1
|
Irgang R, Avendaño-Herrera R. Evaluation of the in vitro susceptibility of Tenacibaculum dicentrarchi to tiamulin using minimum inhibitory concentration tests. JOURNAL OF FISH DISEASES 2022; 45:795-799. [PMID: 35262919 DOI: 10.1111/jfd.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Tenacibaculosis caused by Tenacibaculum dicentrarchi is the third most important bacterial fish infection affecting the Chilean salmon industry. Losses to this disease are most frequently controlled by treatments with florfenicol and oxytetracycline. However, recent tenacibaculosis outbreaks were controlled through the extra-label, oral administration of tiamulin, resulting in high treatment efficiency. In this study, we present an analysis of susceptibility patterns of 32 T. dicentrarchi isolates and the type strain CECT 7612T to tiamulin by determining the minimum inhibitory concentrations (MICs) according to the procedures recommended by the Clinical and Laboratory Standard Institute, but fixing incubation temperature to the more appropriate for the growth of T. dicentrarchi (18 ºC). The MICs of the T. dicentrarchi isolates were unimodally distributed (0.06-1.0 µg/ml range), while the CECT 7612T strain presented an MIC of 0.5 μg/ml. Calculations using Normalized Resistance Interpretation provided epidemiological cut-off values of ≤1.0 µg/ml, with the 33 T. dicentrarchi classified as wild type. In Chile, tiamulin is authorized for use in other livestock species, but application in salmonids is extra-label. Our presented in vitro results suggest that tiamulin is a viable alternative to florfenicol, specifically as tiamulin requires comparatively lower concentrations to inhibit T. dicentrarchi. Considering that tiamulin is also exclusively for veterinary use, is classified as "least important" by the World Health Organization and has not resulted in the development of bacterial resistance, pharmaceutical companies should be requested to register tiamulin and provide alternative antimicrobial treatments for the salmonid industry.
Collapse
Affiliation(s)
- Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| |
Collapse
|
2
|
Cao C, Liu Y, Zhang G, Dong J, Xu N, Zhou S, Yang Y, Yang Q, Ai X. Temperature-Dependent Residue Depletion Regularities of Tiamulin in Nile Tilapia ( Oreochromis niloticus) Following Multiple Oral Administrations. Front Vet Sci 2021; 8:679657. [PMID: 34179171 PMCID: PMC8225925 DOI: 10.3389/fvets.2021.679657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/16/2021] [Indexed: 12/02/2022] Open
Abstract
The aim of this study was to investigate the effect of different water temperatures (19, 25, and 30°C) on tissue residue depletion of tiamulin in Nile tilapia (Oreochromis niloticus) after five consecutive days of oral administration at the dose of 20 mg/kg body weight and to calculate the corresponding elimination half-life (T1/2) and withdrawal times (WTs). After oral administration at scheduled 11 time points (1, 2, 3, 5, 7, 9, 12, 15, 20, 25, and 30 days), samples of plasma and tissues (muscle plus skin, liver, kidney, and gill) were collected. Tiamulin concentration in samples were determined by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). T1/2 was calculated by the equation: T1/2 = ln2/k. WT 1.4 software was used to calculate WT. The results showed that tiamulin was widely distributed in all tissue samples with the highest concentration in liver. At three different water temperatures, the T1/2 were calculated as 2.76, 2.13, and 1.64 days in plasma, 2.71, 1.85, and 1.31 days in muscle plus skin, 2.27, 1.70, and 1.50 days in liver, 2.84, 2.32, and 1.94 day in kidney, and 3.16, 2.42, and 1.74 days in gill, respectively. At 19°C, the order of WT is kidney (11.88 days) > liver (10.41 days) > gill (10.77 days) > plasma (8.83 days) > muscle plus skin (7.14 days). The WT for tiamulin at 25°C was in the following order: kidney (8.40 days) > liver (8.21 days) > gill (8.07 days) > plasma (7.24 days) > muscle plus skin (4.05 days). At 30°C, the WT dropped and shown as follows: gill (6.99 days) > kidney (6.51 days) > liver (6.29 days) > plasma (3.27 days) > muscle plus skin (2.92 days). The present investigations indicated that increasing the temperature from 19 to 30°C shortened T1/2 and WT of tiamulin in tilapia. To ensure the safety of fish consumption, the longest WT of tissues is suggested for tiamulin in Nile tilapia at the corresponding water temperature; i.e., WTs were 12 days at 19°C, 9 days at 25°C, and 7 days at 30°C, respectively. Overall, we intended to provide a theoretical basis for tissue residue depletion kinetics of tiamulin in fish and improve our understanding of the influence of the temperature on tissue residue depletion kinetics of tiamulin in fish.
Collapse
Affiliation(s)
- Cuiyv Cao
- Collage of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Guodong Zhang
- Collage of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| |
Collapse
|
3
|
Liu Y, Cao C, Song Y, Zhou S, Yang Y, Xu N, Yang Q, Dong J, Ai X. Pharmacokinetics, bioavailability, and tissue disposal profiles of Tiamulin fumarate in Nile tilapia (Oreochromis niloticus) following oral and intravenous administrations. J Vet Pharmacol Ther 2021; 44:590-602. [PMID: 33675107 DOI: 10.1111/jvp.12957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
Tiamulin fumarate (TIF) is a pleuromutilin antibiotic and has high activity against animal bacterial pathogens including aquatic bacterial pathogens. However, its pharmacokinetic profiles, tissue distribution characteristics and bioavailability in aquatic animals remain unknown. The objective of this study was to investigate the pharmacokinetics and tissue distribution regularities of TIF in tilapia (Oreochromis niloticus) following a single oral (PO) dose of 20 mg/kg body weight (bw) and a single intravenous (IV) dose of 5 mg/kg bw at 22 ± 1°C, respectively. TIF concentrations in tilapia plasma and tissues were determined using the isotope dilution HPLC-HESI-MS/MS procedure, which was validated according to the guidelines defined by US Food and Drug Administration. TIF was well distributed throughout the body compartments of tilapia judged by the apparent volume of distribution (Vd ) >1 L/kg (6.69 L/kg PO and 1.78 L/kg IV). TIF had a short mean residence time (MRT; 22.82 h PO and 14.61 h IV) and quick total body clearance (CLb ) (0.62 L kg-1 h-1 PO and 0.60 L kg-1 h-1 IV). The total area under the curve (AUCtot ) of plasma were 32.25 μg h-1 ml-1 (PO) and 8.30 μg h-1 ml (IV), respectively, and the oral absolute bioavailability (F%) of TIF was calculated to be approximately 97.1%. For tissue distribution, high concentrations of TIF were found in kidney, and the longest MRT was recorded in bile. The withdrawal time (WT) of TIF in muscle, skin, liver, kidney, gill, and bile was 3.75 (4) and 1.79 (2), 1.77 (2) and 2.06 (3), 6.41 (7) and 1.97 (2), 6.95 (7) and 3.98 (4), 4.92 (5) and 2.36 (3), and 7.06 (8) and 6.16 (7) days after PO and IV administration, respectively. The present investigations indicated that TIF was quickly absorbed, well distributed, rapidly eliminated in tilapia, and it could serve as reference data for establishing use regimen and provide useful information for the further development of TIF in aquaculture.
Collapse
Affiliation(s)
- Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Cuiyu Cao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yi Song
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Aquatic Product Quality and Safety, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
4
|
Grandón M, Irgang R, Saavedra J, Mancilla M, Avendaño-Herrera R. Proposed protocol for performing MIC testing to determine the antimicrobial susceptibility of Renibacterium salmoninarum in Chilean salmon farms. JOURNAL OF FISH DISEASES 2021; 44:287-296. [PMID: 33075142 DOI: 10.1111/jfd.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Surveillance of antibiotic resistance is of paramount importance for animal welfare and production. Despite aquaculture being a main source of animal protein, studies on antibiotic susceptibility in fish pathogens are scarce. Renibacterium salmoninarum, the aetiological agent of bacterial kidney disease (BKD), is one of the most common bacterial pathogens affecting salmon farming. In this work, we present an analysis of susceptibility patterns using determinations of minimum inhibitory concentration (MIC) for 65 field isolates, which were collected over seven years (2013-2019) from Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) farms across southern Chile. The MIC protocol described by the Clinical Laboratory Standards Institute (CLSI) was used, but with microdilution instead of macrodilution and eight instead of four days of incubation. Two laboratories independently conducted analyses to provide data on the epidemiological cut-off values for R. salmoninarum to florfenicol, oxytetracycline and erythromycin. By using two calculation methods, our results provide evidence for an evolving subpopulation of non-wild-type isolates for the macrolide erythromycin, which is consistent with the respective treatment frequencies prescribed against BKD. Contrasting with what was expected, R. salmoninarum isolates were most susceptible to florfenicol and oxytetracycline, both of which are widely used antibiotics currently used in the Chilean salmon industry. The presented findings can serve as a reference for national or international antibiotic surveillance programmes, for both MIC interpretation and to identify emerging resistance to the conventional drugs used in BKD management. Finally, our results indicate that an 8-day incubation period for establishing MIC values of R. salmoninarum should be considered in a future revision of the CLSI guidelines.
Collapse
Affiliation(s)
- Maritza Grandón
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - José Saavedra
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - Marcos Mancilla
- Laboratorio de Diagnóstico y Biotecnología, ADL Diagnostic Chile, Puerto Montt, Chile
| | - Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Valparaíso, Chile
| |
Collapse
|
5
|
Di Salvo A, Della Rocca G, Cagnardi P, Pellegrino RM. Pharmacokinetics and residue depletion of erythromycin in rainbow trout Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2013; 36:1021-1029. [PMID: 24118016 DOI: 10.1111/jfd.12074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 06/02/2023]
Abstract
Erythromycin (ERY) is a drug active against Gram-positive bacteria such as Lactococcus garvieae, a pathogen responsible for an important disease that may cause a substantial decrease in rainbow trout Oncorhynchus mykiss (Walbaum) production, the species of fish most commonly produced in Italy. In the literature, studies on the kinetics behaviour of ERY in fish are limited. Therefore, the aim of the present study was to evaluate the pharmacokinetics of ERY in rainbow trout after a single oral treatment with 75 mg kg⁻¹ body weight (b.w.) of ERY and the residue depletion after multiple oral administration of 75 mg kg⁻¹ b.w. day⁻¹ of ERY for 10 days. Blood concentrations of ERY increased up to 20.24 ± 13.32 μg mL⁻¹ at 6 h, then decreased to 5.97 ± 3.89 μg mL⁻¹ at 24 h. The time during which the antibiotic remains in the bloodstream at concentrations exceeding the MIC (T > MIC) and the area under the serum concentration-time curve (AUC)/MIC are both pharmacokinetic-pharmacodynamic (PK/PD) predictors of ERY efficacy, and the data obtained allowed us to hypothesize that a dosage of 75 mg kg⁻¹ b.w. day⁻¹ of ERY could treat the lactococcosis in trout. Regarding the study of ERY depletion, rapid elimination was observed in tissue (muscle plus adherent skin); in fact the concentrations were below the limit of quantification in all samples (except two) by day 10 post-treatment. ERY is not licensed in Europe for use in aquaculture, and its use is possible only by off-label prescription with a precautionary withdrawal time of 500 degree-days, as established by Directive 2004/28/EC. From the data obtained in this study, a withdrawal time of 8.90 days was calculated, corresponding, in our experimental conditions, to 117.5 degree-days, a value significantly lower than that established by the European directive.
Collapse
Affiliation(s)
- A Di Salvo
- Department of Veterinary Pathology, Diagnostic and Clinic, University of Perugia, Perugia, Italy
| | | | | | | |
Collapse
|
6
|
Esposito A, Fabrizi L, Lucchetti D, Marvasi L, Coni E, Guandalini E. Orally administered erythromycin in rainbow trout (Oncorhynchus mykiss): residues in edible tissues and withdrawal time. Antimicrob Agents Chemother 2006; 51:1043-7. [PMID: 17194823 PMCID: PMC1803102 DOI: 10.1128/aac.01002-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aquaculture production has notably increased in the last decades, mainly thanks to intensive farming. Together with market globalization, this gives rise to the spreading of several fish diseases, thus increasing the demand for veterinary drugs for aquatic species. Nonetheless, very few chemicals are registered for use in aquaculture, and fish farmers are often forced to resort to off-label use of drugs authorized for other food-producing animal species. Rainbow trout is the major farmed fish species in Italy and the second one in Europe. Erythromycin is the antibiotic of choice against gram-positive cocci, the major concern for trout farming, but it is not yet registered for aquaculture use in most European countries. The aim of this study was to follow the depletion of erythromycin in rainbow trout (Oncorhynchus mykiss), after its administration at 100 mg kg(-1) trout body weight day(-1) for 21 days through medicated feed (water temperature, 11.5 degrees C). Erythromycin residues in fish muscle plus skin in natural proportion were determined by a validated liquid chromatography-electrospray ionization-tandem mass spectrometry method. Interpolation of our data, following European Agency for the Evaluation of Medicinal Products guidelines, gives a withdrawal time of 255 degrees C-days ( degrees C-day = water temperature x days), thus showing that the general value (500 degrees C-day) recommended by the Council Directive (EEC) no. 82/2001 for off-label drug use in aquaculture would be too conservative in this case, with excessive costs for the farmers. Our study provides preliminary data for a more prudent use of erythromycin in rainbow trout, suggesting a possible withdrawal time after treatment.
Collapse
Affiliation(s)
- Annarita Esposito
- National Center for Food Quality and Risk Assessment, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
7
|
Lehtinen J, Järvinen S, Virta M, Lilius EM. Real-time monitoring of antimicrobial activity with the multiparameter microplate assay. J Microbiol Methods 2006; 66:381-9. [PMID: 16487608 DOI: 10.1016/j.mimet.2006.01.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 01/05/2006] [Accepted: 01/09/2006] [Indexed: 11/25/2022]
Abstract
Kinetic measurements of the bacteriostatic, bactericidal and bacteriolytic activities of six model antibiotics (ampicillin, erythromycin, nalidixic acid, polymyxin B, tetracycline, and trimethoprim) against Escherichia coli as target bacteria were performed by bioluminescence, fluorescence, and optical density based real-time assay. Additionally, plate counting was used as a control measurement. The gfp and insect luciferase (lucFF) genes were cloned into cells used for measurements to enable fluoro-luminometric detection. Bacteria were exposed to antibiotics for 10 h, and the effects of antimicrobial agents were established. Inhibitory concentration of 50% (IC(50)), minimum bactericidal concentration (MBC), and bactericidal concentration of 50% (BC(50)) of each antibiotic were calculated from these procedures. Bacteriostatic, bactericidal or bacteriolytic actions of each antibiotic, as well the time interval from exposure to visible effect, were readily observed from kinetic data. No significant differences were observed between data obtained with the different methods employed. Ampicillin and polymyxin B were clearly bacteriolytic, nalidixic acid and tetracycline showed bactericidal effects, and erythromycin and trimethoprim were bacteriostatic drugs. The assay has the advantage of speed and accurately discerns between lytic, cidal and static compounds. Thus, this reliable and fully automated novel kinetic assay with high sample capacity offers new possibilities for real-time detection, making it suitable for diverse high throughput screening (HTS) applications.
Collapse
Affiliation(s)
- Janne Lehtinen
- Department of Biochemistry and Food Chemistry, University of Turku, Arcanum, Vatselankatu 2, 20014 Turku, Finland.
| | | | | | | |
Collapse
|
8
|
Amin MM, Zilles JL, Greiner J, Charbonneau S, Raskin L, Morgenroth E. Influence of the antibiotic erythromycin on anaerobic treatment of a pharmaceutical wastewater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:3971-7. [PMID: 16830570 DOI: 10.1021/es060428j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A laboratory-scale anaerobic sequencing batch reactor was used to treat a model substrate mixture representing pharmaceutical wastewater at an organic loading rate of 2.9 g COD/(L d). After reaching stable operation the reactor was first exposed to low (1 mg/L) and, subsequently, to high (200 mg/L) concentrations of the antibiotic erythromycin. The addition of low levels of erythromycin resulted in a significant but limited reduction of biogas production by 5% and the higher level of erythromycin did not impact biogas production further, suggesting that a substantial fraction of the microbial populations in the ASBR were resistant to the antibiotic. Effluent soluble COD could not be accounted for in measured volatile fatty acids, perhaps suggesting the production of soluble microbial products. In batch tests evaluating the specific methanogenic activity, conversion of the model substrate mixture was only slightly affected by the presence of erythromycin. However, the conversion of butyric acid was inhibited when erythromycin was present. After 47 days of exposure to erythromycin, the conversion of butyric acid was inhibited to a lesser extent, suggesting the development of antibiotic resistance in the biomass. Exposure to antibiotics can affect specific substrate degradation pathways, leading to the accumulation of volatile fatty acids, soluble microbial products, and potentially to overall system instabilities.
Collapse
Affiliation(s)
- Mohammad M Amin
- Department of Civil and Environment Engineering and Department of Animal Sciences, University of Illinois at Urbana-Champaign, 205 North Mathews, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Several 14- and 16-membered-ring macrolide antibiotics have acquired important roles in the modern production of food animals. Macrolide antibiotics exhibit many similar antimicrobial properties whether used in veterinary or human medicine. In addition to their direct inhibitory action on micro-organisms, macrolides exert a variety of subinhibitory concentration (sub-MIC) effects that are being increasingly recognised as important factors in the explanation of therapeutic results. Macrolides achieve wide tissue distribution and high intracellular concentrations that contribute prominently to their efficacy. Another important factor governing efficacy is the complex interaction between macrolides, micro-organisms, and phagocytes that may enable the host defence system to enhance the antibiotic's inhibitory action. A potential role for macrolides in modulating inflammatory processes has also been recognised. In both sub-MIC effects and interactions with the host immune system, different macrolides exert different responses that may reinforce or oppose each other. This complexity of responses requires additional studies in appropriate disease states and animal species in order to elucidate a more comprehensive understanding and explanation of in vivo outcomes.
Collapse
Affiliation(s)
- H A Kirst
- Research Elanco Animal Health, P.O Box 709, 2001 West Main, Greenfield, Indiana 46104, USA
| |
Collapse
|
10
|
Pascho RJ, Elliott DG, Chase DM. Comparison of Traditional and Molecular Methods for Detection of Renibacterium Salmoninarum. REVIEWS: METHODS AND TECHNOLOGIES IN FISH BIOLOGY AND FISHERIES 2002. [DOI: 10.1007/978-94-017-2315-2_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Cook M, Lynch WH. A sensitive nested reverse transcriptase PCR assay to detect viable cells of the fish pathogen Renibacterium salmoninarum in Atlantic salmon (Salmo salar L.). Appl Environ Microbiol 1999; 65:3042-7. [PMID: 10388701 PMCID: PMC91454 DOI: 10.1128/aem.65.7.3042-3047.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A nested reverse transcriptase (RT) PCR assay detected mRNA of the salmonid pathogen Renibacterium salmoninarum in samples of RNA extracts of between 1 and 10 cells. Total RNA was extracted from cultured bacteria, Atlantic salmon (Salmo salar L.) kidney tissue and ovarian fluid seeded with the pathogen, and kidney tissue from both experimentally challenged and commercially raised fish. Following DNase treatment, extracted RNA was amplified by both RT PCR and PCR by using primers specific for the gene encoding the major protein antigen of R. salmoninarum. A 349-bp amplicon was detected by polyacrylamide gel electrophoresis and silver stain. Inactivation of cultured bacteria by rifampin or erythromycin produced a loss of nested RT PCR mRNA detection corresponding to a loss of bacterial cell viability determined from plate counts but no loss of DNA detection by PCR. In subclinically diseased fish, nested RT PCR identified similar levels of infected fish as determined by viable pathogen culture. Higher percentages of fish testing positive were generated by PCR, particularly in samples from fish previously subjected to antibiotic chemotherapy where 93% were PCR positive, but only 7% were nested RT PCR and culture positive. PCR can generate false-positive data from amplification of target DNA from nonviable pathogen cells. Therefore, nested RT PCR may prove useful for monitoring cultured Atlantic salmon for the presence of viable R. salmoninarum within a useful time frame, particularly samples from broodstock where antibiotic chemotherapy is used prior to spawning to reduce vertical pathogen transmission.
Collapse
Affiliation(s)
- M Cook
- Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E1
| | | |
Collapse
|
12
|
Evenden A, Grayson T, Gilpin M, Munn C. Renibacterium salmoninarum and bacterial kidney disease — the unfinished jigsaw. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0959-8030(93)90030-f] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
|
14
|
Baya AM, Toranzo AE, Lupiani B, Li T, Roberson BS, Hetrick FM. Biochemical and serological characterization of Carnobacterium spp. isolated from farmed and natural populations of striped bass and catfish. Appl Environ Microbiol 1991; 57:3114-20. [PMID: 1781676 PMCID: PMC183935 DOI: 10.1128/aem.57.11.3114-3120.1991] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A comparative analysis of the phenotypic and serological properties of Carnobacterium strains associated with mortalities of cultured striped bass and channel catfish and the properties of isolates from wild brown bullhead catfish in the Chesapeake Bay area in Maryland was conducted. All of the strains were gram-positive, facultatively anaerobic, nonmotile, non-spore-forming rods occurring singly or in short chains. They did not produce cytochrome oxidase or catalase, did not reduce nitrate, failed to produce H2S, were unable to grow on acetate medium, and did not produce gas from glucose or gluconate. The temperature and salinity ranges for most of the strains were 10 to 37 degrees C and 0 to 6% NaCl, respectively. The strains all fermented mannitol and inulin and were arginine dihydrolase positive; these are typical characteristics of Carnobacterium piscicola. The carbohydrate fermentation pattern exhibited by all of the isolates with the API-50 CHL system was also very similar to that shown by C. piscicola. Acid was produced from ribose, glucose, fructose, mannose, mannitol, N-acetylglucosamine, amygdaline, arbutin, esculin, salicin, cellobiose, maltose, sucrose, trehalose, and gentiobiose. The Carnobacterium strains did not show proteolytic, lipolytic, amylolytic, or hemolytic activity. Eighteen drugs were tested; all strains proved to be resistant to chloramphenicol, gentamicin, kanamycin, streptomycin, trimethoprim, quinolones, and nitrofurans. The analysis of membrane proteins supported the phenotypic similarities, two main patterns were established, one shared by the striped bass isolates and the reference strain of C. piscicola and another shared by most of the catfish strains. However, the agglutination assays demonstrated that only one Carnobacterium strain from striped bass was serologically related to C. piscicola ATCC 35586.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A M Baya
- Department of Microbiology, University of Maryland, College Park 20742
| | | | | | | | | | | |
Collapse
|