1
|
Kuriappan JA, Osheroff N, De Vivo M. Smoothed Potential MD Simulations for Dissociation Kinetics of Etoposide To Unravel Isoform Specificity in Targeting Human Topoisomerase II. J Chem Inf Model 2019; 59:4007-4017. [PMID: 31449404 PMCID: PMC6800198 DOI: 10.1021/acs.jcim.9b00605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Human
type II topoisomerases (TopoII) are essential for controlling
DNA topology within the cell. For this reason, there are a number
of TopoII-targeted anticancer drugs that act by inducing DNA cleavage
mediated by both TopoII isoforms (TopoIIα and TopoIIβ)
in cells. However, recent studies suggest that specific poisoning
of TopoIIα may be a safer strategy for treating cancer. This
is because poisoning of TopoIIβ appears to be linked to the
generation of secondary leukemia in patients. We recently reported
that enzyme-mediated DNA cleavage complexes (in which TopoII is covalently
linked to the cleaved DNA during catalysis) formed in the presence
of the anticancer drug etoposide persisted approximately 3-fold longer
with TopoIIα than TopoIIβ. Notably, enhanced drug-target
residence time may reduce the adverse effects of specific TopoIIα
poisons. However, it is still not clear how to design drugs that are
specific for the α isoform. In this study, we report the results
of classical molecular dynamics (MD) simulations to comparatively
analyze the molecular interactions formed within the TopoII/DNA/etoposide
complex with both isoforms. We also used smoothed potential MD to
estimate etoposide dissociation kinetics from the two isoform complexes.
These extensive classical and enhanced sampling simulations revealed
stabilizing interactions of etoposide with two serine residues (Ser763
and Ser800) in TopoIIα. These interactions are missing in TopoIIβ,
where both amino acids are alanine residues. This may explain the
greater persistence of etoposide-stabilized cleavage complexes formed
with Topo TopoIIα. These findings could be useful for the rational
design of specific TopoIIα poisons.
Collapse
Affiliation(s)
- Jissy A Kuriappan
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | - Neil Osheroff
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Medicine (Hematology/Oncology) , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-6307 , United States.,VA Tennessee Valley Healthcare System , Nashville , Tennessee 37212 , United States
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
2
|
Mueller-Planitz F, Herschlag D. Coupling between ATP binding and DNA cleavage by DNA topoisomerase II: A unifying kinetic and structural mechanism. J Biol Chem 2008; 283:17463-76. [PMID: 18403371 PMCID: PMC2427340 DOI: 10.1074/jbc.m710014200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 03/10/2008] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II is a molecular machine that couples ATP hydrolysis to the transport of one DNA segment through a transient break in another segment. To learn about the energetic connectivity that underlies this coupling, we investigated how the ATPase domains exert control over DNA cleavage. We dissected the DNA cleavage reaction by measuring rate and equilibrium constants for the individual reaction steps utilizing defined DNA duplexes in the presence and absence of the nonhydrolyzable ATP analog 5'-adenylyl-beta,gamma-imidodiphosphate (AMPPNP). Our results revealed the existence of two enzyme conformations whose relative abundance is sensitive to the presence of nucleotides. The predominant species in the absence of nucleotides binds DNA at a diffusion limited rate but cannot efficiently cleave DNA. In the presence of AMPPNP, most of the enzyme is converted to a state in which DNA binding and release is extremely slow but which allows DNA cleavage. A minimal kinetic and thermodynamic framework is established that accounts for the cooperativity of cleavage of the two DNA strands in the presence and absence of bound AMPPNP and includes conformational steps revealed in the kinetic studies. The model unifies available kinetic, thermodynamic, and structural data to provide a description for the reaction in terms of the order and rate of individual reaction steps and the physical nature of the species on the reaction path. Furthermore, this reaction framework provides a foundation for a future in-depth analysis of energy transduction by topoisomerase II, for guiding and interpreting future structural studies, and for analyzing the mechanism of drugs that convert topoisomerase into a cellular poison.
Collapse
Affiliation(s)
- Felix Mueller-Planitz
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
3
|
Morgan-Linnell SK, Hiasa H, Zechiedrich L, Nitiss JL. Assessing sensitivity to antibacterial topoisomerase II inhibitors. CURRENT PROTOCOLS IN PHARMACOLOGY 2007; Chapter 3:Unit3.13. [PMID: 21948169 PMCID: PMC2850120 DOI: 10.1002/0471141755.ph0313s39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Both prokaryotes and eukaryotes have two major classes of topoisomerases that make transient single- or double-strand cuts in DNA. While these enzymes play critical roles in cellular processes, they are also important targets of therapeutic agents. This unit describes assays to use in characterizing topoisomerase II-targeting agents in vitro and in bacterial cells. It provides protocols for characterizing the action of small molecules against bacterial type II topoisomerases in vitro and the in vivo effects of putative topoisomerase II-targeting antibiotics, as well as for measuring trapped enzyme/DNA covalent complexes, the major cytotoxic lesion induced by fluoroquinolones.
Collapse
|
4
|
Mueller-Planitz F, Herschlag D. DNA topoisomerase II selects DNA cleavage sites based on reactivity rather than binding affinity. Nucleic Acids Res 2007; 35:3764-73. [PMID: 17517767 PMCID: PMC1920260 DOI: 10.1093/nar/gkm335] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
DNA topoisomerase II modulates DNA topology by relieving supercoil stress and by unknotting or decatenating entangled DNA. During its reaction cycle, the enzyme creates a transient double-strand break in one DNA segment, the G-DNA. This break serves as a gate through which another DNA segment is transported. Defined topoisomerase II cleavage sites in genomic and plasmid DNA have been previously mapped. To dissect the G-DNA recognition mechanism, we studied the affinity and reactivity of a series of DNA duplexes of varied sequence under conditions that only allow G-DNA to bind. These DNA duplexes could be cleaved to varying extents ranging from undetectable (<0.5%) to 80%. The sequence that defines a cleavage site resides within the central 20 bp of the duplex. The DNA affinity does not correlate with the ability of the enzyme to cleave DNA, suggesting that the binding step does not contribute significantly to the selection mechanism. Kinetic experiments show that the selectivity interactions are formed before rather than subsequent to cleavage. Presumably the binding energy of the cognate interactions is used to promote a conformational change that brings the enzyme into a cleavage competent state. The ability to modulate the extent of DNA cleavage by varying the DNA sequence may be valuable for future structural and mechanistic studies that aim to determine topoisomerase structures with DNA bound in pre- and post-cleavage states and to understand the conformational changes associated with DNA binding and cleavage.
Collapse
Affiliation(s)
| | - Daniel Herschlag
- *To whom correspondence should be addressed. +1 650 723 9442+1 650 723 6783
| |
Collapse
|
5
|
Rafii F, Park M. Substitutions of amino acids in alpha-helix-4 of gyrase A confer fluoroquinolone resistance on Clostridium perfringens. Arch Microbiol 2006; 187:137-44. [PMID: 17051403 DOI: 10.1007/s00203-006-0180-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/30/2006] [Accepted: 09/12/2006] [Indexed: 11/28/2022]
Abstract
DNA gyrase, an essential enzyme that regulates DNA topology in bacteria, is the target of fluoroquinolones. Three fluoroquinolone-resistant mutants derived from one strain of Clostridium perfringens had amino acid substitutions of glycine 81 to cysteine, aspartic acid 87 to tyrosine, or both, in alpha-helix-4 of gyrase A. The gyrase mutations affected the growth kinetics of mutants differently when the mutants were exposed to increasing concentrations of gatifloxacin and ciprofloxacin. Fluoroquinolone concentration-dependent effects observed during growth in the exponential and stationary phases depended on the presence of particular gyrA mutations. Introduction of a wild-type gyrA gene into the mutants enhanced their susceptibility to fluoroquinolones and decreased their growth rates proportional to increases in fluoroquinolone concentrations. Amino acid substitutions in alpha-helix-4 of gyrase A protected C. perfringens from fluoroquinolones, and a strain with two substitutions was the most resistant.
Collapse
Affiliation(s)
- Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| | | |
Collapse
|
6
|
Mueller-Planitz F, Herschlag D. Interdomain communication in DNA topoisomerase II. DNA binding and enzyme activation. J Biol Chem 2006; 281:23395-404. [PMID: 16782968 DOI: 10.1074/jbc.m604119200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase II catalyzes the ATP-dependent transport of a DNA segment (T-DNA) through a transient double strand break in another DNA segment (G-DNA). A fundamental mechanistic question is how the individual steps in this process are coordinated. We probed communication between the DNA binding sites and the individual enzymatic activities, ATP hydrolysis, and DNA cleavage. We employed short DNA duplexes to control occupancy at the two binding sites of wild-type enzyme and a variant with a G-DNA site mutation. The DNA concentration dependence of ATP hydrolysis and a fluorescence anisotropy assay provided thermodynamic information about DNA binding. The results suggest that G-DNA binds with higher affinity than T-DNA. Enzyme with only G-DNA bound is competent to cleave DNA, indicating that T-DNA is dispensable for DNA cleavage. The ATPase activity of enzyme bound solely to G-DNA is partially stimulated. Full stimulation requires binding of T-DNA. Both DNA binding sites therefore signal to the ATPase domains. The results support and extend current mechanistic models for topoisomerase II-catalyzed DNA transport and provide a framework for future mechanistic dissection.
Collapse
Affiliation(s)
- Felix Mueller-Planitz
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305-5307, USA
| | | |
Collapse
|
7
|
Pommier Y, Cherfils J. Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery. Trends Pharmacol Sci 2005; 26:138-45. [PMID: 15749159 DOI: 10.1016/j.tips.2005.01.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One of nature's strategies for interfering with molecular interactions is to trap macromolecules in transition states with their partners in dead-end complexes that are unable to complete their biological function. This type of inhibition, which we refer to as "interfacial inhibition", is illustrated by two natural inhibitors, brefeldin A (BFA) and camptothecin (CPT), whose modes of action have been elucidated fully in structural studies. Interfacial inhibition occurs at the protein-protein interface in the case of BFA and at the protein-DNA interface in the case of CPT. In both systems, the drugs take advantage of transient structural and energetic conditions created by the macromolecular complex, which give rise to "hot-spots" for drug binding. In addition to these examples, several natural compounds such as forskolin, tubulin inhibitors and immunophilins target protein interfaces. We propose that interfacial inhibition is a paradigm for the discovery of drugs that interfere with macromolecular complexes.
Collapse
Affiliation(s)
- Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA.
| | | |
Collapse
|
8
|
Rafii F, Park M, Novak JS. Alterations in DNA gyrase and topoisomerase IV in resistant mutants of Clostridium perfringens found after in vitro treatment with fluoroquinolones. Antimicrob Agents Chemother 2005; 49:488-92. [PMID: 15673722 PMCID: PMC547304 DOI: 10.1128/aac.49.2.488-492.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To compare mutations in the DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) genes of Clostridium perfringens, which are associated with in vitro exposure to fluoroquinolones, resistant mutants were selected from eight strains by serial passage in the presence of increasing concentrations of norfloxacin, ciprofloxacin, gatifloxacin, or trovafloxacin. The nucleotide sequences of the entire gyrA, gyrB, parC, and parE genes of 42 mutants were determined. DNA gyrase was the primary target for each fluoroquinolone, and topoisomerase IV was the secondary target. Most mutations appeared in the quinolone resistance-determining regions of gyrA (resulting in changes of Asp-87 to Tyr or Gly-81 to Cys) and parC (resulting in changes of Asp-93 or Asp-88 to Tyr or Ser-89 to Ile); only two mutations were found in gyrB, and only two mutations were found in parE. More mutants with multiple gyrA and parC mutations were produced with gatifloxacin than with the other fluoroquinolones tested. Allelic diversity was observed among the resistant mutants, for which the drug MICs increased 2- to 256-fold. Both the structures of the drugs and their concentrations influenced the selection of mutants.
Collapse
Affiliation(s)
- Fatemeh Rafii
- Division of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
9
|
Gruger T, Nitiss JL, Maxwell A, Zechiedrich EL, Heisig P, Seeber S, Pommier Y, Strumberg D. A mutation in Escherichia coli DNA gyrase conferring quinolone resistance results in sensitivity to drugs targeting eukaryotic topoisomerase II. Antimicrob Agents Chemother 2005; 48:4495-504. [PMID: 15561817 PMCID: PMC529191 DOI: 10.1128/aac.48.12.4495-4504.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolones are broad-spectrum antimicrobial agents that target type II topoisomerases. Many fluoroquinolones are highly specific for bacterial type II topoisomerases and act against both DNA gyrase and topoisomerase IV. In Escherichia coli, mutations causing quinolone resistance are often found in the gene that encodes the A subunit of DNA gyrase. One common site for resistance-conferring mutations alters Ser83, and mutations to Leu or Trp result in high levels of resistance to fluoroquinolones. In the present study we demonstrate that the mutation of Ser83 to Trp in DNA gyrase (Gyr(S83W)) also results in sensitivity to agents that are potent inhibitors of eukaryotic topoisomerase II but that are normally inactive against prokaryotic enzymes. Epipodophyllotoxins, such as etoposide, teniposide and amino-azatoxin, inhibited the DNA supercoiling activity of Gyr(S83W), and the enzyme caused elevated levels of DNA cleavage in the presence of these agents. The DNA sequence preference for Gyr(S83W)-induced cleavage sites in the presence of etoposide was similar to that seen with eukaryotic type II topoisomerases. Introduction of the Gyr(S83W) mutation in E. coli strain RFM443-242 by site-directed mutagenesis sensitized it to epipodophyllotoxins and amino-azatoxin. Our results demonstrate that sensitivity to agents that target topoisomerase II is conserved between prokaryotic and eukaryotic enzymes, suggesting that drug interaction domains are also well conserved and likely occur in domains important for the biochemical activities of the enzymes.
Collapse
Affiliation(s)
- Thomas Gruger
- Department of Pharmaceutical Biology & Microbiology, Institute of Pharmacy, University of Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Suda N, Ito Y, Imai T, Kikumori T, Kikuchi A, Nishiyama Y, Yoshida S, Suzuki M. The alpha4 residues of human DNA topoisomerase IIalpha function in enzymatic activity and anticancer drug sensitivity. Nucleic Acids Res 2004; 32:1767-73. [PMID: 15026536 PMCID: PMC390336 DOI: 10.1093/nar/gkh339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 11/12/2022] Open
Abstract
We introduced a series of Pro substitutions within and near the alpha4 helix, a part of the breakage/rejoining region, in human DNA topoisomerase IIalpha, and analyzed if this region is involved in determination of anti-cancer drug sensitivity in a temperature- sensitive yeast strain (top2-4 allele). Among the 19 mutants generated, H759P and N770P showed resistance to etoposide and doxorubicin at the non-permissive temperature, where cell growth depends on activity of the human enzyme. For these residues, mutants with an Ala substitution were further created, in which H759A also showed resistance to etoposide. H759P, H759A and N770P were expressed, purified and subjected to in vitro measurement of drug sensitivity. They generated lower amounts of the etoposide-induced cleavable complexes, and were also found to have lower decatenation activity than the wild-type. In the crystal structure, the yeast equivalent of His759 is found in the vicinity of the Arg713, a putative anchoring residue of the 3'-side of cleaved DNA strands. These results suggest that His759 and the other alpha4 helix residues are involved in the enzymatic activity and drug sensitivity of human DNA topoisomerase IIalpha, via interaction with cleaved DNA.
Collapse
Affiliation(s)
- Namiko Suda
- Department of Endocrine Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|