1
|
Albac S, Anzala N, Bonnot D, Mirfendereski H, Chavanet P, Croisier D. Efficacy of ceftaroline and rifampin, alone or combined, in a rat model of methicillin-resistant Staphylococcus epidermidis osteomyelitis without implant. Microbiol Spectr 2023; 11:e0015323. [PMID: 37791959 PMCID: PMC10715034 DOI: 10.1128/spectrum.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/19/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Methicillin-resistant Staphylococcus epidermidis (MRSE) contributes to a high percentage of orthopedic infections, and their treatment represents a huge challenge. The present study aimed to evaluate the efficacy of ceftaroline alone or combined with rifampin in a rat MRSE osteomyelitis model and the bone penetration of ceftaroline. A ceftaroline monotherapy showed a significant bacterial reduction in infected bones after a 7-day period of treatment. The combination ceftaroline plus rifampin leveraged rifampin's bactericidal activity, shortening the duration of positive culture in infected animals. These results suggest that ceftaroline and rifampin combination therapy could represent a valuable therapeutic option for human MRSE osteomyelitis and deserves further preclinical and clinical evaluation.
Collapse
Affiliation(s)
| | | | | | - H. Mirfendereski
- Université de Poitiers, Poitiers, France
- Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - P. Chavanet
- Vivexia, Dijon, France
- Département d’Infectiologie, Centre Hospitalier Universitaire, Dijon, France
| | | |
Collapse
|
2
|
Afzal M, Vijay AK, Stapleton F, Willcox M. The Relationship between Ciprofloxacin Resistance and Genotypic Changes in S. aureus Ocular Isolates. Pathogens 2022; 11:1354. [PMID: 36422605 PMCID: PMC9695201 DOI: 10.3390/pathogens11111354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 07/28/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a frequent cause of eye infections with some isolates exhibiting increased antimicrobial resistance to commonly prescribed antibiotics. The increasing resistance of ocular S. aureus to ciprofloxacin is a serious concern as it is a commonly used as a first line antibiotic to treat S. aureus keratitis. This study aimed to analyse genetic mutations in the genomes of 25 S. aureus isolates from infections or non-infectious ocular conditions from the USA and Australia and their relationship to ciprofloxacin resistance. Overall, 14/25 isolates were phenotypically resistant to ciprofloxacin. All isolates were analyzed for mutations in their quinolone resistance-determining regions (QRDRs) and efflux pump genes. Of the fourteen resistant isolates, 9/14 had ciprofloxacin resistance mutations within their QRDRs, at codons 80 or 84 within the parC subunit and codon 84 within the gyrA subunit of DNA gyrase. The highest resistance (MIC = 2560 μg/mL) was associated with two SNPs in both gyrA and parC. Other resistant isolates (3/14) had mutations within norB. Mutations in genes of other efflux pumps and their regulator (norA, norC, mepA, mdeA, sepA, sdrM, mepR, arlR, and arlS) or the DNA mismatch repair (MMR) system (mutL and mutS) were not associated with increased resistance to ciprofloxacin. The functional mutations associated with ciprofloxacin resistance in QRDRs (gyrA and parC) and norB suggests that these are the most common reasons for ciprofloxacin resistance in ocular isolates. Novel SNPs of gyrA Glu-88-Leu, Asn-860-Thr and Thr-845-Ala and IIe-855-Met, identified in this study, need further gene knock out/in studies to better understand their effect on ciprofloxacin resistance.
Collapse
|
3
|
Aguilar-Colomer A, Colilla M, Izquierdo-Barba I, Jiménez-Jiménez C, Mahillo I, Esteband J, Vallet-Regí M. Impact of the antibiotic-cargo from MSNs on Gram-positive and Gram-negative bacterial biofilms. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2021; 311:110681. [PMID: 33137170 DOI: 10.1016/j.micromeso.2010.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are promising drug nanocarriers for infection treatment. Many investigations have focused on evaluating the capacity of MSNs to encapsulate antibiotics and release them in a controlled fashion. However, little attention has been paid to determine the antibiotic doses released from these nanosystems that are effective against biofilm during the entire release time. Herein, we report a systematic and quantitative study of the direct effect of the antibiotic-cargo released from MSNs on Gram-positive and Gram-negative bacterial biofilms. Levofloxacin (LVX), gentamicin (GM) and rifampin (RIF) were separately loaded into pure-silica and amino-modified MSNs. This accounts for the versatility of these nanosystems since they were able to load and release different antibiotic molecules of diverse chemical nature. Biological activity curves of the released antibiotic were determined for both bacterial strains, which allowed to calculate the active doses that are effective against bacterial biofilms. Furthermore, in vitro biocompatibility assays on osteoblast-like cells were carried out at different periods of times. Albeit a slight decrease in cell viability was observed at the very initial stage, due to the initial burst antibiotic release, the biocompatibility of these nanosystems is evidenced since a recovery of cell viability was achieved after 72 h of assay. Biological activity curves for GM released from MSNs exhibited sustained patterns and antibiotic doses in the 2-6 μg/mL range up to 100 h, which were not enough to eradicate biofilm. In the case of LVX and RIF first-order kinetics featuring an initial burst effect followed by a sustained release above the MIC up to 96 h were observed. Such doses reduced by 99.9% bacterial biofilm and remained active up to 72 h with no emergence of bacterial resistance. This pioneering research opens up promising expectations in the design of personalized MSNs-based nanotherapies to treat chronic bone infection.
Collapse
Affiliation(s)
- Anna Aguilar-Colomer
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Montserrat Colilla
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Isabel Izquierdo-Barba
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Carla Jiménez-Jiménez
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Ignacio Mahillo
- Unidad de Bioestadística y Epidemiología. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Jaime Esteband
- Unidad de Microbiología Clínica. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| |
Collapse
|
4
|
Aguilar-Colomer A, Colilla M, Izquierdo-Barba I, Jiménez-Jiménez C, Mahillo I, Esteband J, Vallet-Regí M. Impact of the antibiotic-cargo from MSNs on Gram-positive and Gram-negative bacterial biofilms. MICROPOROUS AND MESOPOROUS MATERIALS : THE OFFICIAL JOURNAL OF THE INTERNATIONAL ZEOLITE ASSOCIATION 2021; 311:110681. [PMID: 33137170 PMCID: PMC7116279 DOI: 10.1016/j.micromeso.2020.110681] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are promising drug nanocarriers for infection treatment. Many investigations have focused on evaluating the capacity of MSNs to encapsulate antibiotics and release them in a controlled fashion. However, little attention has been paid to determine the antibiotic doses released from these nanosystems that are effective against biofilm during the entire release time. Herein, we report a systematic and quantitative study of the direct effect of the antibiotic-cargo released from MSNs on Gram-positive and Gram-negative bacterial biofilms. Levofloxacin (LVX), gentamicin (GM) and rifampin (RIF) were separately loaded into pure-silica and amino-modified MSNs. This accounts for the versatility of these nanosystems since they were able to load and release different antibiotic molecules of diverse chemical nature. Biological activity curves of the released antibiotic were determined for both bacterial strains, which allowed to calculate the active doses that are effective against bacterial biofilms. Furthermore, in vitro biocompatibility assays on osteoblast-like cells were carried out at different periods of times. Albeit a slight decrease in cell viability was observed at the very initial stage, due to the initial burst antibiotic release, the biocompatibility of these nanosystems is evidenced since a recovery of cell viability was achieved after 72 h of assay. Biological activity curves for GM released from MSNs exhibited sustained patterns and antibiotic doses in the 2-6 μg/mL range up to 100 h, which were not enough to eradicate biofilm. In the case of LVX and RIF first-order kinetics featuring an initial burst effect followed by a sustained release above the MIC up to 96 h were observed. Such doses reduced by 99.9% bacterial biofilm and remained active up to 72 h with no emergence of bacterial resistance. This pioneering research opens up promising expectations in the design of personalized MSNs-based nanotherapies to treat chronic bone infection.
Collapse
Affiliation(s)
- Anna Aguilar-Colomer
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Montserrat Colilla
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Isabel Izquierdo-Barba
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Carla Jiménez-Jiménez
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| | - Ignacio Mahillo
- Unidad de Bioestadística y Epidemiología. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - Jaime Esteband
- Unidad de Microbiología Clínica. IIS-Fundación Jiménez Díaz. Av. De los Reyes Católicos, 2, 28040 Madrid, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, U.D Química Inorgánica y Bioinorgánica. Universidad Complutense de Madrid. Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red. CIBER-BBN, Madrid, Spain
| |
Collapse
|
5
|
Hammad A, Abutaleb NS, Elsebaei MM, Norvil AB, Alswah M, Ali AO, Abdel-Aleem JA, Alattar A, Bayoumi SA, Gowher H, Seleem MN, Mayhoub AS. From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria. J Med Chem 2019; 62:7998-8010. [PMID: 31369262 DOI: 10.1021/acs.jmedchem.9b00720] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The narrow antibacterial spectrum of phenylthiazole antibiotics was expanded by replacing central thiazole with a pyrazole ring while maintaining its other pharmacophoric features. The most promising derivative, compound 23, was more potent than vancomycin against multidrug-resistant Gram-positive clinical isolates, including vancomycin- and linezolid-resistant methicillin-resistant Staphylococcus aureus (MRSA), with a minimum inhibitory concentration (MIC) value as low as 0.5 μg/mL. Moreover, compound 23 was superior to imipenem and meropenem against highly pathogenic carbapenem-resistant strains, such as Acinetobacter baumannii, Klebsiella pneumoniae, and Escherichia coli. In addition to the notable biofilm inhibition activity, compound 23 outperformed both vancomycin and kanamycin in reducing the intracellular burden of both Gram-positive and Gram-negative pathogenic bacteria. Compound 23 cleared 90% of intracellular MRSA and 98% of Salmonella enteritidis at 2× the MIC. Moreover, preliminary pharmacokinetic investigations indicated that this class of novel antibacterial compounds is highly metabolically stable with a biological half-life of 10.5 h, suggesting a once-daily dosing regimen.
Collapse
Affiliation(s)
- Ali Hammad
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | | | - Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | | | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | - Alsagher O Ali
- Division of Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine , South Valley University , Qena , 83523 , Egypt
| | - Jelan A Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy , Assiut University , Assiut , 71515 , Egypt
| | - Abdelaziz Alattar
- Department of Analytical Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt
| | - Sammar A Bayoumi
- Department of Pharmaceutics, College of Pharmacy , Heliopolis University , Cairo , 11777 , Egypt
| | | | - Mohamed N Seleem
- Purdue Institute for Inflammation, Immunology, and Infectious Diseases , West Lafayette , Indiana 47907 , United States
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy , Al-Azhar University , Cairo 11884 , Egypt.,University of Science and Technology, Nanoscience Program , Zewail City of Science and Technology , October Gardens, 6th of October , Giza 12578 , Egypt
| |
Collapse
|
6
|
Elsebaei MM, Mohammad H, Samir A, Abutaleb NS, Norvil AB, Michie AR, Moustafa MM, Samy H, Gowher H, Seleem MN, Mayhoub AS. Lipophilic efficient phenylthiazoles with potent undecaprenyl pyrophosphatase inhibitory activity. Eur J Med Chem 2019; 175:49-62. [PMID: 31075608 DOI: 10.1016/j.ejmech.2019.04.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/26/2022]
Abstract
Antibiotic resistance remains a pressing medical challenge for which novel antibacterial agents are urgently needed. The phenylthiazole scaffold represents a promising platform to develop novel antibacterial agents for drug-resistant infections. However, enhancing the physicochemical profile of this class of compounds remains a challenging endeavor to address to successfully translate these molecules into novel antibacterial agents in the clinic. We extended our understanding of the SAR of the phenylthiazoles' lipophilic moiety by exploring its ability to accommodate a hydrophilic group or a smaller sized hetero-ring with the objective of enhancing the physicochemical properties of this class of novel antimicrobials. Overall, the 2-thienyl derivative 20 and the hydroxyl-containing derivative 31 emerged as the most promising antibacterial agents inhibiting growth of drug-resistant Staphylococcus aureus at a concentration as low as 1 μg/mL. Remarkably, compound 20 suppressed bacterial undecaprenyl pyrophosphatase (UppP), the molecular target of the phenylthiazole compounds, in a sub nano-molar concentration range (almost 20,000 times more potent than the lead compounds 1a and 1b). Compound 31 possessed the most balanced antibacterial and physicochemical profile. The compound exhibited rapid bactericidal activity against S. aureus, and successfully cleared intracellular S. aureus within infected macrophages. Furthermore, insertion of the hydroxyl group enhanced the aqueous solubility of 31 by more than 50-fold relative to the first-generation lead 1c.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Amgad Samir
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Allison B Norvil
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Amie R Michie
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA
| | - Mahmoud M Moustafa
- Department of Pharmaceutical Chemistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Hebatallah Samy
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt
| | - Humaira Gowher
- Department of Biochemistry, College of Agriculture, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN, 47907, USA.
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt; University of Science and Technology, Nanoscience Program, Zewail City of Science and Technology, October Gardens, 6th of October, Giza, 12578, Egypt.
| |
Collapse
|
7
|
Szafrańska AK, Junker V, Steglich M, Nübel U. Rapid cell division of Staphylococcus aureus during colonization of the human nose. BMC Genomics 2019; 20:229. [PMID: 30894139 PMCID: PMC6425579 DOI: 10.1186/s12864-019-5604-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an important opportunistic pathogen and a commensal bacterium, thriving in the nasal cavities of 20% of the human population. Little is known about the dynamics of asymptomatic colonization and the occasional transition to infectious disease. RESULTS In this study, we inferred that S. aureus cells replicate every one to three hours on average while colonizing the human nose, based on two independent lines of genomic evidence. First, we collected nasal swab samples from human subjects, extracted and sequenced metagenomic DNA, and analyzed the distribution of sequencing coverage along the staphylococcal chromosome. Calibration of this data by comparison to a laboratory culture enabled measuring S. aureus cell division rates in nasal samples. Second, we applied mutation accumulation experiments paired with genome sequencing to measure spontaneous mutation rates at a genome scale. Relating these mutation rates to annual evolutionary rates confirmed that nasal S. aureus continuously pass several thousand cell divisions per year when averaged over large, globally distributed populations and over many years, corresponding to generation times of less than two hours. CONCLUSIONS The cell division rates we determined were higher than the fastest documented rates during fulminant disease progression (in a mouse model of systemic infection) and much higher than those previously measured in expectorated sputum from cystic fibrosis patients. This paper supplies absolute in-vivo generation times for an important bacterial commensal, indicating that colonization of the human upper respiratory tract is characterized by a highly dynamic equilibrium between bacterial growth and removal.
Collapse
Affiliation(s)
- Anna K Szafrańska
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Vera Junker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF), Braunschweig site, Germany
| | - Ulrich Nübel
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany. .,German Center for Infection Research (DZIF), Braunschweig site, Germany. .,Braunschweig Integrated Centre of Systems Biology (BRICS), Technical University Braunschweig, Braunschweig, Germany.
| |
Collapse
|
8
|
Hagras M, Hegazy YA, Elkabbany AH, Mohammad H, Ghiaty A, Abdelghany TM, Seleem MN, Mayhoub AS. Biphenylthiazole antibiotics with an oxadiazole linker: An approach to improve physicochemical properties and oral bioavailability. Eur J Med Chem 2017; 143:1448-1456. [PMID: 29126738 DOI: 10.1016/j.ejmech.2017.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/01/2017] [Accepted: 10/15/2017] [Indexed: 01/24/2023]
Abstract
A new series of oxadiazolylbiphenylthiazoles was prepared with the objective of improving the limited solubility of first-generation derivatives while maintaining antibacterial activity against drug-resistant Staphylococcus aureus. Studying the structure-activity relationship at the cationic part provided the piperazine-1-carboximidamide derivative 27 with a MIC (MRSA) value of 1.1 μg/mL, bactericidal mode of action, and a 50-fold improvement in aqueous solubility. Additionally, 27 exhibited a wider safety margin against mammalian cells, and most importantly, a significant improvement in oral bioavailability.
Collapse
Affiliation(s)
- Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Youssef A Hegazy
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN, USA
| | - Amr H Elkabbany
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN, USA
| | - Adel Ghiaty
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University, College of Veterinary Medicine, West Lafayette, IN, USA; Purdue Institute for Inflammation, Immunology, and Infectious Diseases, West Lafayette, IN, USA
| | - Abdelrahman S Mayhoub
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy, Al-Azhar University, Cairo 11884, Egypt; Biomedical Sciences, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| |
Collapse
|
9
|
Tang HJ, Lai CC, Hsueh PR, Chen CC, Wu KY, Lin YC, Zhang CC, Weng TC, Chiu YH, Toh HS, Chiang SR, Yu WL, Ko WC, Chuang YC. RNA polymerase B subunit gene mutations in biofilm-embedded methicillin-resistant Staphylococcus aureus following rifampin treatment. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 49:394-401. [DOI: 10.1016/j.jmii.2015.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/02/2015] [Accepted: 06/30/2015] [Indexed: 11/24/2022]
|
10
|
An examination of the inhibitory effects of three antibiotics in combination on ribosome biosynthesis in Staphylococcus aureus. Arch Microbiol 2014; 196:249-60. [DOI: 10.1007/s00203-014-0963-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/30/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
|
11
|
Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione. Infect Immun 2014; 82:1600-5. [PMID: 24452687 DOI: 10.1128/iai.01487-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.
Collapse
|
12
|
Kwak YG, Truong-Bolduc QC, Bin Kim H, Song KH, Kim ES, Hooper DC. Association of norB overexpression and fluoroquinolone resistance in clinical isolates of Staphylococcus aureus from Korea. J Antimicrob Chemother 2013; 68:2766-72. [PMID: 23928023 DOI: 10.1093/jac/dkt286] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Although the prevalence of fluoroquinolone resistance among methicillin-resistant Staphylococcus aureus (MRSA) is known to be higher than in methicillin-susceptible S. aureus (MSSA), the reasons have never been identified. METHODS We randomly selected 115 isolates of S. aureus collected from 10 different hospitals in Korea between June 2009 and May 2011. To investigate the difference in fluoroquinolone resistance mechanisms between MRSA and MSSA, we evaluated gyrA and parC mutations and the relative expression of the multidrug efflux pump genes norA, norB and norC. RESULTS All 62 ciprofloxacin-resistant S. aureus had either gyrA or parC mutations. The S84L mutation of gyrA (59/62, 95.2%) and the S80F mutation of parC (61/62, 98.4%) were the most common. Fifty-eight (93.6%) strains had both the S84L mutation of gyrA and the S80F mutation of parC. Among the 115 isolates, norB overexpression was the most common, occurring in 49 (42.6%) strains. There were only two (1.7%) strains with norA overexpression and none with norC overexpression. Strains overexpressing norB were more common among ciprofloxacin-resistant S. aureus (33/62, 53.2%) than ciprofloxacin-susceptible S. aureus (16/53, 30.2%) (P = 0.013). When we analysed 62 ciprofloxacin-resistant S. aureus strains, those overexpressing norB were more common in ciprofloxacin-resistant MRSA (28/46, 60.9%) than in ciprofloxacin-resistant MSSA (5/16, 31.3%) (P = 0.041). CONCLUSIONS Increased expression of norB can be a factor that contributes to ciprofloxacin resistance in MRSA strains.
Collapse
Affiliation(s)
- Yee Gyung Kwak
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolates from patients newly identified as nasal carriers. J Clin Microbiol 2012; 50:3283-6. [PMID: 22837329 DOI: 10.1128/jcm.01143-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We aimed to determine whether additional molecular and microbiological evaluations of methicillin-resistant Staphylococcus aureus (MRSA) isolated from patients newly identified as nasal carriers were useful for control strategies and whether longitudinal testing during the same or repeat hospitalization changed MRSA status. Nasal swabs from patients positive by Xpert MRSA PCR and not known to be colonized in the previous year were cultured for S. aureus. Isolates were tested for resistance to a variety of antibiotics, including high-level mupirocin resistance (HLMR) and low-level mupirocin resistance (LLMR) and the presence of genes mecA and mupA and those for Panton-Valentine leukocidin (PVL), USA300, and USA400. Repeat nasal screens during the 6-month study were tested for continued presence of MRSA. Among 130 patients, cultures revealed MRSA in 85 (65.4%), methicillin-susceptible S. aureus in 19 (14.6%), and no growth in 26 (20%). MRSA isolates were USA300 positive in 13/85 (15.3%) and LLMR in 8/85 (9.4%) patients. No isolates were HLMR or mupA positive. mecA dropout was detected in 9/130 (6.9%) patients. The rate of subsequent MRSA infections in USA300-positive versus -negative patients was not different. MRSA nasal status remained concordant in 69/70 (98.6%) patients who had follow-up testing. The findings do not support expanding MRSA surveillance to include routine detection of genes for USA300, PVL, or mupA, all of which were either of low frequency or not significantly associated with MRSA infection risk in our population of newly identified nasal carriers. Repeat nasal screening for MRSA during the same or subsequent hospitalizations over 6 months could also be deferred, reducing costs associated with screening.
Collapse
|
14
|
Spellberg B, Lipsky BA. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis 2011; 54:393-407. [PMID: 22157324 DOI: 10.1093/cid/cir842] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The standard recommendation for treating chronic osteomyelitis is 6 weeks of parenteral antibiotic therapy. However, oral antibiotics are available that achieve adequate levels in bone, and there are now more published studies of oral than parenteral antibiotic therapy for patients with chronic osteomyelitis. Oral and parenteral therapies achieve similar cure rates; however, oral therapy avoids risks associated with intravenous catheters and is generally less expensive, making it a reasonable choice for osteomyelitis caused by susceptible organisms. Addition of adjunctive rifampin to other antibiotics may improve cure rates. The optimal duration of therapy for chronic osteomyelitis remains uncertain. There is no evidence that antibiotic therapy for >4-6 weeks improves outcomes compared with shorter regimens. In view of concerns about encouraging antibiotic resistance to unnecessarily prolonged treatment, defining the optimal route and duration of antibiotic therapy and the role of surgical debridement in treating chronic osteomyelitis are important, unmet needs.
Collapse
Affiliation(s)
- Brad Spellberg
- Division of General Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA 90502, USA.
| | | |
Collapse
|
15
|
Lin SY, Ho MW, Liu JH, Liu YL, Yeh HC, Hsieh TL, Wang IK, Lin HH, Huang CC. Successful salvage of peritoneal catheter in unresolved methicillin-resistant staphylococcus aureus peritonitis by combination treatment with daptomycin and rifampin. Blood Purif 2011; 32:249-52. [PMID: 21846982 DOI: 10.1159/000328028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022]
Abstract
Peritoneal dialysis patients are at an increased risk of Gram-positive organism infections because of disrupted skin barrier function, presence of a peritoneal catheter, and a deficient immunological system. In particular, the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections is clinically challenging. Herein, we present a case of MRSA peritonitis that showed no response to a 14-day treatment with intraperitoneal vancomycin. To overcome unresponsiveness to vancomycin, we shifted the regimen to intraperitoneal daptomycin (given every 6 h through manual peritoneal dialysate exchanges) and oral rifampin (300 mg twice daily). The peritonitis resolved without sequelae or relapse. We suggest daptomycin and rifampin as an alternative combination therapy for MRSA infections that may otherwise remain unresolved.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Department of Internal Medicine, Divisions of Nephrology, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Identification of the genetic basis for clinical menadione-auxotrophic small-colony variant isolates of Staphylococcus aureus. Antimicrob Agents Chemother 2008; 52:4017-22. [PMID: 18779359 DOI: 10.1128/aac.00668-08] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small-colony variants (SCVs) of Staphylococcus aureus are associated with persistent infections and may be selectively enriched during antibiotic therapy. Three pairs of clonally related S. aureus isolates were recovered from patients receiving systemic antibiotic therapy. Each pair consisted of an isolate with a normal phenotype and an isolate with an SCV phenotype. These SCVs were characterized by reduced susceptibility to gentamicin, reduced hemolytic activity, slow growth, and menadione auxotrophy. Sequencing of the genes involved in menadione biosynthesis revealed mutations in menB, the gene encoding naphthoate synthase, in all three strains with the SCV phenotype. The menB mutations were (i) a 9-bp deletion from nucleotides 55 to 63, (ii) a frameshift mutation that resulted in a premature stop codon at position 230, and (iii) a point mutation that caused the amino acid substitution Gly to Val at codon 233. Fluctuation tests showed that growth-compensated mutants arose in the SCV population of one strain, strain OM1b, at a rate of 1.8 x 10(-8) per cell per generation. Sequence analyses of 23 independently isolated growth-compensated mutants of this strain revealed alterations in the menB sequence in every case. These alterations included reversions to the wild-type sequence and intragenic second-site mutations. Each of the growth-compensated mutants showed a restoration of normal growth and a loss of menadione auxotrophy, increased susceptibility to gentamicin, and restored hemolytic activity. These data show that mutations in menB cause the SCV phenotype in these clinical isolates. This is the first report on the genetic basis of menadione-auxotrophic SCVs determined in clinical S. aureus isolates.
Collapse
|
17
|
Coates ARM, Hu Y. Targeting non-multiplying organisms as a way to develop novel antimicrobials. Trends Pharmacol Sci 2008; 29:143-50. [PMID: 18262665 DOI: 10.1016/j.tips.2007.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 12/14/2007] [Accepted: 12/17/2007] [Indexed: 11/16/2022]
Abstract
Increasing resistance and decreasing numbers of antibiotics reaching the market point to a growing need for novel antibacterial drugs. Most antibiotics are very inefficient at killing non-multiplying bacteria, which live side by side with multiplying ones of the same strain in a clinical infection. Although non-multiplying bacteria do not usually cause disease, they can revert to the multiplying state that leads to overt disease, at which time resistance can emerge. Here we discuss the concept of developing antibacterial drugs by targeting non-multiplying organisms. We define non-multiplying bacteria, discuss the efficacy of existing antibiotics, and assess whether targeting these bacteria might lead to new antibiotics that will decrease the rate of emergence of resistance. Lastly, we review the potential of new molecular targets and live non-multiplying bacteria as possible routes for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Anthony R M Coates
- Medical Microbiology, Centre for Infection, Department of Cellular and Molecular Medicine, St George's, University of London, Cranmer Terrace, London, UK.
| | | |
Collapse
|
18
|
Bishop EJ, Howden BP. Treatment ofStaphylococcus aureusinfections: new issues, emerging therapies and future directions. Expert Opin Emerg Drugs 2007; 12:1-22. [PMID: 17355211 DOI: 10.1517/14728214.12.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infections due to Staphylococcus aureus are a major cause of morbidity and mortality worldwide. Antimicrobial resistance in strains of S. aureus is a continually evolving problem, including widespread methicillin resistance in hospitals, increasing methicillin resistance in community strains, and the recent acquisition of glycopeptide resistance. New antimicrobials with activity against S. aureus have recently entered the market or are in the late stages of development. In addition, there has been significant interest in the development of novel and immune-based strategies for prevention or treatment of S. aureus infections. This review describes established and emerging therapies for S. aureus infections, and considers the safety profiles and likely impact on present treatment standards of novel agents either undergoing clinical development or emerging onto the market.
Collapse
Affiliation(s)
- Emma J Bishop
- Austin Health, Infectious Diseases Department, Studley Road, Heidelberg, 3084, Victoria, Australia
| | | |
Collapse
|
19
|
Credito K, Lin G, Appelbaum PC. Antistaphylococcal activity of DX-619 alone and in combination with vancomycin, teicoplanin, and linezolid assessed by time-kill synergy testing. Antimicrob Agents Chemother 2007; 51:1508-11. [PMID: 17261625 PMCID: PMC1855475 DOI: 10.1128/aac.01517-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Time-kill synergy studies testing in vitro activity of DX-619 alone and with added vancomycin, teicoplanin, or linezolid against 101 Staphylococcus aureus strains showed synergy between DX-619 and teicoplanin at 12 to 24 h in 72 strains and between DX-619 and vancomycin in 28 strains. No synergy was found with linezolid, and no antagonism was observed with any combination.
Collapse
Affiliation(s)
- Kim Credito
- Department of Pathology, Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA
| | | | | |
Collapse
|
20
|
Pankuch GA, Lin G, Hoellman DB, Good CE, Jacobs MR, Appelbaum PC. Activity of retapamulin against Streptococcus pyogenes and Staphylococcus aureus evaluated by agar dilution, microdilution, E-test, and disk diffusion methodologies. Antimicrob Agents Chemother 2006; 50:1727-30. [PMID: 16641442 PMCID: PMC1472194 DOI: 10.1128/aac.50.5.1727-1730.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of retapamulin against 106 Staphylococcus aureus isolates and 109 Streptococcus pyogenes isolates was evaluated by the agar dilution, broth microdilution, E-test, and disk diffusion methodologies. Where possible, the tests were performed by using the CLSI methodology. The results of agar dilution, broth microdilution, and E-test (all with incubation in ambient air) for S. aureus yielded similar MICs, in the range of 0.03 to 0.25 microg/ml. These values corresponded to zone diameters between 25 and 33 mm by the use of a 2-microg retapamulin disk. Overall, 99% of the agar dilution results and 95% of E-test results for S. aureus were within +/-1 dilution of the microdilution results. For S. pyogenes, the MICs obtained by the agar and broth microdilution methods (both after incubation in ambient air) were in the range of 0.008 to 0.03 microg/ml, and E-test MICs (with incubation in ambient air) were 0.016 to 0.06 microg/ml. For S. pyogenes, 100% of the agar dilution MIC results were within +/-1 dilution of the broth microdilution results. E-test MICs (after incubation in ambient air) were within +/-1 and +/-2 dilutions of the broth microdilution results for 76% and 99% of the isolates, respectively. E-test MICs for S. pyogenes strains in CO(2) were up to 4 dilutions higher than those in ambient air. Therefore, it is recommended that when retapamulin MICs are determined by E-test, incubation be done in ambient air and not in CO(2), due to the adverse effect of CO(2) on the activity of this compound. Diffusion zones (with incubation in CO(2)) for S. pyogenes were 18 to 24 mm. Retapamulin MICs for all strains by all methods (with incubation in ambient air) were < or =0.25 microg/ml. These results demonstrate that S. pyogenes (including macrolide-resistant strains) and S. aureus (including methicillin-resistant and vancomycin-nonsusceptible strains) are inhibited by very low concentrations of retapamulin and that all four testing methods are satisfactory for use for susceptibility testing.
Collapse
Affiliation(s)
- Glenn A Pankuch
- Department of Pathology, Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
21
|
Murphy CK, Mullin S, Osburne MS, van Duzer J, Siedlecki J, Yu X, Kerstein K, Cynamon M, Rothstein DM. In vitro activity of novel rifamycins against rifamycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2006; 50:827-34. [PMID: 16495239 PMCID: PMC1426431 DOI: 10.1128/aac.50.3.827-834.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We describe novel rifamycin derivatives (new chemical entities [NCEs]) that retain significant activity against a comprehensive collection of Staphylococcus aureus strains that are resistant to rifamycins. This collection of resistant strains contains 21 of the 26 known single-amino-acid alterations in RpoB, the target of rifamycins. Some NCEs also demonstrated a lower frequency of resistance development than rifampin and rifalazil in S. aureus as measured in a resistance emergence test. When assayed for activity against the strongest rifamycin-resistant mutants, several NCEs had MICs of 2 microg/ml, in contrast to MICs of rifampin and rifalazil, which were 512 microg/ml for the same strains. The properties of these NCEs therefore demonstrate a significant improvement over those of earlier rifamycins, which have been limited primarily to combination therapy due to resistance development, and suggest a potential use of these NCEs for monotherapy in several clinical indications.
Collapse
|
22
|
Maltezou HC, Giamarellou H. Community-acquired methicillin-resistant Staphylococcus aureus infections. Int J Antimicrob Agents 2006; 27:87-96. [PMID: 16423509 DOI: 10.1016/j.ijantimicag.2005.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) should no longer be regarded as a strictly nosocomial pathogen. During the past decade, community-acquired MRSA (CA-MRSA) infections among young persons without healthcare-associated (HCA) risk factors have emerged in several areas worldwide. These infections are caused by strains that almost exclusively carry the staphylococcal cassette chromosome mec type IV element and the Panton-Valentine leukocidin genes and, unlike HCA-MRSA strains, are not multiresistant. Although the majority of CA-MRSA infections are mild skin and soft tissue infections, severe life-threatening cases of necrotizing pneumonia, necrotizing fasciitis, myonecrosis and sepsis have been reported. Clindamycin is an effective agent for skin and soft tissue infections, however attention should be paid to the possibility of the emergence of resistance during treatment in strains with the macrolide, lincosamide and group B streptogramin (MLS(B))-inducible resistance phenotype. For patients with invasive infections that may be caused be CA-MRSA, vancomycin, teicoplanin and linezolid represent appropriate empirical therapeutic options.
Collapse
Affiliation(s)
- Helen C Maltezou
- Office for Nosocomial Infections, Microbe Resistance and Strategy Concerning the Use of Antibiotics, Hellenic Center for Infectious Disease Control, Athens, Greece
| | | |
Collapse
|
23
|
Bogdanovich T, Ednie LM, Shapiro S, Appelbaum PC. Antistaphylococcal activity of ceftobiprole, a new broad-spectrum cephalosporin. Antimicrob Agents Chemother 2006; 49:4210-9. [PMID: 16189100 PMCID: PMC1251547 DOI: 10.1128/aac.49.10.4210-4219.2005] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ceftobiprole (formerly BAL9141), the active component of the prodrug BAL5788 (ceftobiprole medocaril), is a novel cephalosporin with expanded activity against gram-positive bacteria. Among 152 Staphylococcus aureus isolates, including 5 vancomycin-intermediate and 2 vancomycin-resistant strains, MIC(50) and MIC(90) values for ceftobiprole were each 0.5 microg/ml against methicillin-susceptible strains and 2 mug/ml against methicillin-resistant strains. Against 151 coagulase-negative staphylococci (including 4 vancomycin-intermediate strains), MIC(50) and MIC(90) values were, respectively, 0.125 microg/ml and 1 microg/ml against methicillin-susceptible and 1 microg/ml and 2 microg/ml against methicillin-resistant strains. Teicoplanin was less active than vancomycin against coagulase-negative strains. Linezolid, quinupristin-dalfopristin, and daptomycin were active against all strains, whereas increased MICs for amoxicillin-clavulanate, cefazolin, minocycline, gentamicin, trimethoprim-sulfamethoxazole, levofloxacin, rifampin, mupirocin, fusidic acid, and fosfomycin were sometimes observed. At 2x MIC, ceftobiprole was bactericidal against 11 of 12 test strains by 24 h. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to select for clones with MICs >4 times those of the parents; the maximum MIC achieved for ceftobiprole after 50 passages (in 1 of 10 strains) was 8 mug/ml. Single-passage selections showed very low frequencies of resistance to ceftobiprole irrespective of genotype or phenotype; the maximal ceftobiprole MIC of recovered clones was 8 mug/ml.
Collapse
|
24
|
Levison ME, Fung S. Community-associated methicillin-resistant Staphylococcus aureus: reconsideration of therapeutic options. Curr Infect Dis Rep 2006; 8:23-30. [PMID: 16448597 DOI: 10.1007/s11908-006-0031-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Methicillin resistance, long recognized as characteristic of nosocomial Staphylococcus aureus, has increasingly been identified in community-acquired strains in the past 15 years. The genotypes of community-associated methicillin-resistant S. aureus (MRSA) are different from nosocomial strains, and unlike nosocomial strains, they have a distinctive methicillin-resistance chromosomal cassette (designated type IV), are usually susceptible to multiple classes of antimicrobials other than beta-lactams, carry a distinctive virulence factor (the Panton-Valentine leukocidin), cause mainly skin and soft tissue infection and less frequently, necrotizing pneumonia, and involve predominantly children and young adults. Outbreaks have been reported in certain segments of the population (eg, football players, wrestlers, prison inmates, and native people) that often do not have the established risk factors for MRSA. However, these strains have also caused infections likely acquired in an institutional health care setting. Delay in starting appropriate antibiotic therapy for severe infections caused by MRSA can be life-threatening. This requires a reconsideration of the empiric choice of an anti-staphylococcal beta-lactam for seriously ill patients with suspected community-associated S. aureus infections.
Collapse
|
25
|
Abstract
The basis of "antibacterial photodynamic therapy" involves the killing of bacteria by reactive oxygen species in the presence of a photosensitizer and light. Possible dermatologic indications include inactivation of bacteria in skin and wound infections and reduction in density of nosocomial multi-resistant infections. The chief advantage of antibacterial photodynamic therapy is that regardless of the resistance pattern of a bacteria, inactivation can be achieved, analogous to the use of antiseptics. The aim of the present review is to describe the physicochemical and biological mechanisms of antibacterial photodynamic therapy as well as possible clinical indications in dermatology.
Collapse
Affiliation(s)
- T Maisch
- Klinik und Poliklinik für Dermatologie, Klinikum der Universität Regensburg.
| | | | | | | |
Collapse
|
26
|
Bogdanovich T, Esel D, Kelly LM, Bozdogan B, Credito K, Lin G, Smith K, Ednie LM, Hoellman DB, Appelbaum PC. Antistaphylococcal activity of DX-619, a new des-F(6)-quinolone, compared to those of other agents. Antimicrob Agents Chemother 2005; 49:3325-33. [PMID: 16048943 PMCID: PMC1196248 DOI: 10.1128/aac.49.8.3325-3333.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The in vitro activity of DX-619, a new des-F(6)-quinolone, was tested against staphylococci and compared to those of other antimicrobials. DX-619 had the lowest MIC ranges/MIC(50)s/MIC(90)s (microg/ml) against 131 Staphylococcus aureus strains (</=0.002 to 2.0/0.06/0.5) and 128 coagulase-negative staphylococci (0.004 to 0.25/0.016/0.125). Among strains tested, 76 S. aureus strains and 51 coagulase-negative staphylococci were resistant to ciprofloxacin. DX-619 had the lowest MIC(50)/MIC(90) values against 127 quinolone-resistant staphylococci (0.125/0.5), followed by sitafloxacin (0.5/4), moxifloxacin (2/8), gatifloxacin (4/16), levofloxacin (16/>32), and ciprofloxacin (>32/>32). Raised quinolone MICs were associated with mutations in GyrA (S84L) and single or double mutations in GrlA (S80F or Y; E84K, G, or V) in all S. aureus strains tested. A recent vancomycin-resistant S. aureus (VRSA) strain (Hershey) was resistant to available quinolones and was inhibited by DX-619 at 0.25 microg/ml and sitafloxacin at 1.0 microg/ml. Vancomycin (except VRSA), linezolid, ranbezolid, tigecycline, and quinupristin-dalfopristin were active against all strains, and teicoplanin was active against S. aureus but less active against coagulase-negative staphylococci. DX-619 produced resistant mutants with MICs of 1 to >32 microg/ml after <50 days of selection compared to 16 to >32 microg/ml for ciprofloxacin, sitafloxacin, moxifloxacin, and gatifloxacin. DX-619 and sitafloxacin were also more active than other tested drugs against selected mutants and had the lowest mutation frequencies in single-step resistance selection. DX-619 and sitafloxacin were bactericidal against six quinolone-resistant (including the VRSA) and seven quinolone-susceptible strains tested, whereas gatifloxacin, moxifloxacin, levofloxacin, and ciprofloxacin were bactericidal against 11, 10, 7, and 5 strains at 4x MIC after 24 h, respectively. DX-619 was also bactericidal against one other VRSA strain, five vancomycin-intermediate S. aureus strains, and four vancomycin-intermediate coagulase-negative staphylococci. Linezolid, ranbezolid, and tigecycline were bacteriostatic and quinupristin-dalfopristin, teicoplanin, and vancomycin were bactericidal against two, eight, and nine strains, and daptomycin and oritavancin were rapidly bactericidal against all strains, including the VRSA. DX-619 has potent in vitro activity against staphylococci, including methicillin-, ciprofloxacin-, and vancomycin-resistant strains.
Collapse
Affiliation(s)
- Tatiana Bogdanovich
- Department of Pathology, Hershey Medical Center, P.O. Box 850, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Campion JJ, Chung P, McNamara PJ, Titlow WB, Evans ME. Pharmacodynamic modeling of the evolution of levofloxacin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:2189-99. [PMID: 15917512 PMCID: PMC1140504 DOI: 10.1128/aac.49.6.2189-2199.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we demonstrated the importance of low-level-resistant variants to the evolution of resistance in Staphylococcus aureus exposed to ciprofloxacin in an in vitro system and developed a pharmacodynamic model which predicted the emergence of resistance. Here, we examine and model the evolution of resistance to levofloxacin in S. aureus exposed to simulated levofloxacin pharmacokinetic profiles. Enrichment of subpopulations with mutations in grlA and low-level resistance varied with levofloxacin exposure. A regimen producing average steady-state concentrations (Cavg ss) just above the MIC selected grlA mutants with up to 16-fold increases in the MIC and often additional mutations in grlA/grlB and gyrA. A regimen providing Cavg ss between the MIC and the mutant prevention concentration (MPC) suppressed bacterial numbers to the limit of detection and prevented the appearance of bacteria with additional mutations or high-level resistance. Regimens producing Cavg ss above the MPC appeared to eradicate low-level-resistant variants in the cultures and prevent the emergence of resistance. There was no relationship between the time concentrations remained between the MIC and the MPC and the degree of resistance or the presence or type of mutations that appeared in grlA/B or gyrA. Our pharmacodynamic model described the growth and levofloxacin killing of the parent strains and the most resistant grlA mutants in the starting cultures and correctly predicted conditions that enrich subpopulations with low-level resistance. These findings suggest that the pharmacodynamic model has general applicability for describing fluoroquinolone resistance in S. aureus and further demonstrate the importance of low-level-resistant variants to the evolution of resistance.
Collapse
Affiliation(s)
- Jeffrey J Campion
- Division of Infectious Diseases, Department of Internal Medicine, Room MN672, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA
| | | | | | | | | |
Collapse
|
28
|
Stratchounski LS, Dekhnich AV, Kretchikov VA, Edelstain IA, Narezkina AD, Afinogenov GE, Akhmetova LI, Boronina LG, Gugutcidze EN, Gudkova LV, Zdzitovetcki DE, Ilyina VN, Kretchikova OI, Marusina NE, Multih IG, Pylaeva SI, Smirnov IV, Suborova TN, Taraban VK, Furletova NM, Hasanova SG, Schetinin EV. Antimicrobial resistance of nosocomial strains of Staphylococcus aureus in Russia: results of a prospective study. J Chemother 2005; 17:54-60. [PMID: 15828444 DOI: 10.1179/joc.2005.17.1.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
A total of 879 Staphylococcus aureus clinical isolates from 17 medical institutions in different regions of Russia were tested. Susceptibility to 18 antimicrobials was determined by agar dilution in accordance with the NCCLS recommendations. The most potent antimicrobials were glycopeptides, linezolid, and fusidic acid, to which no resistance was found. Other antimicrobials with low frequency of non-susceptibility were mupirocin (0.3%), trimethoprim/sulfamethoxazole (0.8%), quinupristin/dalfopristin (1.8%) and rifampicin (7.0%). Fluoroquinolones displayed moderate activity (5.8% of non-susceptible strains to moxifloxacin, 9.1% to levofloxacin, 13.1% to ciprofloxacin). High rates of non-susceptibility were found to clindamycin (27.1%), gentamicin (30.7%), tetracycline (37.1%), erythromycin (39.6%) and chloramphenicol (43.1%). The prevalence of oxacillin-resistant S. aureus (ORSA) was 33.5% and varied from 0% to 89.5% in different hospitals. ORSA were isolated most frequently in the burn units (77.5%), intensive care units (54.8%), trauma and orthopedics units (42.1%). This is the first multicenter study published of antimicrobial resistance of S. aureus in Russia which meets international standards.
Collapse
|
29
|
Nulens E, Gould I, MacKenzie F, Deplano A, Cookson B, Alp E, Bouza E, Voss A. Staphylococcus aureus carriage among participants at the 13th European Congress of Clinical Microbiology and Infectious Diseases. Eur J Clin Microbiol Infect Dis 2005; 24:145-8. [PMID: 15660253 DOI: 10.1007/s10096-004-1258-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to measure the rate of Staphylococcus aureus nasal colonization among attendees of the 13th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), particularly with regard to methicillin-resistant (MRSA) strains. The 31.4% rate of Staphylococcus aureus colonization detected among the participants was in line with colonization rates reported previously for healthcare workers. A statistical difference was found between the rates of Staphylococcus aureus carriage in physicians (37.4%) and non-physicians (21.7%) but not between males (35.0%) and females (28.9%). Only one participant (a Belgian physician) was found to carry MRSA. Surprisingly, the rate of methicillin-susceptible Staphylococcus aureus carriage was significantly higher among participants from countries with a low prevalence of MRSA.
Collapse
Affiliation(s)
- E Nulens
- Department of Medical Microbiology, Nijmegen University Centre for Infectious Diseases, University Medical Centre St. Radboud, 440 MMB, P.O. Box 9101, 6500 Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Prunier AL, Leclercq R. Role of mutS and mutL genes in hypermutability and recombination in Staphylococcus aureus. J Bacteriol 2005; 187:3455-64. [PMID: 15866932 PMCID: PMC1112015 DOI: 10.1128/jb.187.10.3455-3464.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 02/11/2005] [Indexed: 01/06/2023] Open
Abstract
The mutator phenotype has been linked in several bacterial genera to a defect in the methyl-mismatch repair system, in which the major components are MutS and MutL. This system is involved both in mismatch repair and in prevention of recombination between homeologous fragments in Escherichia coli and has been shown to play an important role in the adaptation of bacterial populations in changing and stressful environments. In this report we describe the molecular analysis of the mutS and mutL genes of Staphylococcus aureus. A genetic analysis of the mutSL region was performed in S. aureus RN4220. Reverse transcriptase PCR experiments confirmed the operon structure already reported in other gram-positive organisms. Insertional inactivation of mutS and mutL genes and complementation showed the role of both genes in hypermutability in this species. We also designed an in vitro model to study the role of MutS and MutL in homeologous recombination in S. aureus. For this purpose, we constructed a bank of S. aureus RN4220 and mutS and mutL mutants containing the integrative thermosensitive vector pBT1 in which fragments with various levels of identity (74% to 100%) to the S. aureus sodA gene were cloned. MutS and MutL proteins seemed to have a limited effect on the control of homeologous recombination. Sequence of mutS and mutL genes was analyzed in 11 hypermutable S. aureus clinical isolates. In four of five isolates with mutated or deleted mutS or mutL genes, a relationship between alterations and mutator phenotypes could be established by negative complementation of the mutS or mutL mutants.
Collapse
Affiliation(s)
- Anne-Laure Prunier
- Service de Microbiologie and EA 2128 Relations hôte et microorganismes des épithéliums, Hôpital Côte de Nacre, Université de Caen, France
| | | |
Collapse
|
31
|
Deresinski S. Methicillin-Resistant Staphylococcus aureus: An Evolutionary, Epidemiologic, and Therapeutic Odyssey. Clin Infect Dis 2005; 40:562-73. [PMID: 15712079 DOI: 10.1086/427701] [Citation(s) in RCA: 273] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Accepted: 11/10/2004] [Indexed: 11/03/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus, first identified just over 4 decades ago, has undergone rapid evolutionary changes and epidemiologic expansion. It has spread beyond the confines of health care facilities, emerging anew in the community, where it is rapidly becoming a dominant pathogen. This has led to an important change in the choice of antibiotics in the management of community-acquired infections and has also led to the development of novel antimicrobials.
Collapse
Affiliation(s)
- Stan Deresinski
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
32
|
Muto CA, Jernigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, Farr BM. SHEA guideline for preventing nosocomial transmission of multidrug-resistant strains of Staphylococcus aureus and enterococcus. Infect Control Hosp Epidemiol 2003; 24:362-86. [PMID: 12785411 DOI: 10.1086/502213] [Citation(s) in RCA: 995] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Infection control programs were created three decades ago to control antibiotic-resistant healthcare-associated infections, but there has been little evidence of control in most facilities. After long, steady increases of MRSA and VRE infections in NNIS System hospitals, the Society for Healthcare Epidemiology of America (SHEA) Board of Directors made reducing antibiotic-resistant infections a strategic SHEA goal in January 2000. After 2 more years without improvement, a SHEA task force was appointed to draft this evidence-based guideline on preventing nosocomial transmission of such pathogens, focusing on the two considered most out of control: MRSA and VRE. METHODS Medline searches were conducted spanning 1966 to 2002. Pertinent abstracts of unpublished studies providing sufficient data were included. RESULTS Frequent antibiotic therapy in healthcare settings provides a selective advantage for resistant flora, but patients with MRSA or VRE usually acquire it via spread. The CDC has long-recommended contact precautions for patients colonized or infected with such pathogens. Most facilities have required this as policy, but have not actively identified colonized patients with surveillance cultures, leaving most colonized patients undetected and unisolated. Many studies have shown control of endemic and/or epidemic MRSA and VRE infections using surveillance cultures and contact precautions, demonstrating consistency of evidence, high strength of association, reversibility, a dose gradient, and specificity for control with this approach. Adjunctive control measures are also discussed. CONCLUSION Active surveillance cultures are essential to identify the reservoir for spread of MRSA and VRE infections and make control possible using the CDC's long-recommended contact precautions.
Collapse
Affiliation(s)
- Carlene A Muto
- Division of Hospital Epidemiology and Infection Control, UPMC-P, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Dalhoff A, Schmitz FJ. In vitro antibacterial activity and pharmacodynamics of new quinolones. Eur J Clin Microbiol Infect Dis 2003; 22:203-21. [PMID: 12687416 DOI: 10.1007/s10096-003-0907-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This synopsis of published literature summarises data on the in vitro antibacterial activity and pharmacodynamics of fluoroquinolones. Data were compiled for ciprofloxacin, levofloxcin, moxifloxacin, gatifloxacin, grepafloxacin, gemifloxacin, trovafloxacin, sitafloxacin and garenoxacin. All of these quinolones are almost equipotent against gram-negative bacteria but demonstrate improved activity against gram-positive species. The new quinolones are uniformly active against gram-positive species except Streptococcus pneumoniae; against which gemifloxacin, sitafloxacin and garenoxacin are one to two dilution steps more active than moxifloxacin. All of the new quinolones except gemifloxacin demonstrate enhanced activity against anaerobes. Since all the new quinolones show similar activity against the major respiratory tract pathogens except Streptococcus pneumoniae and members of the family Enterobacteriaceae, their pharmacokinetics and pharmacodynamics will be clinically relevant differentiators and determinants of their overall activity and efficacy. In vitro simulations of serum concentrations revealed that (i). gemifloxacin and levofloxacin were significantly and gatifloxacin moderately less active than moxifloxacin against Streptococcus pneumoniae and Staphylococcus aureus, and (ii). resistant subpopulations emerged following exposure to levofloxacin and gatifloxacin (gemifloxacin not yet published) but not to moxifloxacin. The emergence of resistance is a function of drug concentrations achievable in vivo and the susceptibility pattern of the target organisms. Therefore, the use of less potent fluoroquinolones with borderline or even suboptimal pharmacokinetic/pharmacodynamic surrogate parameters will inadvertently foster the development of class resistance. Drugs with the most favourable pharmacokinetic/pharmacodynamic characteristics should be used as first-line agents in order to preserve the potential of this drug class and, most importantly, to provide the patient with an optimally effective regimen.
Collapse
Affiliation(s)
- A Dalhoff
- Institute for Medical Microbiology and Virology, Universitätsklinikum Schleswig-Holstein, Brunswiker Strasse 4, 24105 Kiel, Germany.
| | | |
Collapse
|
34
|
Norazah A, Lim VKE, Koh YT, Rohani MY, Zuridah H, Spencer K, Ng PP, Kamel AGM. Molecular fingerprinting of fusidic acid- and rifampicin-resistant strains of methicillin-resistant Staphylococcus aureus (MRSA) from Malaysian hospitals. J Med Microbiol 2002; 51:1113-1116. [PMID: 12466411 DOI: 10.1099/0022-1317-51-12-1113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The emergence and spread of multiresistant methicillin-resistant Staphylococcus aureus (MRSA) strains, especially those resistant to fusidic acid and rifampicin, in Malaysian hospitals is of concern. In this study DNA fingerprinting by PFGE was performed on fusidic acid- and rifampicin-resistant isolates from Malaysian hospitals to determine the genetic relatedness of these isolates and their relationship with the endemic MRSA strains. In all, 32 of 640 MRSA isolates from 9 Malaysian hospitals were resistant to fusidic acid and rifampicin. Seven PFGE types (A, ZC, ZI, ZJ, ZK, ZL and ZM) were observed. The commonest type was type ZC, seen in 72% of isolates followed by type A, seen in 13%. Each of the other types (ZI, ZJ, ZK, ZL and ZM) was observed in a single isolate. Each type, even the commonest, was found in only one hospital. This suggests that the resistant strains had arisen from individual MRSA strains in each hospital and not as a result of the transmission of a common clone.
Collapse
Affiliation(s)
| | | | | | | | - H Zuridah
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, *Hospital Umum Sarawak, Jalan Tun Abang Haji Openg, 93590 Kuching, Sarawak, †Hospital Queen Elizabeth, Jalan Mat Salleh, 88590 Kota Kinabalu, Sabah, ‡Hospital Alor Setar, Jalan Sultan Badlishah, 05590 Alor Setar, Kedah and §Faculty of Allied Health Sciences, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - K Spencer
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, *Hospital Umum Sarawak, Jalan Tun Abang Haji Openg, 93590 Kuching, Sarawak, †Hospital Queen Elizabeth, Jalan Mat Salleh, 88590 Kota Kinabalu, Sabah, ‡Hospital Alor Setar, Jalan Sultan Badlishah, 05590 Alor Setar, Kedah and §Faculty of Allied Health Sciences, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - P P Ng
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, *Hospital Umum Sarawak, Jalan Tun Abang Haji Openg, 93590 Kuching, Sarawak, †Hospital Queen Elizabeth, Jalan Mat Salleh, 88590 Kota Kinabalu, Sabah, ‡Hospital Alor Setar, Jalan Sultan Badlishah, 05590 Alor Setar, Kedah and §Faculty of Allied Health Sciences, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - A G M Kamel
- Bacteriology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, *Hospital Umum Sarawak, Jalan Tun Abang Haji Openg, 93590 Kuching, Sarawak, †Hospital Queen Elizabeth, Jalan Mat Salleh, 88590 Kota Kinabalu, Sabah, ‡Hospital Alor Setar, Jalan Sultan Badlishah, 05590 Alor Setar, Kedah and §Faculty of Allied Health Sciences, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
35
|
Abstract
Resistance to fluoroquinolones among Gram-positive cocci has emerged as these antimicrobial agents have become extensively used in clinical medicine. Resistance is effected by changes in the bacterial target enzymes DNA gyrase and topoisomerase IV, which reduce drug binding, and by action of native bacterial membrane pumps that remove drug from the cell. In both cases, quinolone exposure selects for spontaneous mutants that are present in large bacterial populations, and which contain chromosomal mutations that alter the target protein or increase the level of pump expression. Resistance among clinical isolates has been greatest in Staphylococcus aureus and particularly among meticillin-resistant strains, in which both selection by quinolone exposure and transmission of clonal strains in health-care settings have contributed to high prevalence. Resistance in Streptococcus pneumoniae has also emerged in the community. Fluoroquinolone resistance has arisen in multidrug-resistant clones and its prevalence has been especially high in Hong Kong and Spain. Further spread and selection of such resistance could compromise the utility of a valuable class of antimicrobial agents, a point that emphasises the importance of the careful use of these agents in appropriate patients and doses, as well as careful infection-control practices.
Collapse
Affiliation(s)
- David C Hooper
- Division of Infectious Diseases, Infection Control Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114-2696, USA.
| |
Collapse
|