Fed-Batch Cultures. Microorganisms 2019; 7:E711. [PMID: 31861108 PMCID: PMC6955755 DOI: 10.3390/microorganisms7120711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 02/03/2023] Open
Abstract
Plasmid DNA (pDNA) vaccines require high supercoiled-pDNA doses (milligrams) to achieve an adequate immune response. Therefore, processes development to obtain high pDNA yields and productivity is crucial. pDNA production is affected by several factors including culture type, medium composition, and growth conditions. We evaluated the effect of kanamycin concentration and temperature on pDNA production, overflow metabolism (organic acids) and metabolic burden (neomycin phosphotransferase II) in batch and fed-batch cultures of Escherichia coli DH5α-pVAX1-NH36. Results indicated that high kanamycin concentration increases the volumetric productivity, volumetric and specific yields of pDNA when batch cultures were carried out at 42 °C, and overflow metabolism reduced but metabolic burden increased. Micrographs taken with a scanning electron microscope (SEM) were analyzed, showing important morphological changes. The high kanamycin concentration (300 mg/L) was evaluated in high cell density culture (50 gDCW/L), which was reached using a fed-batch culture with temperature increase by controlling heating and growth rates. The pDNA volumetric yield and productivity were 759 mg/L and 31.19 mg/L/h, respectively, two-fold greater than the control with a kanamycin concentration of 50 mg/L. A stress-based process simultaneously caused by temperature and high kanamycin concentration can be successfully applied to increase pDNA production.
Collapse
Affiliation(s)
- Fernando Grijalva-Hernández
- Departamento de Biotecnología y Bioingeniería. Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México City 07360, Mexico; (F.G.-H.); (J.V.-E.); (M.E.-R.); (J.O.-L.); (R.A.-L.)
| | - Jesús Vega-Estrada
- Departamento de Biotecnología y Bioingeniería. Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México City 07360, Mexico; (F.G.-H.); (J.V.-E.); (M.E.-R.); (J.O.-L.); (R.A.-L.)
| | - Montserrat Escobar-Rosales
- Departamento de Biotecnología y Bioingeniería. Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México City 07360, Mexico; (F.G.-H.); (J.V.-E.); (M.E.-R.); (J.O.-L.); (R.A.-L.)
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería. Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México City 07360, Mexico; (F.G.-H.); (J.V.-E.); (M.E.-R.); (J.O.-L.); (R.A.-L.)
| | - Ricardo Aguilar-López
- Departamento de Biotecnología y Bioingeniería. Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México City 07360, Mexico; (F.G.-H.); (J.V.-E.); (M.E.-R.); (J.O.-L.); (R.A.-L.)
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Cuajimalpa. Av. Vasco de Quiroga 4871, Santa Fe, México City 05348, Mexico;
| | - Ma. del Carmen Montes-Horcasitas
- Departamento de Biotecnología y Bioingeniería. Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, México City 07360, Mexico; (F.G.-H.); (J.V.-E.); (M.E.-R.); (J.O.-L.); (R.A.-L.)
| |
Collapse
|
27
|
Potentiation of Aminoglycoside Lethality by C 4-Dicarboxylates Requires RpoN in Antibiotic-Tolerant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01313-19. [PMID: 31383655 DOI: 10.1128/aac.01313-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/29/2019] [Indexed: 01/26/2023] Open
Abstract
Antibiotic tolerance contributes to the inability of standard antimicrobial therapies to clear the chronic Pseudomonas aeruginosa lung infections that often afflict patients with cystic fibrosis (CF). Metabolic potentiation of bactericidal antibiotics with carbon sources has emerged as a promising strategy to resensitize tolerant bacteria to antibiotic killing. Fumarate (FUM), a C4-dicarboxylate, has been recently shown to resensitize tolerant P. aeruginosa to killing by tobramycin (TOB), an aminoglycoside antibiotic, when used in combination (TOB+FUM). Fumarate and other C4-dicarboxylates are taken up intracellularly by transporters regulated by the alternative sigma factor RpoN. Once in the cell, FUM is metabolized, leading to enhanced electron transport chain activity, regeneration of the proton motive force, and increased TOB uptake. In this work, we demonstrate that a ΔrpoN mutant displays impaired FUM uptake and, consequently, nonsusceptibility to TOB+FUM treatment. RpoN was also found to be essential for susceptibility to other aminoglycoside and C4-dicarboxylate combinations. Importantly, RpoN loss-of-function mutations have been documented to evolve in the CF lung, and these loss-of-function alleles can also result in TOB+FUM nonsusceptibility. In a mixed-genotype population of wild-type and ΔrpoN cells, TOB+FUM specifically killed cells with RpoN function and spared the cells that lacked RpoN function. Unlike C4-dicarboylates, both d-glucose and l-arginine were able to potentiate TOB killing of ΔrpoN stationary-phase cells. Our findings raise the question of whether TOB+FUM will be a suitable treatment option in the future for CF patients infected with P. aeruginosa isolates that lack RpoN function.
Collapse
|
28
|
Wardell SJT, Rehman A, Martin LW, Winstanley C, Patrick WM, Lamont IL. A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01619-19. [PMID: 31570397 PMCID: PMC6879238 DOI: 10.1128/aac.01619-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.
Collapse
Affiliation(s)
| | - Attika Rehman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
29
|
Nakonechny F, Barel M, David A, Koretz S, Litvak B, Ragozin E, Etinger A, Livne O, Pinhasi Y, Gellerman G, Nisnevitch M. Dark Antibacterial Activity of Rose Bengal. Int J Mol Sci 2019; 20:E3196. [PMID: 31261890 PMCID: PMC6651402 DOI: 10.3390/ijms20133196] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 11/27/2022] Open
Abstract
The global spread of bacterial resistance to antibiotics promotes a search for alternative approaches to eradication of pathogenic bacteria. One alternative is using photosensitizers for inhibition of Gram-positive and Gram-negative bacteria under illumination. Due to low penetration of visible light into tissues, applications of photosensitizers are currently limited to treatment of superficial local infections. Excitation of photosensitizers in the dark can be applied to overcome this problem. In the present work, dark antibacterial activity of the photosensitizer Rose Bengal alone and in combination with antibiotics was studied. The minimum inhibitory concentrations (MIC) value of Rose Bengal against S. aureus dropped in the presence of sub-MIC concentrations of ciprofloxacin, levofloxacin, methicillin, and gentamicin. Free Rose Bengal at sub-MIC concentrations can be excited in the dark by ultrasound at 38 kHz. Rose Bengal immobilized onto silicon showed good antibacterial activity in the dark under ultrasonic activation, probably because of Rose Bengal leaching from the polymer during the treatment. Exposure of bacteria to Rose Bengal in the dark under irradiation by electromagnetic radio frequency waves in the 9 to 12 GHz range caused a decrease in the bacterial concentration, presumably due to resonant absorption of electromagnetic energy, its transformation into heat and subsequent excitation of Rose Bengal.
Collapse
Affiliation(s)
- Faina Nakonechny
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Margarita Barel
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Arad David
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Simor Koretz
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel
| | - Boris Litvak
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Elena Ragozin
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Ariel Etinger
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Oz Livne
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Yosef Pinhasi
- Department of Electrical and Electronics Engineering, Ariel University, Ariel 4070000, Israel
| | - Gary Gellerman
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Marina Nisnevitch
- Department of Chemical Engineering, Biotechnology and Materials, Ariel University, Ariel 4070000, Israel.
| |
Collapse
|
30
|
Pusic P, Sonnleitner E, Krennmayr B, Heitzinger DA, Wolfinger MT, Resch A, Bläsi U. Harnessing Metabolic Regulation to Increase Hfq-Dependent Antibiotic Susceptibility in Pseudomonas aeruginosa. Front Microbiol 2018; 9:2709. [PMID: 30473687 PMCID: PMC6237836 DOI: 10.3389/fmicb.2018.02709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 01/04/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is responsible for ~ 10% of hospital-acquired infections worldwide. It is notorious for its high level resistance toward many antibiotics, and the number of multi-drug resistant clinical isolates is steadily increasing. A better understanding of the molecular mechanisms underlying drug resistance is crucial for the development of novel antimicrobials and alternative strategies such as enhanced sensitization of bacteria to antibiotics in use. In P. aeruginosa several uptake channels for amino-acids and carbon sources can serve simultaneously as entry ports for antibiotics. The respective genes are often controlled by carbon catabolite repression (CCR). We have recently shown that Hfq in concert with Crc acts as a translational repressor during CCR. This function is counteracted by the regulatory RNA CrcZ, which functions as a decoy to abrogate Hfq-mediated translational repression of catabolic genes. Here, we report an increased susceptibility of P. aeruginosa hfq deletion strains to different classes of antibiotics. Transcriptome analyses indicated that Hfq impacts on different mechanisms known to be involved in antibiotic susceptibility, viz import and efflux, energy metabolism, cell wall and LPS composition as well as on the c-di-GMP levels. Furthermore, we show that sequestration of Hfq by CrcZ, which was over-produced or induced by non-preferred carbon-sources, enhances the sensitivity toward antibiotics. Thus, controlled synthesis of CrcZ could provide a means to (re)sensitize P. aeruginosa to different classes of antibiotics.
Collapse
Affiliation(s)
- Petra Pusic
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Beatrice Krennmayr
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Dorothea A. Heitzinger
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Armin Resch
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Genetics and roadblocks of drug resistant tuberculosis. INFECTION GENETICS AND EVOLUTION 2018; 72:113-130. [PMID: 30261266 DOI: 10.1016/j.meegid.2018.09.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 11/22/2022]
Abstract
Considering the extensive evolutionary history of Mycobacterium tuberculosis, anti-Tuberculosis (TB) drug therapy exerts a recent selective pressure. However, in a microorganism devoid of horizontal gene transfer and with a strictly clonal populational structure such as M. tuberculosis the usual, but not sole, path to overcome drug susceptibility is through de novo mutations on a relatively strict set of genes. The possible allelic diversity that can be associated with drug resistance through several mechanisms such as target alteration or target overexpression, will dictate how these genes can become associated with drug resistance. The success demonstrated by this pathogenic microbe in this latter process and its ability to spread is currently one of the major obstacles to an effective TB elimination. This article reviews the action mechanism of the more important anti-TB drugs, including bedaquiline and delamanid, along with new findings on specific resistance mechanisms. With the development, validation and endorsement of new in vitro molecular tests for drug resistance, knowledge on these resistance mechanisms and microevolutionary dynamics leading to the emergence and fixation of drug resistance mutations within the host is highly important. Additionally, the fitness toll imposed by resistance development is also herein discussed together with known compensatory mechanisms. By elucidating the possible mechanisms that enable one strain to reacquire the original fitness levels, it will be theoretically possible to make more informed decisions and develop novel strategies that can force M. tuberculosis microevolutionary trajectory down through a path of decreasing fitness levels.
Collapse
|
32
|
Studies on Aminoglycoside Susceptibility Identify a Novel Function of KsgA To Secure Translational Fidelity during Antibiotic Stress. Antimicrob Agents Chemother 2018; 62:AAC.00853-18. [PMID: 30082289 DOI: 10.1128/aac.00853-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has become a global crisis. Studies on the mechanism of bacterial tolerance to antibiotics will not only increase our conceptual understanding of bacterial death but also provide potential targets for novel inhibitors. We screened a mutant library containing a full set of in-frame deletion mutants of Escherichia coli K-12 and identified 140 genes that possibly contribute to gentamicin tolerance. The deletion of ksgA increased the inhibition and killing potency against mid-log-phase bacteria by aminoglycosides. Initially identified as a 16S rRNA methyltransferase, KsgA also has additional functions as a ribosomal biogenesis factor and a DNA glycosylase. We found that the methyltransferase activity of KsgA is responsible for the tolerance, as demonstrated by a site-directed mutagenesis analysis. In contrast to the mechanism for cold sensitivity, the decreased tolerance to aminoglycoside is not related to the failure of ribosomal biogenesis. Furthermore, the DNA glycosylase activity of KsgA contributes minimally to kanamycin tolerance. Importantly, we discovered that KsgA secures protein translational fidelity upon kanamycin killing, in contrast to its role during cold stress and kasugamycin treatment. The results suggest that the compromise in protein translational fidelity in the absence of KsgA is the root cause of an increased sensitivity to a bactericidal aminoglycoside. In addition, KsgA in the pathogenic Acinetobacter baumannii contributes not only to the tolerance against aminoglycoside killing but also to virulence in the host, warranting its potential application as a target for inhibitors that potentiate aminoglycoside therapeutic killing as well as disarm bacterial virulence simultaneously.
Collapse
|
33
|
Broad-Spectrum Adaptive Antibiotic Resistance Associated with Pseudomonas aeruginosa Mucin-Dependent Surfing Motility. Antimicrob Agents Chemother 2018; 62:AAC.00848-18. [PMID: 29967020 DOI: 10.1128/aac.00848-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 02/04/2023] Open
Abstract
Surfing motility is a novel form of surface adaptation exhibited by the nosocomial pathogen Pseudomonas aeruginosa in the presence of the glycoprotein mucin, which is found in high abundance at mucosal surfaces, especially those of the lungs of cystic fibrosis and bronchiectasis patients. Here, we investigated the adaptive antibiotic resistance of P. aeruginosa under conditions in which surfing occurs compared that in to cells undergoing swimming. P. aeruginosa surfing cells were significantly more resistant to several classes of antibiotics, including aminoglycosides, carbapenems, polymyxins, and fluoroquinolones. This was confirmed by incorporation of antibiotics into growth medium, which revealed a concentration-dependent inhibition of surfing motility that occurred at concentrations much higher than those needed to inhibit swimming. To investigate the basis of resistance, transcriptome sequencing (RNA-Seq) was performed and revealed that surfing influenced the expression of numerous genes. Included among genes dysregulated under surfing conditions were multiple genes from the Pseudomonas resistome; these genes are known to affect antibiotic resistance when mutated. Screening transposon mutants in these surfing-dysregulated resistome genes revealed that several of these mutants exhibited changes in susceptibility to one or more antibiotics under surfing conditions, consistent with a contribution to the observed adaptive resistance. In particular, several mutants in resistome genes, including armR, recG, atpB, clpS, nuoB, and certain hypothetical genes, such as PA5130, PA3576, and PA4292, showed contributions to broad-spectrum resistance under surfing conditions and could be complemented by their respective cloned genes. Therefore, we propose that surfing adaption led to extensive multidrug adaptive resistance as a result of the collective dysregulation of diverse genes.
Collapse
|
34
|
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, Corsetti PP, de Almeida LA. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci 2018; 207:480-491. [DOI: 10.1016/j.lfs.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|
35
|
Ernst J, Klinger-Strobel M, Arnold K, Thamm J, Hartung A, Pletz MW, Makarewicz O, Fischer D. Polyester-based particles to overcome the obstacles of mucus and biofilms in the lung for tobramycin application under static and dynamic fluidic conditions. Eur J Pharm Biopharm 2018; 131:120-129. [PMID: 30063969 DOI: 10.1016/j.ejpb.2018.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Pulmonary infections with Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) are difficult to treat and related with high mortality in some diseases like cystic fibrosis due to the recurrent formation of biofilms. The biofilm formation hinders efficient treatment with inhaled antibiotics due to a low penetration of the antibiotics through the polyanionic biofilm matrix and increased antimicrobial resistance of the biofilm-embedded bacteria. In this study, tobramycin (Tb) was encapsulated in particles based on poly(d,l,-lactide-co-glycolide) (PLGA) and poly(ethylene glycol)-co-poly(d,l,-lactide-co-glycolide) diblock (PEG-PLGA) to overcome the biofilm barrier with particle sizes of 225-231 nm (nanoparticles) and 896-902 nm (microparticles), spherical shape and negative zeta potentials. The effectiveness against biofilms of P. aeruginosa and B. cepacia was strongly enhanced by the encapsulation under fluidic experimental condition as well as under static conditions in artificial mucus. The biofilm-embedded bacteria were killed by less than 0.77 mg/l encapsulated Tb, whereas 1,000 mg/l of free Tb or the bulk mixtures of Tb and the particles were ineffective against the biofilms. Moreover, encapsulated Tb was even effective against biofilms of the intrinsically aminoglycoside-resistant B. cepacia, indicating a supportive effect of PEG and PLGA on Tb. No cytotoxicity was detected in vitro in human lung epithelial cells with any formulation.
Collapse
Affiliation(s)
- Julia Ernst
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Mareike Klinger-Strobel
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Kathrin Arnold
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Thamm
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Anita Hartung
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Mathias W Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Oliwia Makarewicz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany.
| | - Dagmar Fischer
- Pharmaceutical Technology and Biopharmacy, Institute for Pharmacy, Friedrich Schiller University Jena, Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
36
|
Lee W, Do T, Zhang G, Kahne D, Meredith TC, Walker S. Antibiotic Combinations That Enable One-Step, Targeted Mutagenesis of Chromosomal Genes. ACS Infect Dis 2018. [PMID: 29534563 DOI: 10.1021/acsinfecdis.8b00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Targeted modification of bacterial chromosomes is necessary to understand new drug targets, investigate virulence factors, elucidate cell physiology, and validate results of -omics-based approaches. For some bacteria, reverse genetics remains a major bottleneck to progress in research. Here, we describe a compound-centric strategy that combines new negative selection markers with known positive selection markers to achieve simple, efficient one-step genome engineering of bacterial chromosomes. The method was inspired by the observation that certain nonessential metabolic pathways contain essential late steps, suggesting that antibiotics targeting a late step can be used to select for the absence of genes that control flux into the pathway. Guided by this hypothesis, we have identified antibiotic/counterselectable markers to accelerate reverse engineering of two increasingly antibiotic-resistant pathogens, Staphylococcus aureus and Acinetobacter baumannii. For S. aureus, we used wall teichoic acid biosynthesis inhibitors to select for the absence of tarO and for A. baumannii, we used colistin to select for the absence of lpxC. We have obtained desired gene deletions, gene fusions, and promoter swaps in a single plating step with perfect efficiency. Our method can also be adapted to generate markerless deletions of genes using FLP recombinase. The tools described here will accelerate research on two important pathogens, and the concept we outline can be readily adapted to any organism for which a suitable target pathway can be identified.
Collapse
Affiliation(s)
- Wonsik Lee
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Truc Do
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Ge Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Timothy C. Meredith
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| | - Suzanne Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, United States
| |
Collapse
|
37
|
Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018; 9:1599. [PMID: 29686259 PMCID: PMC5913237 DOI: 10.1038/s41467-018-04059-1] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.
Collapse
|
38
|
Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018; 9:1599. [PMID: 29686259 PMCID: PMC5913237 DOI: 10.1038/s41467-018-04059-1|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.
Collapse
Affiliation(s)
- Erik Wistrand-Yuen
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Michael Knopp
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, 75237, Uppsala, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Uppsala University, 75237, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
39
|
Ibacache-Quiroga C, Oliveros JC, Couce A, Blázquez J. Parallel Evolution of High-Level Aminoglycoside Resistance in Escherichia coli Under Low and High Mutation Supply Rates. Front Microbiol 2018; 9:427. [PMID: 29615988 PMCID: PMC5867336 DOI: 10.3389/fmicb.2018.00427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a major concern in public health worldwide, thus there is much interest in characterizing the mutational pathways through which susceptible bacteria evolve resistance. Here we use experimental evolution to explore the mutational pathways toward aminoglycoside resistance, using gentamicin as a model, under low and high mutation supply rates. Our results show that both normo and hypermutable strains of Escherichia coli are able to develop resistance to drug dosages > 1,000-fold higher than the minimal inhibitory concentration for their ancestors. Interestingly, such level of resistance was often associated with changes in susceptibility to other antibiotics, most prominently with increased resistance to fosfomycin. Whole-genome sequencing revealed that all resistant derivatives presented diverse mutations in five common genetic elements: fhuA, fusA and the atpIBEFHAGDC, cyoABCDE, and potABCD operons. Despite the large number of mutations acquired, hypermutable strains did not pay, apparently, fitness cost. In contrast to recent studies, we found that the mutation supply rate mainly affected the speed (tempo) but not the pattern (mode) of evolution: both backgrounds acquired the mutations in the same order, although the hypermutator strain did it faster. This observation is compatible with the adaptive landscape for high-level gentamicin resistance being relatively smooth, with few local maxima; which might be a common feature among antibiotics for which resistance involves multiple loci.
Collapse
Affiliation(s)
- Claudia Ibacache-Quiroga
- Centro Nacional de Biotecnología, Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Alejandro Couce
- Unité Mixte de Recherche 1137, Infection, Antimicrobiens, Modélisation, Evolution, INSERM, Université Paris Diderot, Paris, France
| | - Jesus Blázquez
- Centro Nacional de Biotecnología, Madrid, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
40
|
Lojek LJ, Farrand AJ, Weiss A, Skaar EP. Fur regulation of Staphylococcus aureus heme oxygenases is required for heme homeostasis. Int J Med Microbiol 2018; 308:582-589. [PMID: 29409696 DOI: 10.1016/j.ijmm.2018.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/04/2018] [Accepted: 01/27/2018] [Indexed: 01/23/2023] Open
Abstract
Heme is a cofactor that is essential for cellular respiration and for the function of many enzymes. If heme levels become too low within the cell, S. aureus switches from producing energy via respiration to producing energy by fermentation. S. aureus encodes two heme oxygenases, IsdI and IsdG, which cleave the porphyrin heme ring releasing iron for use as a nutrient source. Both isdI and isdG are only expressed under low iron conditions and are regulated by the canonical Ferric Uptake Regulator (Fur). Here we demonstrate that unregulated expression of isdI and isdG within S. aureus leads to reduced growth under low iron conditions. Additionally, the constitutive expression of these enzymes leads to decreased heme abundance in S. aureus, an increase in the fermentation product lactate, and increased resistance to gentamicin. This work demonstrates that S. aureus has developed tuning mechanisms, such as Fur regulation, to ensure that the cell has sufficient quantities of heme for efficient ATP production through aerobic respiration.
Collapse
Affiliation(s)
- Lisa J Lojek
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA; Graduate Program in Microbiology & Immunology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Allison J Farrand
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andy Weiss
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
41
|
Modulation of Global Transcriptional Regulatory Networks as a Strategy for Increasing Kanamycin Resistance of the Translational Elongation Factor-G Mutants in Escherichia coli. G3-GENES GENOMES GENETICS 2017; 7:3955-3966. [PMID: 29046437 PMCID: PMC5714492 DOI: 10.1534/g3.117.300284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evolve and resequence experiments have provided us a tool to understand bacterial adaptation to antibiotics. In our previous work, we used short-term evolution to isolate mutants resistant to the ribosome targeting antibiotic kanamycin, and reported that Escherichia coli develops low cost resistance to kanamycin via different point mutations in the translation Elongation Factor-G (EF-G). Furthermore, we had shown that the resistance of EF-G mutants could be increased by second site mutations in the genes rpoD/cpxA/topA/cyaA Mutations in three of these genes had been discovered in earlier screens for aminoglycoside resistance. In this work, we expand our understanding of these second site mutations, the goal being to understand how these mutations affect the activities of the mutated gene products to confer resistance. We show that the mutation in cpxA most likely results in an active Cpx stress response. Further evolution of an EF-G mutant in a higher concentration of kanamycin than what was used in our previous experiments identified the cpxA locus as a primary target for a significant increase in resistance. The mutation in cyaA results in a loss of catalytic activity and probably results in resistance via altered CRP function. Despite a reduction in cAMP levels, the CyaAN600Y mutant has a transcriptome indicative of increased CRP activity, pointing to an unknown role for CyaA and / or cAMP in gene expression. From the transcriptomes of double and single mutants, we describe the epistasis between the mutation in EF-G and these second site mutations. We show that the large scale transcriptomic changes in the topoisomerase I (FusAA608E-TopAS180L) mutant likely result from increased negative supercoiling in the cell. Finally, genes with known roles in aminoglycoside resistance were present among the misregulated genes in the mutants.
Collapse
|
42
|
Verma A, Bhandari V, Deep DK, Sundar S, Dujardin JC, Singh R, Salotra P. Transcriptome profiling identifies genes/pathways associated with experimental resistance to paromomycin in Leishmania donovani. Int J Parasitol Drugs Drug Resist 2017; 7:370-377. [PMID: 29035735 PMCID: PMC5645162 DOI: 10.1016/j.ijpddr.2017.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 01/19/2023]
Abstract
Widespread resistance towards antimony and reports of relapses following miltefosine treatment has severely affected the management of visceral leishmaniasis (VL) in the Indian subcontinent. Paromomycin (PMM), an aminoglycoside antibiotic, has been licensed for VL treatment in India in 2007. Although its use is still restricted in the field, unraveling the molecular mechanism of resistance towards PMM is the key to preserve the drug. In this study, PMM resistant lines were selected up to 100 μM of PMM in three distinct field isolates of Leishmania donovani at promastigote stage. The resistance induced at promastigote level was also evident in amastigotes which showed 6 fold decreases in PMM susceptibility. Comparative transcriptome profiling of PMM resistant (PMM-R) and the corresponding PMM sensitive (PMM-S) parasites revealed modulated expression of 500 genes (1.5 fold cut off) in PMM-R parasites. Selected genes were validated for their modulated expression by quantitative real-time PCR. Functional classification and pathway analysis of modulated genes indicated probable adaptations in drug resistant lines which included a) reduced oxidative phosphorylation; b) increased glycosomal succinate fermentation and substrate level phosphorylation; c) dependency on lipids and amino acids for energy generation; d) reduced DNA synthesis and increased DNA damage repair and e) decreased protein synthesis and degradation. Interestingly, PMM-R parasites showed a marked increase in PMM susceptibility in presence of verapamil and amlodipine, antagonists of Ca2+ channel that are also modulators of ABC transporters. Moreover, infection of macrophages by PMM-R parasites led to modulated nitric oxide (NO) levels while reactive oxygen species (ROS) level remained unaltered. The present study highlights the putative mechanisms of PMM resistance in Leishmania.
Collapse
Affiliation(s)
- Aditya Verma
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India; Symbiosis School of Biomedical Sciences, Symbiosis International University, Pune, India
| | - Vasundhra Bhandari
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Deepak Kumar Deep
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jean Claude Dujardin
- Unit of Molecular Parasitology, Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Poonam Salotra
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.
| |
Collapse
|
43
|
Ilić BS, Miladinović DL, Kocić BD, Spalović BR, Marković MS, Čolović H, Nikolić DM. Chemoinformatic Investigation of Antibiotic Antagonism: The Interference of Thymus glabrescens Essential Oil Components with the Action of Streptomycin. Nat Prod Commun 2017. [DOI: 10.1177/1934578x1701201033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Given the importance of Thymus glabrescens as a useful antibacterial remedy, we have evaluated the antibacterial and streptomycin-modifying activity of Thymus glabrescens essential oil, geraniol, geranyl acetate and thymol. It was shown that all substance-streptomycin combinations produced predominantly antagonistic interactions. Furthermore, combinations between geraniol and thymol showed dominant additive effect. Chemoinformatics results, combined with experimental data, suggest that antagonistic interactions with streptomycin were not a consequence of the antimicrobial action at the same target, but an outcome of the membrane impairment, followed by the membrane potential/proton motive force dissipation, which decreased the streptomycin uptake. Furthermore, the membrane toxicity of geraniol and thymol was confirmed by their additive antibacterial interactions and parameters of their penetration and accumulation throughout a cell membrane. This study should greatly help in an intelligent and a controlled pharmacomodulation of antibiotics.
Collapse
Affiliation(s)
- Budimir S. Ilić
- Department of Pharmacy, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | | | | | - Boban R. Spalović
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Marija S. Marković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia
| | - Hristina Čolović
- Clinic for Physical Therapy and Rehabilitation, Clinical Centre of Niš, 18000 Niš, Serbia
| | - Dejan M. Nikolić
- Department of Sanitary Chemistry, Institute for Public Health, 18000 Niš, Serbia
| |
Collapse
|
44
|
Abstract
We postulate that the inhibition of growth and low rates of mortality of bacteria exposed to ribosome-binding antibiotics deemed bacteriostatic can be attributed almost uniquely to these drugs reducing the number of ribosomes contributing to protein synthesis, i.e., the number of effective ribosomes. We tested this hypothesis with Escherichia coli K-12 MG1655 and constructs that had been deleted for 1 to 6 of the 7 rRNA (rrn) operons. In the absence of antibiotics, constructs with fewer rrn operons have lower maximum growth rates and longer lag phases than those with more ribosomal operons. In the presence of the ribosome-binding “bacteriostatic” antibiotics tetracycline, chloramphenicol, and azithromycin, E. coli strains with 1 and 2 rrn operons are killed at a substantially higher rate than those with more rrn operons. This increase in the susceptibility of E. coli with fewer rrn operons to killing by ribosome-targeting bacteriostatic antibiotics is not reflected in their greater sensitivity to killing by the bactericidal antibiotic ciprofloxacin, which does not target ribosomes, but also to killing by gentamicin, which does. Finally, when such strains are exposed to these ribosome-targeting bacteriostatic antibiotics, the time before these bacteria start to grow again when the drugs are removed, referred to as the post-antibiotic effect (PAE), is markedly greater for constructs with fewer rrn operons than for those with more rrn operons. We interpret the results of these other experiments reported here as support for the hypothesis that the reduction in the effective number of ribosomes due to binding to these structures provides a sufficient explanation for the action of bacteriostatic antibiotics that target these structures. Chemotherapeutic agents, including antibiotics, have been used for more than a century; nevertheless, there are still major gaps in our understanding of how these drugs operate which limit future advances in antibacterial chemotherapy. Although the molecular mechanisms by which antibiotics bind to their target structures are largely known, fundamental questions about how these drugs actually kill and/or inhibit the replication of bacteria remain unanswered and subjects of controversy. We postulate that for the broad class of ribosome-binding bacteriostatic antibiotics, their reducing the number of active (functional) ribosomes per cell provides a sufficient explanation for the abatement of replication and the low rate of decline in densities of viable cells of bacteria exposed to these drugs. Using E. coli K-12 constructs with deletions of from one to six of the seven ribosome-RNA operons and the ribosome-binding bacteriostatic antibiotics tetracycline, chloramphenicol, and azithromycin, we tested this hypothesis. The results of our experiments are consistent with this “numbers game” hypothesis.
Collapse
|
45
|
Meylan S, Porter CBM, Yang JH, Belenky P, Gutierrez A, Lobritz MA, Park J, Kim SH, Moskowitz SM, Collins JJ. Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control. Cell Chem Biol 2017; 24:195-206. [PMID: 28111098 DOI: 10.1016/j.chembiol.2016.12.015] [Citation(s) in RCA: 269] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/21/2016] [Accepted: 12/28/2016] [Indexed: 10/20/2022]
Abstract
Metabolically dormant bacteria present a critical challenge to effective antimicrobial therapy because these bacteria are genetically susceptible to antibiotic treatment but phenotypically tolerant. Such tolerance has been attributed to impaired drug uptake, which can be reversed by metabolic stimulation. Here, we evaluate the effects of central carbon metabolite stimulations on aminoglycoside sensitivity in the pathogen Pseudomonas aeruginosa. We identify fumarate as a tobramycin potentiator that activates cellular respiration and generates a proton motive force by stimulating the tricarboxylic acid (TCA) cycle. In contrast, we find that glyoxylate induces phenotypic tolerance by inhibiting cellular respiration with acetyl-coenzyme A diversion through the glyoxylate shunt, despite drug import. Collectively, this work demonstrates that TCA cycle activity is important for both aminoglycoside uptake and downstream lethality and identifies a potential strategy for potentiating aminoglycoside treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Sylvain Meylan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Caroline B M Porter
- Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jason H Yang
- Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Arnaud Gutierrez
- Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael A Lobritz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jihye Park
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sun H Kim
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Samuel M Moskowitz
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Department of Biological Engineering, Institute for Medical Engineering & Science, Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Program, Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Yadav S, Deka SR, Jha D, Gautam HK, Sharma AK. Amphiphilic azobenzene-neomycin conjugate self-assembles into nanostructures and transports plasmid DNA efficiently into the mammalian cells. Colloids Surf B Biointerfaces 2016; 148:481-486. [PMID: 27665381 DOI: 10.1016/j.colsurfb.2016.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 11/08/2022]
|
47
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
48
|
Balakrishnan I, Shorten RJ. Therapeutic drug monitoring of antimicrobials. Ann Clin Biochem 2015; 53:333-46. [PMID: 26554904 DOI: 10.1177/0004563215618981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/15/2022]
Abstract
As pathology services become more centralized and automated, the measurement of therapeutic antimicrobial drugs concentrations is increasingly performed in clinical biochemistry or 'blood science' laboratories. This review outlines key groups of antimicrobial agents: aminoglycosides, glycopeptides, antifungal agents and antituberculosis agents, their role in managing infectious diseases, and the reasons why serum concentration measurement is important.
Collapse
Affiliation(s)
- Indran Balakrishnan
- Department of Medical Microbiology, Royal Free London NHS Foundation Trust, London, UK Centre for Clinical Microbiology, University College London, Royal Free Campus, London, UK
| | - Robert J Shorten
- Centre for Clinical Microbiology, University College London, Royal Free Campus, London, UK Public Health Laboratory Manchester, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
49
|
Dai J, Suh SJ, Hamon M, Hong JW. Determination of antibiotic EC50 using a zero-flow microfluidic chip based growth phenotype assay. Biotechnol J 2015; 10:1783-91. [PMID: 26110969 DOI: 10.1002/biot.201500037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/30/2015] [Accepted: 06/24/2015] [Indexed: 01/30/2023]
Abstract
Current existing assay systems for evaluating antimicrobial activity suffer from several limitations including excess reagent consumption and inaccurate concentration gradient preparation. Recently, microfluidic systems have been developed to provide miniaturized platforms for antimicrobial susceptibility assays. However, some of current microfluidic based assays require continuous flows of reagents or elaborate preparation steps during concentration preparation. In this study, we introduce a novel microfluidic chip based growth phenotype assay that automatically generates a logarithmic concentration gradient and allows observing the growth of pathogenic bacteria under different concentrations of antibiotics in nanoliter batch culture reactors. We chose pathogen bacterium Pseudomonas aeruginosa as a model strain and evaluated the inhibitory effects of gentamicin and ciprofloxacin. We determined the EC50 values and confirmed the validity of the present system by comparing the EC50 values obtained through conventional test tube method. We demonstrated that the EC50 values acquired from present assay are comparable to those obtained from conventional test tube cultures. The potential application of present assay system for investigating combinatorial effects of antibiotics on multidrug resistant pathogenic bacteria is discussed and it can be further used for systematic evaluation of antifungal or antiviral agents.
Collapse
Affiliation(s)
- Jing Dai
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Morgan Hamon
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA
| | - Jong Wook Hong
- Materials Research and Education Center, Department of Mechanical Engineering, Auburn University, Auburn, AL, USA. .,Department of Bionano Engineering, Hanyang University, Ansan, Korea.
| |
Collapse
|
50
|
Py B, Barras F. [Iron and sulfur in proteins. How does the cell build Fe-S clusters, cofactors essential for life?]. Med Sci (Paris) 2014; 30:1110-22. [PMID: 25537041 DOI: 10.1051/medsci/20143012014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron-sulfur clusters (Fe-S) are ubiquitous cofactors present in numerous proteins of most living organisms. By way of an example, the E. coli bacterium synthesizes more that 130 different types of Fe-S proteins. Fe-S proteins are involved in a great diversity of biological processes, ranging from respiration, photosynthesis, central metabolism, to genetic expression and genomic stability. Proteins can acquire spontaneously Fe-S clusters in vitro, but in vivo, dedicated molecular machineries are necessary. Dysfunction of these machineries alters cellular capacities leading to lethality in bacteria and severe pathologies in humans. In this review we will describe how cells make Fe-S clusters and deliver them to clients proteins. The importance of Fe-S clusters homeostasis will be illustrated by reporting a list of cellular dysfunctions associated with mutations altering either Fe-S proteins or Fe-S biogenesis machineries.
Collapse
Affiliation(s)
- Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS-Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31, chemin Joseph Aiguier, 13009 Marseille, France
| | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, UMR 7283 CNRS-Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 31, chemin Joseph Aiguier, 13009 Marseille, France
| |
Collapse
|