1
|
Hon KLE, Chan VPY, Leung AKC, Leung KKY, Hui WF. Invasive fungal infections in critically ill children: epidemiology, risk factors and antifungal drugs. Drugs Context 2024; 13:2023-9-2. [PMID: 38915918 PMCID: PMC11195526 DOI: 10.7573/dic.2023-9-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/20/2024] [Indexed: 06/26/2024] Open
Abstract
Background Invasive fungal infections (IFIs) are important infectious complications amongst critically ill children. The most common fungal infections are due to Candida species. Aspergillus, Zygomycetes and Fusarium are also emerging because of the empirical use of antifungal drugs. This updated review discusses the epidemiology of IFIs as well as antifungal drugs, dosing and potential adverse effects in critically ill children. Methods A PubMed search was conducted with Clinical Queries using the key terms "antifungal", "children", "critical care" AND "paediatric intensive care unit" OR "PICU". The search strategy included clinical trials, randomized controlled trials, meta-analyses, observational studies and reviews and was limited to the English literature in paediatrics. Results Candida and Aspergillus spp. are the most prevalent fungi in paediatric IFIs, causing invasive candidiasis infections (ICIs) and invasive aspergillosis infections (IAIs), respectively. These IFIs are associated with high morbidity, mortality and healthcare costs. Candida albicans is the principal Candida spp. associated with paediatric ICIs. The risks and epidemiology for IFIs vary if considering previously healthy children treated in the paediatric intensive care unit or children with leukaemia, malignancy or a severe haematological disease. The mortality rate for IAIs in children is 2.5-3.5-fold higher than for ICIs. Four major classes of antifungals for critically ill children are azoles, polyenes, antifungal antimetabolites and echinocandins. Conclusions Antifungal agents are highly efficacious. For successful treatment outcomes, it is crucial to determine the optimal dosage, monitor pharmacokinetics parameters and adverse effects, and individualized therapeutic monitoring. Despite potent antifungal medications, ICIs and IAIs continue to be serious infections with high mortality rates. Pre-emptive therapy has been used for IAIs. Most guidelines recommend voriconazole as initial therapy of invasive aspergillosis in most patients, with consideration of combination therapy with voriconazole plus an echinocandin in selected patients with severe disease. The challenge is to identify critically ill patients at high risks of ICIs for targeted prophylaxis. Intravenous/per os fluconazole is first-line pre-emptive treatment for Candida spp. whereas intravenous micafungin or intravenous liposomal amphotericin B is alternative pre-emptive treatment.This article is part of the Challenges and strategies in the management of invasive fungal infections Special Issue: https://www.drugsincontext.com/special_issues/challenges-and-strategies-in-the-management-of-invasive-fungal-infections.
Collapse
Affiliation(s)
- Kam Lun Ellis Hon
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
- Department of Paediatrics, CUHKMC, The Chinese University of
Hong Kong,
Hong Kong,
China
| | - Vivian PY Chan
- Department of Pharmacy,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Alexander KC Leung
- Department of Pediatrics, The University of Calgary, and The Alberta Children’s Hospital, Calgary, Alberta,
Canada
| | - Karen Ka Yan Leung
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| | - Wun Fung Hui
- Department of Paediatrics and Adolescent Medicine,
Hong Kong Children’s Hospital,
Hong Kong,
China
| |
Collapse
|
2
|
Tragiannidis A, Gkampeta A, Vousvouki M, Vasileiou E, Groll AH. Antifungal agents and the kidney: pharmacokinetics, clinical nephrotoxicity, and interactions. Expert Opin Drug Saf 2021; 20:1061-1074. [PMID: 33896310 DOI: 10.1080/14740338.2021.1922667] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Invasive fungal infections continue to be important causes of morbidity and mortality in severely ill and immunocompromised patient populations. The past three decades have seen a considerable expansion in antifungal drug research, resulting in the clinical development of different classes of antifungal agents with different pharmacologic properties. Among drug-specific characteristics of antifungal agents, renal disposition and nephrotoxicity are important clinical considerations as many patients requiring antifungal therapy have compromised organ functions or are receiving other potentially nephrotoxic medications. AREAS COVERED The present article reviews incidence, severity and mechanisms of nephrotoxicity associated with antifungal agents used for prevention and treatment of invasive fungal diseases by discussing distribution, metabolism, elimination and drug-related adverse events in the context of safety data from phase II and III clinical studies. EXPERT OPINION Based on the available data amphotericin B deoxycholate has the highest relative potential for nephrotoxicity, followed by the lipid formulations of amphotericin B, and, to a much lesser extent and by indirect mechanisms, the antifungal triazoles.
Collapse
Affiliation(s)
- Athanasios Tragiannidis
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Anastasia Gkampeta
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
| | - Maria Vousvouki
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
| | - Eleni Vasileiou
- Childhood & Adolescent Hematology Oncology Unit, 2nd Pediatric Department, Faculty of Health Sciences, Aristotle University of Thessaloniki, AHEPA Hospital, Greece
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
3
|
Adler-Moore J, Lewis RE, Brüggemann RJM, Rijnders BJA, Groll AH, Walsh TJ. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clin Infect Dis 2020; 68:S244-S259. [PMID: 31222254 PMCID: PMC6495008 DOI: 10.1093/cid/ciz064] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The improved safety profile and antifungal efficacy of liposomal amphotericin B (LAmB) compared to conventional amphotericin B deoxycholate (DAmB) is due to several factors including, its chemical composition, rigorous manufacturing standards, and ability to target and transit through the fungal cell wall. Numerous preclinical studies have shown that LAmB administered intravenously distributes to tissues frequently infected by fungi at levels above the minimum inhibitory concentration (MIC) for many fungi. These concentrations can be maintained from one day to a few weeks, depending upon the tissue. Tissue accumulation is dose-dependent with drug clearance occurring most rapidly from the brain and slowest from the liver and spleen. LAmB localizes in lung epithelial lining fluid, within liver and splenic macrophages and in kidney distal tubules. LAmB has been used successfully in therapeutic and prophylactic animal models to treat many different fungal pathogens, significantly increasing survival and reducing tissue fungal burden.
Collapse
Affiliation(s)
- Jill Adler-Moore
- Department of Biological Sciences, California State Polytechnic University, Pomona
| | - Russell E Lewis
- Unit of Infectious Diseases, Policlinico Sant'Orsola-Malpighi, Department of Medical Sciences and Surgery, University of Bologna, Italy
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andreas H Groll
- Infectious Disease Research Program, Department of Pediatric Hematology and Oncology and Center for Bone Marrow Transplantation, University Children's Hospital Muenster, Germany
| | - Thomas J Walsh
- Departments of Medicine, Pediatrics, and Microbiology & Immunology, Weill Cornell Medicine of Cornell University, New York, New York
| |
Collapse
|
4
|
Antachopoulos C, Roilides E. Pharmacokinetics and Pharmacodynamics of Antifungal Agents in Neonates and Children. CURRENT FUNGAL INFECTION REPORTS 2020. [DOI: 10.1007/s12281-020-00402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Ruhnke M, Cornely OA, Schmidt-Hieber M, Alakel N, Boell B, Buchheidt D, Christopeit M, Hasenkamp J, Heinz WJ, Hentrich M, Karthaus M, Koldehoff M, Maschmeyer G, Panse J, Penack O, Schleicher J, Teschner D, Ullmann AJ, Vehreschild M, von Lilienfeld-Toal M, Weissinger F, Schwartz S. Treatment of invasive fungal diseases in cancer patients-Revised 2019 Recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Mycoses 2020; 63:653-682. [PMID: 32236989 DOI: 10.1111/myc.13082] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Invasive fungal diseases remain a major cause of morbidity and mortality in cancer patients undergoing intensive cytotoxic therapy. The choice of the most appropriate antifungal treatment (AFT) depends on the fungal species suspected or identified, the patient's risk factors (eg length and depth of granulocytopenia) and the expected side effects. OBJECTIVES Since the last edition of recommendations for 'Treatment of invasive fungal infections in cancer patients' of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) in 2013, treatment strategies were gradually moving away from solely empirical therapy of presumed or possible invasive fungal diseases (IFDs) towards pre-emptive therapy of probable IFD. METHODS The guideline was prepared by German clinical experts for infections in cancer patients in a stepwise consensus process. MEDLINE was systematically searched for English-language publications from January 1975 up to September 2019 using the key terms such as 'invasive fungal infection' and/or 'invasive fungal disease' and at least one of the following: antifungal agents, cancer, haematological malignancy, antifungal therapy, neutropenia, granulocytopenia, mycoses, aspergillosis, candidosis and mucormycosis. RESULTS AFT of IFDs in cancer patients may include not only antifungal agents but also non-pharmacologic treatment. In addition, the armamentarium of antifungals for treatment of IFDs has been broadened (eg licensing of isavuconazole). Additional antifungals are currently under investigation or in clinical trials. CONCLUSIONS Here, updated recommendations for the treatment of proven or probable IFDs are given. All recommendations including the levels of evidence are summarised in tables to give the reader rapid access to key information.
Collapse
Affiliation(s)
- Markus Ruhnke
- Division of Haematology, Oncology and Palliative Care, Department of Internal Medicine, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,ECMM Excellence Centre of Medical Mycology, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | | | - Nael Alakel
- Department I of Internal Medicine, Haematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Boris Boell
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Dieter Buchheidt
- Department of Hematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation & Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Justin Hasenkamp
- Clinic for Haematology and Medical Oncology with Department for Stem Cell Transplantation, University Medicine Göttingen, Göttingen, Germany
| | - Werner J Heinz
- Schwerpunkt Infektiologie, Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Marcus Hentrich
- Hämatologie und Internistische Onkologie, Innere Medizin III, Rotkreuzklinikum München, München, Germany
| | - Meinolf Karthaus
- Department of Haematology & Oncology, Municipal Hospital Neuperlach, München, Germany
| | - Michael Koldehoff
- Klinik für Knochenmarktransplantation, Westdeutsches Tumorzentrum Essen, Universitätsklinikum Essen (AöR), Essen, Germany
| | - Georg Maschmeyer
- Department of Hematology, Onclogy and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Jens Panse
- Klinik für Onkologie, Hämatologie und Stammzelltransplantation, Universitätsklinikum Aachen, Aachen, Germany
| | - Olaf Penack
- Division of Haematology & Oncology, Department of Internal Medicine, Charité University Medicine, Campus Rudolf Virchow, Berlin, Germany
| | - Jan Schleicher
- Klinik für Hämatologie Onkologie und Palliativmedizin, Katharinenhospital, Stuttgart, Germany
| | - Daniel Teschner
- III. Medizinische Klinik und Poliklinik, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Andrew John Ullmann
- Department of Internal Medicine II, Julius Maximilians University, Würzburg, Germany
| | - Maria Vehreschild
- Department I of Internal Medicine, Faculty of Medicine, University of Cologne, Cologne, Germany.,ECMM Excellence Centre of Medical Mycology, Cologne, Germany.,Zentrum für Innere Medizin, Infektiologie, Goethe Universität Frankfurt, Frankfurt am Main, Deutschland.,Deutsches Zentrum für Infektionsforschung (DZIF), Standort Bonn-Köln, Deutschland
| | - Marie von Lilienfeld-Toal
- Klinik für Innere Medizin II, Abteilung für Hämatologie und Internistische Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Florian Weissinger
- Division of Haematology, Oncology and Palliative Care, Department of Internal Medicine, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Stefan Schwartz
- Division of Haematology & Oncology, Department of Internal Medicine, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| |
Collapse
|
6
|
Abstract
Neonates and immunosuppressed/immunocompromised pediatric patients are at high risk of invasive fungal diseases. Appropriate antifungal selection and optimized dosing are imperative to the successful prevention and treatment of these life-threatening infections. Conventional amphotericin B was the mainstay of antifungal therapy for many decades, but dose-limiting nephrotoxicity and infusion-related adverse events impeded its use. Despite the development of several new antifungal classes and agents in the past 20 years, and their now routine use in at-risk pediatric populations, data to guide the optimal dosing of antifungals in children are limited. This paper reviews the spectra of activity for approved antifungal agents and summarizes the current literature specific to pediatric patients regarding pharmacokinetic/pharmacodynamic data, dosing, and therapeutic drug monitoring.
Collapse
Affiliation(s)
- Kevin J Downes
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA.
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| | - Brian T Fisher
- Division of Infectious Diseases, Children's Hospital of Philadelphia, 2716 South Street, Suite 10360, Philadelphia, PA, 19146, USA
- Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole R Zane
- Center for Clinical Pharmacology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
7
|
Abstract
About one-sixth of the world's population is affected by a neglected tropical disease as defined by the World Health Organization and Center for Disease Control. Parasitic diseases comprise most of the neglected tropical disease list and they are causing enormous amounts of disability, morbidity, mortality, and healthcare costs worldwide. The burden of disease of the top five parasitic diseases has been estimated to amount to a total 23 million disability-adjusted life-years. Despite the massive health and economic impact, most drugs currently used for the treatment of parasitic diseases have been developed decades ago and insufficient novel drugs are being developed. The current review provides a compilation of the systemic and target-site pharmacokinetics of established antiparasitic drugs. Knowledge of the pharmacokinetic profile of drugs allows for the examination and possibly optimization of existing dosing schemes. Many symptoms of parasitic diseases are caused by parasites residing in different host tissues. Penetration of the antiparasitic drug into these tissues, the target site of infection, is a prerequisite for a successful treatment of the disease. Therefore, for the examination and improvement of established dosing regimens, not only the plasma but also the tissue pharmacokinetics of the drug have to be considered. For the current paper, almost 7000 scientific articles were identified and screened from which 429 were reviewed in detail and 100 were included in this paper. Systemic pharmacokinetics are available for most antiparasitic drugs but in many cases, not for all the relevant patient populations and only for single- or multiple-dose administration. Systemic pharmacokinetic data in patients with organ impairment and target-site pharmacokinetic data for relevant tissues and body fluids are mostly lacking. To improve the treatment of patients with parasitic diseases, research in these areas is urgently needed.
Collapse
Affiliation(s)
- Valentin Al Jalali
- Department of Clinical Pharmacology, Vienna University Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Vienna University Hospital, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
8
|
Warris A, Lehrnbecher T, Roilides E, Castagnola E, Brüggemann RJM, Groll AH. ESCMID-ECMM guideline: diagnosis and management of invasive aspergillosis in neonates and children. Clin Microbiol Infect 2019; 25:1096-1113. [PMID: 31158517 DOI: 10.1016/j.cmi.2019.05.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/19/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023]
Abstract
SCOPE Presenting symptoms, distributions and patterns of diseases and vulnerability to invasive aspergillosis (IA) are similar between children and adults. However, differences exist in the epidemiology and underlying conditions, the usefulness of newer diagnostic tools, the pharmacology of antifungal agents and in the evidence from interventional phase 3 clinical trials. Therefore, the European Society for Clinical Microbiology and Infectious Diseases (ESCMID) and the European Confederation of Medical Mycology (ECMM) have developed a paediatric-specific guideline for the diagnosis and management of IA in neonates and children. METHODS Review and discussion of the scientific literature and grading of the available quality of evidence was performed by the paediatric subgroup of the ESCMID-ECMM-European Respiratory Society (ERS) Aspergillus disease guideline working group, which was assigned the mandate for the development of neonatal- and paediatric-specific recommendations. QUESTIONS Questions addressed by the guideline included the epidemiology of IA in neonates and children; which paediatric patients may benefit from antifungal prophylaxis; how to diagnose IA in neonates and children; which antifungal agents are available for use in neonates and children; which antifungal agents are suitable for prophylaxis and treatment of IA in neonates and children; what is the role of therapeutic drug monitoring of azole antifungals; and which management strategies are suitable to be used in paediatric patients. This guideline provides recommendations for the diagnosis, prevention and treatment of IA in the paediatric population, including neonates. The aim of this guideline is to facilitate optimal management of neonates and children at risk for or diagnosed with IA.
Collapse
Affiliation(s)
- A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands.
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University 96 School of Health Sciences, Thessaloniki, Greece; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| | - E Castagnola
- Infectious Diseases Unit, IRCCS Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - R J M Brüggemann
- Radboud Center for Infectious Diseases, Radboud University Medical Centre, Center of Expertise in Mycology Radboudumc/CWZ, European Confederation of Medical Mycology (ECMM) Excellence Center of Medical Mycology, Nijmegen, the Netherlands; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG)
| | - A H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany; European Society of Clinical Microbiology and Infectious Diseases Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology, the Netherlands
| |
Collapse
|
9
|
Goldman JL, Abdel-Rahman SM. Pharmacokinetic considerations in treating invasive pediatric fungal infections. Expert Opin Drug Metab Toxicol 2016; 12:645-55. [PMID: 27111148 DOI: 10.1080/17425255.2016.1181752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Despite the increased availability of systemic antifungal agents in recent years, the management of invasive fungal disease is still associated with significant morbidity and mortality. Knowledge of a drug's pharmacokinetic behavior is critical for optimizing existing treatment strategies. AREAS COVERED This review examines the pharmacokinetics of the major drug classes used to treat invasive mycoses including the echinocandins, imidazoles, triazoles, nucleoside analogs, and polyenes. It examines the mechanisms behind dose-exposure profiles that differ in children as compared with adults and explores the utility of pharmacogenetic testing and therapeutic drug monitoring. EXPERT OPINION Lifesaving medical advances for oncologic and autoimmune conditions have resulted in a significant increase in the frequency of opportunistic fungal infections. Owing to the high rate of treatment failures observed when managing invasive fungal infections, strategies to optimize antifungal therapy are critical when caring for these complex patients. Opportunities to maximize positive outcomes include dose refinement based on age or genetic status, formulation selection, co-administration of interacting medications, and administration with regard to food. The application of therapeutic drug monitoring for dose individualization is a valuable strategy to achieve pharmacodynamic targets.
Collapse
Affiliation(s)
- Jennifer L Goldman
- a Department of Pediatrics , UMKC School of Medicine , Kansas City , MO , USA.,b Drug Safety Service Children's Mercy Hospital , Kansas City , MO , USA.,c Antimicrobial Stewardship Program Children's Mercy Hospital , Kansas City , MO , USA.,d Divisions Pediatric Infectious Diseases & Clinical Pharmacology , Toxicology, and Therapeutic Innovation Children's Mercy Hospital , Kansas City , MO , USA
| | - Susan M Abdel-Rahman
- a Department of Pediatrics , UMKC School of Medicine , Kansas City , MO , USA.,d Divisions Pediatric Infectious Diseases & Clinical Pharmacology , Toxicology, and Therapeutic Innovation Children's Mercy Hospital , Kansas City , MO , USA
| |
Collapse
|
10
|
Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, Reboli AC, Schuster MG, Vazquez JA, Walsh TJ, Zaoutis TE, Sobel JD. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 2016; 62:e1-50. [PMID: 26679628 PMCID: PMC4725385 DOI: 10.1093/cid/civ933] [Citation(s) in RCA: 2155] [Impact Index Per Article: 239.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 02/06/2023] Open
Abstract
It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.
Collapse
Affiliation(s)
| | - Carol A Kauffman
- Veterans Affairs Ann Arbor Healthcare System and University of Michigan Medical School, Ann Arbor
| | | | | | - Kieren A Marr
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | - Thomas J Walsh
- Weill Cornell Medical Center and Cornell University, New York, New York
| | | | - Jack D Sobel
- Harper University Hospital and Wayne State University, Detroit, Michigan
| |
Collapse
|
11
|
Pediatric Invasive Candidiasis: Epidemiology and Diagnosis in Children. J Fungi (Basel) 2016; 2:jof2010005. [PMID: 29376923 PMCID: PMC5753086 DOI: 10.3390/jof2010005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/31/2022] Open
Abstract
Pediatric patients present with differing underlying conditions and cytotoxic therapeutic protocols, so the differing epidemiology of invasive candidiasis in children versus adults is not surprising. Understanding the Candida species epidemiology is critical, as we often begin empiric therapy or therapy before antifungal susceptibilities are known. Reports with newer molecular diagnostic assays for invasive candidiasis are rare and require more study to develop firm pediatric-specific guidance. Antifungal treatment of pediatric candidiasis is reviewed in the context of larger epidemiologic studies and the few trials completed to date.
Collapse
|
12
|
Stergiopoulou T, Walsh TJ. Clinical pharmacology of antifungal agents to overcome drug resistance in pediatric patients. Expert Opin Pharmacother 2015; 16:213-26. [PMID: 25579070 DOI: 10.1517/14656566.2015.1000302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Antifungal resistance is an emerging problem that increases morbidity and mortality in immunosuppressed pediatric patients, who suffer from invasive fungal diseases. Optimal pharmacological management is critical for the successful treatment of invasive fungal infections by resistant strains. AREAS COVERED This paper reviews the mechanisms of resistance of different classes of antifungal agents and the current understanding of pediatric antifungal pharmacology for overcoming antifungal resistance in children based on laboratory and clinical studies in the English literature. The therapeutic choices against fungal pathogens with intrinsic or acquired resistance are further reviewed. EXPERT OPINION There is a paucity of data in the pediatric population regarding the epidemiology of the resistant organisms to different antifungal agents. It is also unknown if there are more prevalent molecular mechanisms that promote antifungal resistance. Selection and dosages of the most effective antifungal agent for overcoming the antifungal resistance is crucial. However, there are limited studies guiding the optimal dosage and duration of treatment for management of emergent antifungal resistance. Further studies are warranted to elucidate the optimal pharmacology of the current antifungal agents against resistant organisms and to advance the development of new antifungal agents.
Collapse
|
13
|
Autmizguine J, Guptill JT, Cohen-Wolkowiez M, Benjamin DK, Capparelli EV. Pharmacokinetics and pharmacodynamics of antifungals in children: clinical implications. Drugs 2014; 74:891-909. [PMID: 24872147 PMCID: PMC4073603 DOI: 10.1007/s40265-014-0227-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Invasive fungal disease (IFD) remains life threatening in premature infants and immunocompromised children despite the recent development of new antifungal agents. Optimal dosing of antifungals is one of the few factors clinicians can control to improve outcomes of IFD. However, dosing in children cannot be extrapolated from adult data because IFD pathophysiology, immune response, and drug disposition differ from adults. We critically examined the literature on pharmacokinetics (PK) and pharmacodynamics (PD) of antifungal agents and highlight recent developments in treating pediatric IFD. To match adult exposure in pediatric patients, dosing adjustment is necessary for almost all antifungals. In young infants, the maturation of renal and metabolic functions occurs rapidly and can significantly influence drug exposure. Fluconazole clearance doubles from birth to 28 days of life and, beyond the neonatal period, agents such as fluconazole, voriconazole, and micafungin require higher dosing than in adults because of faster clearance in children. As a result, dosing recommendations are specific to bracketed ranges of age. PD principles of antifungals mostly rely on in vitro and in vivo models but very few PD studies specifically address IFD in children. The exposure-response relationship may differ in younger children compared with adults, especially in infants with invasive candidiasis who are at higher risk of disseminated disease and meningoencephalitis, and by extension severe neurodevelopmental impairment. Micafungin is the only antifungal agent for which a specific target of exposure was proposed based on a neonatal hematogenous Candida meningoencephalitis animal model. In this review, we found that pediatric data on drug disposition of newer triazoles and echinocandins are lacking, dosing of older antifungals such as fluconazole and amphotericin B products still need optimization in young infants, and that target PK/PD indices need to be clinically validated for almost all antifungals in children. A better understanding of age-specific PK and PD of new antifungals in infants and children will help improve clinical outcomes of IFD by informing dosing and identifying future research areas.
Collapse
Affiliation(s)
- Julie Autmizguine
- Duke Clinical Research Institute, 2400 Pratt St, Durham, NC 27705, USA
| | | | | | | | - Edmund V. Capparelli
- Department of Pediatric Pharmacology, University of California, 9500 Gilman Drive, La Jolla, CA 92093-0831, USA
| |
Collapse
|
14
|
Cornely O, Arikan-Akdagli S, Dannaoui E, Groll A, Lagrou K, Chakrabarti A, Lanternier F, Pagano L, Skiada A, Akova M, Arendrup M, Boekhout T, Chowdhary A, Cuenca-Estrella M, Freiberger T, Guinea J, Guarro J, de Hoog S, Hope W, Johnson E, Kathuria S, Lackner M, Lass-Flörl C, Lortholary O, Meis J, Meletiadis J, Muñoz P, Richardson M, Roilides E, Tortorano A, Ullmann A, van Diepeningen A, Verweij P, Petrikkos G. ESCMID† and ECMM‡ joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin Microbiol Infect 2014; 20 Suppl 3:5-26. [DOI: 10.1111/1469-0691.12371] [Citation(s) in RCA: 471] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022]
|
15
|
Siberry GK, Abzug MJ, Nachman S, Brady MT, Dominguez KL, Handelsman E, Mofenson LM, Nesheim S, National Institutes of Health, Centers for Disease Control and Prevention, HIV Medicine Association of the Infectious Diseases Society of America, Pediatric Infectious Diseases Society, American Academy of Pediatrics. Guidelines for the prevention and treatment of opportunistic infections in HIV-exposed and HIV-infected children: recommendations from the National Institutes of Health, Centers for Disease Control and Prevention, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. Pediatr Infect Dis J 2013; 32 Suppl 2:i-KK4. [PMID: 24569199 PMCID: PMC4169043 DOI: 10.1097/01.inf.0000437856.09540.11] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- George K Siberry
- 1National Institutes of Health, Bethesda, Maryland 2University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado 3State University of New York at Stony Brook, Stony Brook, New York 4Nationwide Children's Hospital, Columbus, Ohio 5Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mousset S, Buchheidt D, Heinz W, Ruhnke M, Cornely OA, Egerer G, Krüger W, Link H, Neumann S, Ostermann H, Panse J, Penack O, Rieger C, Schmidt-Hieber M, Silling G, Südhoff T, Ullmann AJ, Wolf HH, Maschmeyer G, Böhme A. Treatment of invasive fungal infections in cancer patients-updated recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO). Ann Hematol 2013; 93:13-32. [PMID: 24026426 PMCID: PMC3889633 DOI: 10.1007/s00277-013-1867-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/29/2013] [Indexed: 11/28/2022]
Abstract
The Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Oncology (DGHO) here presents its updated recommendations for the treatment of documented fungal infections. Invasive fungal infections are a main cause of morbidity and mortality in cancer patients undergoing intensive chemotherapy regimens. In recent years, new antifungal agents have been licensed, and agents already approved have been studied in new indications. The choice of the most appropriate antifungal treatment depends on the fungal species suspected or identified, the patient's risk factors (e.g., length and depth of neutropenia), and the expected side effects. This guideline reviews the clinical studies that served as a basis for the following recommendations. All recommendations including the levels of evidence are summarized in tables to give the reader rapid access to the information.
Collapse
Affiliation(s)
- Sabine Mousset
- Interdisziplinäres Zentrum für Palliativmedizin, Agaplesion Markus Krankenhaus, Wilhelm Epstein-Straße 4, 60431, Frankfurt, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Malone ME, Corrigan OI, Kavanagh PV, Gowing C, Donnelly M, D'Arcy DM. Pharmacokinetics of amphotericin B lipid complex in critically ill patients undergoing continuous venovenous haemodiafiltration. Int J Antimicrob Agents 2013; 42:335-42. [PMID: 23920093 DOI: 10.1016/j.ijantimicag.2013.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/26/2022]
Abstract
The objective of this study was to examine the effect of continuous venovenous haemodiafiltration (CVVHDF) on the pharmacokinetics of amphotericin B (AmB) in critically ill patients following administration of amphotericin B lipid complex (ABLC). Plasma and ultrafiltrate (UF) samples were collected from patients administered ABLC and either receiving or not receiving CVVHDF. Pharmacokinetic (PK) analysis was performed on eight profiles from patients receiving CVVHDF and six profiles from patients not receiving CVVHDF. For patients receiving CVVHDF, the following median PK data were calculated: area under the concentration-time curve (AUC) = 13.9 h·μg/mL, volume of distribution at steady state (V(ss)) = 1476L and drug clearance (CL) = 27.4 L/h; for patients not receiving CVVHDF, the corresponding median PK data were 11.5 h μg/mL, 2048 L and 43.7 L/h, respectively. The median half-lives calculated during the dosage interval (t(1/2int)) were 30.9 h and 32.5 h on and off CVVHDF, respectively, and the total range of t(1/2int) values was 15.6-180.4 h. Observed median peak concentrations on Day 1 were 0.563 μg/mL and 0.468 μg/mL in patients on and off CVVHDF, respectively. From AmB present in the UF, clearance via CVVHDF contributed<1% of total plasma clearance. The AmB concentration-time profiles for patients administered ABLC on and off CVVHDF were compared and no statistically significant differences in AUC, CL, t(1/2int) and V(ss) were observed. In conclusion, CVVHDF had no clinically significant effect on the pharmacokinetics of AmB following administration of ABLC.
Collapse
Affiliation(s)
- Maeve E Malone
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
18
|
Results from a prospective, international, epidemiologic study of invasive candidiasis in children and neonates. Pediatr Infect Dis J 2012; 31:1252-7. [PMID: 22982980 DOI: 10.1097/inf.0b013e3182737427] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Candida species are the third most common cause of pediatric health care-associated bloodstream infection in the United States and Europe. To our knowledge, this report from the International Pediatric Fungal Network is the largest prospective, multicenter observational study dedicated to pediatric and neonatal invasive candidiasis. METHODS From 2007 to 2011, we enrolled 196 pediatric and 25 neonatal patients with invasive candidiasis. RESULTS Non-albicans Candida species predominated in pediatric (56%) and neonatal (52%) age groups, yet Candida albicans was the most common species in both groups. Successful treatment responses were observed in pediatric (76%) and neonatal patients (92%). Infection with Candida parapsilosis led to successful responses in pediatric (92%) and neonatal (100%) patients, whereas infection with Candida glabrata was associated with a lower successful outcome in pediatric patients (55%). The most commonly used primary antifungal therapies for pediatric invasive candidiasis were fluconazole (21%), liposomal amphotericin B (20%) and micafungin (18%). Outcome of pediatric invasive candidiasis was similar in response to polyenes (73%), triazoles (67%) and echinocandins (73%). The most commonly used primary antifungal therapies for neonatal invasive candidiasis were fluconazole (32%), caspofungin (24%) and liposomal amphotericin B (16%) and micafungin (8%). Outcomes of neonatal candidiasis by antifungal class again revealed similar response rates among the classes. CONCLUSIONS We found a predominance of non-albicans Candida infection in children and similar outcomes based on antifungal class used. This international collaborative study sets the foundation for large epidemiologic studies focusing on the unique features of neonatal and pediatric candidiasis and comparative studies of therapeutic interventions in these populations.
Collapse
|
19
|
Antifungal agents for the treatment of systemic fungal infections in children. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2012; 21:e116-21. [PMID: 22132005 DOI: 10.1155/2010/784549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditionally, the mainstay of systemic antifungal therapy has been amphotericin B deoxycholate (conventional amphotericin B). Newer agents have been developed to fulfill special niches and to compete with conventional amphotericin B by virtue of having more favourable toxicity profiles. Some agents have displaced conventional amphotericin B for the treatment of specific fungal diseases. For example, voriconazole has emerged as the preferred treatment for invasive pulmonary aspergillosis. This notwithstanding, conventional amphotericin B remains a useful agent for the treatment of paediatric fungal infections. Knowledge of the characteristics of the newer agents is important, given the increasing numbers of patients who are being treated with these drugs. Efforts need to be directed at research aimed at generating paediatric data where these are lacking. The antifungal agents herein described are most often used as monotherapy regimens because there is no uniform consensus on the value of combination therapy, except for specific scenarios.
Collapse
|
20
|
Ruhnke M, Rickerts V, Cornely OA, Buchheidt D, Glöckner A, Heinz W, Höhl R, Horré R, Karthaus M, Kujath P, Willinger B, Presterl E, Rath P, Ritter J, Glasmacher A, Lass-Flörl C, Groll AH. Diagnosis and therapy of Candida infections: joint recommendations of the German Speaking Mycological Society and the Paul-Ehrlich-Society for Chemotherapy. Mycoses 2011; 54:279-310. [PMID: 21672038 DOI: 10.1111/j.1439-0507.2011.02040.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Invasive Candida infections are important causes of morbidity and mortality in immunocompromised and hospitalised patients. This article provides the joint recommendations of the German-speaking Mycological Society (Deutschsprachige Mykologische Gesellschaft, DMyKG) and the Paul-Ehrlich-Society for Chemotherapy (PEG) for diagnosis and treatment of invasive and superficial Candida infections. The recommendations are based on published results of clinical trials, case-series and expert opinion using the evidence criteria set forth by the Infectious Diseases Society of America (IDSA). Key recommendations are summarised here: The cornerstone of diagnosis remains the detection of the organism by culture with identification of the isolate at the species level; in vitro susceptibility testing is mandatory for invasive isolates. Options for initial therapy of candidaemia and other invasive Candida infections in non-granulocytopenic patients include fluconazole or one of the three approved echinocandin compounds; liposomal amphotericin B and voriconazole are secondary alternatives because of their less favourable pharmacological properties. In granulocytopenic patients, an echinocandin or liposomal amphotericin B is recommended as initial therapy based on the fungicidal mode of action. Indwelling central venous catheters serve as a main source of infection independent of the pathogenesis of candidaemia in the individual patients and should be removed whenever feasible. Pre-existing immunosuppressive treatment, particularly by glucocorticosteroids, ought to be discontinued, if feasible, or reduced. The duration of treatment for uncomplicated candidaemia is 14 days following the first negative blood culture and resolution of all associated symptoms and findings. Ophthalmoscopy is recommended prior to the discontinuation of antifungal chemotherapy to rule out endophthalmitis or chorioretinitis. Beyond these key recommendations, this article provides detailed recommendations for specific disease entities, for antifungal treatment in paediatric patients as well as a comprehensive discussion of epidemiology, clinical presentation and emerging diagnostic options of invasive and superficial Candida infections.
Collapse
Affiliation(s)
- Markus Ruhnke
- Medizinische Klinik m S Onkologie u Hämatologie, Charité Universitätsmedizin, Charité, Campus Mitte, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hernández Marqués C, Lassaletta-Atienza A, González-Vicent M, Sevilla J, Molina B, Andión M, Cormenzana M, Pérez Martínez A, Díaz M, Madero L. Candidiasis hepatoesplénica en pacientes hemato-oncológicos pediátricos. An Pediatr (Barc) 2011; 75:26-32. [DOI: 10.1016/j.anpedi.2011.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 01/15/2011] [Accepted: 01/22/2011] [Indexed: 10/18/2022] Open
|
22
|
Lehrnbecher T, Bochennek K, Schrey D, Groll AH. Antifungal Therapy in Pediatric Patients. CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-011-0046-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
|
24
|
Aguado JM, Ruiz-Camps I, Muñoz P, Mensa J, Almirante B, Vázquez L, Rovira M, Martín-Dávila P, Moreno A, Alvarez-Lerma F, León C, Madero L, Ruiz-Contreras J, Fortún J, Cuenca-Estrella M. [Guidelines for the treatment of Invasive Candidiasis and other yeasts. Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). 2010 Update]. Enferm Infecc Microbiol Clin 2011; 29:345-61. [PMID: 21459489 DOI: 10.1016/j.eimc.2011.01.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 01/17/2011] [Indexed: 12/29/2022]
Abstract
These guidelines are an update of the recommendations of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) that were issued in 2004 (Enferm Infecc Microbiol Clin. 2004, 22:32-9) on the treatment of Invasive Candidiasis and infections produced by other yeasts. This 2010 update includes a comprehensive review of the new drugs that have appeared in recent years, as well as the levels of evidence for recommending them. These guidelines have been developed following the rules of the SEIMC by a working group composed of specialists in infectious diseases, clinical microbiology, critical care medicine, paediatrics and oncology-haematology. It provides a series of general recommendations regarding the management of invasive candidiasis and other yeast infections, as well as specific guidelines for prophylaxis and treatment, which have been divided into four sections: oncology-haematology, solid organ transplantation recipients, critical patients, and paediatric patients.
Collapse
Affiliation(s)
- José María Aguado
- Servicio de Enfermedades Infecciosas, Hospital Universitario 12 de Octubre, Madrid, España. Red Española de Investigación en Patología Infecciosa (REIPI RD06/0008)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Dotis J, Roilides E. Candidemia in the Pediatric Intensive Care Unit: What’s Different from Candidemia in Adults? CURRENT FUNGAL INFECTION REPORTS 2011. [DOI: 10.1007/s12281-010-0043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Les antifongiques pour le traitement des infections fongiques systémiques chez les enfants. Paediatr Child Health 2010. [DOI: 10.1093/pch/15.9.609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
27
|
Allen U. Antifungal agents for the treatment of systemic fungal infections in children. Paediatr Child Health 2010; 15:603-615. [PMID: 22043144 PMCID: PMC3009569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Abstract
Traditionally, the mainstay of systemic antifungal therapy has been amphotericin B deoxycholate (conventional amphotericin B). Newer agents have been developed to fulfill special niches and to compete with conventional amphotericin B by virtue of having more favourable toxicity profiles. Some agents have displaced conventional amphotericin B for the treatment of specific fungal diseases. For example, voriconazole has emerged as the preferred treatment for invasive pulmonary aspergillosis. This notwithstanding, conventional amphotericin B remains a useful agent for the treatment of paediatric fungal infections. Knowledge of the characteristics of the newer agents is important, given the increasing numbers of patients who are being treated with these drugs. Efforts need to be directed at research aimed at generating paediatric data where these are lacking. The antifungal agents herein described are most often used as monotherapy regimens because there is no uniform consensus on the value of combination therapy, except for specific scenarios.
Collapse
|
28
|
|
29
|
Bow EJ, Evans G, Fuller J, Laverdière M, Rotstein C, Rennie R, Shafran SD, Sheppard D, Carle S, Phillips P, Vinh DC. Canadian clinical practice guidelines for invasive candidiasis in adults. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2010; 21:e122-50. [PMID: 22132006 PMCID: PMC3009581 DOI: 10.1155/2010/357076] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Candidemia and invasive candidiasis (C/IC) are life-threatening opportunistic infections that add excess morbidity, mortality and cost to the management of patients with a range of potentially curable underlying conditions. The Association of Medical Microbiology and Infectious Disease Canada developed evidence-based guidelines for the approach to the diagnosis and management of these infections in the ever-increasing population of at-risk adult patients in the health care system. Over the past few years, a new and broader understanding of the epidemiology and pathogenesis of C/IC has emerged and has been coupled with the availability of new antifungal agents and defined strategies for targeting groups at risk including, but not limited to, acute leukemia patients, hematopoietic stem cell transplants and solid organ transplants, and critical care unit patients. Accordingly, these guidelines have focused on patients at risk for C/IC, and on approaches of prevention, early therapy for suspected but unproven infection, and targeted therapy for probable and proven infection.
Collapse
Affiliation(s)
- Eric J Bow
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba; Clinical and Academic Services, and Infection Control Services, Cancer Care Manitoba; Oncology Program, Winnipeg Regional Health Authority, Winnipeg, Manitoba
| | - Gerald Evans
- Division of Infectious Diseases, Department of Medicine, Queen’s University, Kingston General Hospital, Kingston, Ontario
| | - Jeff Fuller
- Department of Laboratory Medicine and Pathology, University of Alberta, University of Alberta Hospital, Edmonton, Alberta
| | - Michel Laverdière
- Department of Microbiology-Infectious Diseases, University of Montreal, Laboratory Program, Hôpital Maisonneuve-Rosemont, Montreal, Quebec
| | - Coleman Rotstein
- Division of Infectious Disease, Department of Medicine, University of Toronto and Transplant Infectious Diseases, Oncologic Infectious Diseases, University Health Network, Toronto, Ontario
| | - Robert Rennie
- Department of Laboratory Medicine and Pathology, University of Alberta, University of Alberta Hospital, Edmonton, Alberta
| | - Stephen D Shafran
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Capital Health Authority, Edmonton, Alberta
| | - Don Sheppard
- Departments of Medicine, and Microbiology and Immunology, McGill University, Montreal, Quebec
| | - Sylvie Carle
- Department of Pharmacy, University of Montreal, McGill University Health Centre, Montreal, Quebec
| | - Peter Phillips
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, St Paul’s Hospital, Vancouver, British Columbia
| | - Donald C Vinh
- Division of Infectious Diseases, Department of Medicine, Department of Medical Microbiology, McGill University, Montreal, Quebec and Laboratory of Clinical Infectious Diseases
| |
Collapse
|
30
|
Singhi S, Deep A. Invasive candidiasis in pediatric intensive care units. Indian J Pediatr 2009; 76:1033-44. [PMID: 19907936 DOI: 10.1007/s12098-009-0219-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 08/27/2008] [Indexed: 01/28/2023]
Abstract
Candidemia and disseminated candidiasis are major causes of morbidity and mortality in hospitalized patients especially in the intensive care units (ICU). The incidence of invasive candidasis is on a steady rise because of increasing use of multiple antibiotics and invasive procedures carried out in the ICUs. Worldwide there is a shifting trend from C. albicans towards non albicans species, with an associated increase in mortality and antifungal resistance. In the ICU a predisposed host in one who is on broad spectrum antibiotics, parenteral nutrition, and central venous catheters. There are no pathognomonic signs or symptoms. The clinical clues are: unexplained fever or signs of severe sepsis or septic shock while on antibiotics, multiple, non-tender, nodular erythematous cutaneous lesions. The spectrum of infection with candida species range from superficial candidiasis of the skin and mucosa to more serious life threatening infections. Treatment of candidiasis involves removal of the most likely source of infection and drug therapy to speed up the clearance of infection. Amphotericin B remains the initial drug of first choice in hemodynamically unstable critically ill children in the wake of increasing resistance to azoles. Evaluation of newer antifungal agents and precise role of prophylactic therapy in ICU patients is needed.
Collapse
Affiliation(s)
- Sunit Singhi
- Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | | |
Collapse
|
31
|
Mofenson LM, Brady MT, Danner SP, Dominguez KL, Hazra R, Handelsman E, Havens P, Nesheim S, Read JS, Serchuck L, Van Dyke R. Guidelines for the Prevention and Treatment of Opportunistic Infections among HIV-exposed and HIV-infected children: recommendations from CDC, the National Institutes of Health, the HIV Medicine Association of the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the American Academy of Pediatrics. MMWR Recomm Rep 2009; 58:1-166. [PMID: 19730409 PMCID: PMC2821196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
This report updates and combines into one document earlier versions of guidelines for preventing and treating opportunistic infections (OIs) among HIV-exposed and HIV-infected children, last published in 2002 and 2004, respectively. These guidelines are intended for use by clinicians and other health-care workers providing medical care for HIV-exposed and HIV-infected children in the United States. The guidelines discuss opportunistic pathogens that occur in the United States and one that might be acquired during international travel (i.e., malaria). Topic areas covered for each OI include a brief description of the epidemiology, clinical presentation, and diagnosis of the OI in children; prevention of exposure; prevention of disease by chemoprophylaxis and/or vaccination; discontinuation of primary prophylaxis after immune reconstitution; treatment of disease; monitoring for adverse effects during treatment; management of treatment failure; prevention of disease recurrence; and discontinuation of secondary prophylaxis after immune reconstitution. A separate document about preventing and treating of OIs among HIV-infected adults and postpubertal adolescents (Guidelines for the Prevention and Treatment of Opportunistic Infections in HIV-Infected Adults and Adolescents) was prepared by a working group of adult HIV and infectious disease specialists. The guidelines were developed by a panel of specialists in pediatric HIV infection and infectious diseases (the Pediatric Opportunistic Infections Working Group) from the U.S. government and academic institutions. For each OI, a pediatric specialist with content-matter expertise reviewed the literature for new information since the last guidelines were published; they then proposed revised recommendations at a meeting at the National Institutes of Health (NIH) in June 2007. After these presentations and discussions, the guidelines underwent further revision, with review and approval by the Working Group, and final endorsement by NIH, CDC, the HIV Medicine Association (HIVMA) of the Infectious Diseases Society of America (IDSA), the Pediatric Infectious Disease Society (PIDS), and the American Academy of Pediatrics (AAP). The recommendations are rated by a letter that indicates the strength of the recommendation and a Roman numeral that indicates the quality of the evidence supporting the recommendation so readers can ascertain how best to apply the recommendations in their practice environments. An important mode of acquisition of OIs, as well as HIV infection among children, is from their infected mother; HIV-infected women coinfected with opportunistic pathogens might be more likely than women without HIV infection to transmit these infections to their infants. In addition, HIV-infected women or HIV-infected family members coinfected with certain opportunistic pathogens might be more likely to transmit these infections horizontally to their children, resulting in increased likelihood of primary acquisition of such infections in the young child. Therefore, infections with opportunistic pathogens might affect not just HIV-infected infants but also HIV-exposed but uninfected infants who become infected by the pathogen because of transmission from HIV-infected mothers or family members with coinfections. These guidelines for treating OIs in children therefore consider treatment of infections among all children, both HIV-infected and uninfected, born to HIV-infected women. Additionally, HIV infection is increasingly seen among adolescents with perinatal infection now surviving into their teens and among youth with behaviorally acquired HIV infection. Although guidelines for postpubertal adolescents can be found in the adult OI guidelines, drug pharmacokinetics and response to treatment may differ for younger prepubertal or pubertal adolescents. Therefore, these guidelines also apply to treatment of HIV-infected youth who have not yet completed pubertal development. Major changes in the guidelines include 1) greater emphasis on the importance of antiretroviral therapy for preventing and treating OIs, especially those OIs for which no specific therapy exists; 2) information about the diagnosis and management of immune reconstitution inflammatory syndromes; 3) information about managing antiretroviral therapy in children with OIs, including potential drug--drug interactions; 4) new guidance on diagnosing of HIV infection and presumptively excluding HIV infection in infants that affect the need for initiation of prophylaxis to prevent Pneumocystis jirovecii pneumonia (PCP) in neonates; 5) updated immunization recommendations for HIV-exposed and HIV-infected children, including hepatitis A, human papillomavirus, meningococcal, and rotavirus vaccines; 6) addition of sections on aspergillosis; bartonella; human herpes virus-6, -7, and -8; malaria; and progressive multifocal leukodystrophy (PML); and 7) new recommendations on discontinuation of OI prophylaxis after immune reconstitution in children. The report includes six tables pertinent to preventing and treating OIs in children and two figures describing immunization recommendations for children aged 0--6 years and 7--18 years. Because treatment of OIs is an evolving science, and availability of new agents or clinical data on existing agents might change therapeutic options and preferences, these recommendations will be periodically updated and will be available at http://AIDSInfo.nih.gov.
Collapse
Affiliation(s)
| | | | - Susie P. Danner
- Centers from Disease Control and Prevention, Atlanta, Georgia
| | | | - Rohan Hazra
- National Institutes of Health, Bethesda, Maryland
| | | | - Peter Havens
- Childrens Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Steve Nesheim
- Centers from Disease Control and Prevention, Atlanta, Georgia
| | | | | | | |
Collapse
|
32
|
Mensa J, De La Cámara R, Carreras E, Cuenca Estrella M, García Rodríguez JÁ, Gobernado M, Picazo J, Aguado JM, Sanz MÁ. Tratamiento de las infecciones fúngicas en pacientes con neoplasias hematológicas. Med Clin (Barc) 2009; 132:507-21. [DOI: 10.1016/j.medcli.2009.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/21/2009] [Indexed: 11/25/2022]
|
33
|
Pappas PG, Kauffman CA, Andes D, Benjamin DK, Calandra TF, Edwards JE, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD, Infectious Diseases Society of America. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 2009; 48:503-35. [PMID: 19191635 PMCID: PMC7294538 DOI: 10.1086/596757] [Citation(s) in RCA: 2042] [Impact Index Per Article: 127.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Guidelines for the management of patients with invasive candidiasis and mucosal candidiasis were prepared by an Expert Panel of the Infectious Diseases Society of America. These updated guidelines replace the previous guidelines published in the 15 January 2004 issue of Clinical Infectious Diseases and are intended for use by health care providers who care for patients who either have or are at risk of these infections. Since 2004, several new antifungal agents have become available, and several new studies have been published relating to the treatment of candidemia, other forms of invasive candidiasis, and mucosal disease, including oropharyngeal and esophageal candidiasis. There are also recent prospective data on the prevention of invasive candidiasis in high-risk neonates and adults and on the empiric treatment of suspected invasive candidiasis in adults. This new information is incorporated into this revised document.
Collapse
Affiliation(s)
- Peter G Pappas
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Auron A, Auron-Gomez M, Raina R, Viswanathan S, Mhanna MJ. Effect of amphotericin B lipid complex (ABLC) in very low birth weight infants. Pediatr Nephrol 2009; 24:295-9. [PMID: 18846390 DOI: 10.1007/s00467-008-1017-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
The aim of this retrospective, case-control study was to determine the effect of the amphotericin B lipid complex (ABLC) on serum creatinine (SCr), blood urea nitrogen (BUN), sodium (Na), and potassium (K) in very low birth weight (VLBW) infants. Medical records of all VLBW infants who were admitted to our Neonatal Intensive Care Unit between May 1998 and May 2006 and had received ABLC for at least 2 weeks were reviewed for patient demographics, use of medications (ABLC, diuretics, xanthines, indomethacin, vancomycin, gentamicin, pressors, and inotropes), fluid intake, urinary output, and serum electrolytes. Thirty-five patients who received ABLC were identified and matched by gestational age (GA) to 35 patients who served as controls. Infants who received ABLC had an average GA of 25.7 +/- 2.1 weeks and a birth weight of 764 +/- 196 g. Between day 1 and 14 of ABLC treatment, the BUN decreased from 17.5 +/- 11.5 to 10.5 +/- 6.8 mg/dl (p = 0.01), the SCr varied between 0.78 +/- 0.32 and 0.69 +/- 0.32 mg/dl, Na varied between 136.6 +/- 5.8 and 137.8 +/- 3.6 mEq/l, and K varied between 4.8 +/- 0.9 and 4.9 +/- 0.6 mEq/l, respectively. Based on these results, we conclude that treatment with ABLC for 2 weeks did not increase BUN or SCr, nor decrease Na or K in VLBW infants.
Collapse
Affiliation(s)
- Ari Auron
- Section of Pediatric Nephrology, Blank Children's Hospital, Iowa Health System, Des Moines, IA, USA
| | | | | | | | | |
Collapse
|
35
|
Pediatric pharmacology of antifungal agents. CURRENT FUNGAL INFECTION REPORTS 2008. [DOI: 10.1007/s12281-008-0008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Chiou CC, Walsh TJ, Groll AH. Clinical pharmacology of antifungal agents in pediatric patients. Expert Opin Pharmacother 2007; 8:2465-89. [DOI: 10.1517/14656566.8.15.2465] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Maesaki S. [New development in the treatment of deep-seated mycoses]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2007; 96:1993-1998. [PMID: 17929445 DOI: 10.2169/naika.96.1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
38
|
Meletiadis J, Chanock S, Walsh TJ. Human pharmacogenomic variations and their implications for antifungal efficacy. Clin Microbiol Rev 2006; 19:763-87. [PMID: 17041143 PMCID: PMC1592689 DOI: 10.1128/cmr.00059-05] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pharmacogenomics is defined as the study of the impacts of heritable traits on pharmacology and toxicology. Candidate genes with potential pharmacogenomic importance include drug transporters involved in absorption and excretion, phase I enzymes (e.g., cytochrome P450-dependent mixed-function oxidases) and phase II enzymes (e.g., glucuronosyltransferases) contributing to metabolism, and those molecules (e.g., albumin, A1-acid glycoprotein, and lipoproteins) involved in the distribution of antifungal compounds. By using the tools of population genetics to define interindividual differences in drug absorption, distribution, metabolism, and excretion, pharmacogenomic models for genetic variations in antifungal pharmacokinetics can be derived. Pharmacogenomic factors may become especially important in the treatment of immunocompromised patients or those with persistent or refractory mycoses that cannot be explained by elevated MICs and where rational dosage optimization of the antifungal agent may be particularly critical. Pharmacogenomics has the potential to shift the paradigm of therapy and to improve the selection of antifungal compounds and adjustment of dosage based upon individual variations in drug absorption, metabolism, and excretion.
Collapse
Affiliation(s)
- Joseph Meletiadis
- Pediatric Oncology Branch, National Cancer Institute, CRC, 1-5750 10 Center Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
39
|
Abstract
For more than 40 years, there has been limited progress in the treatment of invasive fungal infections. There are now numerous nuances to choosing the appropriate antifungal agent. Important advantages have been achieved in understanding the safety, tolerability, and pharmacokinetics of these agents. One of the most important aspects for successful management of pediatric invasive fungal infections is an understanding of the differences in the pharmacokinetics of the drugs in children and adults to offer optimal dosing strategies. Unfortunately there have been few antifungal studies conducted in children. Consequently most information for the pediatrician has been extrapolated from adult data. The breadth of antifungal data in children is expanding, however, with newer studies underway. Through the efforts of dedicated clinicians and collaboration, pediatric indications and dosing strategies will eventually be discovered that directly benefit pediatric patients.
Collapse
Affiliation(s)
- William J Steinbach
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
40
|
Abstract
Antifungal drugs for treating systemic mycoses are flucytosine, amphotéricin B, azoles and caspofungin. Their pharmacokinetics and pharmacodynamics are reviewed in order to determine the optimal modalities of their administration and the best dosing regimen for several populations: neonates, infants, patients with renal or liver disease, patients with hemodialysis or hemofiltration.
Collapse
Affiliation(s)
- Michel Tod
- Pharmacie-toxicologie, Hôpital Cochin, Paris, France.
| |
Collapse
|
41
|
Tabone MD, Guyader NL, Leverger G. Spécificités pédiatriques de l’utilisation des antifongiques. Therapie 2006; 61:243-8. [DOI: 10.2515/therapie:2006042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Würthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ. Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother 2006; 49:5092-8. [PMID: 16304177 PMCID: PMC1315949 DOI: 10.1128/aac.49.12.5092-5098.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The pharmacokinetics of amphotericin B lipid complex (ABLC) were investigated in neonates with invasive candidiasis enrolled in a phase II multicenter trial. Sparse blood (153 samples; 1 to 9 per patient, 1 to 254 h after the dose) and random urine and cerebrospinal fluid (CSF) samples of 28 neonates (median weight [WT], 1.06 kg; range, 0.48 to 4.9 kg; median gestational age, 27 weeks; range, 24 to 41 weeks) were analyzed. Patients received intravenous ABLC at 2.5 (n = 15) or 5 (n = 13) mg/kg of body weight once a day over 1 or 2 h, respectively, for a median of 21 days (range, 4 to 47 days). Concentrations of amphotericin B were quantified as total drug by high-performance liquid chromatography. Blood data for time after dose (TAD) of <24 h fitted best to a one-compartment model with an additive-error model for residual variability, WT0.75 (where 0.75 is an exponent) as a covariate of clearance (CL), and WT as a covariate of volume of distribution (V). Prior amphotericin B, postnatal age, and gestational age did not further improve the model. The final model equations were CL (liters/h) = 0.399 x WT(0.75) (interindividual variability, 35%) and V (liters) = 10.5 x WT (interindividual variability, 43%). Noncompartmental analysis of pooled data with a TAD of >24 h revealed a terminal half-life of 395 h. Mean concentrations in the urine after 1, 2, and 3 weeks ranged from 0.082 to 0.430 microg/ml, and those in CSF ranged from undetectable to 0.074 microg/ml. The disposition of ABLC in neonates was similar to that observed in other age groups: weight was the only factor that influenced clearance. Based on these results and previously published safety and efficacy data, we recommend a daily dosage between 2.5 and 5.0 mg/kg for treatment of invasive Candida infections in neonates.
Collapse
Affiliation(s)
- Gudrun Würthwein
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, Children's University Hospital, Muenster, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
43
|
Walsh TJ, Roilides E, Cortez K, Kottilil S, Bailey J, Lyman CA. Control, immunoregulation, and expression of innate pulmonary host defenses against Aspergillus fumigatus. Med Mycol 2005; 43 Suppl 1:S165-72. [PMID: 16114132 DOI: 10.1080/13693780500064672] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The innate host defense system (IHDS) against Aspergillus fumigatus includes dedicated phagocytic cells (peripheral blood monocytes, monocyte derived macrophages, pulmonary alveolar macrophages, neutrophils, myeloid dendritic cells and natural killer cells), cytokines, chemokines, toll-like receptors, and antimicrobial peptides. During the past decade, the advances in the field of the IHDS have been enormous, allowing a better understanding of the immunopharmacological control, immunoregulation, and expression of innate host defense molecules against Aspergillus fumigatus.
Collapse
Affiliation(s)
- T J Walsh
- Immunocompromised Host Section, Pediatric Oncology Branch, National Cancer Institute, Bldg. 10, Rm 13N-240, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Candida species have become predominant pathogens in critically ill patients. In this population, invasive candidiasis is associated with a poor prognosis but adequate management can limit the attributable mortality. Adequate management, however, is hampered by a problematic diagnosis as the clinical picture of invasive disease is non-specific and blood cultures have a low sensitivity. Moreover, it is often hard to differentiate colonisation from infection and many critically ill patients are heavily colonised with Candida species, especially when receiving broad-spectrum antibacterials. The question of which antifungal agent to choose has become more complex as the development of new drugs raises promising expectations. Until the 1980s therapy for invasive candidiasis was limited to amphotericin B, but with the advent of new antifungal agents, such as azoles and echinocandins, less toxic therapeutic options are possible and doors have opened towards prevention and optimised therapy in the case of documented candidiasis. Through the arrival of these new antifungal agents, a range of therapeutic strategies for the management of invasive candidiasis has been developed: antifungal prophylaxis, pre-emptive therapy, and empirical and definitive antifungal therapy. Each of these strategies has a specific target population, as defined by specific underlying conditions and/or individual risk factors. Antifungal prophylaxis, in order to prevent candidal infection, is based on the type of underlying diseases with a high risk for invasive candidiasis. Individual risk factors are not taken into account. Potential indications are bone marrow transplantation, liver transplantation, recurrent gastrointestinal perforations or leakages, and surgery for acute necrotising pancreatitis. Pre-emptive therapy is also a preventive strategy. It can be recommended on the basis of an individual risk profile including overt candidal colonisation. Empirical therapy is started in patients with a risk profile for invasive candidiasis. It is recommended in the presence of clinical signs of infection, deteriorating clinical parameters, or a clinical picture of infection not responding to antibacterials but in the absence of a clear causative pathogen. Definitive antifungal therapy is defined as therapy in patients with documented invasive infection. The main goal is to maintain a balance between optimal prevention and timely initiation of therapy on one hand, and to minimise selection pressure in order to avoid a shift towards less susceptible Candida species on the other hand.
Collapse
Affiliation(s)
- Stijn Blot
- Intensive Care Department, Ghent University Hospital, Ghent, Belgium.
| | | |
Collapse
|
45
|
Mofenson LM, Oleske J, Serchuck L, Van Dyke R, Wilfert C. Treating Opportunistic Infections among HIV-Exposed and Infected Children: Recommendations from CDC, the National Institutes of Health, and the Infectious Diseases Society of America. Clin Infect Dis 2005; 40 Suppl 1:S1-84. [DOI: 10.1086/427295] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
46
|
Masood A, Sallah S. Chronic disseminated candidiasis in patients with acute leukemia: emphasis on diagnostic definition and treatment. Leuk Res 2004; 29:493-501. [PMID: 15755501 DOI: 10.1016/j.leukres.2004.10.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 10/13/2004] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic disseminated candidiasis (CDC) is a form of invasive fungal infection that occurs most commonly in patients with acute leukemia treated with chemotherapy. Recent studies have provided evidence for diagnostic alternatives to invasive procedures and more therapeutic options for the management of this complication. In order to put diagnostic criteria and methodological approach to the disease into the perspective of developing strategies for therapy, all relevant studies published in the English literature over the last 30 years were examined. MATERIALS AND METHODS The English-language articles located through MEDLINE (1966 to present) and from selected bibliographies. RESULTS There is increased recognition of CDC as complication of treatment with chemotherapy in patients with acute leukemia. Liver biopsy may not always be revealing or feasible to perform in some patients. Among the imaging modalities, magnetic resonance imaging has obtained preeminence as a non-invasive tool for the diagnosis of hepatosplenic fungal infections. Administration of amphotericin B (Amp B) in relatively large cumulative doses is needed to ensure appropriate control of the infection and prevention of future relapse. Patients intolerant of, or refractory to conventional Amp B have been successfully salvaged using fluconazole or lipid formulations of Amp B. A constellation of clinical, laboratory and radiologic parameters should be used to determine response and efficacy of therapy. There is sufficient evidence to support the safety and feasibility of continuing chemotherapy for acute leukemia in conjunction with antifungal treatment in patients diagnosed with CDC. CONCLUSION The development of CDC in patients with acute leukemia does not preclude further chemotherapy or constitute contraindication for bone marrow transplantation. Knowledge of the course and pattern of evolution of the disease and adopting aggressive therapeutic approach will likely reduce the morbidity and mortality from this complication.
Collapse
Affiliation(s)
- Aisha Masood
- Divison of Hematology/Oncology, Louisiana State University, 1501 Kings Highway, Shreveport, LA 71119, USA.
| | | |
Collapse
|
47
|
Martino R. Efficacy, safety and cost-effectiveness of Amphotericin B Lipid Complex (ABLC): a review of the literature. Curr Med Res Opin 2004; 20:485-504. [PMID: 15119986 DOI: 10.1185/030079904125003179] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amphotericin B Lipid Complex (ABLC) was the first lipid-based formulation of amphotericin B (AmB) to be developed, it was designed to provide a less toxic alternative to conventional AmB without compromising efficacy. Preclinical and early clinical data relating to ABLC have been presented in previous reviews. This paper reviews more recent published data on the efficacy, safety and cost-effectiveness of ABLC. All published manuscripts and conference abstracts were searched on MEDLINE, BIOL and SCIN for the period between January 1997 and August 2003. Comparative and non-comparative studies of ABLC are usually mild or moderate and are manageable were considered. Comparative studies and additional data from non-comparative studies suggest that ABLC 5 mg/kg/day is safe and effective for the treatment of documented or suspected systemic fungal infections in adults and children who are refractory to or intolerant of conventional AmB. ABLC is effective against a wide range of pathogens and efficacy is at least as good as conventional AmB or the other lipid-based formulations. The safety profile of ABLC is improved compared with conventional AmB; ABLC is less nephrotoxic than conventional AmB and can be given safely to patients with pre-existing renal impairment. The most commonly reported adverse effects are transient infusion-related events, including chills, fever, nausea and vomiting, which with premedication. Comparative studies suggest that ABLC is a cost-effective treatment option compared with conventional AmB or other lipid-based formulations of amphotericin B.
Collapse
Affiliation(s)
- Rodrigo Martino
- Division of Clinical Haematology, Hospital de la Santa Creu i Sant Pau, Sant Antoni Ma Claret 167, Barcelona, Spain.
| |
Collapse
|
48
|
Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE. Guidelines for Treatment of Candidiasis. Clin Infect Dis 2004; 38:161-89. [PMID: 14699449 DOI: 10.1086/380796] [Citation(s) in RCA: 917] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 09/12/2003] [Indexed: 11/03/2022] Open
Affiliation(s)
- Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Alabama 35294-0006, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new "gold standard". Clin Infect Dis 2003; 37:415-25. [PMID: 12884167 DOI: 10.1086/376634] [Citation(s) in RCA: 267] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2003] [Accepted: 04/18/2003] [Indexed: 11/03/2022] Open
Abstract
When introduced in 1959, amphotericin B deoxycholate (AmBD) was clearly a life-saving drug. Randomized studies demonstrating its efficacy were not thought to be necessary, and it was granted indications for many invasive fungal infections. Despite its formidable toxicities, AmBD is thus often used as the primary comparator in studies of invasive fungal infections. Safer lipid-based versions of amphotericin B (AmB) have been introduced, but difficulties with studying these agents generally led to licensure for salvage therapy, not primary therapy. However, the cumulative clinical experience to date with the lipid-based preparations is now adequate to demonstrate that these agents are no less active than AmBD, and, for some infections, it can now be stated that specific lipid-based preparations of AmB are superior to AmBD. Given their superior safety profiles, these preparations can now be considered suitable replacements for AmBD for primary therapy for many invasive fungal infections in clinical practice and research.
Collapse
Affiliation(s)
- Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Department of Internal Medicine, Center for the Study of Emerging and Reemerging Pathogens, University of Texas Medical School, Houston, TX, USA.
| | | | | | | |
Collapse
|
50
|
Cleary JD, Rogers PD, Chapman SW. Variability in polyene content and cellular toxicity among deoxycholate amphotericin B formulations. Pharmacotherapy 2003; 23:572-8. [PMID: 12741430 DOI: 10.1592/phco.23.5.572.32209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
STUDY OBJECTIVE To evaluate the toxicity of amphotericin B deoxycholate formulations. DESIGN In vitro experiment. SETTING University research center. MATERIAL Human mononuclear THP-1 cells. INTERVENTION The human mononuclear cells were exposed in vitro for 2 hours to the following deoxycholate formulations of amphotericin B, in 2.5- and 5-micro/ml concentrations: Apothecon, Pharmacia, Sigma, Gensia, Pharma-Tek, and VHA. MEASUREMENTS AND MAIN RESULTS Toxicity of the amphotericin B formulations were assessed by measuring interleukin (IL)-1beta expression in an in vitro model. Amphotericin B content was measured by enzyme-linked immunosorbent assay (ELISA), and amphotericin A and B contents were assessed by spectrophotometry. Endotoxin contamination was evaluated in all reagents. Expression of IL-1beta from Sigma, Pharmacia, and Pharma-Tek formulations was increased approximately 250%, 50%, and 25%, respectively, compared with amphotericin A. Amphotericin B content of Sigma, Pharmacia, Pharma-Tek, and Gensia formulations, as measured by ELISA, was increased approximately 450%, 200%, 200%, and 100%, respectively, compared with Apothecon. This variation could not be explained by differences in amphotericin A or B content as measured by spectrophotometry. CONCLUSION Amphotericin B is obtained from a fermentation plant and manufactured as a pharmaceutical at different facilities. Both previous clinical observations and the current in vitro evaluation revealed significant differences among the formulations. Likely, other polyenes or pyrogenic toxins in differing amounts are in these formulations, thus explaining the variability in toxicity observed among the formulations.
Collapse
Affiliation(s)
- John D Cleary
- Department of Clinical Pharmacy, University of Mississippi School of Pharmacy, Jackson 39216, USA.
| | | | | |
Collapse
|