1
|
Bieganowski P, Dalidowska I, Gazi O, Guzowska M, Przybylski M. Study of Hsp90α and Hsp90β role in virus replication using cell lines with Hsp90 gene knockouts. Virus Genes 2025; 61:277-283. [PMID: 39948206 DOI: 10.1007/s11262-025-02141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/04/2025] [Indexed: 05/06/2025]
Abstract
Replication of the human Enterovirus 71 (EV71) and herpes simplex virus 1 (HSV-1) requires Hsp90 chaperone activity. Vertebrate cells express two cytosolic Hsp90 proteins, Hsp90α and Hsp90β. Earlier reports suggested that EV71 replication might depend solely on the Hsp90β, whereas HSV-1 replication depended on Hsp90α. Here, we describe construction of the cell line knockouts missing Hsp90α or Hsp90β protein. Using these cells, we found that HSV-1 and, another enterovirus, Coxsackievirus B5 (CVB5) replicate in both Hsp90α and Hsp90β knockout cells with equal efficiency. The presented results demonstrate that cell lines with a mutation inactivating the specific HSP90 gene might be an easy-to-use and robust system to study specific cellular functions of Hsp90α and Hsp90β.
Collapse
Affiliation(s)
- Pawel Bieganowski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Iga Dalidowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Olga Gazi
- Chair and Depatment of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Guzowska
- Division of Biochemistry and Dietetics, Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Maciej Przybylski
- Chair and Depatment of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Hagbi-Levi S, Abraham M, Gamaev L, Mishaelian I, Hay O, Zorde-Khevalevsky E, Wald O, Wald H, Olam D, Weiss L, Peled A. Identification of Dinaciclib and Ganetespib as anti-inflammatory drugs using a novel HTP screening assay that targets IFNγ-dependent PD-L1. Front Immunol 2025; 16:1502094. [PMID: 40264756 PMCID: PMC12011776 DOI: 10.3389/fimmu.2025.1502094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction IFNγ plays both positive and negative roles in the regulation of innate and adaptive immune responses against tumors and virally infected tissues by upregulating CXCL10 and PD-L1 expression. Methods To identify novel pathways and drugs that regulate the IFNγ-dependent PD-L1, we expressed GFP under the control of mouse PD-L1 promoter in mouse cancer cells that up regulate PD-L1 and CXCL10 in response to IFNγ stimulation. Using these cells, we screened an FDA approved library of 1496 small molecules known for their ability to inhibit IFNγ-dependent increase in PD-L1. Results We identified 46 drugs that up regulated and 4 that down regulated IFNγ-dependent PD-L1 expression. We discovered that in addition to the known JAK inhibitors Ruxolitinib and Baricitinib, Dinaciclib, a CDK1/2/5/9 inhibitor, and Ganetespib, a Hsp90 inhibitor, significantly inhibit both PD-L1 and CXCL10 expression in the model cells. Furthermore, both drugs suppressed IFNγ-dependent CXCL10 and PD-L1 expression in-vitro in primary human lung cells and human cancer cells. These drugs also significantly inhibited delayed-type hypersensitivity (DTH) in-vivo in an inflammation mouse model. Discussion Our novel screening platform can therefore be used in the future to identify novel immunomodulators and pathways in cancer and inflammation, expanding therapeutic horizons.
Collapse
Affiliation(s)
- Shira Hagbi-Levi
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Lika Gamaev
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Inbal Mishaelian
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ophir Hay
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elina Zorde-Khevalevsky
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ori Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hanna Wald
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Olam
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amnon Peled
- Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
3
|
Wang Z, Zou W, Zeng Q, Song X, Li M, Pang J, Zhu H, La C, Wang X, Wang Y, Zheng K. Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway. Int J Antimicrob Agents 2025; 65:107448. [PMID: 39863183 DOI: 10.1016/j.ijantimicag.2025.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/06/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
OBJECTIVE The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection. METHODS The inhibitory effect of JD-13 on Hsp90α activity was confirmed by molecular docking, molecular dynamic stimulations, fluorescence quench titration and cellular thermal shift assay. The antiviral activity of JD-13 was examined by viral plaque assay, RT-qPCR, Western blot, flow cytometry, fluorescence microscopy and time-of-addition assay. The in vivo antiviral efficacy of JD-13 was evaluated in the HSV-1 skin infection guinea pig model by analyzing skin lesions and herpes formation. RESULTS JD-13 significantly inhibited the infection of both normal and acyclovir-resistant HSV-1 strains. In addition, JD-13 alleviated skin damage in guinea pigs caused by cutaneous HSV-1 infection. Further studies revealed that JD-13 impaired HSV-1 early infection and suppressed the Akt/β-catenin signalling pathway by promoting Akt degradation. Consequently, the inhibition of the Akt/β-catenin signalling pathway restricted HSV-1 infection. CONCLUSIONS These results suggest JD-13 as a novel HSP90α inhibitor with the potential to be developed as an antiviral agent for the treatment of HSV-1-related diseases.
Collapse
Affiliation(s)
- Zexu Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Weixiangmin Zou
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Qiongzhen Zeng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| | - Xiaowei Song
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China; Center for Mitochondrial Genetics and Health, Greater Bay Area Institute of Precision Medicine (Guangzhou), Fudan University, Guangzhou, China
| | - Menghe Li
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Jiaping Pang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Hai Zhu
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Caiwenjie La
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China
| | - Xiao Wang
- Department of Pharmacy, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, China.
| | - Kai Zheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Wang Z, Pan Q, Ma L, Zhao J, McIntosh F, Liu Z, Ding S, Lin R, Cen S, Finzi A, Liang C. Anthracyclines inhibit SARS-CoV-2 infection. Virus Res 2023; 334:199164. [PMID: 37379907 PMCID: PMC10305762 DOI: 10.1016/j.virusres.2023.199164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/13/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Vaccines and drugs are two effective medical interventions to mitigate SARS-CoV-2 infection. Three SARS-CoV-2 inhibitors, remdesivir, paxlovid, and molnupiravir, have been approved for treating COVID-19 patients, but more are needed, because each drug has its limitation of usage and SARS-CoV-2 constantly develops drug resistance mutations. In addition, SARS-CoV-2 drugs have the potential to be repurposed to inhibit new human coronaviruses, thus help to prepare for future coronavirus outbreaks. We have screened a library of microbial metabolites to discover new SARS-CoV-2 inhibitors. To facilitate this screening effort, we generated a recombinant SARS-CoV-2 Delta variant carrying the nano luciferase as a reporter for measuring viral infection. Six compounds were found to inhibit SARS-CoV-2 at the half maximal inhibitory concentration (IC50) below 1 μM, including the anthracycline drug aclarubicin that markedly reduced viral RNA-dependent RNA polymerase (RdRp)-mediated gene expression, whereas other anthracyclines inhibited SARS-CoV-2 by activating the expression of interferon and antiviral genes. As the most commonly prescribed anti-cancer drugs, anthracyclines hold the promise of becoming new SARS-CoV-2 inhibitors.
Collapse
Affiliation(s)
- Zhen Wang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qinghua Pan
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ling Ma
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Jianyuan Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Fiona McIntosh
- Research Institute of the McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | - Zhenlong Liu
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Rongtuan Lin
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Quebec, Canada; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Wu S, Zhao Y, Wang D, Chen Z. Mode of Action of Heat Shock Protein (HSP) Inhibitors against Viruses through Host HSP and Virus Interactions. Genes (Basel) 2023; 14:genes14040792. [PMID: 37107550 PMCID: PMC10138296 DOI: 10.3390/genes14040792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Misfolded proteins after stress-induced denaturation can regain their functions through correct re-folding with the aid of molecular chaperones. As a molecular chaperone, heat shock proteins (HSPs) can help client proteins fold correctly. During viral infection, HSPs are involved with replication, movement, assembly, disassembly, subcellular localization, and transport of the virus via the formation of macromolecular protein complexes, such as the viral replicase complex. Recent studies have indicated that HSP inhibitors can inhibit viral replication by interfering with the interaction of the virus with the HSP. In this review, we describe the function and classification of HSPs, the transcriptional mechanism of HSPs promoted by heat shock factors (HSFs), discuss the interaction between HSPs and viruses, and the mode of action of HSP inhibitors at two aspects of inhibiting the expression of HSPs and targeting the HSPs, and elaborate their potential use as antiviral agents.
Collapse
|
6
|
Silva RCMC, Ribeiro JS, da Silva GPD, da Costa LJ, Travassos LH. Autophagy Modulators in Coronavirus Diseases: A Double Strike in Viral Burden and Inflammation. Front Cell Infect Microbiol 2022; 12:845368. [PMID: 35433503 PMCID: PMC9010404 DOI: 10.3389/fcimb.2022.845368] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are the etiologic agents of several diseases. Coronaviruses of critical medical importance are characterized by highly inflammatory pathophysiology, involving severe pulmonary impairment and infection of multiple cell types within the body. Here, we discuss the interplay between coronaviruses and autophagy regarding virus life cycle, cell resistance, and inflammation, highlighting distinct mechanisms by which autophagy restrains inflammatory responses, especially those involved in coronavirus pathogenesis. We also address different autophagy modulators available and the rationale for drug repurposing as an attractive adjunctive therapy. We focused on pharmaceuticals being tested in clinical trials with distinct mechanisms but with autophagy as a common target. These autophagy modulators act in cell resistance to virus infection and immunomodulation, providing a double-strike to prevent or treat severe disease development and death from coronaviruses diseases.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jhones Sousa Ribeiro
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Peixoto Duarte da Silva
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Jesus da Costa
- Laboratório de Genética e Imunologia das Infecções Virais, Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Holanda Travassos
- Laboratório de Imunoreceptores e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Kumar Kushwaha P, Saurabh Srivastava K, Kumari N, Kumar R, Mitra D, Sharon A. Synthesis and anti-HIV activity of a new isoxazole containing disubstituted 1,2,4-oxadiazoles analogs. Bioorg Med Chem 2022; 56:116612. [DOI: 10.1016/j.bmc.2022.116612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022]
|
8
|
Song X, Wang Y, Li F, Cao W, Zeng Q, Qin S, Wang Z, Jia J, Xiao J, Hu X, Liu K, Wang Y, Ren Z. Hsp90 Inhibitors Inhibit the Entry of Herpes Simplex Virus 1 Into Neuron Cells by Regulating Cofilin-Mediated F-Actin Reorganization. Front Microbiol 2022; 12:799890. [PMID: 35082770 PMCID: PMC8785254 DOI: 10.3389/fmicb.2021.799890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/10/2021] [Indexed: 11/15/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a common neurotropic virus, the herpes simplex encephalitis (HSE) caused by which is considered to be the most common sporadic but fatal encephalitis. Traditional antiviral drugs against HSV-1 are limited to nucleoside analogs targeting viral factors. Inhibition of heat shock protein 90 (Hsp90) has potent anti-HSV-1 activities via numerous mechanisms, but the effects of Hsp90 inhibitors on HSV-1 infection in neuronal cells, especially in the phase of virus entry, are still unknown. In this study, we aimed to investigate the effects of the Hsp90 inhibitors on HSV-1 infection of neuronal cells. Interestingly, we found that Hsp90 inhibitors promoted viral adsorption but inhibited subsequent penetration in neuronal cell lines and primary neurons, which jointly confers the antiviral activity of the Hsp90 inhibitors. Mechanically, Hsp90 inhibitors mainly impaired the interaction between Hsp90 and cofilin, resulting in reduced cofilin membrane distribution, which led to F-actin polymerization to promote viral attachment. However, excessive polymerization of F-actin inhibited subsequent viral penetration. Consequently, unidirectional F-actin polymerization limits the entry of HSV-1 virions into neuron cells. Our research extended the molecular mechanism of Hsp90 in HSV-1 infection in neuron cells and provided a theoretical basis for developing antiviral drugs targeting Hsp90.
Collapse
Affiliation(s)
- Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Wenyan Cao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Qiongzhen Zeng
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China
| | - Shurong Qin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jiaoyan Jia
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiao Hu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Kaisheng Liu
- The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Goswami R, Russell VS, Tu JJ, Thomas C, Hughes P, Kelly F, Langel SN, Steppe J, Palmer SM, Haystead T, Blasi M, Permar SR. Oral Hsp90 inhibitor SNX-5422 attenuates SARS-CoV-2 replication and dampens inflammation in airway cells. iScience 2021; 24:103412. [PMID: 34786537 PMCID: PMC8579697 DOI: 10.1016/j.isci.2021.103412] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Currently available SARS-CoV-2 therapeutics are targeted toward moderately to severely ill patients and require intravenous infusions, with limited options for exposed or infected patients with no or mild symptoms. Although vaccines have demonstrated protective efficacy, vaccine hesitancy and logistical distribution challenges will delay their ability to end the pandemic. Hence, there is a need for rapidly translatable, easy-to-administer-therapeutics that can prevent SARS-CoV-2 disease progression, when administered in the early stages of infection. We demonstrate that an orally bioavailable Hsp90 inhibitor, SNX-5422, currently in clinical trials as an anti-cancer therapeutic, inhibits SARS-CoV-2 replication in vitro at a high selectivity index. SNX-5422 treatment of human primary airway epithelial cells dampened expression of inflammatory pathways previously associated with poor SARS-CoV-2 disease outcomes. In addition, SNX-5422 interrupted expression of host factors demonstrated to be crucial for SARS-CoV-2 replication. Development of SNX-5422 as SARS-CoV-2-early-therapy will dampen disease severity, resulting in better clinical outcomes and reduced hospitalizations.
Collapse
Affiliation(s)
- Ria Goswami
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Veronica S. Russell
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Charlene Thomas
- Division of Biostatistics, Department of Population Health Sciences, Weill Cornell Medicine, New York 10065, USA
| | - Philip Hughes
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Francine Kelly
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Justin Steppe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Scott M. Palmer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Timothy Haystead
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Lubkowska A, Pluta W, Strońska A, Lalko A. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection. Int J Mol Sci 2021; 22:ijms22179366. [PMID: 34502274 PMCID: PMC8430838 DOI: 10.3390/ijms22179366] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
Heat shock proteins (HSPs) are a large group of chaperones found in most eukaryotes and bacteria. They are responsible for the correct protein folding, protection of the cell against stressors, presenting immune and inflammatory cytokines; furthermore, they are important factors in regulating cell differentiation, survival and death. Although the biological function of HSPs is to maintain cell homeostasis, some of them can be used by viruses both to fold their proteins and increase the chances of survival in unfavorable host conditions. Folding viral proteins as well as replicating many different viruses are carried out by, among others, proteins from the HSP70 and HSP90 families. In some cases, the HSP70 family proteins directly interact with viral polymerase to enhance viral replication or they can facilitate the formation of a viral replication complex and/or maintain the stability of complex proteins. It is known that HSP90 is important for the expression of viral genes at both the transcriptional and the translational levels. Both of these HSPs can form a complex with HSP90 and, consequently, facilitate the entry of the virus into the cell. Current studies have shown the biological significance of HSPs in the course of infection SARS-CoV-2. A comprehensive understanding of chaperone use during viral infection will provide new insight into viral replication mechanisms and therapeutic potential. The aim of this study is to describe the molecular basis of HSP70 and HSP90 participation in some viral infections and the potential use of these proteins in antiviral therapy.
Collapse
Affiliation(s)
- Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
- Correspondence:
| | - Waldemar Pluta
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, Żołnierska 54, 71-210 Szczecin, Poland;
| | - Aleksandra Strońska
- Department of Pharmacognosy and Natural Medicines, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Alicja Lalko
- Student Research at the Chair and Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Żołnierska 54, 71-210 Szczecin, Poland;
| |
Collapse
|
11
|
Wyler E, Mösbauer K, Franke V, Diag A, Gottula LT, Arsiè R, Klironomos F, Koppstein D, Hönzke K, Ayoub S, Buccitelli C, Hoffmann K, Richter A, Legnini I, Ivanov A, Mari T, Del Giudice S, Papies J, Praktiknjo S, Meyer TF, Müller MA, Niemeyer D, Hocke A, Selbach M, Akalin A, Rajewsky N, Drosten C, Landthaler M. Transcriptomic profiling of SARS-CoV-2 infected human cell lines identifies HSP90 as target for COVID-19 therapy. iScience 2021; 24:102151. [PMID: 33585804 PMCID: PMC7866843 DOI: 10.1016/j.isci.2021.102151] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/20/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Detailed knowledge of the molecular biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is crucial for understanding of viral replication, host responses, and disease progression. Here, we report gene expression profiles of three SARS-CoV- and SARS-CoV-2-infected human cell lines. SARS-CoV-2 elicited an approximately two-fold higher stimulation of the innate immune response compared to SARS-CoV in the human epithelial cell line Calu-3, including induction of miRNA-155. Single-cell RNA sequencing of infected cells showed that genes induced by virus infections were broadly upregulated, whereas interferon beta/lambda genes, a pro-inflammatory cytokines such as IL-6, were expressed only in small subsets of infected cells. Temporal analysis suggested that transcriptional activities of interferon regulatory factors precede those of nuclear factor κB. Lastly, we identified heat shock protein 90 (HSP90) as a protein relevant for the infection. Inhibition of the HSP90 activity resulted in a reduction of viral replication and pro-inflammatory cytokine expression in primary human airway epithelial cells.
Collapse
Affiliation(s)
- Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Kirstin Mösbauer
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Vedran Franke
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Asija Diag
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Lina Theresa Gottula
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Roberto Arsiè
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Filippos Klironomos
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
- Department of Pediatrics, Charité – University Hospital Berlin, 13353 Berlin, Germany
| | - David Koppstein
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Katja Hönzke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Salah Ayoub
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Christopher Buccitelli
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Karen Hoffmann
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Anja Richter
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivano Legnini
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité – University Hospital Berlin, 10117 Berlin, Germany
| | - Tommaso Mari
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Simone Del Giudice
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Jan Papies
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Samantha Praktiknjo
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Thomas F. Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, UKSH, Christian Albrechts University of Kiel, 24105 Kiel, Germany
| | - Marcel Alexander Müller
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Daniela Niemeyer
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Matthias Selbach
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Altuna Akalin
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Hannoversche Str 28, 10115 Berlin, Germany
- IRI Life Sciences, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
12
|
Zhang WJ, Wang RQ, Li LT, Fu W, Chen HC, Liu ZF. Hsp90 is involved in pseudorabies virus virion assembly via stabilizing major capsid protein VP5. Virology 2020; 553:70-80. [PMID: 33242760 DOI: 10.1016/j.virol.2020.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Many viruses utilize molecular chaperone heat shock protein 90 (Hsp90) for protein folding and stabilization, however, the role of Hsp90 in herpesvirus lifecycle is obscure. Here, we provide evidence that Hsp90 participates in pseudorabies virus (PRV) replication. Viral growth kinetics assays show that Hsp90 inhibitor geldanamycin (GA) abrogates PRV replication at the post-penetration step. Transmission electron microscopy demonstrates that dysfunction of Hsp90 diminishes the quantity of PRV nucleocapsids. Overexpression and knockdown of Hsp90 suggest that de novo Hsp90 is involved in PRV replication. Mechanismly, dysfunction of Hsp90 inhibits PRV major capsid protein VP5 expression. Co-immunoprecipitation and indirect immunofluorescence assays indicate that Hsp90 interacts with VP5. Interestingly, Hsp70, a collaborator of Hsp90, also interacts with VP5, but doesn't affect PRV growth. Finally, inhibition of Hsp90 results in PRV VP5 degradation in a proteasome-dependent manner. Collectively, our data suggest that Hsp90 contributes to PRV virion assembly and replication via stabilization of VP5.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ren-Qi Wang
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Fu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- State Key Laboratory of Agricultural Microbiology and Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Ramos CHI, Ayinde KS. Are Hsp90 inhibitors good candidates against Covid-19? Curr Protein Pept Sci 2020; 22:CPPS-EPUB-111407. [PMID: 33176644 DOI: 10.2174/1389203721666201111160925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 01/18/2023]
Abstract
Drug reposition, or repurposing, has become a promising strategy in therapeutics due to its advantages in several aspects of drug therapy. General drug development is expensive and can take more than 10 years to go through the designing, development, and necessary approval steps. However, established drugs have already overcome these steps and thus a potential candidate may be already available decreasing the risks and costs involved. Viruses invade cells, usually provoking biochemical changes, leading to tissue damage, alteration of normal physiological condition in organisms and can even result in death. Inside the cell, the virus finds the machinery necessary for its multiplication, as for instance the protein quality control system, which involves chaperones and Hsps (heat shock proteins) that, in addition to physiological functions, help in the stabilization of viral proteins. Recently, many inhibitors of Hsp90 have been developed as therapeutic strategies against diseases such as the Hsp90 inhibitors used in anticancer therapy. Several shreds of evidence indicate that these inhibitors can also be used as therapeutic strategies against viruses. Therefore, since a drug treatment for COVID-19 is urgently needed, this review aims to discuss the potential use of Hsp90 inhibitors in the treatment of this globally threatening disease.
Collapse
Affiliation(s)
- Carlos H I Ramos
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970. Brazil
| | - Kehinde S Ayinde
- Institute of Chemistry, University of Campinas UNICAMP, Campinas SP, 13083-970. Brazil
| |
Collapse
|
14
|
Taguchi YH, Turki T. A new advanced in silico drug discovery method for novel coronavirus (SARS-CoV-2) with tensor decomposition-based unsupervised feature extraction. PLoS One 2020; 15:e0238907. [PMID: 32915876 PMCID: PMC7485840 DOI: 10.1371/journal.pone.0238907] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/26/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND COVID-19 is a critical pandemic that has affected human communities worldwide, and there is an urgent need to develop effective drugs. Although there are a large number of candidate drug compounds that may be useful for treating COVID-19, the evaluation of these drugs is time-consuming and costly. Thus, screening to identify potentially effective drugs prior to experimental validation is necessary. METHOD In this study, we applied the recently proposed method tensor decomposition (TD)-based unsupervised feature extraction (FE) to gene expression profiles of multiple lung cancer cell lines infected with severe acute respiratory syndrome coronavirus 2. We identified drug candidate compounds that significantly altered the expression of the 163 genes selected by TD-based unsupervised FE. RESULTS Numerous drugs were successfully screened, including many known antiviral drug compounds such as C646, chelerythrine chloride, canertinib, BX-795, sorafenib, sorafenib, QL-X-138, radicicol, A-443654, CGP-60474, alvocidib, mitoxantrone, QL-XII-47, geldanamycin, fluticasone, atorvastatin, quercetin, motexafin gadolinium, trovafloxacin, doxycycline, meloxicam, gentamicin, and dibromochloromethane. The screen also identified ivermectin, which was first identified as an anti-parasite drug and recently the drug was included in clinical trials for SARS-CoV-2. CONCLUSIONS The drugs screened using our strategy may be effective candidates for treating patients with COVID-19.
Collapse
Affiliation(s)
- Y-h. Taguchi
- Department of Physics, Chuo University, Tokyo, Japan
| | - Turki Turki
- Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Wan Q, Song D, Li H, He ML. Stress proteins: the biological functions in virus infection, present and challenges for target-based antiviral drug development. Signal Transduct Target Ther 2020; 5:125. [PMID: 32661235 PMCID: PMC7356129 DOI: 10.1038/s41392-020-00233-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023] Open
Abstract
Stress proteins (SPs) including heat-shock proteins (HSPs), RNA chaperones, and ER associated stress proteins are molecular chaperones essential for cellular homeostasis. The major functions of HSPs include chaperoning misfolded or unfolded polypeptides, protecting cells from toxic stress, and presenting immune and inflammatory cytokines. Regarded as a double-edged sword, HSPs also cooperate with numerous viruses and cancer cells to promote their survival. RNA chaperones are a group of heterogeneous nuclear ribonucleoproteins (hnRNPs), which are essential factors for manipulating both the functions and metabolisms of pre-mRNAs/hnRNAs transcribed by RNA polymerase II. hnRNPs involve in a large number of cellular processes, including chromatin remodelling, transcription regulation, RNP assembly and stabilization, RNA export, virus replication, histone-like nucleoid structuring, and even intracellular immunity. Dysregulation of stress proteins is associated with many human diseases including human cancer, cardiovascular diseases, neurodegenerative diseases (e.g., Parkinson’s diseases, Alzheimer disease), stroke and infectious diseases. In this review, we summarized the biologic function of stress proteins, and current progress on their mechanisms related to virus reproduction and diseases caused by virus infections. As SPs also attract a great interest as potential antiviral targets (e.g., COVID-19), we also discuss the present progress and challenges in this area of HSP-based drug development, as well as with compounds already under clinical evaluation.
Collapse
Affiliation(s)
- Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dan Song
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Huangcan Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong, China. .,CityU Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
16
|
SARS-CoV-2: An Update on Potential Antivirals in Light of SARS-CoV Antiviral Drug Discoveries. Vaccines (Basel) 2020; 8:vaccines8020335. [PMID: 32585913 PMCID: PMC7350231 DOI: 10.3390/vaccines8020335] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are a group of RNA viruses that are associated with different diseases in animals, birds, and humans. Human CoVs (HCoVs) have long been known to be the causative agents of mild respiratory illnesses. However, two HCoVs associated with severe respiratory diseases are Severe Acute Respiratory Syndrome-CoV (SARS-CoV) and Middle East Respiratory Syndrome-CoV (MERS-CoV). Both viruses resulted in hundreds of deaths after spreading to several countries. Most recently, SARS-CoV-2 has emerged as the third HCoV causing severe respiratory distress syndrome and viral pneumonia (known as COVID-19) in patients from Wuhan, China, in December 2019. Soon after its discovery, SARS-CoV-2 spread to all countries, resulting in millions of cases and thousands of deaths. Since the emergence of SARS-CoV, many research groups have dedicated their resources to discovering effective antivirals that can treat such life-threatening infections. The rapid spread and high fatality rate of SARS-CoV-2 necessitate the quick discovery of effective antivirals to control this outbreak. Since SARS-CoV-2 shares 79% sequence identity with SARS-CoV, several anti-SARS-CoV drugs have shown promise in limiting SARS-CoV-2 replication in vitro and in vivo. In this review, we discuss antivirals described for SARS-CoV and provide an update on therapeutic strategies and antivirals against SARS-CoV-2. The control of the current outbreak will strongly depend on the discovery of effective and safe anti-SARS-CoV-2 drugs.
Collapse
|
17
|
Wang Y, Huang L, Wang Y, Luo W, Li F, Xiao J, Qin S, Wang Z, Song X, Wang Y, Jin F, Wang Y. Single-cell RNA-sequencing analysis identifies host long noncoding RNA MAMDC2-AS1 as a co-factor for HSV-1 nuclear transport. Int J Biol Sci 2020; 16:1586-1603. [PMID: 32226304 PMCID: PMC7097924 DOI: 10.7150/ijbs.42556] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/02/2020] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex virus (HSV) type 1 (HSV-1) infection exhibited high heterogeneity at individual cells level, including the different gene expression patterns and varying amounts of progeny virus. However, the underlying mechanism of such variability remains obscure. The importance of host long noncoding RNAs (lncRNAs) in virus infection had been recognized, while the contribution of lncRNAs to the heterogeneous infection remains unknown. Herein, a prior single-cell RNA sequencing data using HSV-1 reporter strain expressing ICP4-YFP was re-analyzed to obtain the differentially expressed lncRNA between the successfully initiated viral gene expression (ICP4-YFP+) cells and the aborted infection cells (ICP4-YFP-). The ICP4-YFP+ population show a higher abundance of MAMDC2 antisense 1 (MAMDC2-AS1) lncRNA than ICP4-YFP- population. MAMDC2-AS1 silencing reduces the expression of HSV-1 immediate early (IE) genes and limit HSV-1 infection in human host cells. Consistently, ectopic expression of MAMDC2-AS1 enhances HSV-1 IE genes transcription and facilitates the formation of HSV-1-induced plaques. Mechanically, both RNA-pull down and RNA immunoprecipitation assays show that MAMDC2-AS1 interacts with the RNA binding protein heat shock protein 90α (Hsp90α), a molecular chaperone involving in the nuclear import of HSV-1. The MAMDC2-AS1-Hsp90α interaction facilitates the nuclear transport of viral tegument protein VP16, the core factor initiating the expression of HSV-1 IE genes. The transcription factor YY1 mediates the induction of MAMDC2-AS1 upon HSV-1 infection. Our study elucidates the contribution of lncRNA to HSV-1 infection susceptibility in human cells and the role of Hsp90α RNA binding activity in HSV-1 infection.
Collapse
Affiliation(s)
- Yiliang Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Lianzhou Huang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China.,College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China
| | - Weisheng Luo
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Feng Li
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Ji Xiao
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Shurong Qin
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Zhaoyang Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Xiaowei Song
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yuan Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| | - Fujun Jin
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, PR China
| | - Yifei Wang
- College of Life science and Technology, Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
18
|
Aviner R, Frydman J. Proteostasis in Viral Infection: Unfolding the Complex Virus-Chaperone Interplay. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034090. [PMID: 30858229 DOI: 10.1101/cshperspect.a034090] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are obligate intracellular parasites that rely on their hosts for protein synthesis, genome replication, and viral particle production. As such, they have evolved mechanisms to divert host resources, including molecular chaperones, facilitate folding and assembly of viral proteins, stabilize complex structures under constant mutational pressure, and modulate signaling pathways to dampen antiviral responses and prevent premature host death. Biogenesis of viral proteins often presents unique challenges to the proteostasis network, as it requires the rapid and orchestrated production of high levels of a limited number of multifunctional, multidomain, and aggregation-prone proteins. To overcome such challenges, viruses interact with the folding machinery not only as clients but also as regulators of chaperone expression, function, and subcellular localization. In this review, we summarize the main types of interactions between viral proteins and chaperones during infection, examine evolutionary aspects of this relationship, and discuss the potential of using chaperone inhibitors as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Biology, Stanford University, Stanford, California 94305
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California 94305.,Department of Genetics, Stanford University, Stanford, California 94305
| |
Collapse
|
19
|
Ji X, Li Z. Medicinal chemistry strategies toward host targeting antiviral agents. Med Res Rev 2020; 40:1519-1557. [PMID: 32060956 PMCID: PMC7228277 DOI: 10.1002/med.21664] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/23/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Direct‐acting antiviral agents (DAAs) represent a class of drugs targeting viral proteins and have been demonstrated to be very successful in combating viral infections in clinic. However, DAAs suffer from several inherent limitations, including narrow‐spectrum antiviral profiles and liability to drug resistance, and hence there are still unmet needs in the treatment of viral infections. In comparison, host targeting antivirals (HTAs) target host factors for antiviral treatment. Since host proteins are probably broadly required for various viral infections, HTAs are not only perceived, but also demonstrated to exhibit broad‐spectrum antiviral activities. In addition, host proteins are not under the genetic control of viral genome, and hence HTAs possess much higher genetic barrier to drug resistance as compared with DAAs. In recent years, much progress has been made to the development of HTAs with the approval of chemokine receptor type 5 antagonist maraviroc for human immunodeficiency virus treatment and more in the pipeline for other viral infections. In this review, we summarize various host proteins as antiviral targets from a medicinal chemistry prospective. Challenges and issues associated with HTAs are also discussed.
Collapse
Affiliation(s)
- Xingyue Ji
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuorong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Discovery of 2-isoxazol-3-yl-acetamide analogues as heat shock protein 90 (HSP90) inhibitors with significant anti-HIV activity. Eur J Med Chem 2019; 183:111699. [PMID: 31561045 DOI: 10.1016/j.ejmech.2019.111699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
The recent burst of explorations on heat shock protein 90 (HSP90) in virus research supports its emergence as a promising target to overcome the drawbacks of current antiviral therapeutic regimen. In continuation of our efforts towards the discovery of novel anti-retroviral molecules, we designed, synthesized fifteen novels 2-isoxazol-3-yl-acetamide based compounds (2a-o) followed by analysis of their anti-HIV activity and cytotoxicity studies. 2a-b, 2e, 2j, and 2l-m were found to be active with inhibitory potentials >80% at their highest non-cytotoxic concentration (HNC). Further characterization of anti-HIV activity of these molecules suggests that 2l has ∼3.5 fold better therapeutic index than AUY922, the second generation HSP90 inhibitor. The anti-HIV activity of 2l is a cell type, virus isolate and viral load independent phenomena. Interestingly, 2l does not significantly modulate viral enzymes like Reverse Transcriptase (RT), Integrase (IN) and Protease (PR) as compared to their known inhibitors in a cell free in vitro assay system at its HNC. Further, 2l mediated inhibition of HSP90 attenuates HIV-1 LTR driven gene expression. Taken together, structural rationale, modeling studies and characterization of biological activities suggest that this novel scaffold can attenuate HIV-1 replication significantly within the host and thus opens a new horizon to develop novel anti-HIV therapeutic candidates.
Collapse
|
21
|
Heat shock proteins in infection. Clin Chim Acta 2019; 498:90-100. [PMID: 31437446 DOI: 10.1016/j.cca.2019.08.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022]
Abstract
Heat shock proteins (HSPs) are constitutively expressed under physiological conditions in most organisms but their expression can significantly enhance in response to four types of stimuli including physical (e.g., radiation or heat shock), chemical and microbial (e.g., pathogenic bacteria, viruses, parasites and fungi) stimuli, and also dietary. These proteins were identified for their role in protecting cells from high temperature and other forms of stress. HSPs control physiological activities or virulence through interaction with various regulators of cellular signaling pathways. Several roles were determined for HSPs in the immune system including intracellular roles (e.g., antigen presentation and expression of innate receptors) as well as extracellular roles (e.g., tumor immunosurveillance and autoimmunity). It was observed that exogenously administered HSPs induced various immune responses in immunotherapy of cancer, infectious diseases, and autoimmunity. Moreover, virus interaction with HSPs as molecular chaperones showed important roles in regulating viral infections including cell entry and nuclear import, viral replication and gene expression, folding/assembly of viral protein, apoptosis regulation, and host immunity. Viruses could regulate host HSPs at different levels such as transcription, translation, post-translational modification and cellular localization. In this review, we attempt to overview the roles of HSPs in a variety of infectious diseases.
Collapse
|
22
|
Talwar P, Gupta R, Kushwaha S, Agarwal R, Saso L, Kukreti S, Kukreti R. Viral Induced Oxidative and Inflammatory Response in Alzheimer's Disease Pathogenesis with Identification of Potential Drug Candidates: A Systematic Review using Systems Biology Approach. Curr Neuropharmacol 2019; 17:352-365. [PMID: 29676229 PMCID: PMC6482477 DOI: 10.2174/1570159x16666180419124508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 03/19/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is genetically complex with multifactorial etiology. Here, we aim to identify the potential viral pathogens leading to aberrant inflammatory and oxidative stress response in AD along with potential drug candidates using systems biology approach. We retrieved protein interactions of amyloid precursor protein (APP) and tau protein (MAPT) from NCBI and genes for oxidative stress from NetAge, for inflammation from NetAge and InnateDB databases. Genes implicated in aging were retrieved from GenAge database and two GEO expression datasets. These genes were individually used to create protein-protein interaction network using STRING database (score≥0.7). The interactions of candidate genes with known viruses were mapped using virhostnet v2.0 database. Drug molecules targeting candidate genes were retrieved using the Drug- Gene Interaction Database (DGIdb). Data mining resulted in 2095 APP, 116 MAPT, 214 oxidative stress, 1269 inflammatory genes. After STRING PPIN analysis, 404 APP, 109 MAPT, 204 oxidative stress and 1014 inflammation related high confidence proteins were identified. The overlap among all datasets yielded eight common markers (AKT1, GSK3B, APP, APOE, EGFR, PIN1, CASP8 and SNCA). These genes showed association with hepatitis C virus (HCV), Epstein- Barr virus (EBV), human herpes virus 8 and Human papillomavirus (HPV). Further, screening of drugs targeting candidate genes, and possessing anti-inflammatory property, antiviral activity along with a suggested role in AD pathophysiology yielded 12 potential drug candidates. Our study demonstrated the role of viral etiology in AD pathogenesis by elucidating interaction of oxidative stress and inflammation causing candidate genes with common viruses along with the identification of potential AD drug candidates.
Collapse
Affiliation(s)
- Puneet Talwar
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| | - Renu Gupta
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Suman Kushwaha
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Rachna Agarwal
- Institute of Human Behaviour & Allied Sciences (IHBAS), Dilshad Garden, Delhi 110 095, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Italy
| | | | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi, India
| |
Collapse
|
23
|
Pujhari S, Brustolin M, Macias VM, Nissly RH, Nomura M, Kuchipudi SV, Rasgon JL. Heat shock protein 70 (Hsp70) mediates Zika virus entry, replication, and egress from host cells. Emerg Microbes Infect 2019; 8:8-16. [PMID: 30866755 PMCID: PMC6455116 DOI: 10.1080/22221751.2018.1557988] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) is a historically neglected mosquito-borne flavivirus that has caused recent epidemics in the western hemisphere. ZIKV has been associated with severe symptoms including infant microcephaly and Guillain-Barré syndrome, stimulating interest in understanding factors governing ZIKV infection. Heat shock protein 70 (Hsp70) has been shown to be an infection factor for multiple viruses, leading us to investigate the role of Hsp70 in the ZIKV infection process. ZIKV infection induced Hsp70 expression in host cells 48-h post-infection. Inducing Hsp70 expression in mammalian cells increased ZIKV production, whereas inhibiting Hsp70 activity reduced ZIKV viral RNA production and virion release from the cell. Hsp70 was localized both on the cell surface where it could interact with ZIKV during the initial stages of the infection process, and intracellularly where it localized with viral RNA. Blocking cell surface-localized Hsp70 using antibodies decreased ZIKV cell infection rates and production of infectious virus particles, as did competition with recombinant Hsp70 protein. Overall, Hsp70 was found to play a functional role in both the pre- and post-ZIKV infection processes affecting viral entry, replication, and egress. Understanding the interactions between Hsp70 and ZIKV may lead to novel therapeutics for ZIKV infection.
Collapse
Affiliation(s)
- Sujit Pujhari
- a Department of Entomology , Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park , PA , USA
| | - Marco Brustolin
- a Department of Entomology , Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park , PA , USA
| | - Vanessa M Macias
- a Department of Entomology , Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park , PA , USA
| | - Ruth H Nissly
- b Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , PA , USA
| | - Masashi Nomura
- a Department of Entomology , Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park , PA , USA.,c Graduate School of Horticulture , Chiba University , Japan
| | - Suresh V Kuchipudi
- b Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , PA , USA
| | - Jason L Rasgon
- a Department of Entomology , Center for Infectious Disease Dynamics and the Huck Institutes of the Life Sciences, The Pennsylvania State University , University Park , PA , USA
| |
Collapse
|
24
|
Taechowisan T, Puckdee W, Waratchareeyakul W, Phutdhawong WS. Anti-Inflammatory Activity of Geldanamycin and Its Derivatives in LPS-Induced RAW 264.7 Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.4236/aim.2019.94024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Song JH, Shim A, Kim YJ, Ahn JH, Kwon BE, Pham TT, Lee J, Chang SY, Ko HJ. Antiviral and Anti-Inflammatory Activities of Pochonin D, a Heat Shock Protein 90 Inhibitor, against Rhinovirus Infection. Biomol Ther (Seoul) 2018; 26:576-583. [PMID: 29715717 PMCID: PMC6254639 DOI: 10.4062/biomolther.2017.233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 01/05/2023] Open
Abstract
Human rhinoviruses (HRV) are one of the major causes of common cold in humans and are also associated with acute asthma and bronchial illness. Heat-shock protein 90 (Hsp90), a molecular chaperone, is an important host factor for the replication of single-strand RNA viruses. In the current study, we examined the effect of the Hsp90 inhibitor pochonin D, in vitro and in vivo, using a murine model of human rhinovirus type 1B (HRV1B) infection. Our data suggested that Hsp90 inhibition significantly reduced the inflammatory cytokine production and lung damage caused by HRV1B infection. The viral titer was significantly lowered in HRV1B-infected lungs and in Hela cells upon treatment with pochonin D. Infiltration of innate immune cells including granulocytes and monocytes was also reduced in the bronchoalveolar lavage (BAL) by pochonin D treatment after HRV1B infection. Histological analysis of the lung and respiratory tract showed that pochonin D protected the mice from HRV1B infection. Collectively, our results suggest that the Hsp90 inhibitor, pochonin D, could be an attractive antiviral therapeutic for treating HRV infection.
Collapse
Affiliation(s)
- Jae-Hyoung Song
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Aeri Shim
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yeon-Jeong Kim
- College of Pharmacy, Inje University, Gimhae 50834, Republic of Korea
| | - Jae-Hee Ahn
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Bo-Eun Kwon
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Thuy Trang Pham
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jongkook Lee
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sun-Young Chang
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hyun-Jeong Ko
- College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
26
|
Wang Y, Jin F, Li F, Qin S, Wang Y. Could targeting the heat shock protein 90 revolutionize antiviral therapy? Future Virol 2018. [DOI: 10.2217/fvl-2017-0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traditional antiviral strategies that target viral components are frequently associated with the generation of drug-resistant viruses. Thus, the development of novel antiviral drugs is critical. Hsp90 is a promising broad-spectrum antiviral drug target; however, whether targeting Hsp90 will revolutionize antiviral therapy remains ambiguous. Here, we summarize how Hsp90 functions in relation to its interactors, and listed the specific Hsp90 isoforms that participated in the virus life cycle. We also discuss the advantages and challenges of targeting Hsp90, taking into account antiviral activity, toxicity and the likelihood of emergence of drug-resistant viruses. Overall, we highlight that targeting Hsp90 might represent a novel and effective antiviral strategy. However, further studies are required before Hsp90 inhibitors can be used in antiviral therapy.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fujun Jin
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, PR China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| | - Shurong Qin
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research & Development Center, Institute of Biomedicine, College of Life Science & Technology, Jinan University, Guangzhou 510632, PR China
| |
Collapse
|
27
|
Wang Y, Jin F, Wang R, Li F, Wu Y, Kitazato K, Wang Y. HSP90: a promising broad-spectrum antiviral drug target. Arch Virol 2017; 162:3269-3282. [PMID: 28780632 DOI: 10.1007/s00705-017-3511-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022]
Abstract
The emergence of antiviral drug-resistant mutants is the most important issue in current antiviral therapy. As obligate parasites, viruses require host factors for efficient replication. An ideal therapeutic target to prevent drug-resistance development is represented by host factors that are crucial for the viral life cycle. Recent studies have indicated that heat shock protein 90 (HSP90) is a crucial host factor that is required by many viruses for multiple phases of their life cycle including viral entry, nuclear import, transcription, and replication. In this review, we summarize the most recent advances regarding HSP90 function, mechanisms of action, and molecular pathways that are associated with viral infection, and provide a comprehensive understanding of the role of HSP90 in the immune response and exosome-mediated viral transmission. In addition, several HSP90 inhibitors have entered clinical trials for specific cancers that are associated with viral infection, which further implies a crucial role for HSP90 in the malignant transformation of virus-infected cells; as such, HSP90 inhibitors exhibit excellent therapeutic potential. Finally, we describe the challenge of developing HSP90 inhibitors as anti-viral drugs.
Collapse
Affiliation(s)
- Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.,College of Pharmacy, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China
| | - Kaio Kitazato
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China. .,Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Liu YF, Zhong JJ, Lin L, Liu JJ, Wang YG, He WQ, Yang ZY. New C-19-modified geldanamycin derivatives: synthesis, antitumor activities, and physical properties study. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2016; 18:752-764. [PMID: 26988280 DOI: 10.1080/10286020.2016.1160896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
Thiazinogeldanamycin (2) was identified from Streptomyces hygroscopicus 17997 at the late stage of the fermentation. The pH was firstly proposed as an important factor in the biosynthesis of it. It was verified that 2 was produced by direct chemical reactions between geldanamycin (1, GDM) and cysteine or aminoethanethiol hydrochloride at pH > 7 in vitro. The proposed synthesis pathway for compound 2 was also discussed. Eleven new C-19-modified GDM derivatives, including five stable hydroquinone form derivatives, were synthesized, most of which exhibited desirable properties such as lower cytotoxicity, increased water solubility, and potent antitumor activity. Especially, compounds 5 and 8 showed antitumor activities against HepG2 cell with IC50 values of 2.97-6.61 μM, lower cytotoxicity and at least 15-fold higher water solubility compared with 1 in pH 7.0 phosphate buffer.
Collapse
Affiliation(s)
- Yu-Feng Liu
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
- b Department of Pharmacy , Jining Medical University , Jining 272067 , China
| | - Jing-Jing Zhong
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Ling Lin
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Juan-Juan Liu
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Yi-Guang Wang
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Wei-Qing He
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| | - Zhao-Yong Yang
- a Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
29
|
Jiang S, Qi Y, He R, Huang Y, Liu Z, Ma Y, Guo X, Shao Y, Sun Z, Ruan Q. Human cytomegalovirus microRNA miR-US25-1-5p inhibits viral replication by targeting multiple cellular genes during infection. Gene 2015; 570:108-14. [PMID: 26055091 DOI: 10.1016/j.gene.2015.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) play important roles in regulating various cellular processes in plants, animals, and viruses. This mechanism is also utilized by human cytomegalovirus (HCMV) in the process of infection and pathogenesis. The HCMV-encoded miRNA, hcmv-miR-US25-1-5p, was highly expressed during lytic and latent infections, and was found to inhibit viral replication. Identification of functional target genes of this microRNA is important in that it will enable a better understanding of the function of hcmv-miR-US25-1-5p during HCMV infection. In the present study, 35 putative cellular transcript targets of hcmv-miR-US25-1-5p were identified. Down-regulation of the targets YWHAE, UBB, NPM1, and HSP90AA1 by hcmv-miR-US25-1-5p was validated by luciferase reporter assay and Western blot analysis. In addition, we showed that hcmv-miR-US25-1-5p could inhibit viral replication by interacting with these targets, the existence of which may impact virus replication directly or indirectly.
Collapse
Affiliation(s)
- Shujuan Jiang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China; Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, China
| | - Ying Qi
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Rong He
- Clinical Genetics, The Affiliated Shengjing Hospital, China Medical University, China.
| | - Yujing Huang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Zhongyang Liu
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Yanping Ma
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Xin Guo
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Yaozhong Shao
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Zhengrong Sun
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China
| | - Qiang Ruan
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, China.
| |
Collapse
|
30
|
Zhong M, Zheng K, Chen M, Xiang Y, Jin F, Ma K, Qiu X, Wang Q, Peng T, Kitazato K, Wang Y. Heat-shock protein 90 promotes nuclear transport of herpes simplex virus 1 capsid protein by interacting with acetylated tubulin. PLoS One 2014; 9:e99425. [PMID: 24901434 PMCID: PMC4047101 DOI: 10.1371/journal.pone.0099425] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/14/2014] [Indexed: 01/04/2023] Open
Abstract
Although it is known that inhibitors of heat shock protein 90 (Hsp90) can inhibit herpes simplex virus type 1 (HSV-1) infection, the role of Hsp90 in HSV-1 entry and the antiviral mechanisms of Hsp90 inhibitors remain unclear. In this study, we found that Hsp90 inhibitors have potent antiviral activity against standard or drug-resistant HSV-1 strains and viral gene and protein synthesis are inhibited in an early phase. More detailed studies demonstrated that Hsp90 is upregulated by virus entry and it interacts with virus. Hsp90 knockdown by siRNA or treatment with Hsp90 inhibitors significantly inhibited the nuclear transport of viral capsid protein (ICP5) at the early stage of HSV-1 infection. In contrast, overexpression of Hsp90 restored the nuclear transport that was prevented by the Hsp90 inhibitors, suggesting that Hsp90 is required for nuclear transport of viral capsid protein. Furthermore, HSV-1 infection enhanced acetylation of α-tubulin and Hsp90 interacted with the acetylated α-tubulin, which is suppressed by Hsp90 inhibition. These results demonstrate that Hsp90, by interacting with acetylated α-tubulin, plays a crucial role in viral capsid protein nuclear transport and may provide novel insight into the role of Hsp90 in HSV-1 infection and offer a promising strategy to overcome drug-resistance.
Collapse
Affiliation(s)
- Meigong Zhong
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Kai Zheng
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Maoyun Chen
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Yangfei Xiang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Kaiqi Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Xianxiu Qiu
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China; College of Pharmacy, Jinan University, Guangzhou, PR China
| | - Qiaoli Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, PR China
| | - Kaio Kitazato
- Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, PR China
| |
Collapse
|
31
|
Yoo JY, Hurwitz BS, Bolyard C, Yu JG, Zhang J, Selvendiran K, Rath KS, He S, Bailey Z, Eaves D, Cripe TP, Parris DS, Caligiuri MA, Yu J, Old M, Kaur B. Bortezomib-induced unfolded protein response increases oncolytic HSV-1 replication resulting in synergistic antitumor effects. Clin Cancer Res 2014; 20:3787-98. [PMID: 24815720 DOI: 10.1158/1078-0432.ccr-14-0553] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Bortezomib is an FDA-approved proteasome inhibitor, and oncolytic herpes simplex virus-1 (oHSV) is a promising therapeutic approach for cancer. We tested the impact of combining bortezomib with oHSV for antitumor efficacy. EXPERIMENTAL DESIGN The synergistic interaction between oHSV and bortezomib was calculated using Chou-Talalay analysis. Viral replication was evaluated using plaque assay and immune fluorescence. Western blot assays were used to evaluate induction of estrogen receptor (ER) stress and unfolded protein response (UPR). Inhibitors targeting Hsp90 were utilized to investigate the mechanism of cell killing. Antitumor efficacy in vivo was evaluated using subcutaneous and intracranial tumor xenografts of glioma and head and neck cancer. Survival was analyzed by Kaplan-Meier curves and two-sided log-rank test. RESULTS Combination treatment with bortezomib and oHSV (34.5ENVE), displayed strong synergistic interaction in ovarian cancer, head and neck cancer, glioma, and malignant peripheral nerve sheath tumor (MPNST) cells. Bortezomib treatment induced ER stress, evident by strong induction of Grp78, CHOP, PERK, and IRE1α (Western blot analysis) and the UPR (induction of hsp40, 70, and 90). Bortezomib treatment of cells at both sublethal and lethal doses increased viral replication (P < 0.001), but inhibition of Hsp90 ablated this response, reducing viral replication and synergistic cell killing. The combination of bortezomib and 34.5ENVE significantly enhanced antitumor efficacy in multiple different tumor models in vivo. CONCLUSIONS The dramatic synergy of bortezomib and 34.5ENVE is mediated by bortezomib-induced UPR and warrants future clinical testing in patients.
Collapse
Affiliation(s)
- Ji Young Yoo
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences
| | - Brian S Hurwitz
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences; Biomedical Science Major
| | | | - Jun-Ge Yu
- Department of Otolaryngology, Head & Neck Surgery
| | | | | | - Kellie S Rath
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology
| | - Shun He
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Zachary Bailey
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - David Eaves
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Timothy P Cripe
- Department of Pediatrics, Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital and the Division of Hematology/Oncology/BMT, Nationwide Children's Hospital
| | - Deborah S Parris
- Department of Molecular Virology Immunology Medical Genetics, The Ohio State University, Columbus; and
| | - Michael A Caligiuri
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University Wexner Medical Center
| | - Matthew Old
- Department of Otolaryngology, Head & Neck Surgery;
| | - Balveen Kaur
- Authors' Affiliations: Department of Neurological Surgery, Dardinger Laboratory for Neuro-oncology and Neurosciences;
| |
Collapse
|
32
|
Gao J, Xiao S, Liu X, Wang L, Zhang X, Ji Q, Wang Y, Mo D, Chen Y. Inhibition of HSP90 attenuates porcine reproductive and respiratory syndrome virus production in vitro. Virol J 2014; 11:17. [PMID: 24490822 PMCID: PMC3942275 DOI: 10.1186/1743-422x-11-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/29/2014] [Indexed: 12/29/2022] Open
Abstract
Background Porcine reproductive and respiratory syndrome virus (PRRSV) infection leads to substantial economic losses to the swine industry worldwide. However, no effective countermeasures exist to combat this virus infection so far. The most common antiviral strategy relies on directly inhibiting viral proteins. However, this strategy invariably leads to the emergence of drug resistance due to the error-prone nature of viral ploymerase. Targeting cellular proteins required for viral infection for developing new generation of antivirals is gaining concern. Recently, heat shock protein 90 (HSP90) was found to be an important host factor for the replication of multiple viruses and the inhibition of HSP90 showed significant antiviral effects. It is thought that the inhibition of HSP90 could be a promising broad-range antiviral approach. However, the effects of HSP90 inhibition on PRRSV infection have not been evaluated. In the current research, we tried to inhibit HSP90 and test whether the inhibition affect PRRSV infection. Methods We inhibit the function of HSP90 with two inhibitors, geldanamycin (GA) and 17- allylamono-demethoxygeldanamycin (17-AAG), and down-regulated the expression of endogenous HSP90 with specific small-interfering RNAs (siRNAs). Cell viability was measured with alamarBlue. The protein level of viral N was determined by western blotting and indirect immunofluorescence (IFA). Besides, IFA was employed to examine the level of viral double-stranded RNA (dsRNA). The viral RNA copy number and the level of IFN-β mRNA were determined by quantitative real-time PCR (qRT-PCR). Results Our results indicated that both HSP90 inhibitors showed strong anti-PRRSV activity. They could reduce viral production by preventing the viral RNA synthesis. These inhibitory effects were not due to the activation of innate interferon response. In addition, we observed that individual knockdown targeting HSP90α or HSP90β did not show dramatic inhibitory effect. Combined knockdown of these two isoforms was required to reduce viral infection. Conclusions Our results shed light on the possibility of developing potential therapeutics targeting HSP90 against PRRSV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
33
|
Hu X, Qin A, Miao J, Xu W, Yu C, Qian K, Shao H. Transcriptional profile of Marek’s disease virus genes in chicken thymus during different phases of MDV infection. Arch Virol 2013; 158:1787-93. [DOI: 10.1007/s00705-013-1665-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/05/2013] [Indexed: 10/27/2022]
|
34
|
Geldanamycin, a ligand of heat shock protein 90, inhibits herpes simplex virus type 2 replication both in vitro and in vivo. J Antibiot (Tokyo) 2012; 65:509-12. [PMID: 22909975 PMCID: PMC7094714 DOI: 10.1038/ja.2012.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previously, we discovered geldanamycin, a ligand of heat shock protein 90, effectively inhibited herpes simplex virus type 1 replication in vitro and in vivo (mouse encephalitis model). In this study, we demonstrate that geldanamycin has very strong activities against herpes simplex virus type 2 in vitro and in vivo (mouse vagina model). In mouse vagina model, administration of geldanamycin suspension to vagina after virus infection protected the infected mice from death and increased the average survival days in a dose-dependent manner. Geldanamycin also significantly reduced virus shedding from mouse vagina. All geldanamycin-treated groups were statistically significant when compared with the infected control group. The high-dose group of geldanamycin (5.72 mg kg−1) was better than acyclovir group (2.86 mg kg−1). All geldanamycin vaginal administration mock-infected groups did not show significant body weight loss. Although geldanamycin has strong antiviral activities against various DNA and RNA viruses, geldanamycin is not suitable for systemic administration because of its high toxicity. We consider that geldanamycin is a candidate of topical usage for the treatment of herpes simplex virus type infections.
Collapse
|
35
|
Anti-herpes simplex virus efficacies of 2-aminobenzamide derivatives as novel HSP90 inhibitors. Bioorg Med Chem Lett 2012; 22:4703-6. [DOI: 10.1016/j.bmcl.2012.05.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/11/2012] [Accepted: 05/21/2012] [Indexed: 01/22/2023]
|
36
|
Evers DL, Chao CF, Zhang Z, Huang ES. 17-allylamino-17-(demethoxy)geldanamycin (17-AAG) is a potent and effective inhibitor of human cytomegalovirus replication in primary fibroblast cells. Arch Virol 2012; 157:1971-4. [PMID: 22711259 DOI: 10.1007/s00705-012-1379-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/08/2012] [Indexed: 01/25/2023]
Abstract
The 90 % human cytomegalovirus inhibitory concentration of 17-allylamino-17-(demethoxy)geldanamycin (17-AAG) was 0.1 nM and 50 % cytotoxicity required at least a 10 μM concentration. Three molecular targets may explain the antiviral activities of this compound. These are (1) heat shock protein maturation complexes, (2) host cell cycle progression and (3) phosphatidylinositol 3-kinase signaling. However, the data suggested a mechanism of action where 17-AAG blocked immediate-early protein transactivation.
Collapse
Affiliation(s)
- David L Evers
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
37
|
Xu T, Zhu R, Liu Q, Cao Z. Quantitatively integrating molecular structure and bioactivity profile evidence into drug-target relationship analysis. BMC Bioinformatics 2012; 13:75. [PMID: 22559876 PMCID: PMC3528629 DOI: 10.1186/1471-2105-13-75] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/23/2012] [Indexed: 12/21/2022] Open
Abstract
Background Public resources of chemical compound are in a rapid growth both in quantity and the types of data-representation. To comprehensively understand the relationship between the intrinsic features of chemical compounds and protein targets is an essential task to evaluate potential protein-binding function for virtual drug screening. In previous studies, correlations were proposed between bioactivity profiles and target networks, especially when chemical structures were similar. With the lack of effective quantitative methods to uncover such correlation, it is demanding and necessary for us to integrate the information from multiple data sources to produce an comprehensive assessment of the similarity between small molecules, as well as quantitatively uncover the relationship between compounds and their targets by such integrated schema. Results In this study a multi-view based clustering algorithm was introduced to quantitatively integrate compound similarity from both bioactivity profiles and structural fingerprints. Firstly, a hierarchy clustering was performed with the fused similarity on 37 compounds curated from PubChem. Compared to clustering in a single view, the overall common target number within fused classes has been improved by using the integrated similarity, which indicated that the present multi-view based clustering is more efficient by successfully identifying clusters with its members sharing more number of common targets. Analysis in certain classes reveals that mutual complement of the two views for compound description helps to discover missing similar compound when only single view was applied. Then, a large-scale drug virtual screen was performed on 1267 compounds curated from Connectivity Map (CMap) dataset based on the fused similarity, which obtained a better ranking result compared to that of single-view. These comprehensive tests indicated that by combining different data representations; an improved assessment of target-specific compound similarity can be achieved. Conclusions Our study presented an efficient, extendable and quantitative computational model for integration of different compound representations, and expected to provide new clues to improve the virtual drug screening from various pharmacological properties. Scripts, supplementary materials and data used in this study are publicly available at http://lifecenter.sgst.cn/fusion/.
Collapse
Affiliation(s)
- Tianlei Xu
- Department of Bioinformatics, Tongji University, 200092, Shanghai, China.
| | | | | | | |
Collapse
|
38
|
Kang H, Sheng Z, Zhu R, Huang Q, Liu Q, Cao Z. Virtual drug screen schema based on multiview similarity integration and ranking aggregation. J Chem Inf Model 2012; 52:834-43. [PMID: 22332590 DOI: 10.1021/ci200481c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The current drug virtual screen (VS) methods mainly include two categories. i.e., ligand/target structure-based virtual screen and that, utilizing protein-ligand interaction fingerprint information based on the large number of complex structures. Since the former one focuses on the one-side information while the later one focuses on the whole complex structure, they are thus complementary and can be boosted by each other. However, a common problem faced here is how to present a comprehensive understanding and evaluation of the various virtual screen results derived from various VS methods. Furthermore, there is still an urgent need for developing an efficient approach to fully integrate various VS methods from a comprehensive multiview perspective. In this study, our virtual screen schema based on multiview similarity integration and ranking aggregation was tested comprehensively with statistical evaluations, providing several novel and useful clues on how to perform drug VS from multiple heterogeneous data sources. (1) 18 complex structures of HIV-1 protease with ligands from the PDB were curated as a test data set and the VS was performed with five different drug representations. Ritonavir ( 1HXW ) was selected as the query in VS and the weighted ranks of the query results were aggregated from multiple views through four similarity integration approaches. (2) Further, one of the ranking aggregation methods was used to integrate the similarity ranks calculated by gene ontology (GO) fingerprint and structural fingerprint on the data set from connectivity map, and two typical HDAC and HSP90 inhibitors were chosen as the queries. The results show that rank aggregation can enhance the result of similarity searching in VS when two or more descriptions are involved and provide a more reasonable similarity rank result. Our study shows that integrated VS based on multiple data fusion can achieve a remarkable better performance compared to that from individual ones and, thus, serves as a promising way for efficient drug screening, taking advantages of the rapidly accumulated molecule representations and heterogeneous data in the pharmacological area.
Collapse
Affiliation(s)
- Hong Kang
- School of Life Sciences and Technology, Tongji University, 200092, China
| | | | | | | | | | | |
Collapse
|
39
|
Geller R, Taguwa S, Frydman J. Broad action of Hsp90 as a host chaperone required for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:698-706. [PMID: 22154817 DOI: 10.1016/j.bbamcr.2011.11.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 02/06/2023]
Abstract
Viruses are intracellular pathogens responsible for a vast number of human diseases. Due to their small genome size, viruses rely primarily on the biosynthetic apparatus of the host for their replication. Recent work has shown that the molecular chaperone Hsp90 is nearly universally required for viral protein homeostasis. As observed for many endogenous cellular proteins, numerous different viral proteins have been shown to require Hsp90 for their folding, assembly, and maturation. Importantly, the unique characteristics of viral replication cause viruses to be hypersensitive to Hsp90 inhibition, thus providing a novel therapeutic avenue for the development of broad-spectrum antiviral drugs. The major developments in this emerging field are hereby discussed. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).
Collapse
Affiliation(s)
- Ron Geller
- Department of Biology and BioX Program, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
40
|
Wu X, Tao P, Nie H. Geldanamycin is effective in the treatment of herpes simplex virus epithelial keratitis in a rabbit model. Clin Exp Ophthalmol 2011; 39:779-83. [DOI: 10.1111/j.1442-9071.2011.02558.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Khalil AA, Kabapy NF, Deraz SF, Smith C. Heat shock proteins in oncology: diagnostic biomarkers or therapeutic targets? Biochim Biophys Acta Rev Cancer 2011; 1816:89-104. [PMID: 21605630 DOI: 10.1016/j.bbcan.2011.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 02/08/2023]
Abstract
Heat shock proteins (HSP) are a family of proteins induced in cells exposed to different insults. This induction of HSPs allows cells to survive stress conditions. Mammalian HSPs have been classified into six families according to their molecular size: HSP100, HSP90, HSP70, HSP60, HSP40 and small HSPs (15 to 30kDa) including HSP27. These proteins act as molecular chaperones either helping in the refolding of misfolded proteins or assisting in their elimination if they become irreversibly damaged. In recent years, proteomic studies have characterized several different HSPs in various tumor types which may be putative clinical biomarkers or molecular targets for cancer therapy. This has led to the development of a series of molecules capable of inhibiting HSPs. Numerous studies speculated that over-expression of HSP is in part responsible for resistance to many anti-tumor agents and chemotherapeutics. Hence, from a pharmacological point of view, the co-administration of HSP inhibitors together with other anti-tumor agents is of major importance in overcoming therapeutic resistance. In this review, we provide an overview of the current status of HSPs in autoimmune, cardiovascular, and neurodegenerative diseases with special emphasis on cancer.
Collapse
Affiliation(s)
- Ashraf A Khalil
- Department of Protein Technology, Institute of Genetic Engineering and Biotechnology, Mubarak City for Scientific Research, New Borg Elarab, Alexandria, Egypt.
| | | | | | | |
Collapse
|
42
|
Peng ZG, Fan B, Du NN, Wang YP, Gao LM, Li YH, Li YH, Liu F, You XF, Han YX, Zhao ZY, Cen S, Li JR, Song DQ, Jiang JD. Small molecular compounds that inhibit hepatitis C virus replication through destabilizing heat shock cognate 70 messenger RNA. Hepatology 2010; 52:845-53. [PMID: 20593456 DOI: 10.1002/hep.23766] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED Host heat shock cognate 70 (Hsc70) protein is packaged into hepatitis C viral (HCV) particles as a structural component of the virus in the assembly process. It helps HCV RNA release into the cytoplasm in the next infection cycle. The goal of this study is to investigate whether chemically down-regulating host Hsc70 expression could be a novel strategy to interrupt HCV replication. Compounds were screened with an Hsc70 messenger RNA (mRNA) assay. IMB-DM122 was found to be an effective and safe inhibitor for Hsc70 mRNA/protein expression in human hepatocytes. IMB-DM122 inhibited HCV replication through destabilization of Hsc70 mRNA, and the half-life of host Hsc70 mRNA was reduced by 78% after the compound treatment. The Hsc70 mRNA 3' untranslated region sequence is the element responsible for the effect of IMB-DM122 on Hsc70 mRNA. The compound appears to be highly efficient in inhibiting Hsc70-related HCV replication. Treatment of the HCV-infected hepatocytes with IMB-DM122 reduced the virion encapsidation of Hsc70, and therefore disrupted HCV replication and the infection cycle. IMB-DM122 showed considerable good safety in vitro as well as in vivo with no indication of harmful effect on liver and kidney functions. CONCLUSION Hsc70 might be a new drug target and mechanism to inhibit HCV proliferation.
Collapse
Affiliation(s)
- Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
7-O-descarbamoyl-7-hydroxygeldanamycin, a minor component from the gdmN disruption mutant of Streptomyces hygroscopicus 17997. J Antibiot (Tokyo) 2010; 63:623-5. [PMID: 20683449 DOI: 10.1038/ja.2010.96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Smith DR, McCarthy S, Chrovian A, Olinger G, Stossel A, Geisbert TW, Hensley LE, Connor JH. Inhibition of heat-shock protein 90 reduces Ebola virus replication. Antiviral Res 2010; 87:187-94. [PMID: 20452380 PMCID: PMC2907434 DOI: 10.1016/j.antiviral.2010.04.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2010] [Revised: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 12/24/2022]
Abstract
Ebola virus (EBOV), a negative-sense RNA virus in the family Filoviridae, is known to cause severe hemorrhagic fever in humans and other primates. Infection with EBOV causes a high mortality rate and currently there is no FDA-licensed vaccine or therapeutic treatment available. Recently, heat-shock protein 90 (Hsp90), a molecular chaperone, was shown to be an important host factor for the replication of several negative-strand viruses. We tested the effect of several different Hsp90 inhibitors including geldanamycin, radicicol, and 17-allylamino-17-demethoxygeldanamycin (17-AAG; a geldanamycin analog) on the replication of Zaire EBOV. Our results showed that inhibition of Hsp90 significantly reduced the replication of EBOV. Classic Hsp90 inhibitors reduced viral replication with an effective concentration at 50% (EC(50)) in the high nanomolar to low micromolar range, while drugs from a new class of Hsp90 inhibitors showed markedly more potent inhibition. These compounds blocked EBOV replication with an EC(50) in the low nanomolar range and showed significant potency in blocking replication in primary human monocytes. These results validated that Hsp90 is an important host factor for the replication of filoviruses and suggest that Hsp90 inhibitors may be therapeutically effective in treating EBOV infection.
Collapse
Affiliation(s)
- Darci R. Smith
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD
| | - Sarah McCarthy
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD
| | - Andrew Chrovian
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD
| | - Gene Olinger
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD
| | - Andrea Stossel
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD
| | - Thomas W. Geisbert
- Department of Microbiology, Boston University School of Medicine, Boston, MA
| | - Lisa E. Hensley
- U.S. Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, MD
| | - John H. Connor
- Department of Microbiology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
45
|
Xiao A, Wong J, Luo H. Viral interaction with molecular chaperones: role in regulating viral infection. Arch Virol 2010; 155:1021-31. [PMID: 20461534 DOI: 10.1007/s00705-010-0691-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/02/2010] [Indexed: 02/08/2023]
Abstract
As essential effectors in protein quality control, molecular chaperones serve as the primary checkpoint to assist proper protein folding and prevent misfolded proteins from denaturation and aggregation. In addition, chaperones can function to direct terminally misfolded proteins to the proteolytic system for degradation. Viruses rely on host cell machineries for productive infection. Like for many other processes, various viruses have been shown to evolve mechanisms to utilize or subvert the host protein quality control machinery to support the completion of their life cycle. Furthermore, recent studies suggest that some viruses encode for their own chaperone-like proteins to enhance their infectivity. This review summarizes the current understanding of the interplay between molecular chaperones and viral proteins, highlights the chaperone activities of a number of viral proteins, and discusses potential antiviral therapeutic strategies targeting the virus-chaperone interactions.
Collapse
Affiliation(s)
- Allen Xiao
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, Providence Heart and Lung Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | | | | |
Collapse
|
46
|
Qin Z, DeFee M, Isaacs JS, Parsons C. Extracellular Hsp90 serves as a co-factor for MAPK activation and latent viral gene expression during de novo infection by KSHV. Virology 2010; 403:92-102. [PMID: 20451233 DOI: 10.1016/j.virol.2010.03.052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/16/2009] [Accepted: 03/31/2010] [Indexed: 12/23/2022]
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), an important cause of morbidity and mortality in immunocompromised patients. KSHV interaction with the cell membrane triggers activation of specific intracellular signal transduction pathways to facilitate virus entry, nuclear trafficking, and ultimately viral oncogene expression. Extracellular heat shock protein 90 localizes to the cell surface (csHsp90) and facilitates signal transduction in cancer cell lines, but whether csHsp90 assists in the coordination of KSHV gene expression through these or other mechanisms is unknown. Using a recently characterized non-permeable inhibitor specifically targeting csHsp90 and Hsp90-specific antibodies, we show that csHsp90 inhibition suppresses KSHV gene expression during de novo infection, and that this effect is mediated largely through the inhibition of mitogen-activated protein kinase (MAPK) activation by KSHV. Moreover, we show that targeting csHsp90 reduces constitutive MAPK expression and the release of infectious viral particles by patient-derived, KSHV-infected primary effusion lymphoma cells. These data suggest that csHsp90 serves as an important co-factor for KSHV-initiated MAPK activation and provide proof-of-concept for the potential benefit of targeting csHsp90 for the treatment or prevention of KSHV-associated illnesses.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
47
|
Li YP, Shan GZ, Peng ZG, Zhu JH, Meng S, Zhang T, Gao LY, Tao PZ, Gao RM, Li YH, Jiang JD, Li ZR. Synthesis and Biological Evaluation of Heat-Shock Protein 90 Inhibitors: Geldanamycin Derivatives with Broad Antiviral Activities. ACTA ACUST UNITED AC 2010; 20:259-68. [DOI: 10.3851/imp1631] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background: Previous studies have suggested that geldanamycin (GA) inhibits the replication of several viruses in vitro. Here, we aimed to synthesize and evaluate the antiviral activity of 17-amino-17-demethoxygeldanamycin derivatives. Methods: A series of 17-substituted and 17-,19-disubstituted GA derivatives were screened for antiviral activities against eight different viral strains, including herpesvirus, hepatitis virus, retrovirus and picornavirus. Results: Most of the tested compounds showed inhibitory activity against the viruses and showed reduced cytotoxicity in vitro as compared with the parent compound GA. In vivo efficacy evaluation results showed that compound 6 noticeably inhibited duckling hepatitis B virus DNA replication in duckling serum after oral administration. Viral rebound did not occur after termination of the treatment. The modified GA derivatives also showed median lethal dose values that were higher than that of the parent GA in mice intraperitoneally treated with the study compounds. Conclusions: Targeting heat-shock protein 90 could be a new antiviral approach that is not prone to the development of drug resistance. The 17-amino-17-demethoxygeldanamycin derivatives could be novel agents with potential antiviral activity.
Collapse
Affiliation(s)
- Yan-Ping Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guang-Zhi Shan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Hua Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuai Meng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin-Yan Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pei-Zhen Tao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong-Mei Gao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Huan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Pockley AG, Calderwood SK, Santoro MG. Role of Heat Shock Proteins in Viral Infection. PROKARYOTIC AND EUKARYOTIC HEAT SHOCK PROTEINS IN INFECTIOUS DISEASE 2009; 4. [PMCID: PMC7121897 DOI: 10.1007/978-90-481-2976-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the most intriguing and less known aspects of the interaction between viruses and their host is the impact of the viral infection on the heat shock response (HSR). While both a positive and a negative role of different heat shock proteins (HSP) in the control of virus replication has been hypothesized, HSP function during the virus replication cycle is still not well understood. This chapter describes different aspects of the interactions between viruses and heat shock proteins during infection of mammalian cells: the first part focuses on the modulation of the heat shock response by human viral pathogens; the second describes the interactions of HSP and other chaperones with viral components, and their function during different steps of the virus replication cycle; the last part summarizes our knowledge on the effect of hyperthermia and HSR modulators on virus replication.
Collapse
Affiliation(s)
- A. Graham Pockley
- School of Medicine & Biomedical Science, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX United Kingdom
| | - Stuart K. Calderwood
- Beth Israel Deaconess Medical Center, Harvard Medical School, Burlington Avenue 21-27, Boston, 02215 U.S.A
| | - M. Gabriella Santoro
- Dipto. Biologia, Università di Roma, Tor Vergata, Via della Ricerca Scientifica 1, Roma, 00133 Italy
| |
Collapse
|
49
|
Virus-Induced Chaperone-Enriched (VICE) domains function as nuclear protein quality control centers during HSV-1 infection. PLoS Pathog 2009; 5:e1000619. [PMID: 19816571 PMCID: PMC2752995 DOI: 10.1371/journal.ppat.1000619] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/14/2009] [Indexed: 12/11/2022] Open
Abstract
Virus-Induced Chaperone-Enriched (VICE) domains form adjacent to nuclear viral replication compartments (RC) during the early stages of HSV-1 infection. Between 2 and 3 hours post infection at a MOI of 10, host protein quality control machinery such as molecular chaperones (e.g. Hsc70), the 20S proteasome and ubiquitin are reorganized from a diffuse nuclear distribution pattern to sequestration in VICE domains. The observation that VICE domains contain putative misfolded proteins suggests that they may be similar to nuclear inclusion bodies that form under conditions in which the protein quality control machinery is overwhelmed by the presence of misfolded proteins. The detection of Hsc70 in VICE domains, but not in nuclear inclusion bodies, indicates that Hsc70 is specifically reorganized by HSV-1 infection. We hypothesize that HSV-1 infection induces the formation of nuclear protein quality control centers to remodel or degrade aberrant nuclear proteins that would otherwise interfere with productive infection. Detection of proteolytic activity in VICE domains suggests that substrates may be degraded by the 20S proteasome in VICE domains. FRAP analysis reveals that GFP-Hsc70 is dynamically associated with VICE domains, suggesting a role for Hsc70 in scanning the infected nucleus for misfolded proteins. During 42°C heat shock, Hsc70 is redistributed from VICE domains into RC perhaps to remodel viral replication and regulatory proteins that have become insoluble in these compartments. The experiments presented in this paper suggest that VICE domains are nuclear protein quality control centers that are modified by HSV-1 to promote productive infection. Protein quality control is a protective cellular mechanism by which damaged proteins are refolded or degraded so that they cannot interfere with essential cellular processes. In the event that protein quality control machinery cannot refold or degrade damaged proteins, sequestration of misfolded protein is an alternative protective mechanism for reducing the toxic effects of misfolded protein. Several neurological diseases result from the accumulation of toxic misfolded proteins that cannot be efficiently refolded or degraded. In neurons from patients afflicted with Huntington's disease, misfolded huntingtin protein is sequestered in large aggregates in the nucleus called inclusion bodies. Inclusion bodies also contain protein quality control machinery including molecular chaperones, the proteasome and ubiquitin. Here we report that analogous structures called Virus-Induced Chaperone-Enriched (VICE) domains form in the nucleus of cells infected with Herpes Simplex Virus type 1 (HSV-1). VICE domains contain misfolded protein, chaperones and protein degradation activity. VICE domain formation is efficient in infected cells taxed with high levels of viral protein production. We hypothesize that misfolded proteins that arise in HSV-1-infected cells are sequestered in VICE domains to promote remodeling of misfolded proteins.
Collapse
|
50
|
A New Post-PKS Modification Process in the Carbamoyltransferase Gene Inactivation Strain of Streptomyces hygroscopicus 17997. J Antibiot (Tokyo) 2008; 61:347-55. [DOI: 10.1038/ja.2008.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|