1
|
Zhou K, Liang J, Dong X, Zhang P, Feng C, Shi W, Gao M, Li Q, Zhang X, Lu J, Lin X, Li K, Zhang H, Zhu M, Bao Q. Identification and Characterization of a Novel Chromosomal Aminoglycoside 2'- N-Acetyltransferase, AAC(2')-If, From an Isolate of a Novel Providencia Species, Providencia wenzhouensis R33. Front Microbiol 2021; 12:711037. [PMID: 34867838 PMCID: PMC8640171 DOI: 10.3389/fmicb.2021.711037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/15/2022] Open
Abstract
Multidrug-resistant bacteria from different sources have been steadily emerging, and an increasing number of resistance mechanisms are being uncovered. In this work, we characterized a novel resistance gene named aac(2′)-If from an isolate of a novel Providencia species, Providencia wenzhouensis R33 (CCTCC AB 2021339). Susceptibility testing and enzyme kinetic parameter analysis were conducted to determine the function of the aminoglycoside 2′-N-acetyltransferase. Whole-genome sequencing and comparative genomic analysis were performed to elucidate the molecular characteristics of the genome and the genetic context of the resistance gene-related sequences. Among the functionally characterized resistance genes, AAC(2′)-If shares the highest amino acid sequence identity of 70.79% with AAC(2′)-Ia. AAC(2′)-If confers resistance to several aminoglycoside antibiotics, showing the highest resistance activity against ribostamycin and neomycin. The recombinant strain harboring aac(2′)-If (pUCP20-aac(2′)-If/DH5α) showed 256- and 128-fold increases in the minimum inhibitory concentration (MIC) levels to ribostamycin and neomycin, respectively, compared with those of the control strains (DH5α and pUCP20/DH5α). The results of the kinetic analysis of AAC(2′)-If were consistent with the MIC results of the cloned aac(2′)-If with the highest catalytic efficiency for ribostamycin (kcat/Km ratio = [3.72 ± 0.52] × 104 M–1⋅s–1). Whole-genome sequencing demonstrated that the aac(2′)-If gene was located on the chromosome with a relatively unique genetic environment. Identification of a novel aminoglycoside resistance gene in a strain of a novel Providencia species will help us find ways to elucidate the complexity of resistance mechanisms in the microbial population.
Collapse
Affiliation(s)
- Kexin Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jialei Liang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xu Dong
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Peiyao Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weina Shi
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengdi Gao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiyu Bao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,Institute of Biomedical Informatics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Bassenden AV, Dumalo L, Park J, Blanchet J, Maiti K, Arya DP, Berghuis AM. Structural and phylogenetic analyses of resistance to next-generation aminoglycosides conferred by AAC(2') enzymes. Sci Rep 2021; 11:11614. [PMID: 34078922 PMCID: PMC8172861 DOI: 10.1038/s41598-021-89446-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 01/20/2023] Open
Abstract
Plazomicin is currently the only next-generation aminoglycoside approved for clinical use that has the potential of evading the effects of widespread enzymatic resistance factors. However, plazomicin is still susceptible to the action of the resistance enzyme AAC(2')-Ia from Providencia stuartii. As the clinical use of plazomicin begins to increase, the spread of resistance factors will undoubtedly accelerate, rendering this aminoglycoside increasingly obsolete. Understanding resistance to plazomicin is an important step to ensure this aminoglycoside remains a viable treatment option for the foreseeable future. Here, we present three crystal structures of AAC(2')-Ia from P. stuartii, two in complex with acetylated aminoglycosides tobramycin and netilmicin, and one in complex with a non-substrate aminoglycoside, amikacin. Together, with our previously reported AAC(2')-Ia-acetylated plazomicin complex, these structures outline AAC(2')-Ia's specificity for a wide range of aminoglycosides. Additionally, our survey of AAC(2')-I homologues highlights the conservation of residues predicted to be involved in aminoglycoside binding, and identifies the presence of plasmid-encoded enzymes in environmental strains that confer resistance to the latest next-generation aminoglycoside. These results forecast the likely spread of plazomicin resistance and highlight the urgency for advancements in next-generation aminoglycoside design.
Collapse
Affiliation(s)
- Angelia V Bassenden
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Linda Dumalo
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Jaeok Park
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Jonathan Blanchet
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | | | - Dev P Arya
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Albert M Berghuis
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, QC, H3G 1Y6, Canada.
- Centre de Recherche en Biologie Structurale, McGill University, Bellini Life Science Complex, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada.
- Department of Microbiology and Immunology, McGill University, Duff Medical Building, 3775 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
3
|
Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021; 10:pathogens10030373. [PMID: 33808905 PMCID: PMC8003822 DOI: 10.3390/pathogens10030373] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is a Gram-negative ESKAPE microorganism that poses a threat to public health by causing severe and invasive (mostly nosocomial) infections linked with high mortality rates. During the last years, this pathogen displayed multidrug resistance (MDR), mainly due to extensive antibiotic abuse and poor stewardship. MDR isolates are associated with medical history of long hospitalization stays, presence of catheters, and mechanical ventilation, while immunocompromised and severely ill hosts predispose to invasive infections. Next-generation sequencing techniques have revolutionized diagnosis of severe A. baumannii infections, contributing to timely diagnosis and personalized therapeutic regimens according to the identification of the respective resistance genes. The aim of this review is to describe in detail all current knowledge on the genetic background of A. baumannii resistance mechanisms in humans as regards beta-lactams (penicillins, cephalosporins, carbapenems, monobactams, and beta-lactamase inhibitors), aminoglycosides, tetracyclines, fluoroquinolones, macrolides, lincosamides, streptogramin antibiotics, polymyxins, and others (amphenicols, oxazolidinones, rifamycins, fosfomycin, diaminopyrimidines, sulfonamides, glycopeptide, and lipopeptide antibiotics). Mechanisms of antimicrobial resistance refer mainly to regulation of antibiotic transportation through bacterial membranes, alteration of the antibiotic target site, and enzymatic modifications resulting in antibiotic neutralization. Virulence factors that may affect antibiotic susceptibility profiles and confer drug resistance are also being discussed. Reports from cases of A. baumannii coinfection with SARS-CoV-2 during the COVID-19 pandemic in terms of resistance profiles and MDR genes have been investigated.
Collapse
|
4
|
Jeong CS, Hwang J, Do H, Cha SS, Oh TJ, Kim HJ, Park HH, Lee JH. Structural and biochemical analyses of an aminoglycoside 2'-N-acetyltransferase from Mycolicibacterium smegmatis. Sci Rep 2020; 10:21503. [PMID: 33299080 PMCID: PMC7725843 DOI: 10.1038/s41598-020-78699-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022] Open
Abstract
The expression of aminoglycoside-modifying enzymes represents a survival strategy of antibiotic-resistant bacteria. Aminoglycoside 2′-N-acetyltransferase [AAC(2′)] neutralizes aminoglycoside drugs by acetylation of their 2′ amino groups in an acetyl coenzyme A (CoA)-dependent manner. To understand the structural features and molecular mechanism underlying AAC(2′) activity, we overexpressed, purified, and crystallized AAC(2′) from Mycolicibacterium smegmatis [AAC(2′)-Id] and determined the crystal structures of its apo-form and ternary complexes with CoA and four different aminoglycosides (gentamicin, sisomicin, neomycin, and paromomycin). These AAC(2′)-Id structures unraveled the binding modes of different aminoglycosides, explaining the broad substrate specificity of the enzyme. Comparative structural analysis showed that the α4-helix and β8–β9 loop region undergo major conformational changes upon CoA and substrate binding. Additionally, structural comparison between the present paromomycin-bound AAC(2′)-Id structure and the previously reported paromomycin-bound AAC(6′)-Ib and 30S ribosome structures revealed the structural features of paromomycin that are responsible for its antibiotic activity and AAC binding. Taken together, these results provide useful information for designing AAC(2′) inhibitors and for the chemical modification of aminoglycosides.
Collapse
Affiliation(s)
- Chang-Sook Jeong
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea.,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan, 31460, Republic of Korea.,Genome-Based BioIT Convergence Institute, Asan, 31460, Republic of Korea.,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan, 31460, Republic of Korea
| | - Hak Jun Kim
- Department of Chemistry, Pukyong National University, 45 Yongso-ro, Busan, 48513, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, Republic of Korea. .,Department of Polar Sciences, University of Science and Technology, Incheon, 21990, Republic of Korea.
| |
Collapse
|
5
|
Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol Mol Biol Rev 2020; 84:84/2/e00090-19. [PMID: 32295819 DOI: 10.1128/mmbr.00090-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetylation is a conserved modification used to regulate a variety of cellular pathways, such as gene expression, protein synthesis, detoxification, and virulence. Acetyltransferase enzymes transfer an acetyl moiety, usually from acetyl coenzyme A (AcCoA), onto a target substrate, thereby modulating activity or stability. Members of the GCN5- N -acetyltransferase (GNAT) protein superfamily are found in all domains of life and are characterized by a core structural domain architecture. These enzymes can modify primary amines of small molecules or of lysyl residues of proteins. From the initial discovery of antibiotic acetylation, GNATs have been shown to modify a myriad of small-molecule substrates, including tRNAs, polyamines, cell wall components, and other toxins. This review focuses on the literature on small-molecule substrates of GNATs in bacteria, including structural examples, to understand ligand binding and catalysis. Understanding the plethora and versatility of substrates helps frame the role of acetylation within the larger context of bacterial cellular physiology.
Collapse
|
6
|
Sanz-García F, Anoz-Carbonell E, Pérez-Herrán E, Martín C, Lucía A, Rodrigues L, Aínsa JA. Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles. Front Microbiol 2019; 10:46. [PMID: 30761098 PMCID: PMC6363676 DOI: 10.3389/fmicb.2019.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Aminoglycoside acetyltransferases are important determinants of resistance to aminoglycoside antibiotics in most bacterial genera. In mycobacteria, however, aminoglycoside acetyltransferases contribute only partially to aminoglycoside susceptibility since they are related with low level resistance to these antibiotics (while high level aminoglycoside resistance is due to mutations in the ribosome). Instead, aminoglycoside acetyltransferases contribute to other bacterial functions, and this can explain its widespread presence along species of genus Mycobacterium. This review is focused on two mycobacterial aminoglycoside acetyltransferase enzymes. First, the aminoglycoside 2'-N-acetyltransferase [AAC(2')], which was identified as a determinant of weak aminoglycoside resistance in M. fortuitum, and later found to be widespread in most mycobacterial species; AAC(2') enzymes have been associated with resistance to cell wall degradative enzymes, and bactericidal mode of action of aminoglycosides. Second, the Eis aminoglycoside acetyltransferase, which was identified originally as a virulence determinant in M. tuberculosis (enhanced intracellular survival); Eis protein in fact controls production of pro-inflammatory cytokines and other pathways. The relation of Eis with aminoglycoside susceptibility was found after the years, and reaches clinical significance only in M. tuberculosis isolates resistant to the second-line drug kanamycin. Given the role of AAC(2') and Eis proteins in mycobacterial biology, inhibitory molecules have been identified, more abundantly in case of Eis. In conclusion, AAC(2') and Eis have evolved from a marginal role as potential drug resistance mechanisms into a promising future as drug targets.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| | - Esther Pérez-Herrán
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martín
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Mougari F, Loiseau J, Veziris N, Bernard C, Bercot B, Sougakoff W, Jarlier V, Raskine L, Cambau E. Evaluation of the new GenoType NTM-DR kit for the molecular detection of antimicrobial resistance in non-tuberculous mycobacteria. J Antimicrob Chemother 2017; 72:1669-1677. [PMID: 28333340 DOI: 10.1093/jac/dkx021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives Non-tuberculous mycobacteria (NTM) are emerging pathogens causing difficult-to-treat infections. We tested a new assay (GenoType NTM-DR) that detects natural and acquired resistance mechanisms to macrolides and aminoglycosides in frequently isolated NTM species. Methods Performance was assessed on 102 isolates including reference strains [16 Mycobacterium avium , 10 Mycobacterium intracellulare , 8 Mycobacterium chimaera , 15 Mycobacterium chelonae and 53 Mycobacterium abscessus (including subsp. abscessus isolates, 18 with a t28 in erm(41) and 10 with a c28, 13 subsp. bolletii isolates and 12 subsp. massiliense isolates)]. Genotypes were determined by PCR sequencing of erm(41) and rrl for clarithromycin resistance and of the 1400-1480 rrs region for aminoglycoside resistance. Phenotypes were determined by MIC microdilution. Results GenoType NTM-DR yielded results concordant with Sanger sequencing for 100/102 (98%) isolates. The erm(41) genotypic pattern was accurately identified for M. abscessus isolates . Mutations in rrl were detected in 15 isolates (7 M. avium complex, 5 M. abscessus and 3 M. chelonae ) with acquired clarithromycin resistance harbouring rrl mutations (a2057c, a2058g, a2058t or a2059c). Mutations in rrs were detected in five isolates with amikacin resistance harbouring the rrs mutation a1408g. In two isolates, the NTM-DR test revealed an rrl mutation (initial sequencing being WT), which was confirmed by re-sequencing. The test results were concordant with phenotypic susceptibility testing in 96/102 (94.1%) isolates, with four clarithromycin-resistant and two amikacin-resistant isolates not harbouring mutations. Conclusions The GenoType NTM-DR test is efficient in detecting mutations predictive of antimicrobial resistance in M. avium complex, M. abscessus and M. chelonae.
Collapse
Affiliation(s)
| | | | - Nicolas Veziris
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, Paris, France.,APHP, Hôpital Pitié-Salpêtrière, Bactériologie-Hygiène, 75013 Paris, France.,CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC Université Paris 06, CIMI, Team E13 (Bacteriology), Paris, France
| | - Christine Bernard
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, Paris, France.,APHP, Hôpital Pitié-Salpêtrière, Bactériologie-Hygiène, 75013 Paris, France.,CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC Université Paris 06, CIMI, Team E13 (Bacteriology), Paris, France
| | | | - Wladimir Sougakoff
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, Paris, France.,APHP, Hôpital Pitié-Salpêtrière, Bactériologie-Hygiène, 75013 Paris, France.,CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC Université Paris 06, CIMI, Team E13 (Bacteriology), Paris, France
| | - Vincent Jarlier
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, Paris, France.,APHP, Hôpital Pitié-Salpêtrière, Bactériologie-Hygiène, 75013 Paris, France.,CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, Sorbonne Universités, UPMC Université Paris 06, CIMI, Team E13 (Bacteriology), Paris, France
| | - Laurent Raskine
- National Reference Center for Mycobacteria and Antimycobacterial Resistance, Paris, France.,APHP, Hôpital Lariboisière, Laboratory of Bacteriology, Paris, France
| | | | | |
Collapse
|
8
|
Buchieri MV, Cimino M, Rebollo-Ramirez S, Beauvineau C, Cascioferro A, Favre-Rochex S, Helynck O, Naud-Martin D, Larrouy-Maumus G, Munier-Lehmann H, Gicquel B. Nitazoxanide Analogs Require Nitroreduction for Antimicrobial Activity in Mycobacterium smegmatis. J Med Chem 2017; 60:7425-7433. [PMID: 28846409 DOI: 10.1021/acs.jmedchem.7b00726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we aimed to decipher the natural resistance mechanisms of mycobacteria against novel compounds isolated by whole-cell-based high-throughput screening (HTS). We identified active compounds using Mycobacterium aurum. Further analyses were performed to determine the resistance mechanism of M. smegmatis against one hit, 3-bromo-N-(5-nitrothiazol-2-yl)-4-propoxybenzamide (3), which turned out to be an analog of the drug nitazoxanide (1). We found that the repression of the gene nfnB coding for the nitroreductase NfnB was responsible for the natural resistance of M. smegmatis against 3. The overexpression of nfnB resulted in sensitivity of M. smegmatis to 3. This compound must be metabolized into hydroxylamine intermediate for exhibiting antibacterial activity. Thus, we describe, for the first time, the activity of a mycobacterial nitroreductase against 1 analogs, highlighting the differences in the metabolism of nitro compounds among mycobacterial species and emphasizing the potential of nitro drugs as antibacterials in various bacterial species.
Collapse
Affiliation(s)
- Maria V Buchieri
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Mena Cimino
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sonia Rebollo-Ramirez
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London , London SW7 2AZ, United Kingdom
| | - Claire Beauvineau
- PSL Research University,CNRS, INSERM, Chemical Library, Institut Curie UMR9187/U1196, UMR3666/U1143 , 91405 Orsay Cedex, France
| | - Alessandro Cascioferro
- Unité de Pathogénomique Mycobactérienne Intégrée, Institut Pasteur , 75724 Paris Cedex 15, France
| | - Sandrine Favre-Rochex
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Delphine Naud-Martin
- PSL Research University,CNRS, INSERM, Chemical Library, Institut Curie UMR9187/U1196, UMR3666/U1143 , 91405 Orsay Cedex, France
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology & Infection, Imperial College London , London SW7 2AZ, United Kingdom
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Brigitte Gicquel
- Unité de Génétique Mycobactérienne, Institut Pasteur , 25 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
9
|
Mougari F, Guglielmetti L, Raskine L, Sermet-Gaudelus I, Veziris N, Cambau E. Infections caused by Mycobacterium abscessus: epidemiology, diagnostic tools and treatment. Expert Rev Anti Infect Ther 2016; 14:1139-1154. [PMID: 27690688 DOI: 10.1080/14787210.2016.1238304] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Mycobacterium abscessus is an emerging mycobacteria that is responsible for lung diseases and healthcare-associated extrapulmonary infections. Recent findings support its taxonomic status as a single species comprising 3 subspecies designated abscessus, bolletii and massiliense. We performed a review of English-language publications investigating all three of these subspecies. Areas covered: Worldwide, human infections are often attributable to environmental contamination, although the isolation of M. abscessus in this reservoir is very rare. Basic research has demonstrated an association between virulence and cell wall components and cording, and genome analysis has identified gene transfer from other bacteria. The bacteriological diagnosis of M. abscessus is based on innovative tools combining molecular biology and mass spectrometry. Genotypic and phenotypic susceptibility testing are required to predict the success of macrolide (clarithromycin or azithromycin)-based therapeutic regimens. Genotyping methods are helpful to assess relapse and cross-transmission and to search for a common source. Treatment is not standardised, and outcomes are often unsatisfactory. Expert commentary: M. abscessus is still an open field in terms of clinical and bacteriological research. Further knowledge of its ecology and transmission routes, as well as host-pathogen interactions, is required. Because the number of human cases is increasing, it is also necessary to identify more active treatments and perform clinical trials to assess standard effective regimens.
Collapse
Affiliation(s)
- Faiza Mougari
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,c IAME, UMR 1137, INSERM , Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| | - Lorenzo Guglielmetti
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,e INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France
| | - Laurent Raskine
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France
| | - Isabelle Sermet-Gaudelus
- f AP-HP, Groupe Hospitalier Necker-Enfants Malades , Centre de Ressources et de Compétences pour la Mucoviscidose (CRCM) et Centre de Formation de Traitement à Domicile Chez l'Enfant (CFTDE) , Paris , France
| | - Nicolas Veziris
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,d Sorbonne Universités, UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,e INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, team E13 (Bacteriology) , Paris , France.,g AP-HP, Hôpital Pitié-Salpêtrière , Laboratory of Bacteriology , Paris , France
| | - Emmanuelle Cambau
- a Centre National de Référence des Mycobactéries et Résistance des Mycobactéries aux Antituberculeux (CNR-MyRMA) , Assistance publique-Hôpitaux de Paris (APHP) , Paris , France.,b AP-HP, Hôpital Lariboisière-Fernand Widal , Service de Bactériologie , Paris , France.,c IAME, UMR 1137, INSERM , Université Paris Diderot, Sorbonne Paris Cité , Paris , France
| |
Collapse
|
10
|
Biofilms on Hospital Shower Hoses: Characterization and Implications for Nosocomial Infections. Appl Environ Microbiol 2016; 82:2872-2883. [PMID: 26969701 DOI: 10.1128/aem.03529-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/23/2016] [Indexed: 11/20/2022] Open
Abstract
Although the source of drinking water (DW) used in hospitals is commonly disinfected, biofilms forming on water pipelines are a refuge for bacteria, including possible pathogens that survive different disinfection strategies. These biofilm communities are only beginning to be explored by culture-independent techniques that circumvent the limitations of conventional monitoring efforts. Hence, theories regarding the frequency of opportunistic pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both 16S rRNA gene sequencing of bacterial isolates and whole-genome shotgun metagenome sequencing. The resulting data revealed a Mycobacterium-like population, closely related to Mycobacterium rhodesiae and Mycobacterium tusciae, to be the predominant taxon in all five samples, and its nearly complete draft genome sequence was recovered. In contrast, the fraction recovered by culture was mostly affiliated with Proteobacteria, including members of the genera Sphingomonas, Blastomonas, and Porphyrobacter.The biofilm community harbored genes related to disinfectant tolerance (2.34% of the total annotated proteins) and a lower abundance of virulence determinants related to colonization and evasion of the host immune system. Additionally, genes potentially conferring resistance to β-lactam, aminoglycoside, amphenicol, and quinolone antibiotics were detected. Collectively, our results underscore the need to understand the microbiome of DW biofilms using metagenomic approaches. This information might lead to more robust management practices that minimize the risks associated with exposure to opportunistic pathogens in hospitals.
Collapse
|
11
|
Favrot L, Blanchard JS, Vergnolle O. Bacterial GCN5-Related N-Acetyltransferases: From Resistance to Regulation. Biochemistry 2016; 55:989-1002. [PMID: 26818562 DOI: 10.1021/acs.biochem.5b01269] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The GCN5-related N-acetyltransferases family (GNAT) is an important family of proteins that includes more than 100000 members among eukaryotes and prokaryotes. Acetylation appears as a major regulatory post-translational modification and is as widespread as phosphorylation. N-Acetyltransferases transfer an acetyl group from acetyl-CoA to a large array of substrates, from small molecules such as aminoglycoside antibiotics to macromolecules. Acetylation of proteins can occur at two different positions, either at the amino-terminal end (αN-acetylation) or at the ε-amino group (εN-acetylation) of an internal lysine residue. GNAT members have been classified into different groups on the basis of their substrate specificity, and in spite of a very low primary sequence identity, GNAT proteins display a common and conserved fold. This Current Topic reviews the different classes of bacterial GNAT proteins, their functions, their structural characteristics, and their mechanism of action.
Collapse
Affiliation(s)
- Lorenza Favrot
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Olivia Vergnolle
- Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| |
Collapse
|
12
|
Maurer FP, Bruderer VL, Castelberg C, Ritter C, Scherbakov D, Bloemberg GV, Böttger EC. Aminoglycoside-modifying enzymes determine the innate susceptibility to aminoglycoside antibiotics in rapidly growing mycobacteria. J Antimicrob Chemother 2015; 70:1412-9. [PMID: 25604746 DOI: 10.1093/jac/dku550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/08/2014] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Infections caused by the rapidly growing mycobacterium (RGM) Mycobacterium abscessus are notoriously difficult to treat due to the innate resistance of M. abscessus to most clinically available antimicrobials. Aminoglycoside antibiotics (AGA) are a cornerstone of antimicrobial chemotherapy against M. abscessus infections, although little is known about intrinsic drug resistance mechanisms. We investigated the role of chromosomally encoded putative aminoglycoside-modifying enzymes (AME) in AGA susceptibility in M. abscessus. METHODS Clinical isolates of M. abscessus were tested for susceptibility to a series of AGA with different substituents at positions 2', 3' and 4' of ring 1 in MIC assays. Cell-free extracts of M. abscessus type strain ATCC 19977 and Mycobacterium smegmatis strains SZ380 [aac(2')-Id(+)], EP10 [aac(2')-Id(-)] and SZ461 [aac(2')-Id(+), rrs A1408G] were investigated for AGA acetylation activity using thin-layer chromatography (TLC). Cell-free ribosome translation assays were performed to directly study drug-target interaction. RESULTS Cell-free translation assays demonstrated that ribosomes of M. abscessus and M. smegmatis show comparable susceptibility to all tested AGA. MIC assays for M. abscessus and M. smegmatis, however, consistently showed the lowest MIC values for 2'-hydroxy-AGA as compared with 2'-amino-AGA, indicating that an aminoglycoside-2'-acetyltransferase, Aac(2'), contributes to innate AGA susceptibility. TLC experiments confirmed enzymatic activity consistent with Aac(2'). Using M. smegmatis as a model for RGM, acetyltransferase activity was shown to be up-regulated in response to AGA-induced inhibition of protein synthesis. CONCLUSIONS Our findings point to AME as important determinants of AGA susceptibility in M. abscessus.
Collapse
Affiliation(s)
- Florian P Maurer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| | - Vera L Bruderer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Claudio Castelberg
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Claudia Ritter
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| | - Dimitri Scherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Guido V Bloemberg
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| |
Collapse
|
13
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
14
|
Smith T, Wolff KA, Nguyen L. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr Top Microbiol Immunol 2012. [PMID: 23179675 DOI: 10.1007/82_2012_279] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tuberculosis (TB) has become a curable disease, thanks to the discovery of antibiotics. However, it has remained one of the most difficult infections to treat. Most current TB regimens consist of 6-9 months of daily doses of four drugs that are highly toxic to patients. The purpose of these lengthy treatments is to completely eradicate Mycobacterium tuberculosis, notorious for its ability to resist most antibacterial agents, thereby preventing the formation of drug resistant mutants. On the contrary, the prolonged therapies have led to poor patient adherence. This, together with a severe limit of drug choices, has resulted in the emergence of strains that are increasingly resistant to the few available antibiotics. Here, we review our current understanding of molecular mechanisms underlying the profound drug resistance of M. tuberculosis. This knowledge is essential for the development of more effective antibiotics, which are not only potent against drug resistant M. tuberculosis strains but also help shorten the current treatment courses required for drug susceptible TB.
Collapse
Affiliation(s)
- Tasha Smith
- Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | | | | |
Collapse
|
15
|
Nguyen L, Pieters J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: challenges in tuberculosis drug development. Annu Rev Pharmacol Toxicol 2009; 49:427-53. [PMID: 19281311 DOI: 10.1146/annurev-pharmtox-061008-103123] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent worldwide emergence of multidrug-resistant and extensively drug-resistant tuberculosis is threatening to destabilize tuberculosis control programs and urging global attention to the development of alternative tuberculosis therapies. Major roadblocks limiting the development and effectiveness of new drugs to combat tuberculosis are the profound innate resistance of Mycobacterium tuberculosis to host defense mechanisms as well as its intrinsic tolerance to chemotherapeutic reagents. The triangle of interactions among the pathogen, the host responses, and the drugs used to cure the disease are critical for the outcome of tuberculosis. We must better understand this three-way interaction in order to develop drugs that are able to kill the bacillus in the most effective way and minimize the emergence of drug resistance. Here we review our recent understanding of the molecular basis underlying intrinsic antibiotic resistance and survival tactics of M. tuberculosis. This knowledge may help to reveal current targets for the development of novel antituberculosis drugs.
Collapse
Affiliation(s)
- Liem Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | | |
Collapse
|
16
|
Ramón-García S, Otal I, Martín C, Gómez-Lus R, Aínsa JA. Novel streptomycin resistance gene from Mycobacterium fortuitum. Antimicrob Agents Chemother 2006; 50:3920-2. [PMID: 16954315 PMCID: PMC1635185 DOI: 10.1128/aac.00223-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/02/2006] [Accepted: 08/30/2006] [Indexed: 11/20/2022] Open
Abstract
We have isolated the aph(3")-Ic gene, encoding an aminoglycoside 3"-O-phosphotransferase [APH(3")-Ic], from a genomic library of an environmental Mycobacterium fortuitum strain, selecting for streptomycin resistance. APH(3")-Ic phosphorylates and inactivates streptomycin. Similar genes have been described in Streptomyces griseus and plasmid RSF1010. It is also present in some M. fortuitum clinical isolates.
Collapse
Affiliation(s)
- Santiago Ramón-García
- Departamento de Microbiología, Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009-Zaragoza, Spain
| | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Sophie Magnet
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | |
Collapse
|
18
|
Abstract
Aminoglycoside antibiotics have had a major impact on our ability to treat bacterial infections for the past half century. Whereas the interest in these versatile antibiotics continues to be high, their clinical utility has been compromised by widespread instances of resistance. The multitude of mechanisms of resistance is disconcerting but also illuminates how nature can manifest resistance when bacteria are confronted by antibiotics. This article reviews the most recent knowledge about the mechanisms of aminoglycoside action and the mechanisms of resistance to these antibiotics.
Collapse
Affiliation(s)
- Sergei B Vakulenko
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
19
|
Seoane A, Sánchez E, García-Lobo JM. Tandem amplification of a 28-kilobase region from the Yersinia enterocolitica chromosome containing the blaA gene. Antimicrob Agents Chemother 2003; 47:682-8. [PMID: 12543678 PMCID: PMC151765 DOI: 10.1128/aac.47.2.682-688.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Revised: 10/15/2002] [Accepted: 11/14/2002] [Indexed: 11/20/2022] Open
Abstract
Most Yersinia enterocolitica strains are resistant to beta-lactam antibiotics due to the production of one or two chromosomally encoded beta-lactamases. Strain Y56 is a Y. enterocolitica O:3 serotype natural isolate that is resistant to moderate amounts of penicillins and that produces a single class A beta-lactamase. To select mutants with increased levels of resistance to beta-lactam antibiotics, strain Y56 was grown on plates containing increasing amounts of ampicillin, and variants resistant to up to 500 micro g of ampicillin per ml were obtained. Chromosomal DNA from hyperresistant isolates was analyzed by Southern hybridization with a blaA-specific probe to detect gene rearrangements. The use of pulsed-field gel electrophoresis revealed that the increase in the resistance level correlated with the amplification in tandem of a DNA fragment of about 28 kb containing the blaA gene. The phenotype of these isolates was not stable, and they recovered the basal low resistance level when the ampicillin used for selection was withdrawn from the growth medium. This loss of resistance was followed by the recovery of the original chromosomal structure. To understand this amplification process, the 28-kb amplification unit was cloned, and the ends were sequenced. The analysis of these sequences did not reveal the presence of either repeats or transposable elements to explain this process. However, we found short sequences similar to some DNA gyrase target sequences that have been described. In addition, we observed that the frequency of appearance of ampicillin-hyperresistant isolates by amplification of the blaA locus was lowered in the presence of the gyrase inhibitor novobiocin. These findings suggest that the DNA gyrase could be involved in this amplification event.
Collapse
Affiliation(s)
- Asunción Seoane
- Departamento de Biología Molecular, Unidad Asociada al CIB, CSIC, Facultad de Medicina, Universidad de Cantabria, Cardenal Herrera Oria s/n, 3901-Santander, Spain
| | | | | |
Collapse
|
20
|
Ishikawa J, Sunada A, Oyama R, Hotta K. Identification and characterization of the point mutation which affects the transcription level of the chromosomal 3-N-acetyltransferase gene of Streptomyces griseus SS-1198. Antimicrob Agents Chemother 2000; 44:437-40. [PMID: 10639379 PMCID: PMC89700 DOI: 10.1128/aac.44.2.437-440.2000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the molecular basis for the enhanced expression of the aac(3)-Xa gene encoding an aminoglycoside 3-N-acetyltransferase in Streptomyces griseus. A C-->T substitution was identified at the putative promoter of the mutant gene. RNA analyses demonstrated that the substitution caused a marked increase in the production of the gene-specific transcripts. Therefore, it seemed very likely that the aac(3)-Xa gene was activated by the substitution resulting in the emergence of a stronger promoter.
Collapse
Affiliation(s)
- J Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
21
|
Ho II, Chan CY, Cheng AF. Aminoglycoside resistance in Mycobacterium kansasii, Mycobacterium avium-M. intracellulare, and Mycobacterium fortuitum: are aminoglycoside-modifying enzymes responsible? Antimicrob Agents Chemother 2000; 44:39-42. [PMID: 10602720 PMCID: PMC89625 DOI: 10.1128/aac.44.1.39-42.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aminoglycoside acetyltransferase was detected in Mycobacterium kansasii and M. fortuitum but not in M. avium-M. intracellulare when they were screened by a radioassay. Aminoglycoside phosphotransferase and nucleotidyltransferase activities were absent from all three species tested. Acetyltransferases from both M. kansasii and M. fortuitum displayed relatively high K(m)s, all at the millimolar level, for substrates including tobramycin, neomycin, and kanamycin A. The K(m) of each substrate was well above the corresponding maximum achievable level in serum. The low affinities of these enzymes for their substrates suggested that drug modification in vivo was very unlikely. Among the various substrates tested, no apparent positive correlation was found between substrate affinity and resistance level. The presence of aminoglycoside-modifying enzymes in these mycobacterial species was therefore not shown to confer resistance to aminoglycosides.
Collapse
Affiliation(s)
- I I Ho
- Department of Microbiology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|
22
|
Abstract
Bacterial resistance to the aminoglycoside antibiotics is most frequently associated with the expression of modifying enzymes that can phosphorylate, adenylate or acetylate these compounds. The recent availability of representative crystal structures for all three classes of modifying enzymes has greatly expanded our knowledge of enzyme function, and has revealed unexpected and exciting connections to other families of enzymes. Furthermore, the complete genome sequences for several bacteria have revealed many potential aminoglycoside-resistance elements.
Collapse
Affiliation(s)
- G D Wright
- Antimicrobial Research Centre Department of Biochemistry McMaster University 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada.
| |
Collapse
|
23
|
Abstract
Integrons are the primary mechanism for antibiotic-resistance gene capture and dissemination among Gram-negative bacteria. The recent finding of super-integron structures in the genomes of several bacterial species has expanded their role in genome evolution and suggests that they are the source of mobile multi-resistant integrons.
Collapse
Affiliation(s)
- D A Rowe-Magnus
- Unité de Programmation Moléculaire et Toxicologie Genétique (UPMTG) Centre National de Recherche Scientifique (CNRS) URA 1444 Département des Biotechnologies Institut Pasteur 25 rue du Dr Roux, 75724, Paris, France
| | | |
Collapse
|
24
|
Prammananan T, Sander P, Springer B, Böttger EC. RecA-Mediated gene conversion and aminoglycoside resistance in strains heterozygous for rRNA. Antimicrob Agents Chemother 1999; 43:447-53. [PMID: 10049249 PMCID: PMC89142 DOI: 10.1128/aac.43.3.447] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical resistance to aminoglycosides in general is due to enzymatic drug modification. Mutational alterations of the small ribosomal subunit rRNA have recently been found to mediate acquired resistance in bacterial pathogens in vivo. In this study we investigated the effect of 16S rRNA heterozygosity (wild-type [wt] and mutant [mut] operons at position 1408 [1408wt/1408mut]) on aminoglycoside resistance. Using an integrative vector, we introduced a single copy of a mutated rRNA operon (1408 A-->G) into Mycobacterium smegmatis, which carries two chromosomal wild-type rRNA operons; the resultant transformants exhibited an aminoglycoside-sensitive phenotype. In contrast, introduction of the mutated rRNA operon into an M. smegmatis rrnB knockout strain carrying a single functional chromosomal wild-type rRNA operon resulted in aminoglycoside-resistant transformants. Subsequent analysis by DNA sequencing and RNase protection assays unexpectedly demonstrated a homozygous mutant genotype, rRNAmut/rRNAmut, in the resistant transformants. To investigate whether RecA-mediated gene conversion was responsible for the aminoglycoside-resistant phenotype in the rRNAwt/rRNAmut strains, recA mutant strains were generated by allelic exchange techniques. Transformation of the recA rrnB M. smegmatis mutant strains with an integrative vector expressing a mutated rRNA operon (Escherichia coli position 1408 A-->G) resulted in transformants with an aminoglycoside-sensitive phenotype. Subsequent analysis showed stable heterozygosity at 16S rRNA position 1408 with a single wild-type allele and a single resistant allele. These results demonstrate that rRNA-mediated mutational resistance to aminoglycosides is recessive.
Collapse
Affiliation(s)
- T Prammananan
- Institut für Medizinische Mikrobiologie, Medizinische Hochschule Hannover, Germany
| | | | | | | |
Collapse
|
25
|
Aínsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martín C. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 1998; 180:5836-43. [PMID: 9811639 PMCID: PMC107655 DOI: 10.1128/jb.180.22.5836-5843.1998] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/1998] [Accepted: 09/04/1998] [Indexed: 11/20/2022] Open
Abstract
A recombinant plasmid isolated from a Mycobacterium fortuitum genomic library by selection for gentamicin and 2-N'-ethylnetilmicin resistance conferred low-level aminoglycoside and tetracycline resistance when introduced into M. smegmatis. Further characterization of this plasmid allowed the identification of the M. fortuitum tap gene. A homologous gene in the M. tuberculosis H37Rv genome has been identified. The M. tuberculosis tap gene (Rv1258 in the annotated sequence of the M. tuberculosis genome) was cloned and conferred low-level resistance to tetracycline when introduced into M. smegmatis. The sequences of the putative Tap proteins showed 20 to 30% amino acid identity to membrane efflux pumps of the major facilitator superfamily (MFS), mainly tetracycline and macrolide efflux pumps, and to other proteins of unknown function but with similar antibiotic resistance patterns. Approximately 12 transmembrane regions and different sequence motifs characteristic of the MFS proteins also were detected. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), the levels of resistance to antibiotics conferred by plasmids containing the tap genes were decreased. When tetracycline accumulation experiments were carried out with the M. fortuitum tap gene, the level of tetracycline accumulation was lower than that in control cells but was independent of the presence of CCCP. We conclude that the Tap proteins of the opportunistic organism M. fortuitum and the important pathogen M. tuberculosis are probably proton-dependent efflux pumps, although we cannot exclude the possibility that they act as regulatory proteins.
Collapse
Affiliation(s)
- J A Aínsa
- Departamento de Microbiología Medicina Preventiva y Salud Pública, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Rather PN, Paradise MR, Parojcic MM, Patel S. A regulatory cascade involving AarG, a putative sensor kinase, controls the expression of the 2'-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii. Mol Microbiol 1998; 28:1345-53. [PMID: 9680222 DOI: 10.1046/j.1365-2958.1998.00900.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A recessive mutation, aarG1, has been identified that resulted in an 18-fold increase in the expression of beta-galactosidase from an aac(2')-lacZ fusion. Transcriptional fusions and Northern blot analysis demonstrated that the aarG1 allele also resulted in a large increase in the expression of aarP, a gene encoding a transcriptional activator of aac(2')-Ia. The effects of aarG1 on aac(2')-Ia expression were mediated by aarP-dependent and -independent mechanisms. The aarG1 allele also resulted in a multiple antibiotic resistance (Mar) phenotype, which included increased chloramphenicol, tetracycline and fluoroquinolone resistance. This Mar phenotype also resulted from aarP-dependent and -independent mechanisms. Sequence analysis of the aarG locus revealed the presence of two open reading frames, designated aarR and aarG, organized in tandem. The putative AarR protein displayed 75% amino acid identity to the response regulator PhoP, and the AarG protein displayed 57% amino acid identity to the sensor kinase PhoQ. The aarG1 mutation, a C to T substitution, resulted in a threonine to isoleucine substitution at position 279 (T279I) in the putative sensor kinase. The AarG product was functionally similar to PhoQ, as it was able to restore wild-type levels of maganin resistance to a Salmonella typhimurium phoQ mutant. However, expression of the aarP and aac(2')-Ia genes was not significantly affected by the levels of Mg2+ or Ca2+, suggesting that aarG senses a signal other than divalent cations.
Collapse
Affiliation(s)
- P N Rather
- Veterans Affairs Medical Center and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
27
|
Payie KG, Clarke AJ. Characterization of gentamicin 2'-N-acetyltransferase from Providencia stuartii: its use of peptidoglycan metabolites for acetylation of both aminoglycosides and peptidoglycan. J Bacteriol 1997; 179:4106-14. [PMID: 9209022 PMCID: PMC179228 DOI: 10.1128/jb.179.13.4106-4114.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The relationship between the acetylation of peptidoglycan and that of aminoglycosides in Providencia stuartii has been investigated both in vivo and in vitro. Adaptation of the assay for peptidoglycan N-->O-acetyltransferase permitted an investigation of the use of peptidoglycan as a source of acetate for the N acetylation of aminoglycosides by gentamicin N-acetyltransferase [EC 2.3.1.59; AAC(2')]. The peptidoglycan from cells of P. stuartii PR50 was prelabelled with 3H by growth in the presence of N-[acetyl-3H]glucosamine. Under these conditions, [3H]acetate was confirmed to be transferred to the C-6 position of peptidoglycan-bound N-acetylmuramyl residues. Isolated cells were subsequently incubated in the presence of various concentrations of gentamicin and tobramycin (0 to 5x MIC). Analysis of various cellular fractions from isolated cells and spent culture medium by the aminoglycoside-binding phosphocellulose paper assay revealed increasing levels of radioactivity associated with the filters used for whole-cell sonicates of cells treated with gentamicin up to 2 x MIC. Beyond this concentration, a decrease in radioactivity was observed, consistent with the onset of cell lysis. Similar results were obtained with tobramycin, but the increasing trend was less obvious. The transfer of radiolabel to either aminoglycoside was not observed with P. stuartii PR100, a strain that is devoid of AAC(2')-Ia. A high-performance anion-exchange chromatography-based method was established to further characterize the AAC(2')-Ia-catalyzed acetylation of aminoglycosides. The high-performance liquid chromatography (HPLC)-based method resolved a tobramycin preparation into two peaks, both of which were collected and confirmed by 1H nuclear magnetic resonance to be the antibiotic. Authentic standards of 2'-N-acetyltobramycin were prepared and were well separated from the parent antibiotic when subjected to the HPLC analysis. By applying this technique, the transfer of radiolabelled acetate from the cell wall polymer peptidoglycan to tobramycin was confirmed. In addition, isolated and purified AAC(2')-Ia was shown to catalyze in vitro the transfer of acetate from acetyl-coenzyme A, soluble fragments of peptidoglycan, and N-acetylglucosamine to tobramycin. These data further support the proposal that AAC(2')-Ia from P. stuartii may have a physiological role in its secondary metabolism and that its activity on aminoglycosides is simply fortuitous.
Collapse
Affiliation(s)
- K G Payie
- Department of Microbiology, University of Guelph, Ontario, Canada
| | | |
Collapse
|
28
|
Abstract
The aminoglycoside antibiotics are broad-spectrum antibacterial compounds that are used extensively for the treatment of many bacterial infections. In view of the current concerns over the global rise in antibiotic-resistant microorganisms, there has been renewed interest in the mechanisms of resistance to the aminoglycosides, including the superfamily of aminoglycoside-modifying enzymes.
Collapse
Affiliation(s)
- J Davies
- Dept of Microbiology and Immunology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|