1
|
He L, Wang W, Chen H, Ma L, Yu L, Yang Y, Qu Y, Dai P, Wang D, Ma X. Gene expressions of clinical Pseudomonas aeruginosa harboring RND efflux pumps on chromosome and involving a novel integron on a plasmid. Microb Pathog 2025; 203:107512. [PMID: 40154852 DOI: 10.1016/j.micpath.2025.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The clinical strain of Pseudomonas aeruginosa XM8 harbored multiple RND-type antibiotic efflux pump genes and a novel integron In4881 on its plasmid pXM8-2, rendering it resistant to nearly all conventional antibiotics except colistin. The resistance was primarily attributed to the inactivation of the oprD gene and overexpression of several efflux pump genes, including mexAB-oprM, mexCD-oprJ, oprN-mexFE, and mexXY. In this study, the XM8 strain was comprehensively characterized using various methods. Antimicrobial susceptibility testing was performed using the BioMerieux VITEK2 system and manual double dilution methods. Gene expression levels of efflux pump-related genes were analyzed via quantitative real-time PCR. The bacterial chromosome and plasmid were sequenced using both Illumina and Nanopore platforms, and bioinformatics tools were employed to analyze mobile genetic elements associated with antibiotic resistance. The pXM8-2 plasmid containsed multiple mobile genetic elements, including integrons (In4881, In334, In413) and transposons (Tn3, TnAs1, TnAs3). Notably, In4881 was reported for the first time in this study. The presence of these elements highlights the potential for horizontal gene transfer and further spread of antibiotic resistance. Given the strong resistance profile of the XM8 strain, effective measures should be implemented to prevent the dissemination and prevalence of such multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Long He
- Department of Clinical Laboratory Medicine, Wenling First People's Hospital, Taizhou, Zhejiang, 317500, China
| | - Wenji Wang
- Department of Central Laboratory, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China; School of Life Sciences, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Haiming Chen
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xiamen University (Xiamen Key Laboratory of Genetic Testing), Xiamen, Fujian, 361003, China
| | - Liman Ma
- Department of Basic Medicine and Medical laboratory Science, School of Medicine, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Lianhua Yu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Yide Yang
- Department of Infectious Disease, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Ying Qu
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Piaopiao Dai
- Department of Clinical Laboratory Medicine, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital (Taizhou Municipal Hospital Affiliated with Taizhou University), Taizhou, Zhejiang, 318000, China.
| | - Xiaobo Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Xiamen University (Xiamen Key Laboratory of Genetic Testing), Xiamen, Fujian, 361003, China.
| |
Collapse
|
2
|
Xu P, Li Y, Xu B, Cao D, Dong X, Xiang Y, Jiang X, Yuan X, Qiu Y, Zhang Y. Novel mutations in the marR gene ( MAB_2648c) modify nitroxoline activity in Mycobacterium abscessus. Antimicrob Agents Chemother 2025; 69:e0174424. [PMID: 40167421 PMCID: PMC12057340 DOI: 10.1128/aac.01744-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Mycobacterium abscessus is a fast-growing nontuberculous mycobacterium that can cause severe disease and poses a significant challenge for clinical management. New drugs are urgently needed for more effective treatment. Nitroxoline, an antibiotic used for treating urinary tract infections in Europe, has recently been shown to have promising activity against M. abscessus. However, the mechanism of its modified activity is not known. In anticipation for its potential clinical use, in this study, we investigated the mechanism of nitroxoline activity modification through mutant selection followed by whole-genome sequencing. We identified mutations in a transcriptional repressor MarR (MAB_2648c) controlling the expression of efflux pumps MmpS5-MmpL5 family that are associated with nitroxoline activity modification. Complementation of the mutants with the wild-type marR gene restored the MIC values to levels comparable to those of the wild-type strain. This study elucidates the key mechanism of how M. abscessus mutations modify the activity of nitroxoline, which has significant implications for rapid molecular detection of drug-resistant M. abscessus and for further studies on resistance mechanisms.
Collapse
Affiliation(s)
- Pusheng Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bihan Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xu Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanghui Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiuzhi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuwei Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
| |
Collapse
|
3
|
Robert M, Ruffier d'Epenoux L, Paquin A, Boutoille D, Guillouzouic A, Corvec S. Ciprofloxacin-susceptible but levofloxacin-resistant Pseudomonas aeruginosa clinical strains with Vitek ®2: which mechanism involved and consequences in case of fluoroquinolone treatment? Eur J Clin Microbiol Infect Dis 2025; 44:549-558. [PMID: 39704919 DOI: 10.1007/s10096-024-05006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Pseudomonas aeruginosa clinical strains isolated harbored sometimes an atypical phenotype using the automated Vitek2®: ciprofloxacin-susceptibility but levofloxacin-resistance according to 2019 CA-SFM criteria. The aims of this study are to investigate the resistance mechanism(s) involved and to identify the consequences on fluoroquinolone treatment. METHODS Strain resistance profile, patient's data were recovered and reviewed from the database. Minimum inhibitory concentrations of levofloxacin, ciprofloxacin, moxifloxacin and delafloxacin were determined by using a concentration gradient strip. gyrA, gyrB, parC, parE and mexR genes were PCR amplified and sequenced. A PFGE analysis was performed for strains, recovered in a short period of time from the same patient. RESULTS 46 strains were studied. A couple of seldom mutations were detected in gyrA, gyrB, parC and parE genes. Phenotypically, most of the strains (91%) were resistant to ticarcillin/ clavulanic acid combination and aztreonam suggesting a MexAB-OprM efflux-pump overexpression. mexR sequencing demonstrated either a deletion, a mutation or a premature stop codon appearance leading to amino acid substitution for 75% of the strains. Interestingly, four patients presented successively a fully fluoroquinolone susceptible isolate, thereafter a ciprofloxacin-susceptible but levofloxacin-resistant isolate (discordant phenotype) and finally a fluoroquinolone-resistant isolate. Molecular typing of these strains highlighted a strong relatedness between those isolates. CONCLUSION The phenotype detected by the automate Vitek2® is linked to a likely efflux-pump overexpression mechanism and not fluoroquinolone-target mutation. Regarding this discordant phenotype, an alert should be provided to clinicians concerning the high risk of selecting a fluoroquinolone-resistant mutant.
Collapse
Affiliation(s)
- Manon Robert
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - Louise Ruffier d'Epenoux
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
- INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France
| | - Axelle Paquin
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - David Boutoille
- Service des Maladies Infectieuses, Hôtel-Dieu, Centre Hospitalier Universitaire, Nantes, France
- Centre d'Investigation Clinique Unité d'Investigation Clinique, Centre Hospitalier Universitaire, Nantes, France
| | - Aurélie Guillouzouic
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France
| | - Stéphane Corvec
- Service de Bactériologie et des Contrôles Microbiologiques, CHU Nantes, Nantes, France.
- INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Nantes Université, Nantes, France.
| |
Collapse
|
4
|
Zhang Y, Wang R, Hu Q, Lv N, Zhang L, Yang Z, Zhou Y, Wang X. Characterization of Pseudomonas aeruginosa bacteriophages and control hemorrhagic pneumonia on a mice model. Front Microbiol 2024; 15:1396774. [PMID: 38808279 PMCID: PMC11132263 DOI: 10.3389/fmicb.2024.1396774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/12/2024] [Indexed: 05/30/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most common pathogens causing hemorrhagic pneumonia in Chinese forest musk deer. Multidrug-resistant P. aeruginosa is frequently isolated from the lungs of affected musk deer in Shaanxi Province, China. With the increasing bacterial drug resistance, commonly used antibiotics have shown limited efficacy against drug-resistant P. aeruginosa. Therefore, phages have garnered attention as a promising alternative to antibiotics among researchers. In this study, phages vB_PaeP_YL1 and vB_PaeP_YL2 (respectively referred to as YL1 and YL2) were isolated from mixed sewage samples from a farm. YL1 and YL2 exhibit an icosahedral head and a non-contractile short tail, belonging to the Podoviridae family. Identification results demonstrate good tolerance to low temperatures and pH levels, with minimal variation in potency within 30 min of UV irradiation. The MOI for both YL1 and YL2 was 0.1, and their one-step growth curve latent periods were 10 min and 20 min, respectively. Moreover, both single phage and phage cocktail effectively inhibited the growth of the host bacteria in vitro, with the phage cocktail showing superior inhibitory effects compared to the single phage. YL1 and YL2 possess double-stranded DNA genomes, with YL1 having a genome size of 72,187 bp and a total G + C content of 55.02%, while YL2 has a genome size of 72,060 bp and a total G + C content of 54.98%. YL1 and YL2 are predicted to have 93 and 92 open reading frames (ORFs), respectively, and no ORFs related to drug resistance or lysogeny were found in both phages. Genome annotation and phylogenetic analysis revealed that YL1 is closely related to vB_PaeP_FBPa1 (ON857943), while YL2 is closely related to vB_PaeP_FBPa1 (ON857943) and Phage26 (NC041907). In a mouse model of hemorrhagic pneumonia, phage cocktail treatment showed better control of the disease and significantly reduced lung bacterial load compared to single phage treatment. Therefore, YL1 and YL2 have the potential for the prevention and treatment of multidrug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Yanjie Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ruiqing Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qingxia Hu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ni Lv
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Likun Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Yefei Zhou
- Nanjing Xiao Zhuang University, Nanjing, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| |
Collapse
|
5
|
Menon ND, Somanath P, Jossart J, Vijayakumar G, Shetty K, Baswe M, Chatterjee M, Hari MB, Nair S, Kumar VA, Nair BG, Nizet V, Perry JJP, Kumar GB. Comparative molecular profiling of multidrug-resistant Pseudomonas aeruginosa identifies novel mutations in regional clinical isolates from South India. JAC Antimicrob Resist 2024; 6:dlae001. [PMID: 38230352 PMCID: PMC10789591 DOI: 10.1093/jacamr/dlae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
Objectives We sought to analyse the antibiotic susceptibility profiles and molecular epidemiology of MDR clinical Pseudomonas aeruginosa isolates from South India using non-MDR isolates as a reference. Methods We established a comprehensive clinical strain library consisting of 58 isolates collected from patients across the South Indian state of Kerala from March 2017 to July 2019. The strains were subject to antibiotic susceptibility testing, modified carbapenem inactivation method assay for carbapenemase production, PCR sequencing, comparative sequence analysis and quantitative PCR of MDR determinants associated with antibiotic efflux pump systems, fluoroquinolone resistance and carbapenem resistance. We performed in silico modelling of MDR-specific SNPs. Results Of our collection of South Indian P. aeruginosa clinical isolates, 74.1% were MDR and 55.8% were resistant to the entire panel of antibiotics tested. All MDR isolates were resistant to levofloxacin and 93% were resistant to meropenem. We identified seven distinct, MDR-specific mutations in nalD, three of which are novel. mexA was significantly overexpressed in strains that were resistant to the entire test antibiotic panel while gyrA and gyrB were overexpressed in MDR isolates. Mutations in fluoroquinolone determinants were significantly associated with MDR phenotype and a novel GyrA Y100C substitution was observed. Carbapenem resistance in MDR isolates was associated with loss-of-function mutations in oprD and high prevalence of NDM (blaNDM-1) within our sample. Conclusions This study provides insight into MDR mechanisms adopted by P. aeruginosa clinical isolates, which may guide the potential development of therapeutic regimens to improve clinical outcomes.
Collapse
Affiliation(s)
- Nitasha D Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Priyanka Somanath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Jennifer Jossart
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope, Duarte, CA, USA
| | - Gayathri Vijayakumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Kavya Shetty
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Manasi Baswe
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Meghna Chatterjee
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Malavika B Hari
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Samitha Nair
- Department of Microbiology, DDRC SRL Diagnostic Private Limited, Trivandrum, Kerala, India
| | - V Anil Kumar
- Department of Microbiology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Bipin G Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| | - Victor Nizet
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - J Jefferson P Perry
- Department of Molecular Diagnostics and Experimental Therapeutics, City of Hope, Duarte, CA, USA
| | - Geetha B Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
- Antimicrobial Resistance, Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
6
|
Tian ZX, Wang YP. Identification of cpxS mutational resistome in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2023; 67:e0092123. [PMID: 37800959 PMCID: PMC10648845 DOI: 10.1128/aac.00921-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 10/07/2023] Open
Abstract
Pseudomonas aeruginosa easily produces drug-resistant mutants. A large number of mutational resistome genes exist in the genome of P. aeruginosa. In this study, whole genome sequencing analysis of a multidrug-resistant P. aeruginosa strain isolated by in vitro antibiotic treatment showed a mutation in the cpxS gene. Random mutagenesis of cpxS was conducted and introduced into the PA14ΔcpxS strain. Numerous CpxS mutants, including 14 different single amino acid substitutions, were identified, which led to reduced antibiotic susceptibility. Moreover, some of them were also present in the published genomes of P. aeruginosa isolates. Around cpxS, a gene coding for a putative sensor kinase, the nearest gene coding for a response regulator is cpxR in the genome of P. aeruginosa. Deletion of cpxR restored antibiotic susceptibility in the above cpxS mutant strains. As an extension of our previous work, where the expression of the mexAB-oprM operon is directly activated by CpxR in P. aeruginosa, in this study, we showed that the expression of the mexA promoter was increased in the above cpxS mutant strains in a cpxR-dependent manner, and mexA is prerequisite for the reduced antibiotic susceptibility. Therefore, we propose that the putative sensor kinase CpxS, together with CpxR, comprises a two-component regulatory system regulating the expression of the mexAB-oprM operon in P. aeruginosa. Our work indicates that cpxS, as a novel member of mutational resistome, plays important roles on the development of multidrug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Zhe-Xian Tian
- State Key Laboratory of Protein and Plant Gene Research,School of Life Sciences, Peking University, Beijing, China
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research,School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics (Basel) 2023; 12:1304. [PMID: 37627724 PMCID: PMC10451789 DOI: 10.3390/antibiotics12081304] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a grave clinical challenge due to its multidrug resistance (MDR) phenotype, leading to severe and life-threatening infections. This bacterium exhibits both intrinsic resistance to various antipseudomonal agents and acquired resistance against nearly all available antibiotics, contributing to its MDR phenotype. Multiple mechanisms, including enzyme production, loss of outer membrane proteins, target mutations, and multidrug efflux systems, contribute to its antimicrobial resistance. The clinical importance of addressing MDR in P. aeruginosa is paramount, and one pivotal determinant is the resistance-nodulation-division (RND) family of drug/proton antiporters, notably the Mex efflux pumps. These pumps function as crucial defenders, reinforcing the emergence of extensively drug-resistant (XDR) and pandrug-resistant (PDR) strains, which underscores the urgency of the situation. Overcoming this challenge necessitates the exploration and development of potent efflux pump inhibitors (EPIs) to restore the efficacy of existing antipseudomonal drugs. By effectively countering or bypassing efflux activities, EPIs hold tremendous potential for restoring the antibacterial activity against P. aeruginosa and other Gram-negative pathogens. This review focuses on concurrent MDR, highlighting the clinical significance of efflux pumps, particularly the Mex efflux pumps, in driving MDR. It explores promising EPIs and delves into the structural characteristics of the MexB subunit and its substrate binding sites.
Collapse
Affiliation(s)
| | | | | | | | - Susan Hall
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia; (A.A.); (G.D.G.); (M.J.C.); (T.K.)
| |
Collapse
|
8
|
Cui J, Shi X, Wang X, Sun H, Yan Y, Zhao F, Zhang C, Liu W, Zou L, Han L, Pan Q, Ren H. Characterization of a lytic Pseudomonas aeruginosa phage vB_PaeP_ASP23 and functional analysis of its lysin LysASP and holin HolASP. Front Microbiol 2023; 14:1093668. [PMID: 36998407 PMCID: PMC10045481 DOI: 10.3389/fmicb.2023.1093668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, we isolated a lytic Pseudomonas aeruginosa phage (vB_PaeP_ASP23) from the sewage of a mink farm, characterized its complete genome and analyzed the function of its putative lysin and holin. Morphological characterization and genome annotation showed that phage ASP23 belonged to the Krylovirinae family genus Phikmvvirus, and it had a latent period of 10 min and a burst size of 140 pfu/infected cell. In minks challenged with P. aeruginosa, phage ASP23 significantly reduced bacterial counts in the liver, lung, and blood. The whole-genome sequencing showed that its genome was a 42,735-bp linear and double-stranded DNA (dsDNA), with a G + C content of 62.15%. Its genome contained 54 predicted open reading frames (ORFs), 25 of which had known functions. The lysin of phage ASP23 (LysASP), in combination with EDTA, showed high lytic activity against P. aeruginosa L64. The holin of phage ASP23 was synthesized by M13 phage display technology, to produce recombinant phages (HolASP). Though HolASP exhibited a narrow lytic spectrum, it was effective against Staphylococcus aureus and Bacillus subtilis. However, these two bacteria were insensitive to LysASP. The findings highlight the potential of phage ASP23 to be used in the development of new antibacterial agents.
Collapse
Affiliation(s)
- Jiaqi Cui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinwei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Yanxin Yan
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Feiyang Zhao
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Ahmadian L, Haghshenas MR, Mirzaei B, Khalili Y, Goli HR. Role of MexAB-OprM efflux pump in the emergence of multidrug-resistant clinical isolates of Pseudomonas aeruginosa in Mazandaran province of Iran. Mol Biol Rep 2023; 50:2603-2609. [PMID: 36626068 DOI: 10.1007/s11033-022-08230-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Multidrug-resistant clinical isolates can cause many therapeutic problems. The MexAB-OprM efflux pump plays a significant role in expelling toxins and drugs from the bacterial cells resulting in multidrug-resistant Pseudomonas aeruginosa isolates. PURPOSE This study aimed to investigate the effect of the MexAB-OprM efflux pump in the emergence of multidrug-resistant clinical isolates of P. aeruginosa. METHODS AND RESULTS For the present study, 100 clinical isolates of P. aeruginosa were collected from different wards of teaching hospitals (2018-2019). After confirmation and detection of bacteria by standard methods, the antibiotic resistance pattern of the isolates was determined by the disk agar diffusion method. Also, the minimum inhibitory concentration (MIC) of ciprofloxacin was measured in the presence and absence of phenylalanine arginine beta-naphthylamide by the broth microdilution method. Then, the real-time PCR was used to investigate the expression level of the mexB gene compared to the standard PAO1 strain. Forty-one/100 isolates exhibited multidrug-resistant phenotype (MDR), while piperacillin-tazobactam and levofloxacin were the most and least effective antibiotics tested, respectively. Also, 54/100 isolates showed no increased expression of mexB gene compared to the standard PAO1 strain. However, among the 41 MDR isolates, 12 (29.26%) showed a more than three-fold increase in the expression level of the mexB gene. In this study, a significant relationship was observed between the resistance to tested antibiotics in MDR strains and the increased expression of the mexB gene. CONCLUSION We found that increasing the expression of the mexB gene can cause the emergence of multidrug-resistant strains by increasing the minimum inhibitory concentration of the antibiotics. Then, we need to evaluate the resistance mechanisms separately in different area of a country to improve the antibiotic stewardship.
Collapse
Affiliation(s)
- Leila Ahmadian
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran
| | - Mohammad Reza Haghshenas
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran
| | - Bahman Mirzaei
- Department of Medical Microbiology and Virology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Younes Khalili
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Reza Goli
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran. .,Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Farah Abad blv, Khazar square, Sari, Mazandaran, Iran.
| |
Collapse
|
10
|
Lorusso AB, Carrara JA, Barroso CDN, Tuon FF, Faoro H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:15779. [PMID: 36555423 PMCID: PMC9779380 DOI: 10.3390/ijms232415779] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance is an old and silent pandemic. Resistant organisms emerge in parallel with new antibiotics, leading to a major global public health crisis over time. Antibiotic resistance may be due to different mechanisms and against different classes of drugs. These mechanisms are usually found in the same organism, giving rise to multidrug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. One resistance mechanism that is closely associated with the emergence of MDR and XDR bacteria is the efflux of drugs since the same pump can transport different classes of drugs. In Gram-negative bacteria, efflux pumps are present in two configurations: a transmembrane protein anchored in the inner membrane and a complex formed by three proteins. The tripartite complex has a transmembrane protein present in the inner membrane, a periplasmic protein, and a porin associated with the outer membrane. In Pseudomonas aeruginosa, one of the main pathogens associated with respiratory tract infections, four main sets of efflux pumps have been associated with antibiotic resistance: MexAB-OprM, MexXY, MexCD-OprJ, and MexEF-OprN. In this review, the function, structure, and regulation of these efflux pumps in P. aeruginosa and their actions as resistance mechanisms are discussed. Finally, a brief discussion on the potential of efflux pumps in P. aeruginosa as a target for new drugs is presented.
Collapse
Affiliation(s)
- Andre Bittencourt Lorusso
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - João Antônio Carrara
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
| | | | - Felipe Francisco Tuon
- Laboratory of Emerging Infectious Diseases, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Fiocruz, Curitiba 81350-010, Brazil
- CHU de Quebec Research Center, Department of Microbiology, Infectious Disease and Immunology, University Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Amieva R, Gil-Gil T, Martínez JL, Alcalde-Rico M. The MexJK Multidrug Efflux Pump Is Not Involved in Acquired or Intrinsic Antibiotic Resistance in Pseudomonas aeruginosa, but Modulates the Bacterial Quorum Sensing Response. Int J Mol Sci 2022; 23:7492. [PMID: 35886841 PMCID: PMC9323910 DOI: 10.3390/ijms23147492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 12/10/2022] Open
Abstract
Multidrug efflux pumps are critical elements in both intrinsic and acquired antibiotic resistance of bacterial populations. Consequently, most studies regarding these protein machineries focus on this specific phenotype. Nevertheless, different works show that efflux pumps participate in other aspects of bacterial physiology too. Herein, we study the Pseudomonas aeruginosa multidrug efflux pump MexJK. Previous studies, using model strains lacking MexAB-OprM and MexCD-OprJ efflux pumps, support that MexJK can extrude erythromycin, tetracycline, and triclosan. However, the results here reported indicate that this potential increased extrusion, in a mutant overexpressing mexJK, does not alter the antibiotics susceptibility in a wild-type genetic background where all intrinsic multidrug efflux pumps remain functional. Nevertheless, a clear impact on the quorum sensing (QS) response, mainly in the Pqs-dependent QS regulation network and in the expression of Pqs-regulated virulence factors, was observed linked to mexJK overexpression. The production of the siderophore pyoverdine strongly depended on the level of mexJK expression, suggesting that MexJK might participate in P. aeruginosa pyoverdine-dependent iron homeostasis. All in all, the results presented in the current article support that the functions of multidrug efflux pumps, as MexJK, go beyond antibiotic resistance and can modulate other relevant aspects of bacterial physiology.
Collapse
Affiliation(s)
- Rafael Amieva
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- SALUVET Group, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- Programa de Doctorado en Biociencias Moleculares, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - José Luis Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
| | - Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain; (R.A.); (T.G.-G.)
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago 7550000, Chile
| |
Collapse
|
12
|
Diorio-Toth L, Irum S, Potter RF, Wallace MA, Arslan M, Munir T, Andleeb S, Burnham CAD, Dantas G. Genomic Surveillance of Clinical Pseudomonas aeruginosa Isolates Reveals an Additive Effect of Carbapenemase Production on Carbapenem Resistance. Microbiol Spectr 2022; 10:e0076622. [PMID: 35638817 PMCID: PMC9241860 DOI: 10.1128/spectrum.00766-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/01/2022] [Indexed: 01/15/2023] Open
Abstract
Carbapenem resistance in Pseudomonas aeruginosa is increasing globally, and surveillance to define the mechanisms of such resistance in low- and middle-income countries is limited. This study establishes the genotypic mechanisms of β-lactam resistance by whole-genome sequencing (WGS) in 142 P. aeruginosa clinical isolates recovered from three hospitals in Islamabad and Rawalpindi, Pakistan between 2016 and 2017. Isolates were subjected to antimicrobial susceptibility testing (AST) by Kirby-Bauer disk diffusion, and their genomes were assembled from Illumina sequencing data. β-lactam resistance was high, with 46% of isolates resistant to piperacillin-tazobactam, 42% to cefepime, 48% to ceftolozane-tazobactam, and 65% to at least one carbapenem. Twenty-two percent of isolates were resistant to all β-lactams tested. WGS revealed that carbapenem resistance was associated with the acquisition of metallo-β-lactamases (MBLs) or extended-spectrum β-lactamases (ESBLs) in the blaGES, blaVIM, and blaNDM families, and mutations in the porin gene oprD. These resistance determinants were found in globally distributed lineages, including ST235 and ST664, as well as multiple novel STs which have been described in a separate investigation. Analysis of AST results revealed that acquisition of MBLs/ESBLs on top of porin mutations had an additive effect on imipenem resistance, suggesting that there is a selective benefit for clinical isolates to encode multiple resistance determinants to the same drugs. The strong association of these resistance determinants with phylogenetic background displays the utility of WGS for monitoring carbapenem resistance in P. aeruginosa, while the presence of these determinants throughout the phylogenetic tree shows that knowledge of the local epidemiology is crucial for guiding potential treatment of multidrug-resistant P. aeruginosa infections. IMPORTANCE Pseudomonas aeruginosa is associated with serious infections, and treatment can be challenging. Because of this, carbapenems and β-lactam/β-lactamase inhibitor combinations have become critical tools in treating multidrug-resistant (MDR) P. aeruginosa infections, but increasing resistance threatens their efficacy. Here, we used WGS to study the genotypic and phylogenomic patterns of 142 P. aeruginosa isolates from the Potohar region of Pakistan. We sequenced both MDR and antimicrobial susceptible isolates and found that while genotypic and phenotypic patterns of antibiotic resistance correlated with phylogenomic background, populations of MDR P. aeruginosa were found in all major phylogroups. We also found that isolates possessing multiple resistance mechanisms had significantly higher levels of imipenem resistance compared to the isolates with a single resistance mechanism. This study demonstrates the utility of WGS for monitoring patterns of antibiotic resistance in P. aeruginosa and potentially guiding treatment choices based on the local spread of β-lactamase genes.
Collapse
Affiliation(s)
- Luke Diorio-Toth
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sidra Irum
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Robert F. Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Meghan A. Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muhammad Arslan
- Pakistan Institute of Medical Sciences (PIMS), Islamabad, Pakistan
| | - Tehmina Munir
- Department of Microbiology, Army Medical College, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Carey-Ann D. Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Aguilar-Rodea P, Zúñiga G, Cerritos R, Rodríguez-Espino BA, Gomez-Ramirez U, Nolasco-Romero CG, López-Marceliano B, Rodea GE, Mendoza-Elizalde S, Reyes-López A, Olivares Clavijo H, Vigueras Galindo JC, Velázquez-Guadarrama N, Rosas-Pérez I. Nucleotide substitutions in the mexR, nalC and nalD regulator genes of the MexAB-OprM efflux pump are maintained in Pseudomonas aeruginosa genetic lineages. PLoS One 2022; 17:e0266742. [PMID: 35536836 PMCID: PMC9089866 DOI: 10.1371/journal.pone.0266742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa has different resistant mechanisms including the constitutive MexAB-OprM efflux pump. Single nucleotide polymorphisms (SNPs) in the mexR, nalC, and nalD repressors of this efflux pump can contribute to antimicrobial resistance; however, it is unknown whether these changes are mainly related to genetic lineages or environmental pressure. This study identifies SNPs in the mexR, nalC, and nalD genes in clinical and environmental isolates of P. aeruginosa (including high-risk clones). Ninety-one P. aeruginosa strains were classified according to their resistance to antibiotics, typified by multilocus sequencing, and mexR, nalC, and nalD genes sequenced for SNPs identification. The mexAB-oprM transcript expression was determined. The 96.7% of the strains were classified as multidrug resistant. Eight strains produced serine carbapenemases, and 11 strains metallo-β-lactamases. Twenty-three new STs and high-risk clones ST111 and ST233 were identified. SNPs in the mexR, nalC, and nalD genes revealed 27 different haplotypes (patterns). Sixty-two mutational changes were identified, 13 non-synonymous. Haplotype 1 was the most frequent (n = 40), and mainly identified in strains ST1725 (33/40), with 57.5% pan drug resistant strains, 36.5% extensive drug resistant and two strains exhibiting serin-carbapenemases. Haplotype 12 (n = 9) was identified in ST233 and phylogenetically related STs, with 100% of the strains exhibiting XDR and 90% producing metallo-β-lactamases. Haplotype 5 was highly associated with XDR and related to dead when compared to ST1725 and ST233 (RRR 23.34; p = 0.009 and RRR 32.01; p = 0.025). A significant relationship between the mexR-nalC-nalD haplotypes and phylogenetically related STs was observed, suggesting mutational changes in these repressors are highly maintained within genetic lineages. In addition, phylogenetically related STs showed similar resistant profiles; however, the resistance was (likely or partly) attributed to the MexAB-OprM efflux pump in 56% of the strains (only 45.05% showed mexA overtranscription), in the remaining strains the resistance could be attributed to carbapenemases or mechanisms including other pumps, since same SNPs in the repressor genes gave rise to different resistance profiles.
Collapse
Affiliation(s)
- Pamela Aguilar-Rodea
- Posgrado en Ciencias de la Tierra, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Laboratorio de Aerobiología, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Gerardo Zúñiga
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - René Cerritos
- Centro de Investigación en Políticas Población y Salud, Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Benjamín Antonio Rodríguez-Espino
- Laboratorio de Investigación y Diagnóstico en Nefrología y Metabolismo Mineral Óseo, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Uriel Gomez-Ramirez
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Programa de Posgrado en Ciencias Químicobiologicas, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Ciudad de México, México
| | - Carolina G. Nolasco-Romero
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- Programa de Posgrado en Ciencias Químicobiologicas, Escuela Nacional de Ciencias Biológicas. Instituto Politécnico Nacional, Ciudad de México, México
| | - Beatriz López-Marceliano
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Gerardo E. Rodea
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Sandra Mendoza-Elizalde
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Alfonso Reyes-López
- Centro de Estudios Económicos y Sociales en Salud, Dirección de Investigación, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | | | - Juan Carlos Vigueras Galindo
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Norma Velázquez-Guadarrama
- Unidad de Investigación en Enfermedades Infecciosas Área de Genética Bacteriana, Hospital Infantil de México Federico Gómez, Ciudad de México, México
- * E-mail: ,
| | - Irma Rosas-Pérez
- Laboratorio de Aerobiología, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
14
|
Evaluation of Antibiotic Tolerance in Pseudomonas aeruginosa for Aminoglycosides and Its Predicted Gene Regulations through In-Silico Transcriptomic Analysis. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa causes chronic infections, such as cystic fibrosis, endocarditis, bacteremia, and sepsis, which are life-threatening and difficult to treat. The lack of antibiotic response in P. aeruginosa is due to adaptive resistance mechanism, which prevents the entry of antibiotics into the cytosol of the cell to achieve tolerance. Among the different groups of antibiotics, aminoglycosides are used as a parenteral antibiotic for the treatment of P. aeruginosa. This study aimed to determine the kinetics of antibiotic tolerance and gene expression changes in P. aeruginosa exposed to amikacin, gentamicin, and tobramycin. These antibiotics were exposed to P. aeruginosa at their MICs and the experimental setup was monitored for 72 h, followed by the measurement of optical density every 12 h. The growth of P. aeruginosa in the MICs of antibiotics represented the kinetics of antibiotic tolerance in amikacin, gentamicin, and tobramycin. The transcriptomic profile of antibiotic exposed P. aeruginosa PA14 was taken from the Gene Expression Omnibus (GEO), NCBI as microarray datasets. The gene expressions of two datasets were compared by test versus control. Tobramycin-exposed P. aeruginosa failed to develop tolerance in MICs of 0.5 µg/mL, 1 µg/mL, and 1.5 µg/mL, whereas amikacin- and gentamicin-treated P. aeruginosa developed tolerance. This illustrated the superior in vitro response of tobramycin over gentamicin and amikacin. Further, in silico transcriptomic analysis of tobramycin-treated P. aeruginosa resulted in differentially expressed genes (DEGs), enriched in 16s rRNA methyltransferase E, B, and L, alginate biosynthesis genes, and several proteins of the type II secretion system (T2SS) and type III secretion system (T3SS). The regulation of mucA in alginate biosynthesis, and gidB in RNA methyltransferases, suggested an increased antibiotic response and a low probability of developing resistance during tobramycin treatment. The use of tobramycin as a parenteral antibiotic with its synergistic combination might combat P. aeruginosa with increased response.
Collapse
|
15
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
16
|
Ma Z, Xu C, Zhang X, Wang D, Pan X, Liu H, Zhu G, Bai F, Cheng Z, Wu W, Jin Y. A MexR Mutation Which Confers Aztreonam Resistance to Pseudomonas aeruginosa. Front Microbiol 2021; 12:659808. [PMID: 34248872 PMCID: PMC8264304 DOI: 10.3389/fmicb.2021.659808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/04/2022] Open
Abstract
Therapy for Pseudomonas aeruginosa infections is hard due to its high natural and acquirable antibiotic resistance. After colonization in the hosts, P. aeruginosa commonly accumulates genomic mutations which confer them antibiotic resistance and better adaptations to the host environment. Deciphering the mechanisms of antibiotic resistance development in the clinical setting may provide critical insights into the design of effective combinatory antibiotic therapies to treat P. aeruginosa infections. In this work, we demonstrate a resistance mechanism to aztreonam of a clinical isolate (ARP36) in comparison with a sensitive one (CSP18). RNAseq and genomic DNA resequencing were carried out to compare the global transcriptional profiles and in the clinical setting genomic profiles between these two isolates. The results demonstrated that hyperexpression of an efflux pump MexAB-OprM caused by a R70Q substitution in MexR, contributed to the increased resistance to aztreonam in the isolate ARP36. Simulation of mexR of ARP36 by gene editing in CSP18 conferred CSP18 an ARP36-like susceptibility to the aztreonam. The R70Q substitution prevented MexR from binding to the intergenic region between mexR and mexAB-oprM operon, with no impact on its dimerization. The presented experimental results explain for the first time why the clinically relevant R70Q substitution in the MexR derepresses the expression of mexAB-oprM in P. aeruginosa.
Collapse
Affiliation(s)
- Zhenzhen Ma
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Congjuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Dan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huimin Liu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Guangbo Zhu
- Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
17
|
Kotecka K, Kawalek A, Kobylecki K, Bartosik AA. The MarR-Type Regulator PA3458 Is Involved in Osmoadaptation Control in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:ijms22083982. [PMID: 33921535 PMCID: PMC8070244 DOI: 10.3390/ijms22083982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a facultative human pathogen, causing acute and chronic infections that are especially dangerous for immunocompromised patients. The eradication of P. aeruginosa is difficult due to its intrinsic antibiotic resistance mechanisms, high adaptability, and genetic plasticity. The bacterium possesses multilevel regulatory systems engaging a huge repertoire of transcriptional regulators (TRs). Among these, the MarR family encompasses a number of proteins, mainly acting as repressors, which are involved in response to various environmental signals. In this work, we aimed to decipher the role of PA3458, a putative MarR-type TR from P. aeruginosa. Transcriptional profiling of P. aeruginosa PAO1161 overexpressing PA3458 showed changes in the mRNA level of 133 genes; among them, 100 were down-regulated, suggesting the repressor function of PA3458. Concomitantly, ChIP-seq analysis identified more than 300 PA3458 binding sites in P. aeruginosa. The PA3458 regulon encompasses genes involved in stress response, including the PA3459–PA3461 operon, which is divergent to PA3458. This operon encodes an asparagine synthase, a GNAT-family acetyltransferase, and a glutamyl aminopeptidase engaged in the production of N-acetylglutaminylglutamine amide (NAGGN), which is a potent bacterial osmoprotectant. We showed that PA3458-mediated control of PA3459–PA3461 expression is required for the adaptation of P. aeruginosa growth in high osmolarity. Overall, our data indicate that PA3458 plays a role in osmoadaptation control in P. aeruginosa.
Collapse
|
18
|
Laborda P, Alcalde-Rico M, Chini A, Martínez JL, Hernando-Amado S. Discovery of inhibitors of Pseudomonas aeruginosa virulence through the search for natural-like compounds with a dual role as inducers and substrates of efflux pumps. Environ Microbiol 2021; 23:7396-7411. [PMID: 33818002 DOI: 10.1111/1462-2920.15511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/25/2021] [Accepted: 04/03/2021] [Indexed: 12/26/2022]
Abstract
Multidrug efflux pumps are ancient elements encoded in every genome, from bacteria to humans. In bacteria, in addition to antibiotics, efflux pumps extrude a wide range of substrates, including quorum sensing signals, bacterial metabolites, or plant-produced compounds. This indicates that their original functions may differ from their recently acquired role in the extrusion of antibiotics during human infection. Concerning plant-produced compounds, some of them are substrates and inducers of the same efflux pump, suggesting a coordinated plant/bacteria coevolution. Herein we analyse the ability of 1243 compounds from a Natural Product-Like library to induce the expression of P. aeruginosa mexCD-oprJ or mexAB-oprM efflux pumps' encoding genes. We further characterized natural-like compounds that do not trigger antibiotic resistance in P. aeruginosa and that act as virulence inhibitors, choosing those that were not only inducers but substrates of the same efflux pump. Four compounds impair swarming motility, exotoxin secretion through the Type 3 Secretion System (T3SS) and the ability to kill Caenorhabditis elegans, which might be explained by the downregulation of genes encoding flagellum and T3SS. Our results emphasize the possibility of discovering new anti-virulence drugs by screening natural or natural-like libraries for compounds that behave as both, inducers and substrates of efflux pumps.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | - Manuel Alcalde-Rico
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain.,Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Nucleus for Collaborative Research on Bacterial Resistance (MICROB-R), Valparaíso, Chile
| | - Andrea Chini
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | - José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, Madrid, 28049, Spain
| | | |
Collapse
|
19
|
Impey RE, Hawkins DA, Sutton JM, Soares da Costa TP. Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:E623. [PMID: 32961699 PMCID: PMC7558195 DOI: 10.3390/antibiotics9090623] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance.
Collapse
Affiliation(s)
- Rachael E. Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - Daniel A. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - J. Mark Sutton
- National Infection Service, Research and Development Institute, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK;
| | - Tatiana P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| |
Collapse
|
20
|
Xuan G, Lü C, Xu H, Chen Z, Li K, Liu H, Liu H, Xia Y, Xun L. Sulfane Sulfur is an intrinsic signal activating MexR-regulated antibiotic resistance in Pseudomonas aeruginosa. Mol Microbiol 2020; 114:1038-1048. [PMID: 32875640 DOI: 10.1111/mmi.14593] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa PAO1, an opportunistic human pathogen, deploys several strategies to resist antibiotics. It uses multidrug efflux pumps, including the MexAB-OprM pump, for antibiotic resistance, and it also produces hydrogen sulfide (H2 S) that provides some defense against antibiotics. MexR functions as a transcriptional repressor of the mexAB-oprM operon. MexR responds to oxidative stresses caused by antibiotic exposure, and it also displays a growth phase-dependent derepression of the mexAB-oprM operon. However, the intrinsic inducer has not been identified. Here, we report that P. aeruginosa PAO1 produced sulfane sulfur, including glutathione persulfide and inorganic polysulfide, produced from either H2 S oxidation or from L-cysteine metabolism. Sulfane sulfur directly reacted with MexR, forming di- and trisulfide cross-links between two Cys residues, to derepress the mexAB-oprM operon. Levels of cellular sulfane sulfur and mexAB-oprM expression varied during growth, and both reached the maximum during the stationary phase of growth. Thus, self-produced H2 S and sulfane sulfur may facilitate antibiotic resistance via inducing the expression of antibiotic resistance genes.
Collapse
Affiliation(s)
- Guanhua Xuan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huangwei Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Zhigang Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Kai Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, People's Republic of China.,School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Antibiotic Substrate Selectivity of Pseudomonas aeruginosa MexY and MexB Efflux Systems Is Determined by a Goldilocks Affinity. Antimicrob Agents Chemother 2020; 64:AAC.00496-20. [PMID: 32457110 DOI: 10.1128/aac.00496-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance-nodulation-division (RND) efflux pumps are important contributors to bacterial antibiotic resistance. In this study, we combined evolutionary sequence analyses, computational structural modeling, and ligand docking to develop a framework that can explain the known antibiotic substrate selectivity differences between two Pseudomonas aeruginosa RND transporters, MexY and MexB. For efficient efflux, antibiotic substrates must possess a "Goldilocks affinity": binding strong enough to allow interaction with transporter but not so tight as to impede movement through the pump.
Collapse
|
22
|
Shi X, Zhao F, Sun H, Yu X, Zhang C, Liu W, Pan Q, Ren H. Characterization and Complete Genome Analysis of Pseudomonas aeruginosa Bacteriophage vB_PaeP_LP14 Belonging to Genus Litunavirus. Curr Microbiol 2020; 77:2465-2474. [PMID: 32367280 DOI: 10.1007/s00284-020-02011-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
A lytic Pseudomonas aeruginosa phage vB_PaeP_LP14 belonging to the family Podoviridae was isolated from infected mink. The microbiological characterization revealed that LP14 was stable at 40 to 50 °C and stable over a broad range of pH (5 to 12). The latent period was 5 min, and the burst size was 785 pfu/infected cell. The whole-genome sequencing showed that LP14 was a dsDNA virus and has a genome of 73,080 bp. The genome contained 93 predicted open reading frames (ORFs), 17 of which have known functions including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No tRNA genes were identified. BLASTn analysis revealed that phage LP14 had a high-sequence identity (96%) with P. aeruginosa phage YH6. Both morphological characterization and genome annotation indicate that phage LP14 is a memberof the family Podoviridae genus Litunavirus. The study of phage LP14 will provide basic information for further research on treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiaojie Shi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Feiyang Zhao
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Xiaoyan Yu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-tech Co, Ltd, Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China.
| |
Collapse
|
23
|
Novel Inducers of the Expression of Multidrug Efflux Pumps That Trigger Pseudomonas aeruginosa Transient Antibiotic Resistance. Antimicrob Agents Chemother 2019; 63:AAC.01095-19. [PMID: 31501142 DOI: 10.1128/aac.01095-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/03/2019] [Indexed: 01/13/2023] Open
Abstract
The study of the acquisition of antibiotic resistance (AR) has mainly focused on inherited processes, namely, mutations and acquisition of AR genes. However, inducible, noninheritable AR has received less attention, and most information in this field derives from the study of antibiotics as inducers of their associated resistance mechanisms. Less is known about nonantibiotic compounds or situations that can induce AR during infection. Multidrug resistance efflux pumps are a category of AR determinants characterized by the tight regulation of their expression. Their contribution to acquired AR relies in their overexpression. Here, we analyzed potential inducers of the expression of the chromosomally encoded Pseudomonas aeruginosa clinically relevant efflux pumps, MexCD-OprJ and MexAB-OprM. For this purpose, we developed a set of luxCDABE-based P. aeruginosa biosensor strains, which allows the high-throughput analysis of compounds able to modify the expression of these efflux pumps. Using these strains, we analyzed a set of 240 compounds present in Biolog phenotype microarrays. Several inducers of the expression of the genes that encode these efflux pumps were found. The study focused in dequalinium chloride, procaine, and atropine, compounds that can be found in clinical settings. Using real-time PCR, we confirmed that these compounds indeed induce the expression of the mexCD-oprJ operon. In addition, P. aeruginosa presents lower susceptibility to ciprofloxacin (a MexCD-OprJ substrate) when dequalinium chloride, procaine, or atropine are present. This study emphasizes the need to study compounds that can trigger transient AR during antibiotic treatment, a phenotype difficult to discover using classical susceptibility tests.
Collapse
|
24
|
Eichenberger EM, Thaden JT. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics (Basel) 2019; 8:antibiotics8020037. [PMID: 30959901 PMCID: PMC6628318 DOI: 10.3390/antibiotics8020037] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/22/2019] [Accepted: 03/31/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance has increased markedly in gram-negative bacteria over the last two decades, and in many cases has been associated with increased mortality and healthcare costs. The adoption of genotyping and next generation whole genome sequencing of large sets of clinical bacterial isolates has greatly expanded our understanding of how antibiotic resistance develops and transmits among bacteria and between patients. Diverse mechanisms of resistance, including antibiotic degradation, antibiotic target modification, and modulation of permeability through the bacterial membrane have been demonstrated. These fundamental insights into the mechanisms of gram-negative antibiotic resistance have influenced the development of novel antibiotics and treatment practices in highly resistant infections. Here, we review the mechanisms and global epidemiology of antibiotic resistance in some of the most clinically important resistance phenotypes, including carbapenem resistant Enterobacteriaceae, extensively drug resistant (XDR) Pseudomonas aeruginosa, and XDR Acinetobacter baumannii. Understanding the resistance mechanisms and epidemiology of these pathogens is critical for the development of novel antibacterials and for individual treatment decisions, which often involve alternatives to β-lactam antibiotics.
Collapse
Affiliation(s)
- Emily M Eichenberger
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joshua T Thaden
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
25
|
Blanco P, Corona F, Martínez JL. Involvement of the RND efflux pump transporter SmeH in the acquisition of resistance to ceftazidime in Stenotrophomonas maltophilia. Sci Rep 2019; 9:4917. [PMID: 30894628 PMCID: PMC6426872 DOI: 10.1038/s41598-019-41308-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/19/2019] [Indexed: 01/19/2023] Open
Abstract
The emergence of antibiotic resistant Gram-negative bacteria has become a serious global health issue. In this study, we have employed the intrinsically resistant opportunistic pathogen Stenotrophomonas maltophilia as a model to study the mechanisms involved in the acquisition of mutation-driven resistance to antibiotics. To this aim, laboratory experimental evolution studies, followed by whole-genome sequencing, were performed in the presence of the third-generation cephalosporin ceftazidime. Using this approach, we determined that exposure to increasing concentrations of ceftazidime selects high-level resistance in S. maltophilia through a novel mechanism: amino acid substitutions in SmeH, the transporter protein of the SmeGH RND efflux pump. The recreation of these mutants in a wild-type background demonstrated that, in addition to ceftazidime, the existence of these substitutions provides bacteria with cross-resistance to other beta-lactam drugs. This acquired resistance does not impose relevant fitness costs when bacteria grow in the absence of antibiotics. Structural prediction of both amino acid residues points that the observed resistance phenotype could be driven by changes in substrate access and recognition.
Collapse
Affiliation(s)
- Paula Blanco
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | - Fernando Corona
- Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | | |
Collapse
|
26
|
Horna G, López M, Guerra H, Saénz Y, Ruiz J. Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep 2018; 8:16463. [PMID: 30405166 PMCID: PMC6220265 DOI: 10.1038/s41598-018-34694-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/24/2018] [Indexed: 01/31/2023] Open
Abstract
MexAB-OprM and MexEF-OprN are Pseudomonas aeruginosa efflux pumps involved in the development of antibiotic resistance. Several studies developed with laboratory strains or using a few clinical isolates have reported that the regulation system of MexEF-OprN is involved in the final levels of MexAB-OprM expression. Therefore, this study was aimed to determine the interplay between MexAB-OprM and MexEF-OprN in 90 out of 190 P. aeruginosa clinical isolates with an efflux pump overexpression phenotype. Regarding oprD, 33% (30/90) of isolates displayed relevant modifications (RM) defined as frameshift or premature stop, both related to carbapenem resistance. On the other hand, 33% of the isolates displayed RM in nalC, nalD or mexR, which were significantly associated with multidrug resistance (MDR), non-susceptibility to carbapenems, OprD alterations and strong biofilm production. Meanwhile, the RM in MexS were associated with presence of pigment (p = 0.004). Otherwise, when all the regulators were analysed together, the association between RM in MexAB-OprM regulators and MDR was only significant (p = 0.039) when mexS was the wild type. These data show the modulatory effect of MexEF-OprN on MexAB-OprM in a clinical population of P. aeruginosa. Further studies may contribute to design of novel molecules acting on this interplay to fight against antimicrobial resistance.
Collapse
Affiliation(s)
- Gertrudis Horna
- Barcelona Institute for Global Health, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - María López
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Humberto Guerra
- Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru
| | - Yolanda Saénz
- Área de Microbiología Molecular, Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Joaquim Ruiz
- Barcelona Institute for Global Health, ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
27
|
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers. Antimicrob Agents Chemother 2018; 62:AAC.01263-18. [PMID: 30126958 DOI: 10.1128/aac.01263-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/10/2018] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance efflux pumps frequently present low levels of basal expression. However, antibiotic-resistant mutants that overexpress these resistance determinants are selected during infection. In addition, increased expression of efflux pumps can be induced by environmental signals/cues, which can lead to situations of transient antibiotic resistance. In this study, we have applied a novel high-throughput methodology in order to identify inducers able to trigger the expression of the Stenotrophomonas maltophilia SmeVWX and SmeYZ efflux pumps. To that end, bioreporters in which the expression of the yellow fluorescent protein (YFP) is linked to the activity of either smeVWX or smeYZ promoters were developed and used for the screening of potential inducers of the expression of these efflux pumps using Biolog phenotype microarrays. YFP production was also measured by flow cytometry, and the levels of expression of smeV and smeY in the presence of a set of selected compounds were also determined by real-time reverse transcription-PCR (RT-PCR). The expression of smeVWX was induced by iodoacetate, clioquinol, and selenite, while boric acid, erythromycin, chloramphenicol, and lincomycin triggered smeYZ expression. The susceptibility to antibiotics that are known substrates of the efflux pumps decreased in the presence of the inducers. However, the analyzed multidrug efflux systems did not contribute to S. maltophilia resistance to the studied inducers. To sum up, the use of fluorescent bioreporters in combination with Biolog plates is a valuable tool for identifying inducers of the expression of bacterial multidrug resistance efflux pumps, and likely of other bacterial systems whose expression is regulated in response to signals/cues.
Collapse
|
28
|
Aminoglycoside-inducible expression of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: Involvement of the envelope stress-responsive AmgRS two-component system. PLoS One 2018; 13:e0205036. [PMID: 30289929 PMCID: PMC6173428 DOI: 10.1371/journal.pone.0205036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Exposure of P. aeruginosa to the aminoglycoside (AG) paromomycin (PAR) induced expression of the PA3720-armR locus and the mexAB-oprM multidrug efflux operon that AmgR controls, although PAR induction of mexAB-oprM was independent of armR. Multiple AGs promoted mexAB-oprM expression and this was lost in the absence of the amgRS locus encoding an aminoglycoside-activated envelope stress-responsive 2-component system (TCS). Purified AmgR bound to the mexAB-oprM promoter region consistent with this response regulator directly regulating expression of the efflux operon. The thiol-active reagent, diamide, which, like AGs, promotes protein aggregation and cytoplasmic membrane damage also promoted AmgRS-dependent mexAB-oprM expression, a clear indication that the MexAB-OprM efflux system is recruited in response to membrane perturbation and/or circumstances that lead to this. Despite the AG and diamide induction of mexAB-oprM, however, MexAB-OprM does not appear to contribute to resistance to these agents.
Collapse
|
29
|
Ramaswamy VK, Vargiu AV, Malloci G, Dreier J, Ruggerone P. Molecular Determinants of the Promiscuity of MexB and MexY Multidrug Transporters of Pseudomonas aeruginosa. Front Microbiol 2018; 9:1144. [PMID: 29910784 PMCID: PMC5992780 DOI: 10.3389/fmicb.2018.01144] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Secondary multidrug transporters of the resistance-nodulation-cell division (RND) superfamily contribute crucially to antibiotic resistance in Gram-negative bacteria. Compared to the most studied transporter AcrB of Escherichia coli, little is known about the molecular determinants of distinct polyspecificities of the most important RND transporters MexB and MexY of Pseudomonas aeruginosa. In an effort to add knowledge on this topic, we performed an exhaustive atomic-level comparison of the main putative recognition sites (access and deep binding pockets) in these two Mex transporters. We identified an underlying link between some structural, chemical and dynamical features of the binding pockets and the physicochemical nature of the corresponding substrates recognized by either one or both pumps. In particular, mosaic-like lipophilic and electrostatic surfaces of the binding pockets provide for both proteins several multifunctional sites for diffuse binding of diverse substrates. Specific lipophilicity signatures of the weakly conserved deep pocket suggest a key role of this site as a selectivity filter as in Acr transporters. Finally, the different dynamics of the bottom-loop in MexB and MexY support its possible role in binding of large substrates. Our work represents the first comparative study of the major RND transporters in P. aeruginosa and also the first structure-based study of MexY, for which no experimental structure is available yet.
Collapse
Affiliation(s)
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Italy
| | - Jürg Dreier
- Basilea Pharmaceutica International Ltd., Basel, Switzerland
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Italy
| |
Collapse
|
30
|
Takrami SR, Ranji N, Hakimi F. New Mutations in Ciprofloxacin Resistant Strains of Pseudomonas aeruginosa Isolated from Guilan Province, Northern Iran. MOLECULAR GENETICS, MICROBIOLOGY AND VIROLOGY 2018. [DOI: 10.3103/s089141681704005x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Suresh M, Nithya N, Jayasree PR, Vimal KP, Manish Kumar PR. Mutational analyses of regulatory genes, mexR, nalC, nalD and mexZ of mexAB-oprM and mexXY operons, in efflux pump hyperexpressing multidrug-resistant clinical isolates of Pseudomonas aeruginosa. World J Microbiol Biotechnol 2018; 34:83. [DOI: 10.1007/s11274-018-2465-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
|
32
|
Gonzalez MR, Ducret V, Leoni S, Perron K. Pseudomonas aeruginosa zinc homeostasis: Key issues for an opportunistic pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:722-733. [PMID: 29410128 DOI: 10.1016/j.bbagrm.2018.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/26/2018] [Indexed: 12/13/2022]
Abstract
Zinc is an essential trace element for almost all living organisms. In the opportunistic bacterial pathogen Pseudomonas aeruginosa, zinc has been shown to play an important role in virulence, in colonization of the host organism and has also been shown to be involved in antibiotic resistance. P. aeruginosa possesses numerous systems enabling it to thrive in zinc-depleted conditions as well as high-zinc situations, two environments that are encountered during human infection. These capabilities account for its pathogenic strength. The main aim of this review is to focus on zinc homeostasis in P. aeruginosa and the genetic regulation of the systems involved. The interconnection with virulence, as well as the mechanism of co-regulation between metal and antibiotic resistance, are of prime interest for understanding the molecular mechanisms allowing P. aeruginosa to switch from its existence as a common environmental bacterium to a severe opportunistic pathogen. This article is part of a Special Issue entitled: Dynamic gene expression, edited by Prof. Patrick Viollier.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva and University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
33
|
Culture-independent analysis of liver abscess using nanopore sequencing. PLoS One 2018; 13:e0190853. [PMID: 29315344 PMCID: PMC5760015 DOI: 10.1371/journal.pone.0190853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
The identification of microbial species has depended predominantly upon culture-based techniques. However, the difficulty with which types of organisms are cultured implies that the grown species may be overrepresented by both cultivation and plate counts. In recent years, culture-independent analysis using high-throughput sequencing has been advocated for use as a point-of-care diagnostic tool. Although it offers a rapid and unbiased survey to characterize the pathogens in clinical specimens, its accuracy is reduced by the high level of contamination of human DNA. In this paper, we propose using a culture-independent analysis for a Klebsiella pneumoniae clinical strain within a liver abscess using nanopore sequencing. Owing to the highly-contaminated cell population within a liver abscess, we managed to reduce the confounding effects of human DNA through the use of DNase and differential centrifugation. Genomic DNA was sequenced through the use of Nanopore MinION sequencer and analyzed using a suite of bioinformatics approaches. K. pneumoniae was successfully identified along with antibiotic-resistant genes. Our results indicate that, by integrating real-time nanopore sequencing and bioinformatics software, real-time pathogen identification in a liver abscess can be achieved.
Collapse
|
34
|
Ben Nejma M, Sioud O, Mastouri M. Quinolone-resistant clinical strains of Pseudomonas aeruginosa isolated from University Hospital in Tunisia. 3 Biotech 2018; 8:1. [PMID: 29201587 DOI: 10.1007/s13205-017-1019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 10/31/2017] [Indexed: 01/24/2023] Open
Abstract
In this study, we examined mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes of Pseudomonas aeruginosa (P. aeruginosa) clinical isolates collected from patients hospitalized in University Hospital of Monastir, Tunisia. A total of 81 P. aeruginosa strains, obtained from clinical specimens, were included in the present study. Isolates were tested against 11 different antibiotics by a disk diffusion method. Minimum inhibitory concentrations (MICs) of ciprofloxacin were evaluated by E test method. The gyrA and parC sequences genes amplified by polymerase chain reaction (PCR) were sequenced. The highest resistance rates were found for ciprofloxacin (100%), gentamicin (96%) and ticarcillin (93%). The lower resistance rates were obtained for imipenem (74%) and ceftazidime (70%). Notably, 54% of isolates resistant to ciprofloxacin were determined to be multi-drug resistant. The investigation of mutations in the nucleotide sequences of the gyrA and parC genes showed that 77% of isolates have a single mutation in both gyrA (Thr-83 → Ile) and parC (Ser-87 → Leu). The emergence of ciprofloxacin resistance in clinical P. aeruginosa requires the establishment of appropriate antibiotherapy strategies in order to prescribe the most effective antibiotic treatment for preventing the emergence of multi-drug-resistant (MDR) P. aeruginosa strains.
Collapse
Affiliation(s)
- Mouna Ben Nejma
- Laboratoire des Maladies Transmissibles et substances biologiquement actives « LR99ES27», Faculté de Pharmacie de Monastir, Avenue Avicenne, 5000 Monastir, Tunisie
| | - Olfa Sioud
- Laboratoire des Maladies Transmissibles et substances biologiquement actives « LR99ES27», Faculté de Pharmacie de Monastir, Avenue Avicenne, 5000 Monastir, Tunisie
| | - Maha Mastouri
- Laboratoire des Maladies Transmissibles et substances biologiquement actives « LR99ES27», Faculté de Pharmacie de Monastir, Avenue Avicenne, 5000 Monastir, Tunisie
| |
Collapse
|
35
|
Arul D, Balasubramani G, Balasubramanian V, Natarajan T, Perumal P. Antibacterial efficacy of silver nanoparticles and ethyl acetate's metabolites of the potent halophilic (marine) bacterium, Bacillus cereus A30 on multidrug resistant bacteria. Pathog Glob Health 2017; 111:367-382. [PMID: 29072532 PMCID: PMC5694890 DOI: 10.1080/20477724.2017.1390829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Bacteria are generally responsible for the prevalence of several diseases and pathogenic bacteria are showing increasing resistance to different antibacterials. During the present study an extremophilic bacterium-A30 isolated from the marine waters was characterized and evaluated against four multi-drug resistant (MDR) pathogens, viz; Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The sensitivity pattern of the selected pathogens was tested with 31 antibiotics. Among the 47 marine microbial extracts tested on 4-MDR pathogens viz: Methicillin-resistant Staphylococcus aureus (MRSA), E. coli, K. pneumoniae and P. aeruginosa, only our strain A30 strain exhibited highest efficacy. This strain was subsequently subjected to 16S rDNA sequencing which confirmed its allocation as Bacillus cereus. Silver nanoparticle (AgNPs) synthesis and ethyl acetate extraction were performed using the supernatant of B. cereus. The synthesized AgNPs were characterized by UV-Visible, Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), Field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Zeta potential analyses. The presence of functional groups and 13 bioactive components in the ethyl acetate extract were analyzed using FT-IR and gas chromatography-mass spectrometry (GC-MS). The synthesized of AgNPs and the ethyl acetate extract showed preponderant activity against P. aeruginosa and MRSA, respectively. The effects of AgNPs were significant when compared to ethyl acetate extract. Therefore, the halophilic bacterium, B. cereus mediated AgNPs could provide antibacterial applications in the biomedical industries.
Collapse
Affiliation(s)
| | | | | | | | - Pachiappan Perumal
- Department of Biotechnology, School of Biosciences, Periyar University, Salem, India
| |
Collapse
|
36
|
Haenni M, Bour M, Châtre P, Madec JY, Plésiat P, Jeannot K. Resistance of Animal Strains of Pseudomonas aeruginosa to Carbapenems. Front Microbiol 2017; 8:1847. [PMID: 29033910 PMCID: PMC5626926 DOI: 10.3389/fmicb.2017.01847] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/11/2017] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are major antibiotics reserved to human medicine. This study aimed to investigate the mechanisms of carbapenem resistance of a selection of Pseudomonas aeruginosa veterinary strains from the French network Resapath. Thirty (5.7%) imipenem and/or meropenem non-susceptible P. aeruginosa of canine (n = 24), feline (n = 5), or bovine (n = 1) origin were identified in a large collection of 527 veterinary strains gathered by the Resapath. These resistant isolates belonged to 25 MultiLocus Sequence Types (MLST), of which 17 (68%) are shared with clinical (human) strains, such as high risk clones ST233 and ST395. Interestingly, none of the veterinary strains produced a carbapenemase, and only six of them (20%) harbored deletions or insertion sequence (IS) disrupting the porin OprD gene. The remaining 24 strains contained mutations or IS in various loci resulting in down-regulation of gene oprD coupled with upregulation of efflux system CzcCBA (n = 3; activation of sensor kinase CzcS ± CopS), MexEF-OprN (n = 4; alteration of oxido reductase MexS), MexXY (n = 8; activation of two-component system ParRS), or MexAB-OprM (n = 12; alteration of regulator MexR, NalC ± NalD). Two efflux pumps were co-produced simultaneously in three mutants. Finally, in 11 out of 12 strains displaying an intact porin OprD, derepression of MexAB-OprM accounted for a decreased susceptibility to meropenem relative to imipenem. Though not treated by carbapenems, animals thus represent a reservoir of multidrug resistant P. aeruginosa strains potentially able to contaminate fragile outpatients.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Maxime Bour
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| | - Pierre Châtre
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES-Université de LyonLyon, France
| | - Patrick Plésiat
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| | - Katy Jeannot
- Centre National de Référence de la Résistance aux Antibiotiques, Centre Hospitalier Universitaire de BesançonBesançon, France
| |
Collapse
|
37
|
The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor. PLoS One 2017; 12:e0184255. [PMID: 28898293 PMCID: PMC5595328 DOI: 10.1371/journal.pone.0184255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The genome sequence of V. cholerae O1 Biovar Eltor strain N16961 has revealed a putative antibiotic resistance (var) regulon that is predicted to encode a transcriptional activator (VarR), which is divergently transcribed relative to the putative resistance genes for both a metallo-β-lactamase (VarG) and an antibiotic efflux-pump (VarABCDEF). We sought to test whether these genes could confer antibiotic resistance and are organised as a regulon under the control of VarR. VarG was overexpressed and purified and shown to have β-lactamase activity against penicillins, cephalosporins and carbapenems, having the highest activity against meropenem. The expression of VarABCDEF in the Escherichia coli (ΔacrAB) strain KAM3 conferred resistance to a range of drugs, but most significant resistance was to the macrolide spiramycin. A gel-shift analysis was used to determine if VarR bound to the promoter regions of the resistance genes. Consistent with the regulation of these resistance genes, VarR binds to three distinct intergenic regions, varRG, varGA and varBC located upstream and adjacent to varG, varA and varC, respectively. VarR can act as a repressor at the varRG promoter region; whilst this repression was relieved upon addition of β-lactams, these did not dissociate the VarR/varRG-DNA complex, indicating that the de-repression of varR by β-lactams is indirect. Considering that the genomic arrangement of VarR-VarG is strikingly similar to that of AmpR-AmpC system, it is possible that V. cholerae has evolved a system for resistance to the newer β-lactams that would prove more beneficial to the bacterium in light of current selective pressures.
Collapse
|
38
|
Tian ZX, Yi XX, Cho A, O’Gara F, Wang YP. CpxR Activates MexAB-OprM Efflux Pump Expression and Enhances Antibiotic Resistance in Both Laboratory and Clinical nalB-Type Isolates of Pseudomonas aeruginosa. PLoS Pathog 2016; 12:e1005932. [PMID: 27736975 PMCID: PMC5063474 DOI: 10.1371/journal.ppat.1005932] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of mexAB-oprM and enhances drug resistance, in the absence or presence of MexR, in ofloxacin-cefsulodin-resistant isolates generated in the laboratory. Furthermore, CpxR was also important in the mexR-defective clinical isolates. The newly identified regulatory linkage between CpxR and the MexAB-OprM efflux pump highlights the presence of a complex regulatory network modulating multidrug resistance in P. aeruginosa. Pseudomonas aeruginosa is one of the major pathogens associated with cystic fibrosis and multidrug resistant P. aeruginosa has been listed as the Top 10 antibiotic resistance threats in the US CDC report (http://www.cdc.gov/drugresistance/biggest_threats.html). Drug efflux systems play a major role in multidrug resistance in P. aeruginosa. Currently, the regulatory networks modulating efflux pump expression are not fully understood. Here, we demonstrate that CpxR, a potentially multifaceted regulator, is directly involved in regulation of expression of MexAB-OprM, the major efflux pump in P. aeruginosa. The newly identified activator CpxR plays an important role in modulating multidrug resistance in nalB-type laboratory and clinical isolates. This work provides insight into the complex regulatory networks modulating multidrug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Zhe-Xian Tian
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (ZXT); (YPW)
| | - Xue-Xian Yi
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Anna Cho
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Fergal O’Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (ZXT); (YPW)
| |
Collapse
|
39
|
Hartmann EM, Hickey R, Hsu T, Betancourt Román CM, Chen J, Schwager R, Kline J, Brown GZ, Halden RU, Huttenhower C, Green JL. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9807-15. [PMID: 27599587 PMCID: PMC5032049 DOI: 10.1021/acs.est.6b00262] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.
Collapse
Affiliation(s)
- Erica M. Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, and Energy Studies in Buildings
Laboratory, University of Oregon, Eugene, Oregon 97403, United States
- Phone: 847-467-4528. Fax: 847-491-4011.
E-mail: . Corresponding
author address: 2145 Sheridan Rd, Evanston, IL 60208
| | - Roxana Hickey
- Biology and the Built Environment Center, Institute of Ecology and Evolution, and Energy Studies in Buildings
Laboratory, University of Oregon, Eugene, Oregon 97403, United States
| | - Tiffany Hsu
- Department
of Biostatistics, Harvard T.H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Clarisse M. Betancourt Román
- Biology and the Built Environment Center, Institute of Ecology and Evolution, and Energy Studies in Buildings
Laboratory, University of Oregon, Eugene, Oregon 97403, United States
| | - Jing Chen
- Biodesign
Center for Environmental Security and Global Security Initiative,
The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Randall Schwager
- Department
of Biostatistics, Harvard T.H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
| | - Jeff Kline
- Biology and the Built Environment Center, Institute of Ecology and Evolution, and Energy Studies in Buildings
Laboratory, University of Oregon, Eugene, Oregon 97403, United States
| | - G. Z. Brown
- Biology and the Built Environment Center, Institute of Ecology and Evolution, and Energy Studies in Buildings
Laboratory, University of Oregon, Eugene, Oregon 97403, United States
| | - Rolf U. Halden
- Biodesign
Center for Environmental Security and Global Security Initiative,
The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Curtis Huttenhower
- Department
of Biostatistics, Harvard T.H. Chan School
of Public Health, Boston, Massachusetts 02115, United States
- Broad Institute
of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Jessica L. Green
- Biology and the Built Environment Center, Institute of Ecology and Evolution, and Energy Studies in Buildings
Laboratory, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
40
|
Pourakbari B, Yaslianifard S, Yaslianifard S, Mahmoudi S, Keshavarz-Valian S, Mamishi S. Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:249-256. [PMID: 28210464 PMCID: PMC5296939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Pseudomonas aeruginosa (PA) is one of the most important causes of nosocomial infections and has an intrinsic resistance to many antibiotics. Among all the resistance-nodulation-division (RND) pumps of P. aeruginosa, MexAB-OprM is the first efflux pump found to target multiple classes of antibiotics. This study was aimed to evaluate the expression level of genes expressing MexAB-OprM in clinical isolates of P. aeruginosa. MATERIALS AND METHODS In this study, 45 P. aeruginosa strains were isolated from patients admitted to Children's Medical Center Hospital, an Iranian referral hospital. Disk diffusion and Minimum Inhibitory Concentration (MIC) methods were used for determination of the patterns of resistance to antibiotics. Real-time PCR was used to investigate the expression level of genes of MexAB-OprM efflux pump. RESULTS Among 45 resistant PA isolates, the frequency of genes overexpression was as follows: MexA (n=25, 55.5%), MexB (n=24, 53.3%) and OprM (n=16, 35.5%). In addition, in 28 strains (62%) overexpression was observed in one of the studied three genes of MexAB-OprM efflux pump. CONCLUSION In our study 28 isolates (62%) had increased expression level of efflux pumps genes, MexAB-OprM. Although the efflux pumps play important roles in increasing the resistance towards different antibiotics but the role of other agents and mechanisms in evolution of resistance should not be ignored. Since the concomitant overproduction of other Mex efflux systems might have additive effects on antibiotic resistance, the co-expressing of a multicomponent efflux pump is recommended. On the other hand, the concomitant overproduction of two Mex pumps might have additive effects on resistance to antibiotic. Therefore co-expressing of Mex efflux systems is recommended.
Collapse
Affiliation(s)
- Babak Pourakbari
- Pediatrics Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Yaslianifard
- Department of Microbiology, Islamic Azad University (Damghan Branch), Damghan, Iran
| | - Somaye Yaslianifard
- Department of Microbiology and Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Shima Mahmoudi
- Pediatrics Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Setareh Mamishi
- Pediatrics Infectious Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran,Department of Infectious Diseases, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Setareh Mamishi, MD, Pediatrics Infectious Diseases Research Center, Children Medical Center Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Phone: +98 21 66428996, Fax: +98 21 6642 8996, E-mail:
| |
Collapse
|
41
|
Anandapadamanaban M, Pilstål R, Andresen C, Trewhella J, Moche M, Wallner B, Sunnerhagen M. Mutation-Induced Population Shift in the MexR Conformational Ensemble Disengages DNA Binding: A Novel Mechanism for MarR Family Derepression. Structure 2016; 24:1311-1321. [DOI: 10.1016/j.str.2016.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/20/2016] [Accepted: 06/05/2016] [Indexed: 12/01/2022]
|
42
|
Hernando-Amado S, Blanco P, Alcalde-Rico M, Corona F, Reales-Calderón JA, Sánchez MB, Martínez JL. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat 2016; 28:13-27. [PMID: 27620952 DOI: 10.1016/j.drup.2016.06.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jose A Reales-Calderón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - María B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
43
|
Sommer LM, Alanin MC, Marvig RL, Nielsen KG, Høiby N, von Buchwald C, Molin S, Johansen HK. Bacterial evolution in PCD and CF patients follows the same mutational steps. Sci Rep 2016; 6:28732. [PMID: 27349973 PMCID: PMC4923847 DOI: 10.1038/srep28732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/08/2016] [Indexed: 11/25/2022] Open
Abstract
Infections with Pseudomonas aeruginosa increase morbidity in primary ciliary dyskinesia (PCD) and cystic fibrosis (CF) patients. Both diseases are associated with a defect of the mucociliary clearance; in PCD caused by non-functional cilia, in CF by changed mucus. Whole genome sequencing of P. aeruginosa isolates from CF patients has shown that persistence of clonal lineages in the airways is facilitated by genetic adaptation. It is unknown whether this also applies to P. aeruginosa airway infections in PCD. We compared within-host evolution of P. aeruginosa in PCD and CF patients. P. aeruginosa isolates from 12 PCD patients were whole genome sequenced and phenotypically characterised. Ten out of 12 PCD patients were infected with persisting clone types. We identified convergent evolution in eight genes, which are also important for persistent infections in CF airways: genes related to antibiotic resistance, quorum sensing, motility, type III secretion and mucoidity. We document phenotypic and genotypic parallelism in the evolution of P. aeruginosa across infected patients with different genetic disorders. The parallel changes and convergent adaptation and evolution may be caused by similar selective forces such as the intensive antibiotic treatment and the inflammatory response, which drive the evolutionary processes.
Collapse
Affiliation(s)
- Lea M Sommer
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Mikkel Christian Alanin
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Rasmus L Marvig
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Kim Gjerum Nielsen
- Danish PCD Centre, Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark.,Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Christian von Buchwald
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Helle Krogh Johansen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
44
|
Premature Termination of MexR Leads to Overexpression of MexAB-OprM Efflux Pump in Pseudomonas aeruginosa in a Tertiary Referral Hospital in India. PLoS One 2016; 11:e0149156. [PMID: 26866484 PMCID: PMC4750933 DOI: 10.1371/journal.pone.0149156] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/26/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives The present study was undertaken to investigate the mutations that are present in mexR gene of multidrug resistant (MDR) isolates of Pseudomonas aeruginosa collected from a tertiary referral hospital of north east India. Methods 76 MDR clinical isolates of P. aeruginosa were obtained from the patients who were admitted to or attended the clinics of Silchar medical college and hospital. They were screened phenotypically for the presence of efflux pump activity by an inhibitor based method. Acquired resistance mechanisms were detected by multiplex PCR. Real time PCR was performed to study the expression of mexA gene of MexAB-OprM efflux pump in isolates with increase efflux pump activity. mexR gene of the isolates with overexpressed MexAB-OprM efflux pump was amplified, sequenced and analysed. Results Out of 76 MDR isolates, 24 were found to exhibit efflux pump activity phenotypically against ciprofloxacin and meropenem. Acquired resistance mechanisms were absent in 11 of them and among those isolates, 8 of them overexpressed MexAB-OprM. All the 8 isolates possessed mutation in mexR gene. 11 transversions, 4 transitions, 2 deletion mutations and 2 insertion mutations were found in all the isolates. However, the most significant observation was the formation of a termination codon at 35th position which resulted in the termination of the polypeptide and leads to overexpression of the MexAB-OprM efflux pump. Conclusions This study highlighted emergence of a novel mutation which is probably associated with multi drug resistance. Therefore, further investigations and actions are needed to prevent or at least hold back the expansion and emergence of newer mutations in nosocomial pathogens which may compromise future treatment options.
Collapse
|
45
|
Antimicrobial consumption and resistance in five Gram-negative bacterial species in a hospital from 2003 to 2011. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2015; 48:647-54. [DOI: 10.1016/j.jmii.2014.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/27/2013] [Accepted: 04/15/2014] [Indexed: 11/18/2022]
|
46
|
Riou M, Avrain L, Carbonnelle S, El Garch F, Pirnay JP, De Vos D, Plésiat P, Tulkens PM, Van Bambeke F. Increase of efflux-mediated resistance in Pseudomonas aeruginosa during antibiotic treatment in patients suffering from nosocomial pneumonia. Int J Antimicrob Agents 2015; 47:77-83. [PMID: 26691019 DOI: 10.1016/j.ijantimicag.2015.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 11/17/2022]
Abstract
Increases in antibiotic minimum inhibitory concentrations (MICs) for Pseudomonas aeruginosa during treatment are commonly observed but their relationship to efflux overexpression remains poorly documented. In this study, pairs of first [at time of diagnosis (D0)] and last [during treatment (DL)] P. aeruginosa isolates were obtained from patients treated for suspicion of nosocomial pneumonia. Pair clonality was determined by repetitive extragenic palindromic PCR. Overexpression of mexA and mexX was assessed by real-time PCR, and expression of mexC and mexE was assessed by PCR. Antibiotics received by patients before and during treatment were determined from clinical charts. For D0 isolates, 24% were from patients without antibiotics for 1 month and 64% were negative for mexA/mexX overexpression and mexC/mexE expression. For DL isolates, approximately one-half of the patients had received piperacillin/tazobactam, amikacin, meropenem and/or cefepime, and 17% had received ciprofloxacin (alone or in combination); 38% did not show changes in expression of the four genes, whereas 38% showed increased expression for one gene (mainly mexA or mexX), 19% for two genes (mainly mexA and mexX) and 5% for three or four genes. Isolates overexpressing mexA or mexX had median MICs above EUCAST clinical resistance breakpoints for ciprofloxacin, cefepime and meropenem, or for ciprofloxacin, amikacin, cefepime and meropenem, respectively. mexA or mexX overexpression was statistically significantly associated with patients' exposure to ciprofloxacin and meropenem or cefepime and meropenem, respectively. Overexpression of genes encoding antibiotic transporters in P. aeruginosa during treatment is frequent and is associated with increases in MICs above EUCAST clinical susceptibility breakpoints.
Collapse
Affiliation(s)
- Mickaël Riou
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Sylviane Carbonnelle
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Farid El Garch
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium; Laboratoire de microbiologie, CHU Dinant-Godinne UCL Namur, Yvoir, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Neder-over-Heembeek, Brussels, Belgium
| | - Patrick Plésiat
- Laboratoire de bactériologie, Faculté de médecine, Université de Franche-Comté, Besançon, France
| | - Paul M Tulkens
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire & Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
47
|
Zgurskaya HI, López CA, Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect Dis 2015; 1:512-522. [PMID: 26925460 DOI: 10.1021/acsinfecdis.5b00097] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This paper summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed.
Collapse
Affiliation(s)
- Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
48
|
Solé M, Fàbrega A, Cobos-Trigueros N, Zamorano L, Ferrer-Navarro M, Ballesté-Delpierre C, Reustle A, Castro P, Nicolás JM, Oliver A, Martínez JA, Vila J. In vivo evolution of resistance of Pseudomonas aeruginosa strains isolated from patients admitted to an intensive care unit: mechanisms of resistance and antimicrobial exposure. J Antimicrob Chemother 2015; 70:3004-13. [PMID: 26260130 DOI: 10.1093/jac/dkv228] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/04/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The main objective of this study was to investigate the relationship among the in vivo acquisition of antimicrobial resistance in Pseudomonas aeruginosa clinical isolates, the underlying molecular mechanisms and previous exposure to antipseudomonal agents. METHODS PFGE was used to study the molecular relatedness of the strains. The MICs of ceftazidime, cefepime, piperacillin/tazobactam, imipenem, meropenem, ciprofloxacin and amikacin were determined. Outer membrane protein profiles were assessed to study OprD expression. RT-PCR was performed to analyse ampC, mexB, mexD, mexF and mexY expression. The presence of mutations was analysed through DNA sequencing. RESULTS We collected 17 clonally related paired isolates [including first positive samples (A) and those with MICs increased ≥4-fold (B)]. Most B isolates with increased MICs of imipenem, meropenem and ceftazidime became resistant to these drugs. The most prevalent resistance mechanisms detected were OprD loss (65%), mexB overexpression (53%), ampC derepression (29%), quinolone target gene mutations (24%) and increased mexY expression (24%). Five (29%) B isolates developed multidrug resistance. Meropenem was the most frequently (71%) received treatment, explaining the high prevalence of oprD mutations and likely mexB overexpression. Previous exposure to ceftazidime showed a higher impact on selection of increased MICs than previous exposure to piperacillin/tazobactam. CONCLUSIONS Stepwise acquisition of resistance has a critical impact on the resistance phenotypes of P. aeruginosa, leading to a complex scenario for finding effective antimicrobial regimens. In the clinical setting, meropenem seems to be the most frequent driver of multidrug resistance development, while piperacillin/tazobactam, in contrast to ceftazidime, seems to be the β-lactam least associated with the selection of resistance mechanisms.
Collapse
Affiliation(s)
- Mar Solé
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anna Fàbrega
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Laura Zamorano
- University Hospital Son Espases, Palma de Mallorca, Spain
| | - Mario Ferrer-Navarro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Clara Ballesté-Delpierre
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Anna Reustle
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Pedro Castro
- Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Antonio Oliver
- University Hospital Son Espases, Palma de Mallorca, Spain
| | | | - Jordi Vila
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1016] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
50
|
Zgurskaya HI, Weeks JW, Ntreh AT, Nickels LM, Wolloscheck D. Mechanism of coupling drug transport reactions located in two different membranes. Front Microbiol 2015; 6:100. [PMID: 25759685 PMCID: PMC4338810 DOI: 10.3389/fmicb.2015.00100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of the cell. Some transporters, together with periplasmic membrane fusion proteins (MFPs) and outer membrane channels, assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protects bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates) to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Jon W Weeks
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Abigail T Ntreh
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Logan M Nickels
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| |
Collapse
|