1
|
Elso OG, Bivona AE, Cenizo R, Malchiodi EL, García Liñares G. Enzymatic synthesis of amlodipine amides and evaluation of their anti- Trypanosoma cruzi activity. Org Biomol Chem 2023; 21:1411-1421. [PMID: 36722938 DOI: 10.1039/d2ob02271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Advancing with our project about the development of new antiparasitic agents, we have enzymatically synthesized a series of amides derived from amlodipine, a calcium channel blocker used as an antihypertensive drug. Through lipase-catalyzed acylation with different carboxylic acids, nineteen amlodipine derivatives were obtained, eighteen of which were new compounds. To optimize the reaction conditions, the influence of several reaction parameters was analyzed, finding different requisites for aliphatic carboxylic acids and phenylacetic acids. All synthesized compounds were evaluated as antiproliferative agents against Trypanosoma cruzi, the etiological agent of American trypanosomiasis (Chagas' disease). Some of them showed significant activity against the amastigote form of T. cruzi, the clinically relevant form of the parasite. Among synthesized compounds, the derivatives of myristic and linolenic acids showed higher efficacy and lower cytotoxicity. These results added to the advantages shown by the enzymatic methodology, such as mild reaction conditions and low environmental impact, making this approach a valuable way to synthesize these amlodipine derivatives with an application as promising antiparasitic agents.
Collapse
Affiliation(s)
- Orlando G Elso
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina.
| | - Augusto E Bivona
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires-CONICET, Paraguay 2155, piso 13, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires-CONICET, Junín 1113, piso 4, Buenos Aires, Argentina
| | - Rocío Cenizo
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires-CONICET, Paraguay 2155, piso 13, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires-CONICET, Junín 1113, piso 4, Buenos Aires, Argentina
| | - Emilio L Malchiodi
- Instituto de Microbiología y Parasitología Médica (IMPaM), Universidad de Buenos Aires-CONICET, Paraguay 2155, piso 13, Buenos Aires, Argentina.,Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires-CONICET, Junín 1113, piso 4, Buenos Aires, Argentina
| | - Guadalupe García Liñares
- Laboratorio de Biocatálisis. Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Ciudad Universitaria, Pabellón 2, piso 3, C1428EGA Buenos Aires, Argentina.
| |
Collapse
|
2
|
Ye Z, Van Dyke K, Rossan RN. Effective treatment with a tetrandrine/chloroquine combination for chloroquine-resistant falciparum malaria in Aotus monkeys. Malar J 2013; 12:117. [PMID: 23547773 PMCID: PMC3621158 DOI: 10.1186/1475-2875-12-117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 03/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background In vitro evidence indicates that tetrandrine (TT) can potentiate the action of chloroquine 40-fold against choloquine-resistant Plasmodium falciparum. The key question emanating from that study is “would tetrandine and chloroquine be highly effective in a live Aotus monkey model with chloroquine-resistant parasites”. This study was designed to closely mimic the pharmacological/anti-malarial activity in man. Methods The Vietnam Smith/RE strain of P. falciparum, which is chloroquine-resistant was used in this study. Previous experimental procedures were followed. Panamanian owl monkeys (Aotus) were inoculated with 5×106 erythrocytes parasitized with the CQ-resistant strain of P. falciparum. Oral drug treatment was with CQ (20 mg/kg) and/or tetrandrine at 15 mg/Kg, 30 mg/Kg or 60 mg/Kg or 25 mg/Kg depending on experimental conditions. Results and Discussion Parasitaemia was cleared rapidly with CQ and TT while CQ treatment alone was ineffective. Recrudescence of malaria occurred after seven days post-infection. However, four animals were treated orally with TT and CQ parasites were cleared. It is likely that monkeys were cured via a combination of both drug and host immune responses. A single Aotus monkey infected with P. falciparum and untreated with drugs, died. No side effects were observed with these drug treatments. Conclusions This combination of chloroquine and tetrandrine forms the basis of a new attack on chloroquine-resistant malaria - one based upon inhibition of the basis of chloroquine resistance, the multiple drug resistance pump. Previous studies demonstrated that the parasite MDR pump was found on parasite membranes using 3H azidopine photoaffinity labelling. Since MDR-based choloroquine resistance is induced by chloroquine, the basis of the action of tetrandrine is the following: 1) tetrandrine inhibits the MDR pump by stimulating MDR ATPase which limits the energy of the pump by depletion of parasite ATP, 2) tetrandrine blocks the genetic factor which controls the induction of the pump. Therefore, it appears that the parasite cannot outsmart these mechanisms and produce a new mode of resistance. Only time will tell if this is correct.
Collapse
Affiliation(s)
- Zuguang Ye
- Department of Pharmacology, Institute of Chinese Materia Medica, Academy of Traditional Chinese Medicine, Beijing 100700, China
| | | | | |
Collapse
|
3
|
Reimão JQ, Tempone AG. Investigation into in vitro anti-leishmanial combinations of calcium channel blockers and current anti-leishmanial drugs. Mem Inst Oswaldo Cruz 2011; 106:1032-8. [DOI: 10.1590/s0074-02762011000800022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 10/25/2011] [Indexed: 11/21/2022] Open
|
4
|
Synergy of the antiretroviral protease inhibitor indinavir and chloroquine against malaria parasites in vitro and in vivo. Parasitol Res 2011; 109:1519-24. [PMID: 21537980 DOI: 10.1007/s00436-011-2427-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
Many malaria-endemic areas are also associated with high rates of human immunodeficiency virus (HIV) infection. An understanding of the chemotherapeutic interactions that occur during malaria and HIV co-infections is important. Our previous studies have demonstrated that some antiretroviral protease inhibitors are effective in inhibiting Plasmodium falciparum growth in vitro. Currently, studies examining the interactions between antiretroviral protease inhibitors and antimalarial drugs are being conducted, but the data are limited. In this study, we examined the synergistic interactions between the antiretroviral protease inhibitor indinavir and chloroquine (CQ) in chloroquine-resistant and chloroquine-sensitive malaria parasites in vitro and in vivo. In vitro, by using modified fixed-ratio isobologram method, fractional inhibitory concentrations index (FICI) was calculated to indicate the interaction between the two drugs. The results demonstrated that indinavir interacted synergistically with chloroquine against both chloroquine-sensitive P. falciparum clone 3D7 (mean FICI 0.784) and multidrug-resistant P. falciparum clone Dd2 (mean FICI 0.599). In vivo drug interactions were measured using a 4-day suppressive test in a rodent malaria model infected with Plasmodium chabaudi. We observed that indinavir enhanced the antimalarial activity of chloroquine against both the chloroquine-sensitive line P. chabaudi ASS and the chloroquine-resistant line P. chabaudi ASCQ. More importantly, chloroquine had a 100% clearance of asexual parasites when used in combination with indinavir at an appropriate dose ratio (10 mg/kg CQ + 1.8 g/kg indinavir) where there was no obvious toxicity. We conclude from this study that the combination of indinavir and chloroquine may become a novel antimalarial drug regimen.
Collapse
|
5
|
In vivo and in vitro antimalarial properties of azithromycin-chloroquine combinations that include the resistance reversal agent amlodipine. Antimicrob Agents Chemother 2011; 55:3115-24. [PMID: 21464242 DOI: 10.1128/aac.01566-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence of emerging Plasmodium falciparum resistance to artemisinin-based combination therapies, documented in western Cambodia, underscores the continuing need to identify new antimalarial combinations. Given recent reports of the resurgence of chloroquine-sensitive P. falciparum parasites in Malawi, after the enforced and prolonged withdrawal of this drug, and indications of a possible synergistic interaction with the macrolide azithromycin, we sought to further characterize chloroquine-azithromycin combinations for their in vitro and in vivo antimalarial properties. In vitro 96-h susceptibility testing of chloroquine-azithromycin combinations showed mostly additive interactions against freshly cultured P. falciparum field isolates obtained from Mali. Some evidence of synergy, however, was apparent at the fractional 90% inhibitory concentration level. Additional in vitro testing highlighted the resistance reversal properties of amlodipine for both chloroquine and quinine. In vivo experiments, using the Peters 4-day suppressive test in a P. yoelii mouse model, revealed up to 99.9% suppression of parasitemia following treatment with chloroquine-azithromycin plus the R enantiomer of amlodipine. This enantiomer was chosen because it does not manifest the cardiac toxicities observed with the racemic mixture. Pharmacokinetic/pharmacodynamic analyses in this rodent model and subsequent extrapolation to a 65-kg adult led to the estimation that 1.8 g daily of R-amlodipine would be required to achieve similar efficacy in humans, for whom this is likely an unsafe dose. While these data discount amlodipine as an additional partner for chloroquine-based combination therapy, our studies continue to support azithromycin as a safe and effective addition to antimalarial combination therapies.
Collapse
|
6
|
In vitro interactions between antiretroviral protease inhibitors and artemisinin endoperoxides against Plasmodium falciparum. Int J Antimicrob Agents 2009; 35:191-3. [PMID: 19896339 DOI: 10.1016/j.ijantimicag.2009.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 09/10/2009] [Accepted: 09/10/2009] [Indexed: 11/21/2022]
Abstract
Antiretroviral protease inhibitors (APIs), which are effective at controlling the effects of human immunodeficiency virus (HIV) in patients, have also proven efficacious in inhibiting Plasmodium falciparum growth in vitro. Use of artemisinin-based combination therapies is being encouraged to reduce malaria mortality in areas of P. falciparum resistance to conventional antimalarial drugs. The aim of this study was to investigate drug interactions between HIV protease inhibitors and artemisinin drugs against malaria. In vitro cultures of P. falciparum provide a screen system for identifying and evaluating drug combinations. The derived isobolograms provide clear evidence of antagonistic interactions between artemisinin endoperoxides and several different APIs.
Collapse
|
7
|
He Z, Chen L, You J, Qin L, Chen X. Antiretroviral protease inhibitors potentiate chloroquine antimalarial activity in malaria parasites by regulating intracellular glutathione metabolism. Exp Parasitol 2009; 123:122-7. [DOI: 10.1016/j.exppara.2009.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 11/26/2022]
|
8
|
Synergy of human immunodeficiency virus protease inhibitors with chloroquine against Plasmodium falciparum in vitro and Plasmodium chabaudi in vivo. Antimicrob Agents Chemother 2008; 52:2653-6. [PMID: 18443126 DOI: 10.1128/aac.01329-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The synergy of the activities between chloroquine and various human immunodeficiency virus protease inhibitors was investigated in chloroquine-resistant and -sensitive malaria parasites. In both in vitro and in vivo assay systems, ritonavir was found to be the most potent in potentiating the antimalarial action of chloroquine.
Collapse
|
9
|
Falade CO, Michael SO, Oduola AMJ. Enhanced efficacy of amodiaquine and chlorpheniramine combination over amodiaquine alone in the treatment of acute uncomplicated Plasmodium falciparum malaria in children. Med Princ Pract 2008; 17:197-201. [PMID: 18408387 DOI: 10.1159/000117792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 09/23/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To evaluate the comparative efficacy of amodiaquine (AMQ) alone and the combination of AMQ and chlorpheniramine (CP) in the treatment of acute uncomplicated malaria in children. SUBJECTS Of the 110 children enrolled in the study, 103 with acute uncomplicated malaria, aged 6 months to 12 years, were evaluated using the 14-day modification of the WHO field test. The patients were randomized to 2 groups. Group 1 received supervised treatment with AMQ alone (10 mg AMQ base/kg daily for 3 days), while group 2 received supervised treatment with AMQ (same dose as group 1) plus CP (AMQCP) for 7 days. RESULTS Both treatment regimens were well tolerated and no patient was withdrawn as a result of recurrent vomiting or drug-related adverse events. There was no significant difference in mean fever and parasite clearance times. The cure rates at day 7 were 90.2 versus 100% (rho = 0.027) for AMQ versus AMQCP, while the day 14 cure rates were 85.9 versus 98.1% for AMQ versus AMQCP, respectively (rho = 0.016). CONCLUSION The combination of AMQ plus CP proved significantly more effective than AMQ alone in the treatment of acute uncomplicated falciparum malaria, most probably due to the enhancement of the antimalarial effect of AMQ by CP. The combination of AMQCP could be a better alternative to AMQ alone as a companion drug in artemisinin-based combination therapies.
Collapse
Affiliation(s)
- C O Falade
- Department of Pharmacology, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | | | | |
Collapse
|
10
|
Gazarini ML, Sigolo CAO, Markus RP, Thomas AP, Garcia CRS. Antimalarial drugs disrupt ion homeostasis in malarial parasites. Mem Inst Oswaldo Cruz 2007; 102:329-34. [PMID: 17568938 DOI: 10.1590/s0074-02762007000300012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Indexed: 11/21/2022] Open
Abstract
Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradient with the K+/H+ ionophore nigericin (20 microM), or by inhibiting the H+-pump with bafilomycin (4 microM). Similarly, in isolated parasites loaded with calcium indicator Fluo 3-AM, bafilomycin caused calcium mobilization of the acidic calcium pool that could also be release with nigericin. Interestingly after complete release of the acidic compartments, addition of thapsigargin at 10 microM was still effective in releasing parasite intracellular calcium stores in parasites at trophozoite stage. The addition of antimalarial drugs chloroquine and artemisinin resulted in AO release from acidic compartments and also affected maintenance of calcium in ER store by using different drug concentrations.
Collapse
Affiliation(s)
- Marcos L Gazarini
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Súo Paulo, Brasil.
| | | | | | | | | |
Collapse
|
11
|
Nakornchai S, Konthiang P. Potentiation of antimalarial drug action by chlorpheniramine against multidrug-resistant Plasmodium falciparum in vitro. Parasitol Int 2006; 55:195-9. [PMID: 16750932 DOI: 10.1016/j.parint.2005.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 09/06/2005] [Accepted: 11/05/2005] [Indexed: 10/24/2022]
Abstract
Chlorpheniramine, a histamine H1 receptor antagonist, was assayed for in vitro antimalarial activity against multidrug-resistant Plasmodium falciparum K1 strain and chloroquine-resistant P. falciparum T9/94 clone, by measuring the 3H-hypoxanthine incorporation. Chlorphenirame inhibited P. falciparum K1 and T9/94 growth with IC50 values of 136.0+/-40.2 microM and 102.0+/-22.6 microM respectively. A combination of antimalarial drug and chlorpheniramine was tested against resistant P. falciparum in vitro. Isobologram analysis showed that chlorpheniramine exerts marked synergistic action on chloroquine against P. falciparum K1 and T9/94. Chlorpheniramine also potentiated antimalarial action of mefloquine, quinine or pyronaridine against both of the resistant strains of P. falciparum. However, chlorpheniramine antagonism with artesunate was obtained in both P. falciparum K1 and T9/94. The results in this study indicate that antihistaminic drugs may be promising candidates for potentiating antimalarial drug action against drug resistant malarial parasites.
Collapse
Affiliation(s)
- Sunan Nakornchai
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI road, Bangkok 10400, Thailand.
| | | |
Collapse
|
12
|
Bhattacharjee AK, Kyle DE, Vennerstrom JL, Milhous WK. A 3D QSAR pharmacophore model and quantum chemical structure--activity analysis of chloroquine(CQ)-resistance reversal. JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES 2002; 42:1212-20. [PMID: 12377011 DOI: 10.1021/ci0200265] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using CATALYST, a three-dimensional QSAR pharmacophore model for chloroquine(CQ)-resistance reversal was developed from a training set of 17 compounds. These included imipramine (1), desipramine (2), and 15 of their analogues (3-17), some of which fully reversed CQ-resistance, while others were without effect. The generated pharmacophore model indicates that two aromatic hydrophobic interaction sites on the tricyclic ring and a hydrogen bond acceptor (lipid) site at the side chain, preferably on a nitrogen atom, are necessary for potent activity. Stereoelectronic properties calculated by using AM1 semiempirical calculations were consistent with the model, particularly the electrostatic potential profiles characterized by a localized negative potential region by the side chain nitrogen atom and a large region covering the aromatic ring. The calculated data further revealed that aminoalkyl substitution at the N5-position of the heterocycle and a secondary or tertiary aliphatic aminoalkyl nitrogen atom with a two or three carbon bridge to the heteroaromatic nitrogen (N5) are required for potent "resistance reversal activity". Lowest energy conformers for 1-17 were determined and optimized to afford stereoelectronic properties such as molecular orbital energies, electrostatic potentials, atomic charges, proton affinities, octanol-water partition coefficients (log P), and structural parameters. For 1-17, fairly good correlation exists between resistance reversal activity and intrinsic basicity of the nitrogen atom at the tricyclic ring system, frontier orbital energies, and lipophilicity. Significantly, nine out of 11 of a group of structurally diverse CQ-resistance reversal agents mapped very well on the 3D QSAR pharmacophore model.
Collapse
Affiliation(s)
- Apurba K Bhattacharjee
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910-7500, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
The seminal observations that (a) chloroquine-resistant Plasmodium falciparum strains accumulate less drug than more sensitive parasites, and (b) chloroquine resistance could be modulated in vitro by the classic multidrug-resistance (MDR) modulator verapamil, suggested not only that parasite resistance to multiple drugs may be similar to the MDR phenotype described in mammalian cancer cells, but that homologous proteins may be involved. These findings prompted search for MDR-like genes in the parasite. To date, three full-length ABC transporter genes have been isolated from P. falciparum: two P-glycoprotein-like homologues, pfmdr1 and pfmdr2, and a homologue of the yeast GCN20 gene, pfgcn20.
Collapse
Affiliation(s)
- S A Peel
- Department of Molecular Diagnostics and Pathogenesis, Division of Retrovirology Walter Reed Army Institute of Research, Rockville, MD, USA.
| |
Collapse
|
14
|
Singh N, Puri SK. Interaction between chloroquine and diverse pharmacological agents in chloroquine resistant Plasmodium yoelii nigeriensis. Acta Trop 2000; 77:185-93. [PMID: 11080509 DOI: 10.1016/s0001-706x(00)00133-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effect of a number of pharmacological agents on the enhancement of antimalarial activity of chloroquine was evaluated against chloroquine resistant line of Plasmodium yoelii nigeriensis (N-67). The response after combination therapy was monitored on the basis of alteration in the course of parasitaemia, the extension of mean survival time and the percent cure rate in different groups. The study was designed to compare the in vivo efficacy of a number of resistance modulating agents found effective in several in vitro studies against chloroquine resistant P. falciparum isolates. Based on their efficacy in this rodent model, the response of combination of chloroquine with agents representing diverse chemical moieties has been categorised as curative, moderately active and inactive. Out of the 22 agents evaluated, only cyproheptadine-chloroquine combination produced curative response. Ketotifen, azatadine, pheniramine, amitriptyline, fluoxetine, verapamil, penfluridol and trifluoperazine demonstrated moderate activity while loratadine, terfenadine, promethazine, ranitidine, nifedipine, diltiazem, chlorpromazine, amiodarone, tamoxifen, dipyridamol, propranolol, acyclovir and amantidine were inactive. The study advocates the suitability of proposed rodent model to shortlist potential resistance reversal agents.
Collapse
Affiliation(s)
- N Singh
- Division of Microbiology, Central Drug Research Institute, 226001, Lucknow, India
| | | |
Collapse
|
15
|
Benoit-Vical F, Robert A, Meunier B. In vitro and in vivo potentiation of artemisinin and synthetic endoperoxide antimalarial drugs by metalloporphyrins. Antimicrob Agents Chemother 2000; 44:2836-41. [PMID: 10991867 PMCID: PMC90158 DOI: 10.1128/aac.44.10.2836-2841.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro potentiation of artemisinin by synthetic manganese porphyrin complexes has been recently reported (F. Benoit-Vical, A. Robert, and B. Meunier, Antimicrob. Agents Chemother. 43:2555-2558, 1999). Since the activity of artemisinin and synthetic antimalarial endoperoxides is related to their interaction with heme (S. R. Meshnick, A. Thomas, A. Ranz, C. M. Xu, and H. Z. Pan, Mol. Biochem. Parasitol. 49:181-190, 1991), an improvement of their efficiency may be expected in the presence of a synthetic metalloporphyrin having the same activating role as endogenous heme. With the aim to boost the activity of antimalarial endoperoxide drugs, we were thus led to evaluate the in vitro and in vivo potentiation of natural and synthetic drugs of this family by a nontoxic and cheap metalloporphyrin. The potentiation of artemisinin, beta-artemether, and arteflene (Ro 42-1611) by synthetic heme models is reported. In vitro studies on the chloroquine-resistant Plasmodium falciparum FcB1-Columbia strain indicate a synergistic effect of the manganese complex of meso-tetrakis(4-sulfonatophenylporphyrin) (Mn-TPPS) on the activity of artemisinin or beta-artemether, whereas this heme model has no influence on the activity of arteflene. A significant synergistic effect on rodent malaria was also observed in vivo between artemisinin and Mn-TPPS using Plasmodium vinckei petteri strain.
Collapse
Affiliation(s)
- F Benoit-Vical
- Laboratoire d'Immunologie et Parasitologie, UFR Sciences Pharmaceutiques, F-34060 Montpellier Cedex 2, France
| | | | | |
Collapse
|
16
|
Adovelande J, Delèze J, Schrével J. Synergy between two calcium channel blockers, verapamil and fantofarone (SR33557), in reversing chloroquine resistance in Plasmodium falciparum. Biochem Pharmacol 1998; 55:433-40. [PMID: 9514077 DOI: 10.1016/s0006-2952(97)00482-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study describes the synergistic interaction of two calcium channel blockers, verapamil (VR) and SR33557 or fantofarone (SR), in reversing chloroquine resistance in Plasmodium falciparum, the causative agent of human malaria. The two calcium channel blockers exhibited an intrinsic antimalarial activity at 10 and 1 microM for verapamil and fantofarone, respectively. Isobolograms revealed that chloroquine and verapamil, and chloroquine and fantofarone, acted synergistically against chloroquine-resistant strains of P. falciparum. When used at subinhibitory concentrations, verapamil appeared 2 to 3 times more potent than fantofarone in reversing chloroquine resistance. Indeed, verapamil completely reversed the chloroquine resistance in P. falciparum, while fantofarone did so only partially. In the highly chloroquine-resistant strain FcB1, VR and SR acted synergistically to reverse CQ resistance, and the concentrations of VR used in these combinations could be reduced 10- or 100-fold (e.g. 100 nM and 10 nM) those required when this drug was used alone. In the moderately chloroquine-resistant strain K1, a combination of VR and SR for CQ resistance reversal allowed us to reduce the concentration of these chemosensitizers 1000- and 100-fold, respectively. The maximum tolerable plasma level beyond which side-effects occurred when using verapamil is 2.5 microM. Thus, the approach described, which allowed us to lower the doses of chemosensitizers, could well prevent toxic effects in humans and enlighten the advantages of polychemotherapy.
Collapse
Affiliation(s)
- J Adovelande
- Laboratoire de Biologie Parasitaire et Chimiothérapie, CNRS ERS 156, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
17
|
Bray PG, Ward SA. A comparison of the phenomenology and genetics of multidrug resistance in cancer cells and quinoline resistance in Plasmodium falciparum. Pharmacol Ther 1998; 77:1-28. [PMID: 9500157 DOI: 10.1016/s0163-7258(97)00083-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmodium falciparum is the causative agent of the most deadly form of human malaria. Chemotherapy traditionally has been the main line of defense against this parasite, and chloroquine, the drug of choice, has been one of the most successful drugs ever developed. Unfortunately, the evolution and spread of resistance to chloroquine and other quinoline-containing drugs means that these compounds are now virtually useless in many endemic areas. Future prospects for the use of quinoline compounds improved considerably when it was demonstrated that chloroquine resistance could be circumvented in vitro by a number of structurally and functionally unrelated compounds such as verapamil and desipramine. The phenomenon of resistance reversal by compounds such as verapamil is also a key feature of drug resistance in mammalian cells, and this has raised the possibility that the underlying mechanisms of drug resistance of the two cell types could be similar. This hypothesis has prompted a large number of studies into the genetics and biochemistry of resistance to quinoline-containing drugs in P. falciparum. Both the genetic and the biochemical studies have raised issues of controversy and stimulated much debate. These issues are discussed in this review, in the context of a comparison with the genetics and biochemistry of multidrug resistance in mammalian cells.
Collapse
Affiliation(s)
- P G Bray
- Department of Pharmacology and Therapeutics, University of Liverpool, UK
| | | |
Collapse
|
18
|
Reversal of chloroquine resistance in malaria: A new concept of chemotherapy. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0065-2490(97)80007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Abstract
In the last ten years, the widespread increase in Plasmodium falciparum resistance to chloroquine has prompted research into antimalarial 4-aminoquinolines, empirically used up to now. The mechanism of action of 4-aminoquinolines is characterized by the concentration of the drug in the digestive vacuole of the intraerythrocytic parasite. Various hypotheses have been advanced to explain the specificity of action on the parasite; the most recent one is the inhibition of the haem polymerase of the parasite, leading to the accumulation of soluble haem toxic for the parasite. Chloroquine-resistant parasites accumulate the drug to a lesser extent than do sensitive parasites. Recent findings have shown that chloroquine resistance can be reversed by various tricyclic drugs, which are able to restore the effective concentrations of chloroquine in the infected erythrocyte, but intrinsic mechanisms of action of these reversing agents are unknown. Four-aminoquinolines are extensively distributed in tissues and characterized by a long elimination half-life. Despite similarities in their chemical structures, these drugs show differences in their biotransformation and routes of elimination: chloroquine is partly metabolized into a monodesethylderivative and eliminated mainly by the kidney. In contrast, amodiaquine is a prodrug and amopyroquine is poorly metabolized; both drugs are excreted mainly in the bile. The understanding of the pharmacokinetics of 4-aminoquinolines has led to an improvement in empirically defined therapeutic regimens. Finally, the emergence of severe adverse-effects after prolonged prophylaxis with amodiaquine and the lack of cross resistance of Plasmodium falciparum between chloroquine and amopyroquine, have led to a proposal for the use of intramuscular amopyroquine as an alternative for the treatment of chloroquine-resistant malaria.
Collapse
Affiliation(s)
- E Pussard
- Service de Pharmacologie Clinique, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | | |
Collapse
|
20
|
Ye Z, Van Dyke K. Reversal of chloroquine resistance in falciparum malaria by some calcium channel inhibitors and optical isomers is independent of calcium channel blockade. Drug Chem Toxicol 1994; 17:149-62. [PMID: 8062642 DOI: 10.3109/01480549409014308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Various types of calcium channel blockers verapamil, gallopamil, devapamil, diltiazem, and nifedipine and a calmodulin inhibitor R24571 were evaluated for reversal of chloroquine(CQ) resistance of Plasmodium falciparum in an in vitro system. The results demonstrated that some of the above Ca2+ antagonists such as verapamil, gallopamil, devapamil and diltiazem were found to exert remarkable reversal activity of CQ resistance of the falciparum parasite in vitro, while the others like nifedipine and R24571 had no reversal properties of CQ resistance of the parasite. In addition, reversal activities of the CQ resistance by enantiomers of some calcium channel blockers(R-(+)-verapamil, R-(+)-gallopamil and R-(+)-devapamil), which do not bind to the calcium channel, were also observed in this study. The data strongly indicate that the mechanism of reversal of CQ resistance of falciparum malaria in vitro is independent of the calcium channel.
Collapse
Affiliation(s)
- Z Ye
- Department of Pharmacology, China Academy of Traditional Chinese Medicine, Beijing
| | | |
Collapse
|