1
|
Hoenigl M, Arastehfar A, Arendrup MC, Brüggemann R, Carvalho A, Chiller T, Chen S, Egger M, Feys S, Gangneux JP, Gold JAW, Groll AH, Heylen J, Jenks JD, Krause R, Lagrou K, Lamoth F, Prattes J, Sedik S, Wauters J, Wiederhold NP, Thompson GR. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin Microbiol Rev 2024; 37:e0007423. [PMID: 38602408 PMCID: PMC11237431 DOI: 10.1128/cmr.00074-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
SUMMARYFungal infections are on the rise, driven by a growing population at risk and climate change. Currently available antifungals include only five classes, and their utility and efficacy in antifungal treatment are limited by one or more of innate or acquired resistance in some fungi, poor penetration into "sequestered" sites, and agent-specific side effect which require frequent patient reassessment and monitoring. Agents with novel mechanisms, favorable pharmacokinetic (PK) profiles including good oral bioavailability, and fungicidal mechanism(s) are urgently needed. Here, we provide a comprehensive review of novel antifungal agents, with both improved known mechanisms of actions and new antifungal classes, currently in clinical development for treating invasive yeast, mold (filamentous fungi), Pneumocystis jirovecii infections, and dimorphic fungi (endemic mycoses). We further focus on inhaled antifungals and the role of immunotherapy in tackling fungal infections, and the specific PK/pharmacodynamic profiles, tissue distributions as well as drug-drug interactions of novel antifungals. Finally, we review antifungal resistance mechanisms, the role of use of antifungal pesticides in agriculture as drivers of drug resistance, and detail detection methods for antifungal resistance.
Collapse
Affiliation(s)
- Martin Hoenigl
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Amir Arastehfar
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Maiken Cavling Arendrup
- Unit of Mycology, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Roger Brüggemann
- Department of Pharmacy and Radboudumc Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise in Mycology, Nijmegen, The Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Chiller
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sharon Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, NSW South Wales Health Pathology, Westmead Hospital, Westmead, Australia
- The University of Sydney, Sydney, Australia
| | - Matthias Egger
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Centre National de Référence des Mycoses et Antifongiques LA-AspC Aspergilloses chroniques, European Excellence Center for Medical Mycology (ECMM EC), Centre hospitalier Universitaire de Rennes, Rennes, France
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Jeremy A. W. Gold
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Andreas H. Groll
- Department of Pediatric Hematology/Oncology and Infectious Disease Research Program, Center for Bone Marrow Transplantation, University Children’s Hospital, Muenster, Germany
| | - Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Jeffrey D. Jenks
- Department of Public Health, Durham County, Durham, North Carolina, USA
- Department of Medicine, Division of Infectious Diseases, Duke University, Durham, North Carolina, USA
| | - Robert Krause
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Frédéric Lamoth
- Department of Laboratory Medicine and Pathology, Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Juergen Prattes
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
- BiotechMed-Graz, Graz, Austria
| | - Sarah Sedik
- Department of Internal Medicine, Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Nathan P. Wiederhold
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| |
Collapse
|
2
|
Arastehfar A, Daneshnia F, Hovhannisyan H, Cabrera N, Ilkit M, Desai JV, Gabaldón T, Shor E, Perlin DS. A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata. FEMS Yeast Res 2024; 24:foae035. [PMID: 39545363 PMCID: PMC11631428 DOI: 10.1093/femsyr/foae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Drug-resistant microbes typically carry mutations in genes involved in critical cellular functions and may therefore be less fit under drug-free conditions than susceptible strains. Candida glabrata is a prevalent opportunistic yeast pathogen with a high rate of fluconazole resistance (FLZR), echinocandin resistance (ECR), and multidrug resistance (MDR) relative to other Candida. However, the fitness of C. glabrata MDR isolates, particularly in the host, is poorly characterized, and studies of FLZR isolate fitness have produced contradictory findings. Two important host niches for C. glabrata are macrophages, in which it survives and proliferates, and the gut. Herein, we used a collection of clinical and lab-derived C. glabrata isolates to show that FLZR C. glabrata isolates are less fit inside macrophages than susceptible isolates and that this fitness cost is reversed by acquiring ECR mutations. Interestingly, dual-RNAseq revealed that macrophages infected with drug-resistant isolates mount an inflammatory response whereas intracellular drug-resistant cells downregulate processes required for in-host adaptation. Furthermore, drug-resistant isolates were outcompeted by their susceptible counterparts during gut colonization and in infected kidneys, while showing comparable fitness in the spleen. Collectively, our study shows that macrophage-rich organs, such as the spleen, favor the retention of MDR isolates of C. glabrata.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Medicine, Harvard Medical School, Boston, MA 02115, United States
| | - Farnaz Daneshnia
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, United States
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam1012 WX, The Netherlands
| | - Hrant Hovhannisyan
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Nathaly Cabrera
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
| | - Macit Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, University of Çukurova, 01330 Adana, Turkey
| | - Jigar V Desai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
| | - Toni Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Erika Shor
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, United States
- Georgetown University Lombardi Comprehensive Cancer Center, Washington, DC 20057, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ 07110, United States
| |
Collapse
|
3
|
Vargas-Casanova Y, Bravo-Chaucanés CP, Martínez AXH, Costa GM, Contreras-Herrera JL, Medina RF, Rivera-Monroy ZJ, García-Castañeda JE, Parra-Giraldo CM. Combining the Peptide RWQWRWQWR and an Ethanolic Extract of Bidens pilosa Enhances the Activity against Sensitive and Resistant Candida albicans and C. auris Strains. J Fungi (Basel) 2023; 9:817. [PMID: 37623588 PMCID: PMC10455339 DOI: 10.3390/jof9080817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/26/2023] Open
Abstract
The antifungal activity of palindromic peptide RWQWRWQWR and its derivatives was evaluated against clinical isolates of Candida albicans and C. auris. Also, Bidens pilosa ethanolic extracts of leaves and stem were evaluated. Furthermore, combinations of peptide, extract, and/or fluconazole (FLC) were evaluated. The cytotoxicity of peptides and extracts in erythrocytes and fibroblasts was determined. The original palindromic peptide, some derivative peptides, and the ethanolic extract of leaves of B. pilosa exhibited the highest activity in some of the strains evaluated. Synergy was obtained between the peptide and the FLC against C. auris 435. The combination of the extract and the original palindromic peptide against C. albicans SC5314, C. auris 435, and C. auris 537 decreased the minimal inhibitory concentrations (MICs) by a factor of between 4 and 16. These mixtures induced changes in cell morphology, such as deformations on the cell surface. The results suggest that the combination of RWQWRWQWR and B. pilosa extract is an alternative for enhancing antifungal activity and decreasing cytotoxicity and costs and should be considered to be a promising strategy for treating diseases caused by Candida spp.
Collapse
Affiliation(s)
- Yerly Vargas-Casanova
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
| | | | | | - Geison Modesti Costa
- Chemistry Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (A.X.H.M.); (G.M.C.)
| | | | - Ricardo Fierro Medina
- Faculty of Sciences, Universidad Nacional of Colombia, Bogotá 111321, Colombia; (R.F.M.); (Z.J.R.-M.); (J.E.G.-C.)
| | - Zuly Jenny Rivera-Monroy
- Faculty of Sciences, Universidad Nacional of Colombia, Bogotá 111321, Colombia; (R.F.M.); (Z.J.R.-M.); (J.E.G.-C.)
| | | | - Claudia Marcela Parra-Giraldo
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (Y.V.-C.); (C.P.B.-C.)
| |
Collapse
|
4
|
Coordinated Regulation of Membrane Homeostasis and Drug Accumulation by Novel Kinase STK-17 in Response to Antifungal Azole Treatment. Microbiol Spectr 2022; 10:e0012722. [PMID: 35196787 PMCID: PMC8865411 DOI: 10.1128/spectrum.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The emergence of antifungal resistance, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, makes fungal infections difficult to treat in clinics and agriculture. When exposed to azoles, fungi can make adaptive responses to alleviate azole toxicity and produce azole tolerance. However, except for azole efflux pumps and ergosterol biosynthesis genes, the role of most azole responsive genes in azole resistance is unknown. In this study, STK-17, whose transcription is upregulated by azoles, was characterized as a novel kinase that is required for azole resistance. Deletion or dysfunction of STK-17 led to azole hypersensitivity in Neurospora crassa and to other ergosterol biosynthesis inhibitors such as amorolfine, terbinafine, and amphotericin B, but not fatty acid and ceramide biosynthesis inhibitors. STK-17 was also required for oxidative stress resistance, but this was not connected to azole resistance. RNA-seq results showed that stk-17 deletion affected the basal expression and the response to ketoconazole of some membrane protein genes, indicating functional association of STK-17 with the membrane. Notably, deletion of stk-17 affected the normal response to azoles of erg genes, including the azole target-encoding gene erg11, and erg2, erg6, and erg24, and led to abnormal accumulation of sterols in the presence of azoles. HPLC-MS/MS analysis revealed increased intracellular azole accumulation in the stk-17 mutant, possibly due to enhanced azole influx and reduced azole efflux that was independent of the major efflux pump CDR4. Importantly, STK-17 was widely distributed and functionally conserved among fungi, thus providing a potential antifungal target. IMPORTANCE Antifungal resistance is increasing worldwide, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, making control of fungal infections more challenging. A lot of effort has been expended in elucidating the mechanism of azole resistance and revealing potential antifungal targets. In this study, by analyzing azole-responsive genes in Neurospora crassa, we discovered STK-17, a novel kinase, that is required for azole resistance in several types of fungi. It has a role in regulating membrane homeostasis, responses to azole by ergosterol biosynthesis genes and azole accumulation, thus, deepening our understanding on the mechanism of azole stress response. Additionally, STK-17 is conserved among fungi and plays important roles in fungal development and stress resistance. Kinase inhibitors are broadly used for treating diseases, and our study pinpoints a potential drug target for antifungal development.
Collapse
|
5
|
ERG3 and ERG11 genes are critical for the pathogenesis of Candida albicans during the oral mucosal infection. Int J Oral Sci 2018; 10:9. [PMID: 29555898 PMCID: PMC5944255 DOI: 10.1038/s41368-018-0013-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/25/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
The hyphal development of Candida albicans (C. albicans) has been considered as an essential virulent factor for host cell damage. However, the missing link between hyphae and virulence of C. albicans is also been discovered. Here, we identified that the null mutants of ERG3 and ERG11, two key genes in ergosterol biosynthesis pathway, can form typical hyphae but failed to cause the oral mucosal infection in vitro and in vivo for the first time. In particular, the erg3Δ/Δ and erg11Δ/Δ strains co-cultured with epithelial cells significantly reduced the adhesion, damage, and cytokine (interleukin-1α (IL-1α)) production, whereas the invasion was not affected in vitro. Importantly, they were incapable of extensive hyphal invasion, formation of micro-abscesses, and tongue epithelium damage compared to wild type due to the decrease of the colonization and epithelial infection area in a murine oropharyngeal candidiasis model. The fluconazole (FLC), an antifungal targeted at ergosterol biosynthesis, relieved the epithelial infection of C. albicansin vitro and in vivo even under non-growth inhibitory dosage confirming the virulent contribution of ergosterol biosynthesis pathway. The erg3Δ/Δ and erg11Δ/Δ strains were cleared by macrophages similar to wild type, whereas their virulence factors including agglutinin-like sequence 1 (Als1), secreted aspartyl proteinase 6 (Sap6), and hyphal wall protein-1 (Hwp1) were significantly reduced indicated that the non-toxicity might not result from the change on immune tolerance but the defective virulence. The incapacity of erg3Δ/Δ and erg11Δ/Δ in epithelial infection highlights the contribution of ergosterol biosynthesis pathway to C. albicans pathogenesis and fluconazole can not only eliminate the fungal pathogens but also reduced their virulence even at low dosage. The damage from oral infection with the fungus Candida albicans can be contained by targeting two cell membrane-building genes. C. albicans cells transition from a rounded shape into long filamentous structures called hyphae prior to invading and damaging host epithelial cells. Researchers led by Lei Cheng at Sichuan University have now identified a key intermediate step between hyphae formation and virulence. They determined that fungal cells lacking either of two genes that manufacture ergosterol, a component of the C. albicans membrane, still form hyphae and attach to epithelial cells. However, these mutant fungi inflict no cellular damage, and did not cause disease in mice. Furthermore, treatment with low-dose fluconazole, a drug that inhibits ergosterol synthesis, rendered the fungus non-virulent without killing it, indicating that this pathway represents an important ‘missing link’ for fungal pathogenesis.
Collapse
|
6
|
Rasheed M, Battu A, Kaur R. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response. J Biol Chem 2018; 293:6410-6433. [PMID: 29491142 PMCID: PMC5925793 DOI: 10.1074/jbc.m117.813741] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/20/2018] [Indexed: 11/06/2022] Open
Abstract
A family of 11 cell surface-associated aspartyl proteases (CgYps1-11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1-11Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1-11Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1-11Δ-induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1-11Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1-11Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages.
Collapse
Affiliation(s)
- Mubashshir Rasheed
- From the Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039 and.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Anamika Battu
- From the Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039 and.,Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Rupinder Kaur
- From the Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039 and
| |
Collapse
|
7
|
|
8
|
Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. EUKARYOTIC CELL 2013; 13:170-83. [PMID: 24363366 DOI: 10.1128/ec.00262-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Candida glabrata is both a human fungal commensal and an opportunistic pathogen which can withstand activities of the immune system. For example, C. glabrata can survive phagocytosis and replicates within macrophages. However, the mechanisms underlying intracellular survival remain unclear. In this work, we used a functional genomic approach to identify C. glabrata determinants necessary for survival within human monocyte-derived macrophages by screening a set of 433 deletion mutants. We identified 23 genes which are required to resist killing by macrophages. Based on homologies to Saccharomyces cerevisiae orthologs, these genes are putatively involved in cell wall biosynthesis, calcium homeostasis, nutritional and stress response, protein glycosylation, or iron homeostasis. Mutants were further characterized using a series of in vitro assays to elucidate the genes' functions in survival. We investigated different parameters of C. glabrata-phagocyte interactions: uptake by macrophages, replication within macrophages, phagosomal pH, and recognition of mutant cells by macrophages as indicated by production of reactive oxygen species and tumor necrosis factor alpha (TNF-α). We further studied the cell surface integrity of mutant cells, their ability to grow under nutrient-limited conditions, and their susceptibility to stress conditions mirroring the harsh environment inside a phagosome. Additionally, resistance to killing by neutrophils was analyzed. Our data support the view that immune evasion is a key aspect of C. glabrata virulence and that increased immune recognition causes increased antifungal activities by macrophages. Furthermore, stress resistance and efficient nutrient acquisition, in particular, iron uptake, are crucial for intraphagosomal survival of C. glabrata.
Collapse
|
9
|
Transcriptional profiling of Candida glabrata during phagocytosis by neutrophils and in the infected mouse spleen. Infect Immun 2013; 81:1325-33. [PMID: 23403555 DOI: 10.1128/iai.00851-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression microarray analysis of Candida glabrata following phagocytosis by human neutrophils was performed, and results were compared with those from C. glabrata incubated under conditions of carbohydrate or nitrogen deprivation. Twenty genes were selected to represent the major cell processes altered by phagocytosis or nutrient deprivation. Quantitative real-time PCR (qRT-PCR) with TaqMan chemistry was used to assess expression of the same genes in spleens of mice infected intravenously with Candida glabrata. The results in spleen closely paralleled gene expression in neutrophils or following carbohydrate deprivation. Fungal cells responded by upregulating alternative energy sources through gluconeogenesis, glyoxylate cycle, and long-chain fatty acid metabolism. Autophagy was likely employed to conserve intracellular resources. Aspartyl protease upregulation occurred and may represent defense against attacks on cell wall integrity. Downregulated genes were in the pathways of protein and ergosterol synthesis. Upregulation of the sterol transport gene AUS1 suggested that murine cholesterol may have been used to replace ergosterol, as has been reported in vitro. C. glabrata isolates in spleens of gp91(phox-/-) knockout mice with reduced oxidative phagocyte defenses were grossly similar although with a reduced level of response. These results are consistent with reported results of other fungi responding to phagocytosis, indicating that a rapid shift in metabolism is required for growth in a carbohydrate-limited intracellular environment.
Collapse
|
10
|
Dovigo LN, Pavarina AC, Mima EGDO, Giampaolo ET, Vergani CE, Bagnato VS. Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses 2011; 54:123-30. [PMID: 19889173 DOI: 10.1111/j.1439-0507.2009.01769.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although photodynamic therapy (PDT) has shown great promise for the inactivation of Candida species, its effectiveness against azole-resistant pathogens remains poorly documented. This in vitro study describes the association of Photogem® (Photogem, Moscow, Russia) with LED (light emitting diode) light for the photoinactivation of fluconazole-resistant (FR) and American Type Culture Collection (ATCC) strains of Candida albicans and Candida glabrata. Suspensions of each Candida strain were treated with five Photogem® concentrations and exposed to four LED light fluences (14, 24, 34 or 50 min of illumination). After incubation (48 h at 37 °C), colonies were counted (CFU ml(-1)). Single-species biofilms were generated on cellulose membrane filters, treated with 25.0 mg l(-1) of Photogem® and illuminated at 37.5 J cm(-2). The biofilms were then disrupted and the viable yeast cells present were determined. Planktonic suspensions of FR strains were effectively killed after PDT. It was observed that the fungicidal effect of PDT was strain-dependent. Significant decreases in biofilm viability were observed for three strains of C. albicans and for two strains of C. glabrata. The results of this investigation demonstrated that although PDT was effective against Candida species, fluconazole-resistant strains showed reduced sensitivity to PDT. Moreover, single-species biofilms were less susceptible to PDT than their planktonic counterparts.
Collapse
Affiliation(s)
- Lívia Nordi Dovigo
- Department of Dental Materials and Prosthodontics, Araraquara Dental School, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Prasad T, Hameed S, Manoharlal R, Biswas S, Mukhopadhyay CK, Goswami SK, Prasad R. Morphogenic regulator EFG1 affects the drug susceptibilities of pathogenic Candida albicans. FEMS Yeast Res 2010; 10:587-96. [PMID: 20491944 DOI: 10.1111/j.1567-1364.2010.00639.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study shows that the morphogenic regulator EFG1 level affects the drug susceptibilities of Candida albicans when grown on solid growth media. The Deltaefg1 mutant showed sensitivity particularly to those drugs that target ergosterol or its metabolism. Efg1p disruption showed a gene-dosage effect on drug susceptibilities and resulted in enhanced susceptibility to drugs in the homozygous mutant as compared with the wild type, heterozygous and revertant strains. The enhanced sensitivity to drugs was independent of the status of ATP-binding cassette and MFS multidrug efflux pumps of C. albicans. The Deltaefg1 mutant displayed increased membrane fluidity that coincided with the downregulation of ERG11 and upregulation of OLE1 and ERG3, leading to enhanced passive diffusion of drugs. Interestingly, Deltaefg1 mutant cells displayed enhanced levels of endogenous ROS levels. Notably, the higher levels of ROS in the Deltaefg1 mutant could be reversed by the addition of antioxidants. However, the restoration of ROS levels did not reverse the drug sensitivities of the Deltaefg1 mutant. Taken together, we, for the first time, establish a new role to EFG1 in affecting the drug susceptibilities of C. albicans cells, independent of ROS and known drug efflux mechanisms.
Collapse
Affiliation(s)
- Tulika Prasad
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
12
|
Brunke S, Seider K, Almeida RS, Heyken A, Fleck CB, Brock M, Barz D, Rupp S, Hube B. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway. Mol Microbiol 2010; 76:25-47. [PMID: 20199593 DOI: 10.1111/j.1365-2958.2010.07052.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pigments contribute to the pathogenicity of many fungi, mainly by protecting fungal cells from host defence activities. Here, we have dissected the biosynthetic pathway of a tryptophan-derived pigment of the human pathogen Candida glabrata, identified key genes involved in pigment production and have begun to elucidate the possible biological function of the pigment. Using transcriptional analyses and a transposon insertion library, we have identified genes associated with pigment production. Targeted deletion mutants revealed that the pigment is a by-product of the Ehrlich pathway of tryptophan degradation: a mutant lacking a tryptophan-upregulated aromatic aminotransferase (Aro8) displayed significantly reduced pigmentation and a recombinantly expressed version of this protein was sufficient for pigment production in vitro. Pigment production is tightly regulated as the synthesis is affected by the presence of alternative nitrogen sources, carbon sources, cyclic AMP and oxygen. Growth of C. glabrata on pigment inducing medium leads to an increased resistance to hydrogen peroxide, an effect which was not observed with a mutant defective in pigmentation. Furthermore, pigmented yeast cells had a higher survival rate when exposed to human neutrophils and caused increased damage in a monolayer model of human epithelia, indicating a possible role of pigmentation during interactions with host cells.
Collapse
Affiliation(s)
- Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chabrier-Roselló Y, Foster TH, Mitra S, Haidaris CG. Respiratory deficiency enhances the sensitivity of the pathogenic fungus Candida to photodynamic treatment. Photochem Photobiol 2008; 84:1141-8. [PMID: 18248505 DOI: 10.1111/j.1751-1097.2007.00280.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mucosal infections caused by the pathogenic fungus Candida are a significant infectious disease problem and are often difficult to eradicate because of the high frequency of resistance to conventional antifungal agents. Photodynamic treatment (PDT) offers an attractive therapeutic alternative. Previous studies demonstrated that filamentous forms and biofilms of Candida albicans were sensitive to PDT using Photofrin as a photosensitizer. However, early stationary phase yeast forms of C. albicans and Candida glabrata were not adversely affected by treatment. We report that the cationic porphyrin photosensitizer meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP-1363) is effective in PDT against yeast forms of C. albicans and C. glabrata. Respiratory-deficient (RD) strains of C. albicans and C. glabrata display a pleiotropic resistance pattern, including resistance to members of the azole family of antifungals, the salivary antimicrobial peptides histatins and other types of toxic stresses. In contrast to this pattern, RD mutants of both C. albicans and C. glabrata were significantly more sensitive to PDT compared to parental strains. These data suggest that intact mitochondrial function may provide a basal level of anti-oxidant defense against PDT-induced phototoxicity in Candida, and reveals pathways of resistance to oxidative stress that can potentially be targeted to increase the efficacy of PDT against this pathogenic fungus.
Collapse
Affiliation(s)
- Yeissa Chabrier-Roselló
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | |
Collapse
|
14
|
Rogers PD, Barker KS. Genome-wide expression profile analysis reveals coordinately regulated genes associated with stepwise acquisition of azole resistance in Candida albicans clinical isolates. Antimicrob Agents Chemother 2003; 47:1220-7. [PMID: 12654650 PMCID: PMC152536 DOI: 10.1128/aac.47.4.1220-1227.2003] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans is an opportunistic human fungal pathogen and a causative agent of oropharyngeal candidiasis (OPC), the most frequent opportunistic infection among patients with AIDS. Fluconazole and other azole antifungal agents have proven effective in the management of OPC; however, with increased use of these agents treatment failures have occurred. Such failures have been associated with the emergence of azole-resistant strains of C. albicans. In the present study we examined changes in the genome-wide gene expression profile of a series of C. albicans clinical isolates representing the stepwise acquisition of azole resistance. In addition to genes previously associated with azole resistance, we identified many genes whose differential expression was for the first time associated with this phenotype. Furthermore, the expression of these genes was correlated with that of the known resistance genes CDR1, CDR2, and CaMDR1. Genes coordinately regulated with the up-regulation of CDR1 and CDR2 included the up-regulation of GPX1 and RTA3 and the down-regulation of EBP1. Genes coordinately regulated with the up-regulation of CaMDR1 included the up-regulation of IFD1, IFD4, IFD5, IFD7, GRP2, DPP1, CRD2, and INO1 and the down-regulation of FET34, OPI3, and IPF1222. Several of these appeared to be coordinately regulated with both the CDR genes and CaMDR1. Many of these genes are involved in the oxidative stress response, suggesting that reduced susceptibility to oxidative damage may contribute to azole resistance. Further evaluation of the role these genes and their respective gene products play in azole antifungal resistance is warranted.
Collapse
Affiliation(s)
- P David Rogers
- Department of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
15
|
Rogers PD, Barker KS. Evaluation of differential gene expression in fluconazole-susceptible and -resistant isolates of Candida albicans by cDNA microarray analysis. Antimicrob Agents Chemother 2002; 46:3412-7. [PMID: 12384344 PMCID: PMC128735 DOI: 10.1128/aac.46.11.3412-3417.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans is the major causative agent of oropharyngeal candidiasis (OPC) in AIDS. The development of azoles, such as fluconazole, for the treatment of OPC has proven effective except in cases where C. albicans develops resistance to fluconazole during the course of treatment. In the present study, we used microarray technology to examine differences in gene expression from a fluconazole-susceptible and a fluconazole-resistant well-characterized, clinically obtained matched set of C. albicans isolates to identify genes which are differentially expressed in association with azole resistance. Among genes found to be differentially expressed were those involved in amino acid and carbohydrate metabolism; cell stress, cell wall maintenance; lipid, fatty acid, and sterol metabolism; and small molecule transport. In addition to CDR1, which has previously been demonstrated to be associated with azole resistance, the drug resistance gene RTA3, the ergosterol biosynthesis gene ERG2, and the cell stress genes CRD2, GPX1, and IFD5 were found to be upregulated. Several genes, such as the mitochondrial aldehyde dehydrogenase gene ALD5, the glycosylphosphatidylinositol synthesis gene GPI1, and the iron transport genes FET34 and FTR2 were found to be downregulated. Further study of these differentially regulated genes is warranted to evaluate how they may be involved in azole resistance. In addition to these novel findings, we demonstrate the utility of microarray analysis for studying the molecular mechanisms of drug resistance in pathogenic organisms.
Collapse
Affiliation(s)
- P David Rogers
- Departments of Clinical Pharmacy. Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
16
|
Vazquez JA, Arganoza MT, Boikov D, Yoon S, Sobel JD, Akins RA. Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles. J Clin Microbiol 1998; 36:2690-5. [PMID: 9705415 PMCID: PMC105185 DOI: 10.1128/jcm.36.9.2690-2695.1998] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungicidal activity of amphotericin B (AmB) was quantitated for several Candida species. Candida albicans and C. tropicalis were consistently susceptible to AmB, with less than 1% survivors after 6 h of exposure to AmB. C. parapsilosis and variants of C. lusitaniae and C. guilliermondii were the most resistant, demonstrating 50 to 90% survivors in this time period and as high as 1% survival after a 24-h exposure time. All Candida species were killed (<1% survivors) after 24 h of exposure to AmB. In contrast, overnight exposure to either fluconazole or itraconazole resulted in pronounced increases in resistance to subsequent exposures to AmB. Most dramatically, C. albicans was able to grow in AmB cultures after azole preexposure. Several other Candida species did not grow in AmB but showed little or no reduction in viability after up to 24 h in AmB. Depending on the growth conditions, Candida cells preexposed to azoles may retain AmB resistance for days after the azoles have been removed. If this in vitro antagonism applies to the clinical setting, treatment of patients with certain antifungal combinations may not be beneficial. The ability of some Candida isolates to survive transient exposures to AmB was not reflected in the in vitro susceptibility changes as measured by standard MIC assays. This finding should be considered in studies attempting to correlate patient outcome with in vitro susceptibilities of clinical fungal isolates. Patients who fail to respond to AmB may be infected with isolates that are classified as susceptible by standard in vitro assays but that may be resistant to transient antifungal exposures which may be more relevant in the clinical setting.
Collapse
Affiliation(s)
- J A Vazquez
- Veterans Administration Medical Center, Detroit, Michigan 48201, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Wakabayashi H, Abe S, Teraguchi S, Hayasawa H, Yamaguchi H. Inhibition of hyphal growth of azole-resistant strains of Candida albicans by triazole antifungal agents in the presence of lactoferrin-related compounds. Antimicrob Agents Chemother 1998; 42:1587-91. [PMID: 9660988 PMCID: PMC105650 DOI: 10.1128/aac.42.7.1587] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of bovine lactoferrin (LF) or the LF-derived antimicrobial peptide lactoferricin B (LFcin B) on the growth of Candida albicans hyphae, including those of three azole-resistant strains, were investigated by a crystal violet staining method. The hyphae of two highly azole-resistant strains were more susceptible to inhibition by LF or LFcin B than the azole-susceptible strains tested. One moderately azole-resistant strain was defective in the formation of hyphae and showed a susceptibility to LF greater than that of the susceptible strains but a susceptibility to LFcin B similar to that of the susceptible strains. The highly azole-resistant strain TIMM3317 showed trailing growth in the presence of fluconazole or itraconazole, while the extent of growth was reduced by the addition of LF or LFcin B at a sub-MIC. Thus, the addition of LF or LFcin B at a sub-MIC resulted in a substantial decrease in the MICs of fluconazole and itraconazole for two highly azole-resistant strains; e.g., the MIC of fluconazole for TIMM3317 was shifted from > 256 to 0.25 micrograms/ml by LF, but the MICs were not decreased for the susceptible strains. The combination effects observed with triazoles and LF-related compounds in the case of the two highly azole-resistant strains were confirmed to be synergistic by the fractional inhibitory concentration index. These results demonstrate that for some azole-resistant C. albicans strains, LF-related compounds combined with triazoles can inhibit the growth of hyphae, an important form of this organism in pathogenesis.
Collapse
Affiliation(s)
- H Wakabayashi
- Nutritional Science Laboratory, Morinaga Milk Industry Co., Ltd., Kanagawa, Japan
| | | | | | | | | |
Collapse
|
18
|
White TC, Marr KA, Bowden RA. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 1998; 11:382-402. [PMID: 9564569 PMCID: PMC106838 DOI: 10.1128/cmr.11.2.382] [Citation(s) in RCA: 908] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the frequency of diagnosed fungal infections has risen sharply due to several factors, including the increase in the number of immunosuppressed patients resulting from the AIDS epidemic and treatments during and after organ and bone marrow transplants. Linked with the increase in fungal infections is a recent increase in the frequency with which these infections are recalcitrant to standard antifungal therapy. This review summarizes the factors that contribute to antifungal drug resistance on three levels: (i) clinical factors that result in the inability to successfully treat refractory disease; (ii) cellular factors associated with a resistant fungal strain; and (iii) molecular factors that are ultimately responsible for the resistance phenotype in the cell. Many of the clinical factors that contribute to resistance are associated with the immune status of the patient, with the pharmacology of the drugs, or with the degree or type of fungal infection present. At a cellular level, antifungal drug resistance can be the result of replacement of a susceptible strain with a more resistant strain or species or the alteration of an endogenous strain (by mutation or gene expression) to a resistant phenotype. The molecular mechanisms of resistance that have been identified to date in Candida albicans include overexpression of two types of efflux pumps, overexpression or mutation of the target enzyme, and alteration of other enzymes in the same biosynthetic pathway as the target enzyme. Since the study of antifungal drug resistance is relatively new, other factors that may also contribute to resistance are discussed.
Collapse
Affiliation(s)
- T C White
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle Biomedical Research Institute, Washington, USA.
| | | | | |
Collapse
|