1
|
Yang X, Wang Q, Xiao B, Wang Q, Deng W, Osherov N, Li R, Liu W. The cyclase-associated protein contributes to antifungal susceptibility and virulence in Aspergillus fumigatus. Emerg Microbes Infect 2025; 14:2506795. [PMID: 40396792 DOI: 10.1080/22221751.2025.2506795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/16/2025] [Accepted: 05/11/2025] [Indexed: 05/22/2025]
Abstract
Aspergillus fumigatus is the most prevalent pathogenic mould that contributes to high morbidity and mortality in immunocompromised patients. Here, we characterized the functions of the cyclase-associated protein (CAP) in A. fumigatus. To study the role of CAP in virulence and antifungal susceptibility of A. fumigatus, CAP gene knockout strain (ΔCAP) and complemented strain (R-ΔCAP) were constructed. ΔCAP showed a reduced growth rate, abnormal hyphal development, and increased susceptibility to cell wall-perturbing agents (Congo red, calcofluor white, and SDS), oxidative stress-inducing agents (H2O2 and menadione), calcineurin inhibitors (FK506 and CsA), and voriconazole (VRC) and itraconazole. Transcriptome analysis revealed that differentially expressed genes responsible for regulating growth, hyphal development, cell wall synthesis, stress responses and antifungal susceptibility were identified in ΔCAP. To identify CAP-interacting proteins, an A. fumigatus strain expressing the CAP protein fused with a C-terminus 6×his tag was constructed and designated Afcap6his. After extracting Afcap6his and Af293 proteins, actin and adenylate cyclase were identified by coimmunoprecipitation (co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, ΔCAP showed downregulated actin expression, AC-cAMP-PKA pathway activity and efflux pump genes (AfuMDR1, AfuMDR2, AfuMDR3, AfuMDR4, and cdr1B) expression as well as increased calcineurin activity. By using an invasive pulmonary aspergillosis (IPA) murine model, ΔCAP exhibited attenuated virulence and increased VRC therapeutic efficiency. Thus, CAP plays an important role in regulating antifungal susceptibility and virulence of A. fumigatus.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People's Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People's Republic of China
| | - Qian Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People's Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People's Republic of China
| | - Binghan Xiao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Qiqi Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People's Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People's Republic of China
| | - Weiwei Deng
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People's Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People's Republic of China
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ruoyu Li
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People's Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People's Republic of China
| | - Wei Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, People's Republic of China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, People's Republic of China
- Research Center for Medical Mycology, Peking University, Beijing, People's Republic of China
| |
Collapse
|
2
|
Gale AN, Pavesic MW, Nickels TJ, Xu Z, Cormack BP, Cunningham KW. Redefining pleiotropic drug resistance in a pathogenic yeast: Pdr1 functions as a sensor of cellular stresses in Candida glabrata. mSphere 2023; 8:e0025423. [PMID: 37358297 PMCID: PMC10449514 DOI: 10.1128/msphere.00254-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/27/2023] Open
Abstract
Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 (CYB5, SSK1, SSK2, HOG1, TRP1). A bZIP transcription repressor of mitochondrial function (CIN5) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata. Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. IMPORTANCE Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1-a key determinant of fluconazole resistance-is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.
Collapse
Affiliation(s)
- Andrew N Gale
- Department of Biology, Johns Hopkins University , Baltimore, Maryland, USA
| | - Matthew W Pavesic
- Department of Biology, Johns Hopkins University , Baltimore, Maryland, USA
| | - Timothy J Nickels
- Department of Biology, Johns Hopkins University , Baltimore, Maryland, USA
| | - Zhuwei Xu
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine , Baltimore, Maryland, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine , Baltimore, Maryland, USA
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University , Baltimore, Maryland, USA
| |
Collapse
|
3
|
Gale AN, Pavesic MW, Nickels TJ, Xu Z, Cormack BP, Cunningham KW. Redefining Pleiotropic Drug Resistance in a Pathogenic Yeast: Pdr1 Functions as a Sensor of Cellular Stresses in Candida glabrata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539747. [PMID: 37214952 PMCID: PMC10197522 DOI: 10.1101/2023.05.07.539747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Candida glabrata is a prominent opportunistic fungal pathogen of humans. The increasing incidence of C. glabrata infections is attributed to both innate and acquired resistance to antifungals. Previous studies suggest the transcription factor Pdr1 and several target genes encoding ABC transporters are critical elements of pleiotropic defense against azoles and other antifungals. This study utilizes Hermes transposon insertion profiling to investigate Pdr1-independent and Pdr1-dependent mechanisms that alter susceptibility to the frontline antifungal fluconazole. Several new genes were found to alter fluconazole susceptibility independent of Pdr1 ( CYB5 , SSK1 , SSK2 , HOG1 , TRP1 ). A bZIP transcription repressor of mitochondrial function ( CIN5 ) positively regulated Pdr1 while hundreds of genes encoding mitochondrial proteins were confirmed as negative regulators of Pdr1. The antibiotic oligomycin activated Pdr1 and antagonized fluconazole efficacy likely by interfering with mitochondrial processes in C. glabrata . Unexpectedly, disruption of many 60S ribosomal proteins also activated Pdr1, thus mimicking the effects of the mRNA translation inhibitors. Cycloheximide failed to fully activate Pdr1 in a cycloheximide-resistant Rpl28-Q38E mutant. Similarly, fluconazole failed to fully activate Pdr1 in a strain expressing a low-affinity variant of Erg11. Fluconazole activated Pdr1 with very slow kinetics that correlated with the delayed onset of cellular stress. These findings are inconsistent with the idea that Pdr1 directly senses xenobiotics and support an alternative hypothesis where Pdr1 senses cellular stresses that arise only after engagement of xenobiotics with their targets. Importance Candida glabrata is an opportunistic pathogenic yeast that causes discomfort and death. Its incidence has been increasing because of natural defenses to our common antifungal medications. This study explores the entire genome for impacts on resistance to fluconazole. We find several new and unexpected genes can impact susceptibility to fluconazole. Several antibiotics can also alter the efficacy of fluconazole. Most importantly, we find that Pdr1 - a key determinant of fluconazole resistance - is not regulated directly through binding of fluconazole and instead is regulated indirectly by sensing the cellular stresses caused by fluconazole blockage of sterol biosynthesis. This new understanding of drug resistance mechanisms could improve the outcomes of current antifungals and accelerate the development of novel therapeutics.
Collapse
|
4
|
Toodle V, Lee MH, Bachani M, Ruffin A, Vivekanandhan S, Malik N, Wang T, Johnson TP, Nath A, Steiner JP. Fluconazole Is Neuroprotective via Interactions with the IGF-1 Receptor. Neurotherapeutics 2022; 19:1313-1328. [PMID: 35831747 PMCID: PMC9587198 DOI: 10.1007/s13311-022-01265-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2022] [Indexed: 10/17/2022] Open
Abstract
There is a continuing unmet medical need to develop neuroprotective strategies to treat neurodegenerative disorders. To address this need, we screened over 2000 compounds for potential neuroprotective activity in a model of oxidative stress and found that numerous antifungal agents were neuroprotective. Of the identified compounds, fluconazole was further characterized. Fluconazole was able to prevent neurite retraction and cell death in in vitro and in vivo models of toxicity. Fluconazole protected neurons in a concentration-dependent manner and exhibited efficacy against several toxic agents, including 3-nitropropionic acid, N-methyl D-aspartate, 6-hydroxydopamine, and the HIV proteins Tat and gp120. In vivo studies indicated that systemically administered fluconazole was neuroprotective in animals treated with 3-nitropropionic acid and prevented gp120-mediated neuronal loss. In addition to neuroprotection, fluconazole also induced proliferation of neural progenitor cells in vitro and in vivo. Fluconazole mediates these effects through upregulation and signaling via the insulin growth factor-1 receptor which results in decreased cAMP production and increased phosphorylation of Akt. Blockade of the insulin growth factor-1 receptor signaling with the selective inhibitor AG1024 abrogated the effects of fluconazole. Our studies suggest that fluconazole may be an attractive candidate for treatment of neurodegenerative diseases due to its protective properties against several categories of neuronal insults and its ability to spur neural progenitor cell proliferation.
Collapse
Affiliation(s)
- Valerie Toodle
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Myoung-Hwa Lee
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Muzna Bachani
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - April Ruffin
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Sneha Vivekanandhan
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Nasir Malik
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tongguang Wang
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Tory P Johnson
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-103; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| | - Joseph P Steiner
- Translational Neuroscience Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 7C-105; Bldg. 10, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Physiological performance of Kazachstania unispora in sourdough environments. World J Microbiol Biotechnol 2021; 37:88. [PMID: 33881636 PMCID: PMC8060213 DOI: 10.1007/s11274-021-03027-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/02/2021] [Indexed: 10/31/2022]
Abstract
In this work we explored the potential of several strains of Kazachstania unispora to be used as non-conventional yeasts in sourdough fermentation. Properties such as carbohydrate source utilization, tolerance to different environmental factors and the performance in fermentation were evaluated. The K. unispora strains are characterized by rather restricted substrate utilization: only glucose and fructose supported the growth of the strains. However, the growth in presence of fructose was higher compared to a Saccharomyces cerevisiae commercial strain. Moreover, the inability to ferment maltose can be considered a positive characteristic in sourdoughs, where the yeasts can form a nutritional mutualism with maltose-positive Lactic Acid Bacteria. Tolerance assays showed that K. unispora strains are adapted to a sourdough environment: they were able to grow in conditions of high osmolarity, high acidity and in presence of organic acids, ethanol and salt. Finally, the performance in fermentation was comparable with the S. cerevisiae commercial strain. Moreover, the growth was more efficient, which is an advantage in obtaining the biomass in an industrial scale. Our data show that K. unispora strains have positive properties that should be explored further in bakery sector.
Collapse
|
6
|
Cai Z, Chai Y, Zhang C, Feng R, Sang H, Lu L. Molecular Characterization of Gβ-Like Protein CpcB Involved in Antifungal Drug Susceptibility and Virulence in A. fumigatus. Front Microbiol 2016; 7:106. [PMID: 26903985 PMCID: PMC4746314 DOI: 10.3389/fmicb.2016.00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022] Open
Abstract
Aspergillus fumigatus is an airborne human fungal pathogen that can survive in a wide range of environmental condition. G protein complex transduces external signals from a variety of stimuli outside a cell to its interior effectors in all eukaryotes. Gβ-like CpcB (cross pathway control B) belongs to a WD40 repeat protein family with the conserved G-H and W-D residues. Previous studies have demonstrated that Gβ-like proteins cooperate with related signal transduction proteins to function during many important developmental processes in A. fumigatus. However, the molecular characteristics of Gβ-like CpcB have not yet been identified. In this study, we demonstrated that the G-H residues in WD repeat 1, 2, 3, and the W-D residue in WD repeat 2 of CpcB are required not only to control normal hyphal growth and conidiation but also to affect antifungal drug susceptibility. The enhanced drug resistance might be due to reduced intracellular drug accumulation and altered ergosterol component. Moreover, we find that the first G-H residue of CpcB plays an important role in the virulence of A. fumigatus. To our knowledge, this is the first report for finding the importance of the conserved G-H and W-D residues for a Gβ-like protein in understanding of G protein functions.
Collapse
Affiliation(s)
- Zhendong Cai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Yanfei Chai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Caiyun Zhang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Ruoyun Feng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| | - Hong Sang
- Department of Dermatology, Jinling Hospital, School of Medicine, Nanjing UniversityNanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal UniversityNanjing, China
| |
Collapse
|
7
|
Ho LK, Nodwell JR. David and Goliath: chemical perturbation of eukaryotes by bacteria. J Ind Microbiol Biotechnol 2015; 43:233-48. [PMID: 26433385 PMCID: PMC4752587 DOI: 10.1007/s10295-015-1686-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022]
Abstract
Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
8
|
Determination of MICING: a new assay for assessing minimal inhibitory concentration for invasive growth. Eur J Clin Microbiol Infect Dis 2015; 34:1023-30. [PMID: 25620781 DOI: 10.1007/s10096-015-2324-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Our work was focused on a new assay for characterising clinically important yeast. This assay was developed due to the need for new diagnostic methods for recognising potentially virulent strains of increasingly important non-albicans yeast pathogens, such as Saccharomyces cerevisiae and Candida glabrata. With the great diversity among strains for virulence and virulence factors, identification to the species level is not sufficient; therefore, testing for specific virulent traits remains the best option. We show here that the proposed assay uncovers the relationships between the three most important yeast virulence traits in a single test: the ability of a strain to invade solid medium, while resisting the presence of an antimycotic and high temperature (37 °C). We combined the quantitative agar invasion assay with classical antimycotic susceptibility testing into a single assay. Similarly to the minimal inhibitory concentration (MIC) value, we defined the MICING (minimal inhibitory concentration of antimycotic for invasive growth) as the concentration of an antimycotic above which the yeast invasive growth is significantly repressed. In this study, we tested three of the most common antimycotics: fluconazole, itraconazole and amphotericin B. The response of yeast strains invasion was characteristic of each antimycotic, indicating their mechanisms of action. In addition to MICING, the assay provides quantitative information about the superficial and invasive growth, and also about the relative invasion, which helps in identifying clinically important yeast, such as azole-resistant and/or invasive strains of S. cerevisiae and C. glabrata.
Collapse
|
9
|
Zupan J, Raspor P. Invasive growth of Saccharomyces cerevisiae depends on environmental triggers: a quantitative model. Yeast 2010; 27:217-28. [PMID: 20052657 DOI: 10.1002/yea.1746] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In this contribution, the influence of various physicochemical factors on Saccharomyces cerevisiae invasive growth is examined quantitatively. Agar-invasion assays are generally applied for in vitro studies on S. cerevisiae invasiveness, the phenomenon observed as a putative virulence trait in this clinically more and more concerning yeast. However, qualitative agar-invasion assays, used until now, strongly limit the feasibility and interpretation of analyses and therefore needed to be improved. Besides, knowledge in this field concerning the physiology of invasive growth, influenced by stress conditions related to the human alimentary tract and food, is poor and should be expanded. For this purpose, a quantitative agar-invasion assay, presented in our previous work, was applied in this contribution to clarify the significance of the stress factors controlling the adhesion and invasion of the yeast in greater detail. Ten virulent and non-virulent S. cerevisiae strains were assayed at various temperatures, pH values, nutrient starvation, modified atmosphere, and different concentrations of NaCl, CaCl2 and preservatives. With the use of specific parameters, like a relative invasion, eight invasive growth models were hypothesized, which enabled intelligible interpretation of the results. A strong preference for invasive growth (meaning high relative invasion) was observed when the strains were grown on nitrogen- and glucose-depleted media. A significant increase in the invasion of the strains was also determined at temperatures typical for human fever (37-39 degrees C). On the other hand, a strong repressive effect on invasion was found in the presence of salts, anoxia and some preservatives.
Collapse
Affiliation(s)
- Jure Zupan
- Biotechnology, Microbiology and Food Safety, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
10
|
Zupan J, Raspor P. Quantitative agar-invasion assay. J Microbiol Methods 2008; 73:100-4. [PMID: 18358550 DOI: 10.1016/j.mimet.2008.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 01/18/2008] [Accepted: 02/15/2008] [Indexed: 11/27/2022]
Abstract
A new method for quantification of yeast invasion into the agar medium was developed. Classical agar-invasion assays have been the methods of choice for determination of yeast invasion, but their main disadvantage is the lack of quantification. Our new Quantitative yeast agar-invasion test allows for quantitative measurements and enables sorting strains by their degree of invasiveness. The invasion abilities were measured for 10 clinical and non-clinical Saccharomyces cerevisiae strains and a strain of Candida albicans. Finally, the correlation between the degrees of strains invasiveness and their reported virulence was observed, proposing our assay as a method for quick determination of yeast virulence potential.
Collapse
Affiliation(s)
- Jure Zupan
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | | |
Collapse
|
11
|
Genome-wide transcriptional profiling of the cyclic AMP-dependent signaling pathway during morphogenic transitions of Candida albicans. EUKARYOTIC CELL 2007; 6:2376-90. [PMID: 17951520 DOI: 10.1128/ec.00318-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Candida albicans is an opportunistic human fungal pathogen that causes systemic candidiasis as well as superficial mucosal candidiasis. In response to the host environment, C. albicans transitions between yeast and hyphal forms. In particular, hyphal growth is important in facilitating adhesion and invasion of host tissues, concomitant with the expression of various hypha-specific virulence factors. In previous work, we showed that the cyclic AMP (cAMP) signaling pathway plays a crucial role in morphogenic transitions and virulence of C. albicans by studying genes encoding adenylate cyclase-associated protein (CAP1) and high-affinity phosphodiesterase (PDE2) (Y. S. Bahn, J. Staab, and P. Sundstrom, Mol. Microbiol. 50:391-409, 2003; and Y. S. Bahn and P. Sundstrom, J. Bacteriol. 183:3211-3223, 2001). However, little is known about the downstream targets of the cAMP signaling pathway that are responsible for morphological transitions and the expression of virulence factors. Here, microarrays were probed with RNA from strains with hypoactive (cap1/cap1 null mutant), hyperactive (pde2/pde2 null mutant), and wild-type cAMP signaling pathways to provide insight into the molecular mechanisms of virulence that are regulated by cAMP and that are related to the morphogenesis of C. albicans. Genes controlling metabolic specialization, cell wall structure, ergosterol/lipid biosynthesis, and stress responses were modulated by cAMP during hypha formation. Phenotypic traits predicted to be regulated by cAMP from the profiling results correlated with the relative strengths of the mutants when tested for resistance to azoles and subjected to heat shock stress and oxidative/nitrosative stress. The results from this study provide important insights into the role of the cAMP signaling pathway not only in morphogenic transitions of C. albicans but also for adaptation to stress and for survival during host infections.
Collapse
|
12
|
da Silva Ferreira ME, Malavazi I, Savoldi M, Brakhage AA, Goldman MHS, Kim HS, Nierman WC, Goldman GH. Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Curr Genet 2006; 50:32-44. [PMID: 16622700 DOI: 10.1007/s00294-006-0073-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 03/06/2006] [Accepted: 03/09/2006] [Indexed: 11/29/2022]
Abstract
For a comprehensive evaluation of genes that have their expression modulated during exposure of the mycelia to voriconazole, we performed a large-scale analysis of gene expression in Aspergillus fumigatus using a microarray hybridization approach. By comparing the expression of genes between the reference time and after addition of voriconazole (30, 60, 120, and 240 min), we identified 2,271 genes differentially expressed in the wild-type strain. To validate the expression of some of these genes during exposure to voriconazole, we analyzed 13 genes showing higher expression in the presence of voriconazole by real-time RT-PCR. Although the magnitudes of induction differed between the two experimental systems, in about 85% of the cases they were in good agreement with the microarray data. To our knowledge this is the first study of microarray hybridization analysis for a filamentous fungus exposed to an antifungal agent. In our study, we have observed: (i) a decreased mRNA expression of various ergosterol biosynthesis genes; (ii) increased mRNA levels of genes involved in a variety of cell functions, such as transporters, transcription factors, proteins involved in cell metabolism, and hypothetical proteins; and (iii) the involvement of the cyclic AMP-protein kinase signaling pathway in the increased mRNA expression of several of these genes.
Collapse
Affiliation(s)
- Márcia Eliana da Silva Ferreira
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jung WH, Warn P, Ragni E, Popolo L, Nunn CD, Turner MP, Stateva L. Deletion ofPDE2, the gene encoding the high-affinity cAMP phosphodiesterase, results in changes of the cell wall and membrane inCandida albicans. Yeast 2005; 22:285-94. [PMID: 15789349 DOI: 10.1002/yea.1199] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A role for the cAMP-dependent pathway in regulation of the cell wall in the model yeast Saccharomyces cerevisiae has recently been demonstrated. In this study we report the results of a phenotypic analysis of a Candida albicans mutant, characterized by a constitutive activation of the cAMP pathway due to deletion of PDE2, the gene encoding the high cAMP-affinity phosphodiesterase. Unlike wild-type strains, this mutant has an increased sensitivity to cell wall and membrane perturbing agents such as SDS and CFW, and antifungals such as amphotericin B and flucytosine. Moreover, the mutant is characterized by an altered sensitivity and a significantly reduced tolerance to fluconazole. The mutant's membrane has around 30% higher ergosterol content and the cell wall glucan was 22% lower than in the wild-type. These cell wall and membrane changes are manifested by a considerable reduction in the thickness of the cell wall, which in the mutant is on average 60-65 nm, compared to 80-85 nm in the wild-type strains as revealed by electron microscopy. These results suggest that constitutive activation of the cAMP pathway affects cell wall and membrane structure, and biosynthesis, not only in the model yeast S. cerevisiae but also in the human fungal pathogen C. albicans.
Collapse
Affiliation(s)
- Won Hee Jung
- Faculty of Life Sciences, Jackson's Mill, University of Manchester, PO Box 88, Sackville Street, Manchester M60 1QD, UK
| | | | | | | | | | | | | |
Collapse
|
14
|
Jain P, Akula I, Edlind T. Cyclic AMP signaling pathway modulates susceptibility of candida species and Saccharomyces cerevisiae to antifungal azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 2004; 47:3195-201. [PMID: 14506030 PMCID: PMC201163 DOI: 10.1128/aac.47.10.3195-3201.2003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azoles are widely used antifungals; however, their efficacy is compromised by fungistatic activity and selection of resistant strains during treatment. Recent studies demonstrated roles for the protein kinase C and calcium signaling pathways in modulating azole activity. Here we explored a role for the signaling pathway mediated by cyclic AMP (cAMP), which is synthesized by the regulated action of adenylate cyclase (encoded by CDC35 in Candida albicans and CYR1 in Saccharomyces cerevisiae) and cyclase-associated protein (encoded by CAP1 and SRV2, respectively). Relative to wild-type strains, C. albicans and S. cerevisiae strains mutated in these genes were hypersusceptible to fluconazole (>4- to >16-fold-decreased 48-h MIC), itraconazole (>8- to >64-fold), or miconazole (16- to >64-fold). Similarly, they were hypersusceptible to terbinafine and fenpropimorph (2- to >16-fold), which, like azoles, inhibit sterol biosynthesis. Addition of cAMP to the medium at least partially reversed the hypersusceptibility of Ca-cdc35 and Sc-cyr1-2 mutants. An inhibitor of mammalian adenylate cyclase, MDL-12330A, was tested in combination with azoles; a synergistic effect was observed against azole-susceptible and -resistant strains of C. albicans and five of six non-C. albicans Candida species. Analysis of cAMP levels after glucose induction in the presence and absence of MDL-12330A confirmed that it acts by inhibiting cAMP synthesis in yeast. RNA analysis suggested that a defect in azole-dependent upregulation of the multidrug transporter gene CDR1 contributes to the hypersusceptibility of the Ca-cdc35 mutant. Our results implicate cAMP signaling in the yeast azole response; compounds similar to MDL-12330A may be useful adjuvants in azole therapy.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
15
|
Lee N, D'Souza CA, Kronstad JW. Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2003; 41:399-427. [PMID: 12651963 DOI: 10.1146/annurev.phyto.41.052002.095728] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
cAMP regulates morphogenesis and virulence in a wide variety of fungi including the plant pathogens. In saprophytic yeasts such as Saccharomyces cerevisiae, cAMP signaling plays an important role in nutrient sensing. In filamentous saprophytes, the cAMP pathway appears to play an integral role in vegetative growth and sporulation, with possible connections to mating. Infection-related morphogenesis includes sporulation (conidia and teliospores), formation of appressoria, infection hyphae, and sclerotia. Here, we review studies of cAMP signaling in a variety of plant fungal pathogens. The primary fungi to be considered include Ustilago maydis, Magnaporthe grisea, Cryphonectria parasitica, Colletotrichum and Fusarium species, and Erisyphe graminis. We also include related information on Trichoderma species that act as mycoparasites and biocontrol agents of phytopathogenic fungi. We point out similarities in infection mechanisms, conservation of signaling components, as well as instances of cross-talk with other signaling pathways.
Collapse
Affiliation(s)
- Nancy Lee
- Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z3;
| | | | | |
Collapse
|
16
|
|