1
|
Heidary M, Shirani M, Moradi M, Goudarzi M, Pouriran R, Rezaeian T, Khoshnood S. Tuberculosis challenges: Resistance, co-infection, diagnosis, and treatment. Eur J Microbiol Immunol (Bp) 2022; 12:1-17. [PMID: 35420996 PMCID: PMC9036649 DOI: 10.1556/1886.2021.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/10/2022] [Indexed: 01/23/2023] Open
Abstract
Early diagnosis of tuberculosis (TB), followed by effective treatment, is the cornerstone of global TB control efforts. An estimated 3 million cases of TB remain undetected each year. Early detection and effective management of TB can prevent severe disease and reduce mortality and transmission. Intrinsic and acquired drug resistance of Mycobacterium tuberculosis (MTB) severely restricted the anti-TB therapeutic options, and public health policies are required to preserve the new medications to treat TB. In addition, TB and HIV frequently accelerate the progression of each other, and one disease can enhance the other effect. Overall, TB-HIV co-infections show an adverse bidirectional interaction. For HIV-infected patients, the risk of developing TB disease is approximately 22 times higher than for persons with a protective immune response. Analysis of the current TB challenges is critical to meet the goals of the end TB strategy and can go a long way in eradicating the disease. It provides opportunities for global TB control and demonstrates the efforts required to accelerate eliminating TB. This review will discuss the main challenges of the TB era, including resistance, co-infection, diagnosis, and treatment.
Collapse
Affiliation(s)
- Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Maryam Shirani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Melika Moradi
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Rezaeian
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Kim SY, Kim DH, Moon SM, Song JY, Huh HJ, Lee NY, Shin SJ, Koh WJ, Jhun BW. Association between 16S rRNA gene mutations and susceptibility to amikacin in Mycobacterium avium Complex and Mycobacterium abscessus clinical isolates. Sci Rep 2021; 11:6108. [PMID: 33731862 PMCID: PMC7969740 DOI: 10.1038/s41598-021-85721-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/05/2021] [Indexed: 11/20/2022] Open
Abstract
We evaluated the association between 16S rRNA gene (rrs) mutations and susceptibility in clinical isolates of amikacin-resistant nontuberculous mycobacteria (NTM) in NTM-pulmonary disease (PD) patients. Susceptibility was retested for 134 amikacin-resistant isolates (minimum inhibitory concentration [MIC] ≥ 64 µg/ml) from 86 patients. Amikacin resistance was reconfirmed in 102 NTM isolates from 62 patients with either Mycobacterium avium complex-PD (MAC-PD) (n = 54) or M. abscessus-PD (n = 8). MICs and rrs mutations were evaluated for 318 single colonies from these isolates. For the 54 MAC-PD patients, rrs mutations were present in 34 isolates (63%), comprising all 31 isolates with amikacin MICs ≥ 128 µg/ml, but only three of 23 isolates with an MIC = 64 µg/ml. For the eight M. abscessus-PD patients, all amikacin-resistant (MIC ≥ 64 µg/ml) isolates had rrs mutations. In amikacin-resistant isolates, the A1408G mutation (n = 29) was most common. Two novel mutations, C1496T and T1498A, were also identified. The culture conversion rate did not differ by amikacin MIC. Overall, all high-level and 13% (3/23) of low-level amikacin-resistant MAC isolates had rrs mutations whereas mutations were present in all amikacin-resistant M. abscessus isolates. These findings are valuable for managing MAC- and M. abscessus-PD and suggest the importance of phenotypic and genotypic susceptibility testing.
Collapse
Affiliation(s)
- Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Dae Hun Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Seong Mi Moon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Ju Yeun Song
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, South Korea.,Institute for Immunology and Immunological Disease, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Irwon-ro 81, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
3
|
Sanz-García F, Anoz-Carbonell E, Pérez-Herrán E, Martín C, Lucía A, Rodrigues L, Aínsa JA. Mycobacterial Aminoglycoside Acetyltransferases: A Little of Drug Resistance, and a Lot of Other Roles. Front Microbiol 2019; 10:46. [PMID: 30761098 PMCID: PMC6363676 DOI: 10.3389/fmicb.2019.00046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/11/2019] [Indexed: 12/11/2022] Open
Abstract
Aminoglycoside acetyltransferases are important determinants of resistance to aminoglycoside antibiotics in most bacterial genera. In mycobacteria, however, aminoglycoside acetyltransferases contribute only partially to aminoglycoside susceptibility since they are related with low level resistance to these antibiotics (while high level aminoglycoside resistance is due to mutations in the ribosome). Instead, aminoglycoside acetyltransferases contribute to other bacterial functions, and this can explain its widespread presence along species of genus Mycobacterium. This review is focused on two mycobacterial aminoglycoside acetyltransferase enzymes. First, the aminoglycoside 2'-N-acetyltransferase [AAC(2')], which was identified as a determinant of weak aminoglycoside resistance in M. fortuitum, and later found to be widespread in most mycobacterial species; AAC(2') enzymes have been associated with resistance to cell wall degradative enzymes, and bactericidal mode of action of aminoglycosides. Second, the Eis aminoglycoside acetyltransferase, which was identified originally as a virulence determinant in M. tuberculosis (enhanced intracellular survival); Eis protein in fact controls production of pro-inflammatory cytokines and other pathways. The relation of Eis with aminoglycoside susceptibility was found after the years, and reaches clinical significance only in M. tuberculosis isolates resistant to the second-line drug kanamycin. Given the role of AAC(2') and Eis proteins in mycobacterial biology, inhibitory molecules have been identified, more abundantly in case of Eis. In conclusion, AAC(2') and Eis have evolved from a marginal role as potential drug resistance mechanisms into a promising future as drug targets.
Collapse
Affiliation(s)
- Fernando Sanz-García
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Zaragoza, Spain
| | - Esther Pérez-Herrán
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Carlos Martín
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ainhoa Lucía
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Liliana Rodrigues
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Fundación Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain
| | - José A Aínsa
- Departamento de Microbiología, Facultad de Medicina - Instituto Universitario de Investigación de Biocomputación y Física de Sistemas Complejos, Instituto de Investigación Sanitaria Aragón, Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM. New Insights in to the Intrinsic and Acquired Drug Resistance Mechanisms in Mycobacteria. Front Microbiol 2017; 8:681. [PMID: 28487675 PMCID: PMC5403904 DOI: 10.3389/fmicb.2017.00681] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/04/2017] [Indexed: 01/25/2023] Open
Abstract
Infectious diseases caused by clinically important Mycobacteria continue to be an important public health problem worldwide primarily due to emergence of drug resistance crisis. In recent years, the control of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (MTB), is hampered by the emergence of multidrug resistance (MDR), defined as resistance to at least isoniazid (INH) and rifampicin (RIF), two key drugs in the treatment of the disease. Despite the availability of curative anti-TB therapy, inappropriate and inadequate treatment has allowed MTB to acquire resistance to the most important anti-TB drugs. Likewise, for most mycobacteria other than MTB, the outcome of drug treatment is poor and is likely related to the high levels of antibiotic resistance. Thus, a better knowledge of the underlying mechanisms of drug resistance in mycobacteria could aid not only to select the best therapeutic options but also to develop novel drugs that can overwhelm the existing resistance mechanisms. In this article, we review the distinctive mechanisms of antibiotic resistance in mycobacteria.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of TabrizTabriz, Iran
| | - Mona Ghazi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical SciencesTehran, Iran
| | - Abbas A. Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Mohammad M. Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
- Thoracic Research Center, Imam Khomeini Hospital, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|
5
|
Green KD, Pricer RE, Stewart MN, Garneau-Tsodikova S. Comparative Study of Eis-like Enzymes from Pathogenic and Nonpathogenic Bacteria. ACS Infect Dis 2015; 1:272-83. [PMID: 27622743 DOI: 10.1021/acsinfecdis.5b00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Antibiotic resistance is a growing problem worldwide. Of particular importance is the resistance of Mycobacterium tuberculosis (Mtb) to currently available antibiotics used in the treatment of infected patients. Up-regulation of an aminoglycoside (AG) acetyltransferase, the enhanced intracellular survival (Eis) protein of Mtb (Eis_Mtb), is responsible for resistance to the second-line injectable drug kanamycin A in a number of Mtb clinical isolates. This acetyltransferase is known to modify AGs, not at a single position, as usual for this type of enzyme, but at multiple amine sites. We identified, using in silico techniques, 22 homologues from a wide variety of bacteria, that we then cloned, purified, and biochemically studied. From the selected Eis homologues, 7 showed the ability to modify AGs to various degrees and displayed both similarities and differences when compared to Eis_Mtb. In addition, an inhibitor proved to be active against all homologues tested. Our findings show that this family of acetyltransferase enzymes exists in both mycobacteria and non-mycobacteria and in both pathogenic and nonpathogenic species. The bacterial strains described herein should be monitored for rising resistance rates to AGs.
Collapse
Affiliation(s)
- Keith D. Green
- College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | | | | | | |
Collapse
|
6
|
Kumar R, Srivastava A, Kumari B, Kumar M. Prediction of β-lactamase and its class by Chou’s pseudo-amino acid composition and support vector machine. J Theor Biol 2015; 365:96-103. [DOI: 10.1016/j.jtbi.2014.10.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 01/01/2023]
|
7
|
Tsai SH, Shen GH, Lin CH, Liau JR, Lai HC, Hu ST. Mab_3168c, a putative acetyltransferase, enhances adherence, intracellular survival and antimicrobial resistance of Mycobacterium abscessus. PLoS One 2013; 8:e67563. [PMID: 23840740 PMCID: PMC3695912 DOI: 10.1371/journal.pone.0067563] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/22/2013] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium abscessus is a non-tuberculous mycobacterium. It can cause diseases in both immunosuppressed and immunocompetent patients and is highly resistant to multiple antimicrobial agents. M. abscessus displays two different colony morphology types: smooth and rough morphotypes. Cells with a rough morphotype are more virulent. The purpose of this study was to identify genes responsible for M. abscessus morphotype switching. With transposon mutagenesis, a mutant with a Tn5 inserted into the promoter region of the mab_3168c gene was found to switch its colonies from a rough to a smooth morphotype. This mutant had a higher sliding motility but a lower ability to form biofilms, aggregate in culture, and survive inside macrophages. Results of bioinformatic analyses suggest that the putative Mab_3168c protein is a member of the GCN5-related N-acetyltransferase superfamily. This prediction was supported by the demonstration that the mab_3168c gene conferred M. abscessus and M. smegmatis cells resistance to amikacin. The multiple roles of mab_3168c suggest that it could be a potential target for development of therapeutic regimens to treat diseases caused by M. abscessus.
Collapse
Affiliation(s)
- Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Gwan-Han Shen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Veterans General Hospital, Taichung, Taiwan, R.O.C.
- Institute of Respiratory Therapy, China Medical University, Taichung, Taiwan, R.O.C.
- Institute of Nursing Care, Hungkuang University, Taichung, Taiwan, R.O.C.
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Jiue-Ru Liau
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan, R.O.C.
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Taoyuan, Taiwan, R.O.C.
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan, R.O.C.
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.
- * E-mail:
| |
Collapse
|
8
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
9
|
Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 2012; 15:149-61. [DOI: 10.1016/j.drup.2012.04.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Barrett OJ, Pushechnikov A, Wu M, Disney MD. Studying aminoglycoside modification by the acetyltransferase class of resistance-causing enzymes via microarray. Carbohydr Res 2008; 343:2924-31. [PMID: 18774127 PMCID: PMC2783256 DOI: 10.1016/j.carres.2008.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 08/03/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Aminoglycosides are broad-spectrum antibacterials to which some bacteria have acquired resistance. The most common mode of resistance to aminoglycosides is enzymatic modification of the drug by different classes of enzymes including acetyltransferases (AACs). Thus, the modification of aminoglycosides by AAC(2') from Mycobacterium tuberculosis and AAC(3) from Escherichia coli was studied using aminoglycoside microarrays. Results show that both enzymes modify their substrates displayed on an array surface in a manner that mimics their relative levels of modification in solution. Because aminoglycosides that are modified by resistance-causing enzymes have reduced affinities for binding their therapeutic target, the bacterial rRNA aminoacyl-tRNA site (A-site), arrays were probed for binding to a fluorescently labeled oligonucleotide mimic of the A-site after modification. A decrease in binding was observed when aminoglycosides were modified by AAC(3). In contrast, a decrease in binding of the A-site is not observed when aminoglycosides are modified by AAC(2'). Interestingly, these effects mirror the biological functions of the enzymes: the AAC(3) used in this study is known to confer aminoglycoside resistance, while the AAC(2') is chromosomally encoded and unlikely to play a role in resistance. These studies lay a direct foundation for studying resistance to aminoglycosides and can also have more broad applications in identifying and studying non-aminoglycoside carbohydrates or proteins as substrates for acetyltransferase enzymes.
Collapse
Affiliation(s)
- Olivia J. Barrett
- Department of Chemistry and The Center for Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, NY 14260
| | - Alexei Pushechnikov
- Department of Chemistry and The Center for Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, NY 14260
| | - Meilan Wu
- Department of Chemistry and The Center for Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, NY 14260
| | - Matthew D. Disney
- Department of Chemistry and The Center for Excellence in Bioinformatics and Life Sciences, University at Buffalo, 657 Natural Sciences Complex, Buffalo, NY 14260
| |
Collapse
|
11
|
Limbut W, Loyprasert S, Thammakhet C, Thavarungkul P, Tuantranont A, Asawatreratanakul P, Limsakul C, Wongkittisuksa B, Kanatharana P. Microfluidic conductimetric bioreactor. Biosens Bioelectron 2007; 22:3064-71. [PMID: 17289366 DOI: 10.1016/j.bios.2007.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 12/19/2006] [Accepted: 01/10/2007] [Indexed: 01/09/2023]
Abstract
A microfluidic conductimetric bioreactor has been developed. Enzyme was immobilized in the microfluidic channel on poly-dimethylsiloxane (PDMS) surface via covalent binding method. The detection unit consisted of two gold electrodes and a laboratory-built conductimetric transducer to monitor the increase in the conductivity of the solution due to the change of the charges generated by the enzyme-substrate catalytic reaction. Urea-urease was used as a representative analyte-enzyme system. Under optimum conditions urea could be determined with a detection limit of 0.09 mM and linearity in the range of 0.1-10 mM (r=0.9944). The immobilized urease on the microchannel chip provided good stability (>30 days of operation time) and good repeatability with an R.S.D. lower than 2.3%. Good agreement was obtained when urea concentrations of human serum samples determined by the microfluidic flow injection conductimetric bioreactor system were compared to those obtained using the Berthelot reaction (P<0.05). After prolong use the immobilized enzyme could be removed from the PDMS microchannel chip enabling new active enzyme to be immobilized and the chip to be reused.
Collapse
Affiliation(s)
- Warakorn Limbut
- Biophysics Research Unit of Biosensors and Biocurrents, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Struble JM, Gill RT. Reverse engineering antibiotic sensitivity in a multidrug-resistant Pseudomonas aeruginosa isolate. Antimicrob Agents Chemother 2006; 50:2506-15. [PMID: 16801433 PMCID: PMC1489790 DOI: 10.1128/aac.01640-05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a pervasive and growing clinical problem. We describe an evaluation of a reverse engineering approach for identifying cellular mechanisms and genes that could be manipulated to increase antibiotic sensitivity in a resistant Pseudomonas aeruginosa isolate. We began by chemically mutating a broadly resistant isolate of P. aeruginosa and screening for mutants with increased sensitivity to the aminoglycoside amikacin, followed by performing whole-genome transcriptional profiling of the mutant and wild-type strains to characterize the global changes occurring as a result of the mutations. We then performed a series of assays to characterize the mechanisms involved in the increased sensitivity of the mutant strains. We report four primary results: (i) mutations that increase sensitivity occur at a high frequency (10(-2)) relative to the frequency of those that increase resistance (10(-5) to 10(-10)) and occur at a frequency 10(4) higher than the frequency of a single point mutation; (ii) transcriptional profiles were altered in sensitive mutants, resulting in overall expression patterns more similar to those of the sensitive laboratory strain PAO1 than those of the parental resistant strain; (iii) genes found from transcriptional profiling had the more dramatic changes in expression-encoded functions related to cellular membrane permeability and aminoglycoside modification, both of which are known aminoglycoside resistance mechanisms; and finally, (iv) even though we did not identify the specific sites of mutation, several different follow-up MIC assays suggested that the mutations responsible for increased sensitivity differed between sensitive mutants.
Collapse
Affiliation(s)
- Julie M Struble
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
13
|
Manfredi R, Nanetti A, Valentini R, Ferri M, Morelli S, Calza L. Epidemiological, clinical and therapeutic features of AIDS-related Mycobacterium kansasii infection during the HIV pandemic: an 11-year follow-up study. HIV Med 2005; 5:431-6. [PMID: 15544696 DOI: 10.1111/j.1468-1293.2004.00249.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Optimal diagnosis and timely treatment of atypical mycobacteriosis, and especially Mycobacterium kansasii disease, remain a serious challenge for clinicians engaged in the management of the immunocompromised host. METHODS AND RESULTS From more than 2700 hospitalizations (over 1800 patients) attributable to HIV-associated disorders over an 11-year period, 12 patients were found to have a confirmed M. kansasii infection. This reflects the recent reduction in the frequency of this HIV-related complication, which virtually disappeared after the introduction of potent antiretroviral combinations in 1996. In the early 1990s, the lack of effective antiretroviral regimens made frequent the association with AIDS, a mean CD4 lymphocyte count of nearly 20 cells/microL, and an extremely variable chest X-ray features. The recent detection of a further case was attributable to late recognition of very advanced HIV disease, complicated by multiple opportunistic disorders. CONCLUSIONS Mycobacterium kansasii respiratory or disseminated infection continues to occur, and poses diagnostic problems in terms of late or missed identification as a result of slow culture and frequently concurrent opportunistic disease. Serious therapeutic difficulties also arise from the unpredictable in vitro antimicrobial susceptibility profile of these organisms, and from the need to start an effective combination therapy that does not interfere with other medications as soon as possible.
Collapse
Affiliation(s)
- R Manfredi
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Bologna, 'Alma Mater Studiorum', Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Franklin K, Clarke AJ. Overexpression and characterization of the chromosomal aminoglycoside 2'-N-acetyltransferase of Providencia stuartii. Antimicrob Agents Chemother 2001; 45:2238-44. [PMID: 11451680 PMCID: PMC90637 DOI: 10.1128/aac.45.8.2238-2244.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene coding for aminoglycoside 2'-N-acetyltransferase Ia [AAC(2')-Ia] from Providencia stuartii was amplified by PCR and cloned. The resulting construct, pACKF2, was transferred into Escherichia coli for overexpression of AAC(2')-Ia as a fusion protein with an N-terminal hexa-His tag. The fusion protein was isolated and purified by affinity chromatography on Ni(2+)-nitrilotriacetic acid agarose and gel permeation chromatography on Superdex 75. Comparison of the specific activity of this enzyme with that of its enterokinase-digested derivative lacking the His tag indicated that the presence of the extra N-terminal peptide does not affect activity. The temperature and pH optima for activity of both forms of the 2'-N-acetyltransferase were 20 degrees C and pH 6.0, respectively, while the enzymes were most stable at 15 degrees C and pH 8.1. The Michaelis-Menten kinetic parameters for AAC(2')-Ia at 20 degrees C and pH 6.0 were determined using a series of aminoglycoside antibiotics possessing a 2'-amino group and a concentration of acetyl coenzyme A fixed at 10 times its K(m) value of 8.75 microM. Under these conditions, gentamicin was determined to be the best substrate for the enzyme in terms of both K(m) and k(cat)/K(m) values, whereas neomycin was the poorest. Comparison of the kinetic parameters obtained with the different aminoglycosides indicated that their hexopyranosyl residues provided the most important binding sites for AAC(2')-Ia activity, while the enzyme exhibits greater tolerance further from these sites. No correlation was found between these kinetic parameters and MICs determined for P. stuartii PR50 expressing the 2'-N-acetyltransferase, suggesting that its true in vivo function is not as a resistance factor.
Collapse
Affiliation(s)
- K Franklin
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|