1
|
Cheng JT, Wang YY, Zhu LZ, Zhang Y, Cai WQ, Han ZW, Zhou Y, Wang XW, Peng XC, Xiang Y, Yang HY, Cui SZ, Ma Z, Liu BR, Xin HW. Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses. Virol J 2020; 17:101. [PMID: 32650799 PMCID: PMC7377220 DOI: 10.1186/s12985-020-01365-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) can cause encephalitis. Its infected cell polypeptide 47 (ICP47), encoded by immediate-early gene US12, promotes immune escape. ICP47 was modified in the clinically approved oncolytic HSV (oHSV) T-Vec. However, transcription regulatory sequence (TRS) and transcription regulatory factor (TRF) of HSV US12 are seldom reported. METHODS Previously, our laboratory isolated a new HSV strain named HSV-1-LXMW from a male patient with oral herpes in Beijing, China. Firstly, the genetic tree was used to analyze its genetic relationship. The US12 TRS and TRF in HSV-1-LXMW were found by using predictive software. Secondly, the further verification by the multi-sequence comparative analysis shown that the upstream DNA sequence of HSV US12 gene contained the conserved region. Finally, the results of literature search shown that the expression of transcription factors was related to the tissue affinity of HSV-1 and HSV-2, so as to increase the new understanding of the transcriptional regulation of HSV biology and oncolytic virus (OVs) therapy. RESULTS Here we reported the transcriptional regulation region sequence of our new HSV-1-LXMW, and its close relationship with HSV-1-CR38 and HSV-1-17. Importantly we identified eight different kinds of novel TRSs and TRFs of HSV US12 for the first time, and found they are conserved among HSV-1 (c-Rel, Elk-1, Pax-4), HSV-2 (Oct-1, CF2-II, E74A, StuAp) or both HSVs (HNF-4). The TRFs c-Rel and Oct-1 are biologically functional respectively in immune escape and viral replication during HSV infection. CONCLUSIONS Our findings have important implication to HSV biology, infection, immunity and oHSVs.
Collapse
Affiliation(s)
- Jun-Ting Cheng
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying-Ying Wang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Lin-Zhong Zhu
- Department of Interventional Therapy, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ying Zhang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wen-Qi Cai
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Zi-Wen Han
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yang Zhou
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xian-Wang Wang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hui-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhaowu Ma
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Lianjiang People's Hospital, Guangdong, 524400, China.
| |
Collapse
|
2
|
Andronova VL. MODERN ETHIOTROPIC CHEMOTHERAPY OF HERPESVIRUS INFECTIONS: ADVANCES, NEW TRENDS AND PERSPECTIVES. ALPHAHERPESVIRUSES (PART II). Vopr Virusol 2018; 63:149-159. [PMID: 36494970 DOI: 10.18821/0507-4088-2018-63-4-149-159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
A key role in the treatment of herpesviral infections is played by modified nucleosides and their predecessors - acyclovir, its L-valine ester (valaciclovir) and famciclovir (prodrug of penciclovir). The biological activity of compounds of this class is determined by their similarity to natural nucleosides. After phosphorylation by viral thymidine kinase and then cell enzymes to the triphosphate forms, acyclovir and penciclovir inhibit the activity of viral DNA polymerase and synthesis of viral DNA. The increasing role of herpesvirus infections in human infectious pathology, as well as the development of drug resistance in viruses, mainly in patients with immunodeficiencies of various origins, necessitate the search for new compounds possessing anti-herpesvirus activity, using as a biological target not DNA polymerase, but other viral proteins and enzymes, unique or different from cellular proteins, performing similar functions.
Collapse
Affiliation(s)
- V L Andronova
- National Research Center for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| |
Collapse
|
3
|
Abstract
The majority of the population is infected by several herpesviruses. Once these infections are established the viruses persist for life. Therefore, current therapy may at best reduce symptoms but does not cure the infection. Moreover, the only classes of compounds licensed for systemic treatment of disease are nucleoside, nucleotide and pyrophosphate analogues; all of these ultimately target the herpesvirus DNA polymerase. A vaccine against varicella zoster virus (VZV) is available, but so far no effective vaccines against other human herpesviruses have been launched. At the same time, rising resistance to current medication, especially in the immunocompromised patient population, is a concern. For these reasons, there is an urgent need for new treatment options. Recently, some promising new drugs have been discovered; one of these compounds, developed at Bayer HealthCare under the name BAY 57–1293, is a potent HSV helicase primase inhibitor.
Collapse
|
4
|
Abstract
Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV.
Collapse
|
5
|
Collot M, Rouard C, Brunet C, Agut H, Boutolleau D, Burrel S. High conservation of herpes simplex virus UL5/UL52 helicase-primase complex in the era of new antiviral therapies. Antiviral Res 2016; 128:1-6. [PMID: 26826441 DOI: 10.1016/j.antiviral.2016.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/13/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
The emergence of herpes simplex virus (HSV) resistance to current antiviral drugs, that all target the viral DNA polymerase, constitutes a major obstacle to antiviral treatment effectiveness of HSV infections, especially in immunocompromised patients. A novel and promising class of inhibitors of the HSV UL5/UL52 helicase-primase (HP) complex has been reported to hinder viral replication with a high potency. In this study, we describe the low natural polymorphism (interstrain identity >99.1% at both nucleotide and amino acid levels) of HSV HP complex subunits pUL5 and pUL52 among 64 HSV (32 HSV-1 and 32 HSV-2) clinical isolates, and we show that the HSV resistance profile to the first-line antiviral drug acyclovir (ACV) does not impact on the natural polymorphism of HSV HP complex. Genotypic tools and polymorphism data concerning HSV HP complex provided herein will be useful to detect drug resistance mutations in a relevant time frame when HP inhibitors (HPIs), i.e., amenamevir and pritelivir, will be available in medical practice.
Collapse
Affiliation(s)
- Marianne Collot
- Centre Hospitalier et Universitaire de Nantes, Service de Virologie, Nantes, France; EA4271 « Immunovirology and Genetic Polymorphism », Université de Nantes, France
| | - Caroline Rouard
- AP-HP, Hôpital Universitaire Antoine Béclère, Service de Microbiologie, Clamart, France; EA4043 - Unité Bactéries Pathogènes et Santé UFR de Pharmacie-Université Paris-Sud, France
| | - Christel Brunet
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Virologie, Paris, France
| | - Henri Agut
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Virologie, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Paris, France
| | - David Boutolleau
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Virologie, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Paris, France
| | - Sonia Burrel
- AP-HP, Hôpitaux Universitaires Pitié-Salpêtrière-Charles Foix, Service de Virologie, Paris, France; Sorbonne Universités, UPMC Univ Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), INSERM U1135, Paris, France.
| |
Collapse
|
6
|
James SH, Larson KB, Acosta EP, Prichard MN. Helicase-primase as a target of new therapies for herpes simplex virus infections. Clin Pharmacol Ther 2014; 97:66-78. [PMID: 25670384 DOI: 10.1002/cpt.3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
The seminal discovery of acyclovir 40 years ago heralded the modern era of truly selective antiviral therapies and this drug remains the therapy of choice for herpes simplex virus infections. Yet by modern standards, its antiviral activity is modest and new drugs against novel molecular targets such as the helicase-primase have the potential to improve clinical outcome, particularly in high-risk patients. A brief synopsis of current therapies for these infections and clinical need is provided to help provide an initial perspective. The function of the helicase-primase complex is then summarized and the development of new inhibitors of the helicase-primase complex, such as pritelivir and amenamevir, is discussed. We review their mechanism of action, propensity for drug resistance, and pharmacokinetic characteristics and discuss their potential to advance current therapeutic options. Strategies that include combinations of these inhibitors with acyclovir are also considered, as they will likely maximize clinical efficacy.
Collapse
Affiliation(s)
- S H James
- Division of Infectious Diseases, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
7
|
Hornig J, McGregor A. Design and development of antivirals and intervention strategies against human herpesviruses using high-throughput approach. Expert Opin Drug Discov 2014; 9:891-915. [DOI: 10.1517/17460441.2014.922538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
New Herpes Simplex Virus Replication Targets. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Helicase–primase inhibitors for herpes simplex virus: looking to the future of non-nucleoside inhibitors for treating herpes virus infections. Future Med Chem 2014; 6:45-55. [DOI: 10.4155/fmc.13.192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Helicase–primase inhibitors (HPIs) are the first new family of potent herpes virus (herpes simplex and varicella-zoster virus) inhibitors to go beyond the preliminary stages of investigation since the emergence of the original nucleoside analog inhibitors. To consider the clinical future of HPIs, this review puts the exciting new findings with two HPIs, amenamevir and pritelivir, into the historical context of antiviral development for the prevention and treatment of herpes simplex virus over the last century and, on this basis, the authors speculate on the potential evolution of these and other non-nucleoside inhibitors in the future.
Collapse
|
10
|
Weller SK, Kuchta RD. The DNA helicase-primase complex as a target for herpes viral infection. Expert Opin Ther Targets 2013; 17:1119-32. [PMID: 23930666 DOI: 10.1517/14728222.2013.827663] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION The Herpesviridae are responsible for debilitating acute and chronic infections, and some members of this family are associated with human cancers. Conventional anti-herpesviral therapy targets the viral DNA polymerase and has been extremely successful; however, the emergence of drug-resistant virus strains, especially in neonates and immunocompromised patients, underscores the need for continued development of anti-herpes drugs. In this article, we explore an alternative target for antiviral therapy, the HSV helicase/primase complex. AREAS COVERED This review addresses the current state of knowledge of HSV DNA replication and the important roles played by the herpesvirus helicase- primase complex. In the last 10 years several helicase/primase inhibitors (HPIs) have been described, and in this article, we discuss and contrast these new agents with established inhibitors. EXPERT OPINION The outstanding safety profile of existing nucleoside analogues for α-herpesvirus infection make the development of new therapeutic agents a challenge. Currently used nucleoside analogues exhibit few side effects and have low occurrence of clinically relevant resistance. For HCMV, however, existing drugs have significant toxicity issues and the frequency of drug resistance is high, and no antiviral therapies are available for EBV and KSHV. The development of new anti-herpesvirus drugs is thus well worth pursuing especially for immunocompromised patients and those who develop drug-resistant infections. Although the HPIs are promising, limitations to their development into a successful drug strategy remain.
Collapse
Affiliation(s)
- Sandra K Weller
- University of Connecticut Health Center, Department of Molecular Microbial and Structural Biology , Farmington CT 06030 , USA +1 860 679 2310 ;
| | | |
Collapse
|
11
|
Field HJ, Mickleburgh I. The helicase-primase complex as a target for effective herpesvirus antivirals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:145-59. [PMID: 23161010 DOI: 10.1007/978-1-4614-5037-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Herpes simplex virus and varicella-zoster virus have been treated for more that half a century using nucleoside analogues. However, there is still an unmet clinical need for improved herpes antivirals. The successful compounds, acyclovir; penciclovir and their orally bioavailable prodrugs valaciclovir and famciclovir, ultimately block virus replication by inhibiting virus-specific DNA-polymerase. The helicase-primase (HP) complex offers a distinctly different target for specific inhibition of virus DNA synthesis. This review describes the synthetic programmes that have already led to two HP-inhibitors (HPI) that have commenced clinical trials in man. One of these (known as AIC 316) continues in clinical development to date. The specificity of HPI is reflected by the ability to select drug-resistant mutants. The role of HP-antiviral resistance will be considered and how the study of cross--resistance among mutants already shows subtle differences between compounds in this respect. The impact of resistance on the drug development in the clinic will also be considered. Finally, herpesvirus latency remains as the most important barrier to a therapeutic cure. Whether or not helicase primase inhibitors alone or in combination with nucleoside analogues can impact on this elusive goal remains to be seen.
Collapse
|
12
|
Sellar RS, Peggs KS. Management of multidrug-resistant viruses in the immunocompromised host. Br J Haematol 2011; 156:559-72. [DOI: 10.1111/j.1365-2141.2011.08988.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Birkmann A, Hewlett G, Rübsamen-Schaeff H, Zimmermann H. Helicase–primase inhibitors as the potential next generation of highly active drugs against herpes simplex viruses. Future Virol 2011. [DOI: 10.2217/fvl.11.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since the introduction of the nucleoside analogs decades ago, treatment of herpes simplex virus (HSV) infections has not seen much innovation, except for the development of their respective prodrugs. The inhibitors of the helicase–primase complex of HSV represent a very innovative approach to the treatment of herpesvirus disease, and this article considers the development of some representatives of this class of therapeutics. The molecular and biochemical features of the helicase–primase complex are considered and the development of three inhibitors of helicase–primase, BILS 179 BS, AIC316 and ASP2151, is described. The clinical development of AIC316 is at an advanced stage and displays general safety as well as favorable, long-lasting exposures in healthy volunteers. The first efficacy data from a Phase II trial with more than 150 HSV-2-positive subjects demonstrated dose-dependent antiviral activity.
Collapse
Affiliation(s)
- Alexander Birkmann
- AiCuris GmbH & Co. KG, Friedrich-Ebert-Str. 475, 42117 Wuppertal, Germany
| | - Guy Hewlett
- hbsc, Thienhausener Str. 37, 42781 Haan, Germany
| | | | | |
Collapse
|
14
|
Biswas S, Field HJ. Helicase-Primase Inhibitors: A New Approach to Combat Herpes Simplex Virus and Varicella Zoster Virus. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/9783527635955.ch6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
15
|
Resistance of herpes simplex viruses to nucleoside analogues: mechanisms, prevalence, and management. Antimicrob Agents Chemother 2010; 55:459-72. [PMID: 21078929 DOI: 10.1128/aac.00615-10] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex viruses (HSV) type 1 and type 2 are responsible for recurrent orolabial and genital infections. The standard therapy for the management of HSV infections includes acyclovir (ACV) and penciclovir (PCV) with their respective prodrugs valacyclovir and famciclovir. These compounds are phosphorylated by the viral thymidine kinase (TK) and then by cellular kinases. The triphosphate forms selectively inhibit the viral DNA polymerase (DNA pol) activity. Drug-resistant HSV isolates are frequently recovered from immunocompromised patients but rarely found in immunocompetent subjects. The gold standard phenotypic method for evaluating the susceptibility of HSV isolates to antiviral drugs is the plaque reduction assay. Plaque autoradiography allows the associated phenotype to be distinguished (TK-wild-type, TK-negative, TK-low-producer, or TK-altered viruses or mixtures of wild-type and mutant viruses). Genotypic characterization of drug-resistant isolates can reveal mutations located in the viral TK and/or in the DNA pol genes. Recombinant HSV mutants can be generated to analyze the contribution of each specific mutation with regard to the drug resistance phenotype. Most ACV-resistant mutants exhibit some reduction in their capacity to establish latency and to reactivate, as well as in their degree of neurovirulence in animal models of HSV infection. For instance, TK-negative HSV mutants establish latency with a lower efficiency than wild-type strains and reactivate poorly. DNA pol HSV mutants exhibit different degrees of attenuation of neurovirulence. The management of ACV- or PCV-resistant HSV infections includes the use of the pyrophosphate analogue foscarnet and the nucleotide analogue cidofovir. There is a need to develop new antiherpetic compounds with different mechanisms of action.
Collapse
|
16
|
Dropulic LK, Cohen JI. Update on new antivirals under development for the treatment of double-stranded DNA virus infections. Clin Pharmacol Ther 2010; 88:610-9. [PMID: 20881959 PMCID: PMC3426500 DOI: 10.1038/clpt.2010.178] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
All the currently available antiviral agents used in the treatment of double-stranded (ds) DNA viruses, with the exception of interferon-α, inhibit the same target, the viral DNA polymerase. With increasing reports of the development of resistance of herpes simplex virus (HSV), cytomegalovirus (CMV), and hepatitis B virus (HBV) to some of these drugs, new antiviral agents are needed to treat these infections. Additionally, no drugs have been approved to treat several DNA virus infections, including those caused by adenovirus, smallpox, molluscum contagiosum, and BK virus. We report the status of 10 new antiviral drugs for the treatment of dsDNA viruses. CMX-001 has broad activity against dsDNA viruses; 3 helicase-primase inhibitors, maribavir, and FV-100 have activity against certain herpesviruses; ST-246 inhibits poxviruses; GS-9191 inhibits papillomaviruses; and clevudine and emtricitabine are active against HBV. Most of these drugs have completed at least phase I trials in humans, and many are in additional clinical trials.
Collapse
Affiliation(s)
- Lesia K. Dropulic
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N234, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, Bldg. 10, Room 11N234, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892
| |
Collapse
|
17
|
Hsiang CY, Ho TY. Emodin is a novel alkaline nuclease inhibitor that suppresses herpes simplex virus type 1 yields in cell cultures. Br J Pharmacol 2008; 155:227-35. [PMID: 18552872 PMCID: PMC2538697 DOI: 10.1038/bjp.2008.242] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Most antiviral therapies directed against herpes simplex virus (HSV) infections are limited to a small group of nucleoside analogues that target the viral polymerase. Extensive clinical use of these drugs has led to the emergence of resistant viral strains, mainly in immunocompromised patients. This highlights the need for the development of new anti-herpesviral drugs with novel targets. Herein the effects of a plant anthraquinone, emodin, on the HSV-1 alkaline nuclease activity and virus yields were investigated. EXPERIMENTAL APPROACH HSV-1 alkaline nuclease activity was examined by nuclease activity assay. Inhibition of virus yields was measured by plaque reduction assay and immunohistochemical staining. Interaction between emodin and alkaline nuclease was analysed by docking technology. KEY RESULTS Emodin specifically inhibited the nuclease activity of HSV-1 UL12 alkaline nuclease in a biochemical assay. Plaque reduction assay revealed that emodin reduced the plaque formation with an EC(50) of 21.5+/-4.4 muM. Immunohistochemical staining using the anti-nucleocapsid protein antibody demonstrated that emodin induced the accumulation of viral nucleocapsids in the nucleus in a dose-dependent manner. Docking analysis further suggested that the inhibitory effect of emodin on the UL12 activity may result from the interaction between emodin and critical catalytic amino acid residues of UL12. CONCLUSIONS AND IMPLICATIONS Our findings suggest that emodin is a potent anti-HSV agent that inhibits the yields of HSV-1 via the suppression of a novel target, UL12.
Collapse
Affiliation(s)
- C-Y Hsiang
- Department of Microbiology, China Medical University, Taichung, Taiwan
| | | |
Collapse
|
18
|
Mutations close to functional motif IV in HSV-1 UL5 helicase that confer resistance to HSV helicase-primase inhibitors, variously affect virus growth rate and pathogenicity. Antiviral Res 2008; 80:81-5. [PMID: 18539344 DOI: 10.1016/j.antiviral.2008.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/12/2008] [Accepted: 04/15/2008] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus (HSV) helicase-primase (HP) is the target for a novel class of antiviral compounds, the helicase-primase inhibitors (HPIs), e.g. BAY 57-1293. Although mutations in herpesviruses conferring resistance to nucleoside analogues are commonly associated with attenuation in vivo, to date, this is not necessarily true for HPIs. HPI-resistant HSV mutants selected in tissue culture are reported to be equally pathogenic compared to parental virus in animal models. Here we demonstrate that a slow-growing HSV-1 mutant, with the BAY 57-1293-resistance mutation Gly352Arg in UL5 helicase, is clearly less virulent than its wild-type parent in a murine zosteriform infection model. This contrasts with published results obtained for a mutant containing a different HPI-resistance substitution (Gly352Val) at the same location, since this mutant was reported to be fully pathogenic. We believe our report to be the first to describe an HPI-resistant HSV-1 mutant, that is markedly less virulent in vivo and slowly growing in tissue culture compared to the parental strain. Another BAY 57-1293-resistant UL5 mutant (Lys356Gln), which showed faster growth characteristics in cell culture, however, was at least equally virulent compared to the parent strain.
Collapse
|
19
|
Siakallis G, Spandidos DA, Sourvinos G. Herpesviridae and novel inhibitors. Antivir Ther 2008; 14:1051-64. [DOI: 10.3851/imp1467] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Biswas S, Swift M, Field HJ. High frequency of spontaneous helicase-primase inhibitor (BAY 57-1293) drug-resistant variants in certain laboratory isolates of HSV-1. Antivir Chem Chemother 2007; 18:13-23. [PMID: 17354648 DOI: 10.1177/095632020701800102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Herpes simplex virus (HSV) helicase-primase is the target for a new group of potent antivirals that show great promise in vivo. A claimed advantage of this class of compounds is the low rate of drug resistance, which is reported to occur at a lesser rate than acyclovir (ACV)-resistance in cell culture. We confirmed that BAY 57-1293 is highly active against HSV-1 and superior to ACV when tested in Vero cells. Notably, drug resistance was detected in laboratory working stocks in two different strains of HSV at 10(-4) to 10(-5) and there was evidence that the resistant variants were present in the virus population before the selection was applied. Plaque-purified clones obtained from the parental viruses showed a lower level of resistance selection in the presence of drug (10-6) and this value is similar to published reports. In the case of HSV-1 SC16, no difference was observed between a working stock and a plaque-pure clone in the rate of resistance to the nucleoside analogue ACV. The working stocks were found to contain variants with resistance to BAY 57-1293 ranging from approximately 15-fold to 4,000-fold suggesting that these viruses have the potential to subvert effective therapy. Sequence analysis of HSV-1 helicase protein showed that most of the amino acid substitutions in the variants described in this study tallied with published results, with some interesting exceptions in the case of HSV-1 strain PDK. Resistant variants did not readily revert to a sensitive phenotype in the absence of the inhibitor and representative BAY 57-1293-resistant variants were cross-resistant to an alternative helicase-primase inhibitor, BILS 22 BS. Variants resistant to BAY 57-1293 retained sensitivity to the nucleoside analogue, ACV.
Collapse
Affiliation(s)
- Subhajit Biswas
- Centre for Veterinary Science, Cambridge University Veterinary School, Cambridge, UK
| | | | | |
Collapse
|
21
|
Biswas S, Jennens L, Field HJ. Single amino acid substitutions in the HSV-1 helicase protein that confer resistance to the helicase-primase inhibitor BAY 57-1293 are associated with increased or decreased virus growth characteristics in tissue culture. Arch Virol 2007; 152:1489-500. [PMID: 17404685 DOI: 10.1007/s00705-007-0964-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 02/26/2007] [Indexed: 10/23/2022]
Abstract
Two mutants (BAYr1 and BAYr2) that are 100-fold and >3000-fold resistant, respectively, to the helicase-primase inhibitor (HPI) BAY 57-1293 were derived from a plaque-pure parental strain, HSV-1 SC16 cl-2. BAYr1 has two substitutions in the HSV-1 helicase (UL5) protein (A4 to V; K356 to Q) and BAYr2 has one (G352 to R). It was shown reproducibly that BAYr1 grows to higher titres in tissue culture while BAYr2 grows more slowly than wild-type. Marker transfer experiments confirmed that K356Q and G352R are the drug-resistance mutations and that they are directly associated with differences in virus growth in tissue culture. When BAYr1 was tested in a murine infection model, this virus was shown to be fully pathogenic. We present evidence that single mutations close to a predicted functional domain of an essential HSV-1 replication enzyme (helicase) are associated with drug resistance and virus growth characteristics.
Collapse
Affiliation(s)
- S Biswas
- Centre for Veterinary Science, Cambridge University Veterinary School, Cambridge, U.K
| | | | | |
Collapse
|
22
|
Abstract
Herpes viruses are widely involved in human infectious diseases, and some are life threatening, such as CNS infections. These manifestations vary according to the type of virus involved and the immune status of the patient. This article will review the clinical manifestations (encephalitis, myelitis, meningitis and postinfectious encephalomyelitis), the diagnostic strategies and the presently used drugs (acyclovir, valacyclovir, ganciclovir, valgancyclovir, foscarnet and cidofovir). The review will also discuss drugs that are currently in the pipeline and that could be used in the future.
Collapse
Affiliation(s)
- Eric Denes
- Service de Maladies Infectieuses, CHU Dupuytren, 2 Ave Martin Luther King, 87000, Limoges, France.
| | | |
Collapse
|
23
|
De Clercq E. Status Presens of Antiviral Drugs And Strategies: Part I: DNA Viruses and Retroviruses. ADVANCES IN ANTIVIRAL DRUG DESIGN 2007; 5:1-58. [PMID: 32288472 PMCID: PMC7146823 DOI: 10.1016/s1075-8593(06)05001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
More than 40 compounds have been formally licensed for clinical use as antiviral drugs, and half of these are used for the treatment of HIV infections. The others have been approved for the therapy of herpesvirus (HSV, VZV, CMV), hepadnavirus (HBV), hepacivirus (HCV) and myxovirus (influenza, RSV) infections. New compounds are in clinical development or under preclinical evaluation, and, again, half of these are targeting HIV infections. Yet, quite a number of important viral pathogens (i.e. HPV, HCV, hemorrhagic fever viruses) remain in need of effective and/or improved antiviral therapies.
Collapse
|
24
|
Kleymann G. Agents and strategies in development for improved management of herpes simplex virus infection and disease. Expert Opin Investig Drugs 2006; 14:135-61. [PMID: 15757392 DOI: 10.1517/13543784.14.2.135] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The quiet pandemic of herpes simplex virus (HSV) infections has plagued humanity since ancient times, causing mucocutaneous infection such as herpes labialis and herpes genitalis. Disease symptoms often interfere with every-day activities and occasionally HSV infections are the cause of life-threatening or sight-impairing disease, especially in neonates and the immuno-compromised patient population. After infection the virus persists for life in neurons of the host in a latent form, periodically reactivating and often resulting in significant psychosocial distress for the patient. Currently no cure is available. So far, vaccines, ILs, IFNs, therapeutic proteins, antibodies, immunomodulators and small-molecule drugs with specific or non-specific modes of action lacked either efficacy or the required safety profile to replace the nucleosidic drugs acyclovir, valacyclovir, penciclovir and famciclovir as the first choice of treatment. The recently discovered inhibitors of the HSV helicase-primase are the most potent development candidates today. These antiviral agents act by a novel mechanism of action and display low resistance rates in vitro and superior efficacy in animal models. This review summarises the current therapeutic options, discusses the potential of preclinical or investigational drugs and provides an up-to-date interpretation of the challenge to establish novel treatments for herpes simplex disease.
Collapse
|
25
|
Abstract
Helicases are promising antiviral drug targets because their enzymatic activities are essential for viral genome replication, transcription, and translation. Numerous potent inhibitors of helicases encoded by herpes simplex virus, severe acute respiratory syndrome coronavirus, hepatitis C virus, Japanese encephalitis virus, West Nile virus, and human papillomavirus have been recently reported in the scientific literature. Some inhibitors have also been shown to decrease viral replication in cell culture and animal models. This review discusses recent progress in understanding the structure and function of viral helicases to help clarify how these potential antiviral compounds function and to facilitate the design of better inhibitors. The above helicases and all related viral proteins are classified here based on their evolutionary and functional similarities, and the key mechanistic features of each group are noted. All helicases share a common motor function fueled by ATP hydrolysis, but differ in exactly how the motor moves the protein and its cargo on a nucleic acid chain. The helicase inhibitors discussed here influence rates of helicase-catalyzed DNA (or RNA) unwinding by preventing ATP hydrolysis, nucleic acid binding, nucleic acid release, or by disrupting the interaction of a helicase with a required cofactor.
Collapse
Affiliation(s)
- D N Frick
- Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | |
Collapse
|
26
|
Chakrabarty A, Pang KR, Wu JJ, Narvaez J, Rauser M, Huang DB, Beutner KR, Tyring SK. Emerging therapies for herpes viral infections (types 1 – 8). Expert Opin Emerg Drugs 2005; 9:237-56. [PMID: 15571482 DOI: 10.1517/14728214.9.2.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There are eight members of the herpesviridae family: herpes simplex virus-1 (HSV-1), HSV-2, varicella-zoster virus, Epstein-Barr virus, cytomegalovirus, human herpes virus-6, human herpes virus-7 and human herpes virus-8. The diseases caused by viruses of the herpesviridae family are treated with and managed by systemic and topical antiviral therapies and immunomodulating drugs. Because these viruses establish a latent state in hosts, antiherpetic agents, such as nucleoside analogues, only control symptoms of disease or prevent outbreaks, and cannot cure the infections. There is a need for treatments that require less frequent dosing, can be taken even when lesions are more advanced than the first signs or symptoms, and can treat resistant strains of the viruses without the toxicities of existing therapies. Immunomodulating agents, such as resiquimod, can act on the viruses indirectly by inducing host production of cytokines, and can thereby reduce recurrences of herpes. The new helicase primase inhibitors, which are the first non-nucleoside antiviral compounds, are being investigated for treatment of HSV disease, including infections resistant to existing therapy.
Collapse
|
27
|
Duan J, Liard F, Paris W, Lambert M. A novel oral vehicle for poorly soluble HSV-helicase inhibitors: PK/PD validations. Pharm Res 2004; 21:2079-84. [PMID: 15587931 DOI: 10.1023/b:pham.0000048200.98837.6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE The current study describes the design and validation of a novel oral vehicle for delivering poorly water-soluble herpes simplex virus (HSV)-helicase inhibitors in preclinical pharmacokinetic (PK) and pharmacodynamic (PD) evaluations. METHODS Poorly water-soluble compounds were used in solubility and drinking compliance tests in mice. A preferred vehicle containing 0.1% bovine serum albumin (BSA), 3% dextrose, 5% polyethylene glycol (PEG) 400, and 2% peanut oil, pH 2.8 with HCL (BDPP) was selected. This vehicle was further validated with oral PK and in vivo antiviral PD studies using BILS 45 BS. RESULTS Solubility screen and drinking compliance tests revealed that the BDPP vehicle could solubilize BILS compounds at 0.5-3 mg/ml concentration range and could be administered to mice without reducing water consumption. Comparative oral PK of BILS 45 BS in HCL or BDPP by gavage at 40 mg/kg showed overlapping PK profiles. In vivo antiviral efficacy and potency of BILS 45 BS in BDPP by oral gavages or in drinking water were confirmed to be comparable as that achieved by gavage in HCL solution. CONCLUSIONS These results provide a protein-enriched novel oral vehicle for delivering poorly water-soluble antiviral compounds in a continuous administration mode. Similar approaches may be applicable to other poorly soluble compounds by gavage or in drinking solution.
Collapse
Affiliation(s)
- Jianmin Duan
- Department of Biological Sciences, Boehringer Ingelheim (Canada) Ltd, R & D, Laval, Quebec, H75 2G5 Canada.
| | | | | | | |
Collapse
|