1
|
Vogel J, Faber F, Barquist L, Sparmann A, Popella L, Ghosh C. ASOBIOTICS 2024: an interdisciplinary symposium on antisense-based programmable RNA antibiotics. RNA (NEW YORK, N.Y.) 2025; 31:465-474. [PMID: 39814459 PMCID: PMC11912906 DOI: 10.1261/rna.080347.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
The international symposium ASOBIOTICS 2024 brought together scientists across disciplines to discuss the challenges of advancing antibacterial antisense oligomers (ASOs) from basic research to clinical application. Hosted by the Helmholtz Institute for RNA-based Infection Research (HIRI) in Würzburg, Germany, on September 12-13, 2024, the event featured presentations covering major milestones and current challenges of this antimicrobial technology and its applications against pathogens, commensals, and bacterial viruses. General design principles and modification of ASOs based on peptide nucleic acid (PNA) or phosphorodiamidate-morpholino-oligomer (PMO) chemistry, promising cellular RNA targets, new delivery technologies, as well as putative resistance mechanisms, were discussed. A panel discussion noted the challenge of nomenclature: antibacterial ASOs lack a single, universally used name. To address this, the term "asobiotics" was proposed to unite a community of like-minded scientists that are committed to advancing ASOs as antimicrobials. A consistent name will simplify literature searches and help scientists and funders appreciate the potential of programmable RNA antibiotics to combat antimicrobial resistance and enable precise microbiome editing.
Collapse
Affiliation(s)
- Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- University of Würzburg, Medical Faculty, Institute of Molecular Infection Biology (IMIB), D-97080 Würzburg, Germany
| | - Franziska Faber
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- University of Würzburg, Medical Faculty, Institute for Hygiene and Microbiology, D-97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Anke Sparmann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Linda Popella
- University of Würzburg, Medical Faculty, Institute of Molecular Infection Biology (IMIB), D-97080 Würzburg, Germany
| | - Chandradhish Ghosh
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
2
|
Moreira L, Guimarães NM, Santos RS, Loureiro JA, Pereira MDC, Azevedo NF. Oligonucleotide probes for imaging and diagnosis of bacterial infections. Crit Rev Biotechnol 2025; 45:128-147. [PMID: 38830823 DOI: 10.1080/07388551.2024.2344574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/17/2023] [Indexed: 06/05/2024]
Abstract
The rise of infectious diseases as a public health concern has necessitated the development of rapid and precise diagnostic methods. Imaging techniques like nuclear and optical imaging provide the ability to diagnose infectious diseases within the body, eliminating delays caused by sampling and pre-enrichments of clinical samples and offering spatial information that can aid in a more informed diagnosis. Traditional molecular probes are typically created to image infected tissue without accurately identifying the pathogen. In contrast, oligonucleotides can be tailored to target specific RNA sequences, allowing for the identification of pathogens, and even generating antibiotic susceptibility profiles by focusing on drug resistance genes. Despite the benefits that nucleic acid mimics (NAMs) have provided in terms of stabilizing oligonucleotides, the inadequate delivery of these relatively large molecules into the cytoplasm of bacteria remains a challenge for widespread use of this technology. This review summarizes the key advancements in the field of oligonucleotide probes for in vivo imaging, highlighting the most promising delivery systems described in the literature for developing optical imaging through in vivo hybridization.
Collapse
Affiliation(s)
- Luís Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Miguel Guimarães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Rita Sobral Santos
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Joana Angélica Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Nuno Filipe Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Pals MJ, Lindberg A, Velema WA. Chemical strategies for antisense antibiotics. Chem Soc Rev 2024; 53:11303-11320. [PMID: 39436264 PMCID: PMC11495246 DOI: 10.1039/d4cs00238e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 10/23/2024]
Abstract
Antibacterial resistance is a severe threat to modern medicine and human health. To stay ahead of constantly-evolving bacteria we need to expand our arsenal of effective antibiotics. As such, antisense therapy is an attractive approach. The programmability allows to in principle target any RNA sequence within bacteria, enabling tremendous selectivity. In this Tutorial Review we provide guidelines for devising effective antibacterial antisense agents and offer a concise perspective for future research. We will review the chemical architectures of antibacterial antisense agents with a special focus on the delivery and target selection for successful antisense design. This Tutorial Review will strive to serve as an essential guide for antibacterial antisense technology development.
Collapse
Affiliation(s)
- Mathijs J Pals
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Alexander Lindberg
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, the Netherlands. Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Ghosh C, Popella L, Dhamodharan V, Jung J, Dietzsch J, Barquist L, Höbartner C, Vogel J. A comparative analysis of peptide-delivered antisense antibiotics using diverse nucleotide mimics. RNA (NEW YORK, N.Y.) 2024; 30:624-643. [PMID: 38413166 PMCID: PMC11098465 DOI: 10.1261/rna.079969.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Antisense oligomer (ASO)-based antibiotics that target mRNAs of essential bacterial genes have great potential for counteracting antimicrobial resistance and for precision microbiome editing. To date, the development of such antisense antibiotics has primarily focused on using phosphorodiamidate morpholino (PMO) and peptide nucleic acid (PNA) backbones, largely ignoring the growing number of chemical modalities that have spurred the success of ASO-based human therapy. Here, we directly compare the activities of seven chemically distinct 10mer ASOs, all designed to target the essential gene acpP upon delivery with a KFF-peptide carrier into Salmonella. Our systematic analysis of PNA, PMO, phosphorothioate (PTO)-modified DNA, 2'-methylated RNA (RNA-OMe), 2'-methoxyethylated RNA (RNA-MOE), 2'-fluorinated RNA (RNA-F), and 2'-4'-locked RNA (LNA) is based on a variety of in vitro and in vivo methods to evaluate ASO uptake, target pairing and inhibition of bacterial growth. Our data show that only PNA and PMO are efficiently delivered by the KFF peptide into Salmonella to inhibit bacterial growth. Nevertheless, the strong target binding affinity and in vitro translational repression activity of LNA and RNA-MOE make them promising modalities for antisense antibiotics that will require the identification of an effective carrier.
Collapse
Affiliation(s)
- Chandradhish Ghosh
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| | - Linda Popella
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
| | - V Dhamodharan
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Jakob Jung
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
| | - Julia Dietzsch
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080, Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Center for Nanosystems Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Cluster for Nucleic Acid Therapeutics Munich (CNATM), Munich, Germany
- Faculty of Medicine, University of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
5
|
Shchaslyvyi AY, Antonenko SV, Tesliuk MG, Telegeev GD. Current State of Human Gene Therapy: Approved Products and Vectors. Pharmaceuticals (Basel) 2023; 16:1416. [PMID: 37895887 PMCID: PMC10609992 DOI: 10.3390/ph16101416] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
In the realm of gene therapy, a pivotal moment arrived with Paul Berg's groundbreaking identification of the first recombinant DNA in 1972. This achievement set the stage for future breakthroughs. Conditions once considered undefeatable, like melanoma, pancreatic cancer, and a host of other ailments, are now being addressed at their root cause-the genetic level. Presently, the gene therapy landscape stands adorned with 22 approved in vivo and ex vivo products, including IMLYGIC, LUXTURNA, Zolgensma, Spinraza, Patisiran, and many more. In this comprehensive exploration, we delve into a rich assortment of 16 drugs, from siRNA, miRNA, and CRISPR/Cas9 to DNA aptamers and TRAIL/APO2L, as well as 46 carriers, from AAV, AdV, LNPs, and exosomes to naked mRNA, sonoporation, and magnetofection. The article also discusses the advantages and disadvantages of each product and vector type, as well as the current challenges faced in the practical use of gene therapy and its future potential.
Collapse
Affiliation(s)
- Aladdin Y. Shchaslyvyi
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine; (S.V.A.); (M.G.T.); (G.D.T.)
| | | | | | | |
Collapse
|
6
|
Jung J, Popella L, Do PT, Pfau P, Vogel J, Barquist L. Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server. RNA (NEW YORK, N.Y.) 2023; 29:570-583. [PMID: 36750372 PMCID: PMC10158992 DOI: 10.1261/rna.079263.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/10/2023] [Indexed: 05/06/2023]
Abstract
Antisense oligomers (ASOs), such as peptide nucleic acids (PNAs), designed to inhibit the translation of essential bacterial genes, have emerged as attractive sequence- and species-specific programmable RNA antibiotics. Yet, potential drawbacks include unwanted side effects caused by their binding to transcripts other than the intended target. To facilitate the design of PNAs with minimal off-target effects, we developed MASON (make antisense oligomers now), a web server for the design of PNAs that target bacterial mRNAs. MASON generates PNA sequences complementary to the translational start site of a bacterial gene of interest and reports critical sequence attributes and potential off-target sites. We based MASON's off-target predictions on experiments in which we treated Salmonella enterica serovar Typhimurium with a series of 10-mer PNAs derived from a PNA targeting the essential gene acpP but carrying two serial mismatches. Growth inhibition and RNA-sequencing (RNA-seq) data revealed that PNAs with terminal mismatches are still able to target acpP, suggesting wider off-target effects than anticipated. Comparison of these results to an RNA-seq data set from uropathogenic Escherichia coli (UPEC) treated with eleven different PNAs confirmed that our findings are not unique to Salmonella We believe that MASON's off-target assessment will improve the design of specific PNAs and other ASOs.
Collapse
Affiliation(s)
- Jakob Jung
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Linda Popella
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Phuong Thao Do
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Patrick Pfau
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Institute for Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Faculty of Medicine, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
7
|
The emerging role of bacterial regulatory RNAs in disease. Trends Microbiol 2022; 30:959-972. [DOI: 10.1016/j.tim.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 02/02/2023]
|
8
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
9
|
Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope. Curr Genet 2021; 68:83-90. [PMID: 34750687 PMCID: PMC8801401 DOI: 10.1007/s00294-021-01217-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 11/02/2022]
Abstract
The increase in multidrug-resistant pathogenic bacteria has become a problem worldwide. Currently there is a strong focus on the development of novel antimicrobials, including antimicrobial peptides (AMP) and antimicrobial antisense agents. While the majority of AMP have membrane activity and kill bacteria through membrane disruption, non-lytic AMP are non-membrane active, internalize and have intracellular targets. Antimicrobial antisense agents such as peptide nucleic acids (PNA) and phosphorodiamidate morpholino oligomers (PMO), show great promise as novel antibacterial agents, killing bacteria by inhibiting translation of essential target gene transcripts. However, naked PNA and PMO are unable to translocate across the cell envelope of bacteria, to reach their target in the cytosol, and are conjugated to bacteria penetrating peptides (BPP) for cytosolic delivery. Here, we discuss how non-lytic AMP and BPP-PMO/PNA conjugates translocate across the cytoplasmic membrane via receptor-mediated transport, such as the cytoplasmic membrane transporters SbmA, MdtM/YjiL, and/or YgdD, or via a less well described autonomous process.
Collapse
|
10
|
Eller KA, Aunins TR, Courtney CM, Campos JK, Otoupal PB, Erickson KE, Madinger NE, Chatterjee A. Facile accelerated specific therapeutic (FAST) platform develops antisense therapies to counter multidrug-resistant bacteria. Commun Biol 2021; 4:331. [PMID: 33712689 PMCID: PMC7955031 DOI: 10.1038/s42003-021-01856-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/11/2021] [Indexed: 02/08/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria pose a grave concern to global health, which is perpetuated by a lack of new treatments and countermeasure platforms to combat outbreaks or antibiotic resistance. To address this, we have developed a Facile Accelerated Specific Therapeutic (FAST) platform that can develop effective peptide nucleic acid (PNA) therapies against MDR bacteria within a week. Our FAST platform uses a bioinformatics toolbox to design sequence-specific PNAs targeting non-traditional pathways/genes of bacteria, then performs in-situ synthesis, validation, and efficacy testing of selected PNAs. As a proof of concept, these PNAs were tested against five MDR clinical isolates: carbapenem-resistant Escherichia coli, extended-spectrum beta-lactamase Klebsiella pneumoniae, New Delhi Metallo-beta-lactamase-1 carrying Klebsiella pneumoniae, and MDR Salmonella enterica. PNAs showed significant growth inhibition for 82% of treatments, with nearly 18% of treatments leading to greater than 97% decrease. Further, these PNAs are capable of potentiating antibiotic activity in the clinical isolates despite presence of cognate resistance genes. Finally, the FAST platform offers a novel delivery approach to overcome limited transport of PNAs into mammalian cells by repurposing the bacterial Type III secretion system in conjunction with a kill switch that is effective at eliminating 99.6% of an intracellular Salmonella infection in human epithelial cells.
Collapse
Affiliation(s)
- Kristen A Eller
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Thomas R Aunins
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Colleen M Courtney
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA
| | - Jocelyn K Campos
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Peter B Otoupal
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Keesha E Erickson
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nancy E Madinger
- Division of Infectious Diseases, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Sachi Bioworks, Inc, Boulder, CO, 80301, USA.
- Biomedical Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Antimicrobial Regeneration Consortium, Boulder, CO, 80301, USA.
| |
Collapse
|
11
|
Vogel J. An RNA biology perspective on species-specific programmable RNA antibiotics. Mol Microbiol 2020; 113:550-559. [PMID: 32185839 DOI: 10.1111/mmi.14476] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Our body is colonized by a vast array of bacteria the sum of which forms our microbiota. The gut alone harbors >1,000 bacterial species. An understanding of their individual or synergistic contributions to human health and disease demands means to interfere with their functions on the species level. Most of the currently available antibiotics are broad-spectrum, thus too unspecific for a selective depletion of a single species of interest from the microbiota. Programmable RNA antibiotics in the form of short antisense oligonucleotides (ASOs) promise to achieve precision manipulation of bacterial communities. These ASOs are coupled to small peptides that carry them inside the bacteria to silence mRNAs of essential genes, for example, to target antibiotic-resistant pathogens as an alternative to standard antibiotics. There is already proof-of-principle with diverse bacteria, but many open questions remain with respect to true species specificity, potential off-targeting, choice of peptides for delivery, bacterial resistance mechanisms and the host response. While there is unlikely a one-fits-all solution for all microbiome species, I will discuss how recent progress in bacterial RNA biology may help to accelerate the development of programmable RNA antibiotics for microbiome editing and other applications.
Collapse
Affiliation(s)
- Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany.,RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Pifer R, Greenberg DE. Antisense antibacterial compounds. Transl Res 2020; 223:89-106. [PMID: 32522669 DOI: 10.1016/j.trsl.2020.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023]
Abstract
Extensive antibiotic use combined with poor historical drug stewardship practices have created a medical crisis in which once treatable bacterial infections are now increasingly unmanageable. To combat this, new antibiotics will need to be developed and safeguarded. An emerging class of antibiotics based upon nuclease-stable antisense technologies has proven valuable in preclinical testing against a variety of bacterial pathogens. This review describes the current state of development of antisense-based antibiotics, the mechanisms thus far employed by these compounds, and possible future avenues of research.
Collapse
Affiliation(s)
- Reed Pifer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Greenberg
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
13
|
Goltermann L, Yavari N, Zhang M, Ghosal A, Nielsen PE. PNA Length Restriction of Antibacterial Activity of Peptide-PNA Conjugates in Escherichia coli Through Effects of the Inner Membrane. Front Microbiol 2019; 10:1032. [PMID: 31178830 PMCID: PMC6542938 DOI: 10.3389/fmicb.2019.01032] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/24/2019] [Indexed: 01/10/2023] Open
Abstract
Peptide Nucleic Acid (PNA)-peptide conjugates targeting essential bacterial genes are showing promise as antisense antimicrobials in drug discovery. Optimization has focused on selection of target genes and exact localization around the ribosome binding site, but surprisingly a length optimum around 10-12 nucleobases has been found. Addressing this observation, we have investigated the relationship between PNA-length, PNA-RNA duplex stability and antimicrobial activity in E. coli in more detail. For PNAs of identical length of ten nucleobases the expected reverse correlation between the thermal stability (Tm) of the PNA-RNA duplex and the MIC for single mismatched PNAs was found. Also the expected direct correlation between the length of the PNA and the PNA-RNA duplex stability was found. Nonetheless, 10-mer PNAs [in a 6-18 mer extension series of (KFF)3K- and (RXR)4 conjugates] were the most active as antisense antimicrobials in both wild type E. coli MG1655 and AS19, suggesting that the size constraint is related to the bacterial uptake of PNA-peptide conjugates. This conclusion was supported by flow cytometry data showing higher bacterial uptake of shorter PNA fluorophore labeled conjugates. Interestingly, the size-limited uptake seems independent on outer membrane integrity (AS19), and thus the results suggest that the inner membrane limits the molecular size for peptide-PNA passage.
Collapse
Affiliation(s)
- Lise Goltermann
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Meiqin Zhang
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anubrata Ghosal
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Center for Peptide-Based Antibiotics, The Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Równicki M, Pieńko T, Czarnecki J, Kolanowska M, Bartosik D, Trylska J. Artificial Activation of Escherichia coli mazEF and hipBA Toxin-Antitoxin Systems by Antisense Peptide Nucleic Acids as an Antibacterial Strategy. Front Microbiol 2018; 9:2870. [PMID: 30534121 PMCID: PMC6275173 DOI: 10.3389/fmicb.2018.02870] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022] Open
Abstract
The search for new, non-standard targets is currently a high priority in the design of new antibacterial compounds. Bacterial toxin-antitoxin systems (TAs) are genetic modules that encode a toxin protein that causes growth arrest by interfering with essential cellular processes, and a cognate antitoxin, which neutralizes the toxin activity. TAs have no human analogs, are highly abundant in bacterial genomes, and therefore represent attractive alternative targets for antimicrobial drugs. This study demonstrates how artificial activation of Escherichia coli mazEF and hipBA toxin-antitoxin systems using sequence-specific antisense peptide nucleic acid oligomers is an innovative antibacterial strategy. The growth arrest observed in E. coli resulted from the inhibition of translation of the antitoxins by the antisense oligomers. Furthermore, two other targets, related to the activities of mazEF and hipBA, were identified as promising sites of action for antibacterials. These results show that TAs are susceptible to sequence-specific antisense agents and provide a proof-of-concept for their further exploitation in antimicrobial strategies.
Collapse
Affiliation(s)
- Marcin Równicki
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Tomasz Pieńko
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Department of Drug Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Unit of Bacterial Genome Plasticity, Department of Genomes and Genetics, Pasteur Institute, Paris, France
| | - Monika Kolanowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Joanna Trylska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Geller BL, Li L, Martinez F, Sully E, Sturge CR, Daly SM, Pybus C, Greenberg DE. Morpholino oligomers tested in vitro, in biofilm and in vivo against multidrug-resistant Klebsiella pneumoniae. J Antimicrob Chemother 2018; 73:1611-1619. [PMID: 29506074 PMCID: PMC6251509 DOI: 10.1093/jac/dky058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 01/07/2023] Open
Abstract
Background Klebsiella pneumoniae is an opportunistic pathogen and many strains are multidrug resistant. KPC is one of the most problematic resistance mechanisms, as it confers resistance to most β-lactams, including carbapenems. A promising platform technology for treating infections caused by MDR pathogens is the nucleic acid-like synthetic oligomers that silence bacterial gene expression by an antisense mechanism. Objectives To test a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO) in a mouse model of K. pneumoniae infection. Methods PPMOs were designed to target various essential genes of K. pneumoniae and screened in vitro against a panel of diverse strains. The most potent PPMOs were further tested for their bactericidal effects in broth cultures and in established biofilms. Finally, a PPMO was used to treat mice infected with a KPC-expressing strain. Results The most potent PPMOs targeted acpP, rpmB and ftsZ and had MIC75s of 0.5, 4 and 4 μM, respectively. AcpP PPMOs were bactericidal at 1-2 × MIC and reduced viable cells and biofilm mass in established biofilms. In a mouse pneumonia model, therapeutic intranasal treatment with ∼30 mg/kg AcpP PPMO improved survival by 89% and reduced bacterial burden in the lung by ∼3 logs. Survival was proportional to the dose of AcpP PPMO. Delaying treatment by 2, 8 or 24 h post-infection improved survival compared with control groups treated with PBS or scrambled sequence (Scr) PPMOs. Conclusions PPMOs have the potential to be effective therapeutic agents against KPC-expressing, MDR K. pneumoniae.
Collapse
Affiliation(s)
- Bruce L Geller
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Lixin Li
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Fabian Martinez
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Erin Sully
- Department of Microbiology, 226 Nash Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Carolyn R Sturge
- Department of Internal Medicine, 5323 Harry Hines Blvd., University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Seth M Daly
- Department of Internal Medicine, 5323 Harry Hines Blvd., University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christine Pybus
- Department of Internal Medicine, 5323 Harry Hines Blvd., University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David E Greenberg
- Department of Internal Medicine, 5323 Harry Hines Blvd., University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microbiology, 5323 Harry Hines Blvd., University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
16
|
Tomassi S, Ieranò C, Mercurio ME, Nigro E, Daniele A, Russo R, Chambery A, Baglivo I, Pedone PV, Rea G, Napolitano M, Scala S, Cosconati S, Marinelli L, Novellino E, Messere A, Di Maro S. Cationic nucleopeptides as novel non-covalent carriers for the delivery of peptide nucleic acid (PNA) and RNA oligomers. Bioorg Med Chem 2018; 26:2539-2550. [PMID: 29656988 DOI: 10.1016/j.bmc.2018.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Cationic nucleopeptides belong to a family of synthetic oligomers composed by amino acids and nucleobases. Their capability to recognize nucleic acid targets and to cross cellular membranes provided the basis for considering them as novel non-covalent delivery agents for nucleic acid pharmaceuticals. Herein, starting from a 12-mer nucleopeptide model, the number of cationic residues was modulated in order to obtain new nucleopeptides endowed with high solubility in acqueous medium, acceptable bio-stability, low cytotoxicity and good capability to bind nucleic acid. Two candidates were selected to further investigate their potential as nucleic acid carriers, showing higher efficiency to deliver PNA in comparison with RNA. Noteworthy, this study encourages the development of nucleopeptides as new carriers to extend the known strategies for those nucleic acid analogues, especially PNA, that still remain difficult to drive into the cells.
Collapse
Affiliation(s)
- Stefano Tomassi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Caterina Ieranò
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Maria Emilia Mercurio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ersilia Nigro
- Department of Cardiothoracic and Respiratory Sciences, University of Campania "Luigi Vanvitelli", Via Leonardo Bianchi c/o Ospedale Monaldi, 80131 Naples, Italy
| | - Aurora Daniele
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy; Ceinge-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Paolo Vincenzo Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppina Rea
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Maria Napolitano
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Stefania Scala
- Molecular Immunology and Immunoregulation, Istituto Nazionale Tumori "Fondazione G. Pascale", IRCCS-Napoli, 80131 Naples, Italy
| | - Sandro Cosconati
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|
17
|
Detection of Klebsiella. Pneumoniae Infection with an Antisense Oligomer Against its Ribosomal RNA. Mol Imaging Biol 2017; 18:527-34. [PMID: 26832678 DOI: 10.1007/s11307-015-0927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE Previously, we demonstrated specific accumulation into bacteria of a 12-mer phosphorodiamidate morpholino (MORF) oligomer complementary to a ribosomal RNA (rRNA) segment found in all bacteria using the universal probe called Eub338 (Eub). Here, two MORF oligomers Eco and Kpn with sequences specific to the rRNA of Escherichia coli (Eco) and Klebsiella pneumoniae (Kpn) were investigated along with Eub and control (nonEub). PROCEDURES To determine bacterial rRNA binding, oligomers were tagged with Alexa Fluor 633 (AF633) for fluorescence in situ hybridization (FISH) and fluorescence microscopy, and radiolabeled with technetium-99m (Tc-99m) for biodistribution and SPECT imaging in infected mice. RESULTS By both FISH and fluorescence microscopy, Eub showed a positive signal in both E. coli and K. pneumoniae as expected, and Kpn showed significantly higher accumulation in K. pneumoniae with near background in E. coli (p < 0.01). Conversely, Eco was positive in both E. coli and K. pneumoniae, hence nonspecific. As determined by biodistribution, the accumulation of [(99m)Tc]Kpn was higher in the thigh infected with live K. pneumoniae than with live E. coli (p = 0.05), and significantly higher than with heat-killed K. pneumoniae (p = 0.02) in the target thigh. By SPECT imaging, the accumulation of [(99m)Tc]Kpn was obviously higher in its specific target of K. pneumoniae compared to an E. coli infected thigh. CONCLUSIONS Kpn complementary to the rRNA of K. pneumoniae, labeled with Tc-99m or AF633, demonstrated specific binding to fixed and live K. pneumoniae in culture and in infected mice such that Tc-99m-labeled Kpn as the MORF oligomer may be useful for K. pneumoniae infection detection through imaging.
Collapse
|
18
|
Inhibition of Pseudomonas aeruginosa by Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers. Antimicrob Agents Chemother 2017; 61:AAC.01938-16. [PMID: 28137807 DOI: 10.1128/aac.01938-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023] Open
Abstract
Pseudomonas aeruginosa is a highly virulent, multidrug-resistant pathogen that causes significant morbidity and mortality in hospitalized patients and is particularly devastating in patients with cystic fibrosis. Increasing antibiotic resistance coupled with decreasing numbers of antibiotics in the developmental pipeline demands novel antibacterial approaches. Here, we tested peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs), which inhibit translation of complementary mRNA from specific, essential genes in P. aeruginosa PPMOs targeted to acpP, lpxC, and rpsJ, inhibited P. aeruginosa growth in many clinical strains and activity of PPMOs could be enhanced 2- to 8-fold by the addition of polymyxin B nonapeptide at subinhibitory concentrations. The PPMO targeting acpP was also effective at preventing P. aeruginosa PAO1 biofilm formation and at reducing existing biofilms. Importantly, treatment with various combinations of a PPMO and a traditional antibiotic demonstrated synergistic growth inhibition, the most effective of which was the PPMO targeting rpsJ with tobramycin. Furthermore, treatment of P. aeruginosa PA103-infected mice with PPMOs targeting acpP, lpxC, or rpsJ significantly reduced the bacterial burden in the lungs at 24 h by almost 3 logs. Altogether, this study demonstrates that PPMOs targeting the essential genes acpP, lpxC, or rpsJ in P. aeruginosa are highly effective at inhibiting growth in vitro and in vivo These data suggest that PPMOs alone or in combination with antibiotics represent a novel approach to addressing the problems associated with rapidly increasing antibiotic resistance in P. aeruginosa.
Collapse
|
19
|
Foschi F, Albanese D, Pecnikaj I, Tagliabue A, Penso M. Regioselective O-Sulfonylation of N,N-Bis(2-hydroxyalkyl)tosylamides as a Synthetic Key Step to Enantiopure Morpholines. Org Lett 2016; 19:70-73. [DOI: 10.1021/acs.orglett.6b03342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Foschi
- Department
of Chemistry, Università degli Studi di Milano, via Golgi
19, I-20133 Milano, Italy
| | - Domenico Albanese
- Department
of Chemistry, Università degli Studi di Milano, via Golgi
19, I-20133 Milano, Italy
| | - Ilir Pecnikaj
- Institute of Molecular Science and Technologies, via Golgi 19, I-20133 Milano, Italy
| | - Aaron Tagliabue
- Department
of Chemistry, Università degli Studi di Milano, via Golgi
19, I-20133 Milano, Italy
| | - Michele Penso
- Department
of Chemistry, Università degli Studi di Milano, via Golgi
19, I-20133 Milano, Italy
- Institute of Molecular Science and Technologies, via Golgi 19, I-20133 Milano, Italy
| |
Collapse
|
20
|
Otsuka T, Brauer AL, Kirkham C, Sully EK, Pettigrew MM, Kong Y, Geller BL, Murphy TF. Antimicrobial activity of antisense peptide-peptide nucleic acid conjugates against non-typeable Haemophilus influenzae in planktonic and biofilm forms. J Antimicrob Chemother 2016; 72:137-144. [PMID: 27986898 DOI: 10.1093/jac/dkw384] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Antisense peptide nucleic acids (PNAs) are synthetic polymers that mimic DNA/RNA and inhibit bacterial gene expression in a sequence-specific manner. METHODS To assess activity against non-typeable Haemophilus influenzae (NTHi), we designed six PNA-peptides that target acpP, encoding an acyl carrier protein. MICs and minimum biofilm eradication concentrations (MBECs) were determined. Resistant strains were selected by serial passages on media with a sub-MIC concentration of acpP-PNA. RESULTS The MICs of six acpP-PNA-peptides were 2.9-11 mg/L (0.63-2.5 μmol/L) for 20 clinical isolates, indicating susceptibility of planktonic NTHi. By contrast, MBECs were up to 179 mg/L (40 μmol/L). Compared with one original PNA-peptide (acpP-PNA1-3'N), an optimized PNA-peptide (acpP-PNA14-5'L) differs in PNA sequence and has a 5' membrane-penetrating peptide with a linker between the PNA and peptide. The optimized PNA-peptide had an MBEC ranging from 11 to 23 mg/L (2.5-5 μmol/L), indicating susceptibility. A resistant strain that was selected by the original acpP-PNA1-3'N had an SNP that introduced a stop codon in NTHI0044, which is predicted to encode an ATP-binding protein of a conserved ABC transporter. Deletion of NTHI0044 caused resistance to the original acpP-PNA1-3'N, but showed no effect on susceptibility to the optimized acpP-PNA14-5'L. The WT strain remained susceptible to the optimized PNA-peptide after 30 serial passages on media containing the optimized PNA-peptide. CONCLUSIONS A PNA-peptide that targets acpP, has a 5' membrane-penetrating peptide and has a linker shows excellent activity against planktonic and biofilm NTHi and is associated with a low risk for induction of resistance.
Collapse
Affiliation(s)
- Taketo Otsuka
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Aimee L Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Erin K Sully
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Melinda M Pettigrew
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Yong Kong
- Department of Molecular Biophysics and Biochemistry, W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University, New Haven, CT, USA
| | - Bruce L Geller
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA .,Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, NY, USA.,Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
21
|
Sequence-Specific Targeting of Bacterial Resistance Genes Increases Antibiotic Efficacy. PLoS Biol 2016; 14:e1002552. [PMID: 27631336 PMCID: PMC5025249 DOI: 10.1371/journal.pbio.1002552] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
The lack of effective and well-tolerated therapies against antibiotic-resistant bacteria is a global public health problem leading to prolonged treatment and increased mortality. To improve the efficacy of existing antibiotic compounds, we introduce a new method for strategically inducing antibiotic hypersensitivity in pathogenic bacteria. Following the systematic verification that the AcrAB-TolC efflux system is one of the major determinants of the intrinsic antibiotic resistance levels in Escherichia coli, we have developed a short antisense oligomer designed to inhibit the expression of acrA and increase antibiotic susceptibility in E. coli. By employing this strategy, we can inhibit E. coli growth using 2- to 40-fold lower antibiotic doses, depending on the antibiotic compound utilized. The sensitizing effect of the antisense oligomer is highly specific to the targeted gene's sequence, which is conserved in several bacterial genera, and the oligomer does not have any detectable toxicity against human cells. Finally, we demonstrate that antisense oligomers improve the efficacy of antibiotic combinations, allowing the combined use of even antagonistic antibiotic pairs that are typically not favored due to their reduced activities.
Collapse
|
22
|
Hansen AM, Bonke G, Larsen CJ, Yavari N, Nielsen PE, Franzyk H. Antibacterial Peptide Nucleic Acid-Antimicrobial Peptide (PNA-AMP) Conjugates: Antisense Targeting of Fatty Acid Biosynthesis. Bioconjug Chem 2016; 27:863-7. [PMID: 26938833 DOI: 10.1021/acs.bioconjchem.6b00013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Antisense peptide nucleic acid (PNA) oligomers constitute a novel class of potential antibiotics that inhibit bacterial growth via specific knockdown of essential gene expression. However, discovery of efficient, nontoxic delivery vehicles for such PNA oligomers has remained a challenge. In the present study we show that antimicrobial peptides (AMPs) with an intracellular mode of action can be efficient vehicles for bacterial delivery of an antibacterial PNA targeting the essential acpP gene. The results demonstrate that buforin 2-A (BF2-A), drosocin, oncocin 10, Pep-1-K, KLW-9,13-a, (P59→W59)-Tat48-60, BF-2A-RXR, and drosocin-RXR are capable of transporting PNA effectively into E. coli (MICs of 1-4 μM). Importantly, presence of the inner-membrane peptide transporter SbmA was not required for antibacterial activity of PNA-AMP conjugates containing Pep-1-K, KLW-9,13-a, or drosocin-RXR (MICs of 2-4 μM).
Collapse
Affiliation(s)
- Anna Mette Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Gitte Bonke
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Camilla Josephine Larsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Niloofar Yavari
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen , Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Panum Institute, University of Copenhagen , Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen , Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Järver P, Zaghloul EM, Arzumanov AA, Saleh AF, McClorey G, Hammond SM, Hällbrink M, Langel Ü, Smith CIE, Wood MJA, Gait MJ, El Andaloussi S. Peptide nanoparticle delivery of charge-neutral splice-switching morpholino oligonucleotides. Nucleic Acid Ther 2015; 25:65-77. [PMID: 25594433 PMCID: PMC4376484 DOI: 10.1089/nat.2014.0511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligonucleotide analogs have provided novel therapeutics targeting various disorders. However, their poor cellular uptake remains a major obstacle for their clinical development. Negatively charged oligonucleotides, such as 2′-O-Methyl RNA and locked nucleic acids have in recent years been delivered successfully into cells through complex formation with cationic polymers, peptides, liposomes, or similar nanoparticle delivery systems. However, due to the lack of electrostatic interactions, this promising delivery method has been unsuccessful to date using charge-neutral oligonucleotide analogs. We show here that lipid-functionalized cell-penetrating peptides can be efficiently exploited for cellular transfection of the charge-neutral oligonucleotide analog phosphorodiamidate morpholino. The lipopeptides form complexes with splice-switching phosphorodiamidate morpholino oligonucleotide and can be delivered into clinically relevant cell lines that are otherwise difficult to transfect while retaining biological activity. To our knowledge, this is the first study to show delivery through complex formation of biologically active charge-neutral oligonucleotides by cationic peptides.
Collapse
Affiliation(s)
- Peter Järver
- 1 Medical Research Council , Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Bahal R, McNeer NA, Ly DH, Saltzman WM, Glazer PM. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5. ARTIFICIAL DNA, PNA & XNA 2014; 4:49-57. [PMID: 23954968 DOI: 10.4161/adna.25628] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of chemokine receptor 5 (CC R5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.
Collapse
|
25
|
Dinan AM, Loftus BJ. (Non-)translational medicine: targeting bacterial RNA. Front Genet 2013; 4:230. [PMID: 24265632 PMCID: PMC3821060 DOI: 10.3389/fgene.2013.00230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/18/2013] [Indexed: 11/26/2022] Open
Abstract
The rise and spread of antibiotic resistance is among the most severe challenges facing modern medicine. Despite this fact, attempts to develop novel classes of antibiotic have been largely unsuccessful. The traditional mechanisms by which antibiotics work are subject to relatively rapid bacterial resistance via mutation, and hence have a limited period of efficacy. One promising strategy to ameliorate this problem is to shift from the use of chemical compounds targeting protein structures and processes to a new era of RNA-based therapeutics. RNA-mediated regulation (riboregulation) has evolved naturally in bacteria and is therefore a highly efficient means by which gene expression can be manipulated. Here, we describe recent advances toward the development of effective anti-bacterial therapies, which operate through various strategies centered on RNA.
Collapse
Affiliation(s)
- Adam M Dinan
- School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin Dublin, Ireland
| | | |
Collapse
|
26
|
Geller BL, Marshall-Batty K, Schnell FJ, McKnight MM, Iversen PL, Greenberg DE. Gene-silencing antisense oligomers inhibit acinetobacter growth in vitro and in vivo. J Infect Dis 2013; 208:1553-60. [PMID: 24130069 DOI: 10.1093/infdis/jit460] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) are synthetic DNA/RNA analogues that silence expression of specific genes. We studied whether PPMOs targeted to essential genes in Acinetobacter lwoffii and Acinetobacter baumannii are active in vitro and in vivo. METHODS PPMOs were evaluated in vitro using minimum inhibitory concentration (MIC) and viability assays, and in vivo using murine pulmonary infection models with intranasal PPMO treatment. RESULTS MICs of PPMOs ranged from 0.1 to 64 µM (approximately 0.6-38 µg/mL). The most effective PPMO tested was (RXR)4-AcpP, which is targeted to acpP. (RXR)4-AcpP reduced viability of A. lwoffii and A. baumannii by >10(3) colony-forming units/mL at 5-8 times MIC. Mice treated with ≥0.25 mg/kg of (RXR)4-AcpP survived longer and had less inflammation and bacterial lung burden than mice treated with a scrambled-sequence PPMO or phosphate-buffered saline. Treatment could be delayed after infection and still increase survival. CONCLUSIONS PPMOs targeted to essential genes of A. lwoffii and A. baumannii were bactericidal and had MICs in a clinically relevant range. (RXR)4-AcpP increased survival of mice infected with A. lwoffii or A. baumannii, even when initial treatment was delayed after infection. PPMOs could be a viable therapeutic approach in dealing with multidrug-resistant Acinetobacter species.
Collapse
|
27
|
Chen L, Wang Y, Cheng D, Liu X, Dou S, Liu G, Hnatowich DJ, Rusckowski M. (99m)Tc-MORF oligomers specific for bacterial ribosomal RNA as potential specific infection imaging agents. Bioorg Med Chem 2013; 21:6523-30. [PMID: 24054488 DOI: 10.1016/j.bmc.2013.08.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/12/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022]
Abstract
PURPOSE Radiolabeled oligomers complementary to the 16S rRNA in bacteria were investigated as bacterial infection imaging agents. METHODS AND RESULTS Identical sequences with backbones phosphorodiamidate morpholino (MORF), peptide nucleic acid (PNA), and phosphorothioate DNA (PS-DNA) were (99m)Tc-labeled and evaluated for binding to bacterial RNA. MORF binding to RNA from Escherichia coli strains SM101 and K12 was 4- and 150-fold higher compared to PNA and PS-DNA, respectively. Subsequently MORF oligomer in fluorescence in situ hybridization showed a stronger signal with study MORF compared to control in fixed preparations of two E. coli strains and Klebsiella pneumoniae. Flow cytometry analysis showed study MORF accumulation to be 8- and 80-fold higher compared to the control in live K. pneumoniae and Staphylococcus aureus, respectively. Further, fluorescence microscopy showed increased accumulation of study MORF over control in live E. coli and K. pneumonia. Binding of (99m)Tc-study MORF to RNA from E. coli SM101 and K12 was 30.4 and 117.8pmol, respectively, per 10(10) cells. Mice with K. pneumoniae live or heat-killed (sterile inflammation) in one thigh at 90min for both (99m)Tc-study MORF and control showed higher accumulation in target thighs than in blood and all other organs expect for kidneys and small intestine. Accumulation of (99m)Tc-study MORF was significantly higher (p=0.009) than that of the control in the thigh with sterile inflammation. CONCLUSION A (99m)Tc-MORF oligomer complimentary to the bacterial 16S rRNA demonstrated binding to bacterial RNA in vitro with specific accumulation into live bacteria. Radiolabeled MORF oligomers antisense to the bacterial rRNA may be useful to image bacterial infection.
Collapse
Affiliation(s)
- Ling Chen
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Traglia GM, Sala CD, Fuxman Bass JI, Soler-Bistué AJC, Zorreguieta A, Ramírez MS, Tolmasky ME. Internalization of Locked Nucleic Acids/DNA Hybrid Oligomers into Escherichia coli. Biores Open Access 2013; 1:260-3. [PMID: 23515318 PMCID: PMC3559211 DOI: 10.1089/biores.2012.0257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Delivery inside the cells is essential for practical application of antisense technologies. The hybrid locked nucleic acid (LNA)/DNA CAAGTACTGTTCCACCA (LNA residues are underlined) was labeled by conjugation to Alexa Fluor 488 (fLNA/DNA) and tested to determine its ability to penetrate Escherichia coli cells and reach the cytoplasm. Flow cytometry analysis showed that the fLNA/DNA was associated with 14% of cells from a stationary phase culture, while association with a labeled isosequential oligodeoxynucleotide was negligible. Laser scanning confocal microscopy confirmed that the fLNA/DNA was located inside the cytoplasm.
Collapse
Affiliation(s)
- German M Traglia
- Institute of Microbiology and Medical Parasitology, National Scientific and Technical Research Council (CONICET), University of Buenos Aires , Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
29
|
Ji Y, Lei T. Antisense RNA regulation and application in the development of novel antibiotics to combat multidrug resistant bacteria. Sci Prog 2013; 96:43-60. [PMID: 23738437 PMCID: PMC10365521 DOI: 10.3184/003685013x13617194309028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Despite the availability of antibiotics and vaccines, infectious diseases remain one of most dangerous threats to humans and animals. The overuse and misuse of antibacterial agents have led to the emergence of multidrug resistant bacterial pathogens. Bacterial cells are often resilient enough to survive in even the most extreme environments. To do so, the organisms have evolved different mechanisms, including a variety of two-component signal transduction systems, which allow the bacteria to sense the surrounding environment and regulate gene expression in order to adapt and respond to environmental stimuli. In addition, some bacteria evolve resistance to antibacterial agents while many bacterial cells are able to acquire resistance genes from other bacterial species to enable them to survive in the presence of toxic antimicrobial agents. The crisis of antimicrobial resistance is an unremitting menace to human health and a burden on public health. The rapid increase in antimicrobial resistant organisms and limited options for development of new classes of antibiotics heighten the urgent need to develop novel potent antibacterial therapeutics in order to combat multidrug resistant infections. In this review, we introduce the regulatory mechanisms of antisense RNA and significant applications of regulated antisense RNA interference technology in early drug discovery. This includes the identification and evaluation of drug targets in vitro and in vivo, the determination of mode of action for antibiotics and new antibacterial agents, as well as the development of peptide-nucleic acid conjugates as novel antibacterials.
Collapse
|
30
|
Iversen PL, Warren TK, Wells JB, Garza NL, Mourich DV, Welch LS, Panchal RG, Bavari S. Discovery and early development of AVI-7537 and AVI-7288 for the treatment of Ebola virus and Marburg virus infections. Viruses 2012; 4:2806-30. [PMID: 23202506 PMCID: PMC3509674 DOI: 10.3390/v4112806] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/02/2012] [Accepted: 10/02/2012] [Indexed: 11/28/2022] Open
Abstract
There are no currently approved treatments for filovirus infections. In this study we report the discovery process which led to the development of antisense Phosphorodiamidate Morpholino Oligomers (PMOs) AVI-6002 (composed of AVI-7357 and AVI-7539) and AVI-6003 (composed of AVI-7287 and AVI-7288) targeting Ebola virus and Marburg virus respectively. The discovery process involved identification of optimal transcript binding sites for PMO based RNA-therapeutics followed by screening for effective viral gene target in mouse and guinea pig models utilizing adapted viral isolates. An evolution of chemical modifications were tested, beginning with simple Phosphorodiamidate Morpholino Oligomers (PMO) transitioning to cell penetrating peptide conjugated PMOs (PPMO) and ending with PMOplus containing a limited number of positively charged linkages in the PMO structure. The initial lead compounds were combinations of two agents targeting separate genes. In the final analysis, a single agent for treatment of each virus was selected, AVI-7537 targeting the VP24 gene of Ebola virus and AVI-7288 targeting NP of Marburg virus, and are now progressing into late stage clinical development as the optimal therapeutic candidates.
Collapse
MESH Headings
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/chemistry
- Base Sequence
- Ebolavirus/genetics
- Ebolavirus/metabolism
- Genes, Viral
- Guinea Pigs
- Hemorrhagic Fever, Ebola/mortality
- Hemorrhagic Fever, Ebola/therapy
- Hemorrhagic Fever, Ebola/virology
- Marburg Virus Disease/mortality
- Marburg Virus Disease/therapy
- Marburg Virus Disease/virology
- Marburgvirus/genetics
- Marburgvirus/metabolism
- Mice
- Morpholinos/administration & dosage
- Morpholinos/chemistry
- Oligodeoxyribonucleotides, Antisense/administration & dosage
- Oligodeoxyribonucleotides, Antisense/chemistry
- Primates
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
Collapse
Affiliation(s)
| | - Travis K. Warren
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Jay B. Wells
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Nicole L. Garza
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Dan V. Mourich
- Sarepta Therapeutics, Bothell, Washington 98021, USA; (P.L.I.); (D.V.M)
| | - Lisa S. Welch
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Rekha G. Panchal
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA; (T.K.W.); (J.B.W.); (N.L.G.); (L.S.W.); (S.B.); (R.P.)
| |
Collapse
|
31
|
Panchal RG, Geller BL, Mellbye B, Lane D, Iversen PL, Bavari S. Peptide conjugated phosphorodiamidate morpholino oligomers increase survival of mice challenged with Ames Bacillus anthracis. Nucleic Acid Ther 2012; 22:316-22. [PMID: 22978365 DOI: 10.1089/nat.2012.0362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Targeting bacterial essential genes using antisense phosphorodiamidate morpholino oligomers (PMOs) represents an important strategy in the development of novel antibacterial therapeutics. PMOs are neutral DNA analogues that inhibit gene expression in a sequence-specific manner. In this study, several cationic, membrane-penetrating peptides were conjugated to PMOs (PPMOs) that target 2 bacterial essential genes: acyl carrier protein (acpP) and gyrase A (gyrA). These were tested for their ability to inhibit growth of Bacillus anthracis, a gram-positive spore-forming bacterium and causative agent of anthrax. PPMOs targeted upstream of both target gene start codons and conjugated with the bacterium-permeating peptide (RFF)(3)R were found to be most effective in inhibiting bacterial growth in vitro. Both of the gene-targeted PPMOs protected macrophages from B. anthracis induced cell death. Subsequent, in vivo testing of the PPMOs resulted in increased survival of mice challenged with the virulent Ames strain of B. anthracis. Together, these studies suggest that PPMOs targeting essential genes have the potential of being used as antisense antibiotics to treat B. anthracis infections.
Collapse
Affiliation(s)
- Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS One 2012; 7:e29886. [PMID: 22253815 PMCID: PMC3254626 DOI: 10.1371/journal.pone.0029886] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/08/2011] [Indexed: 12/03/2022] Open
Abstract
Background Methicillin-resistant Staphylococcus aureus (MRSA) causes threatening infection-related mortality worldwide. Currently, spread of multi-drug resistance (MDR) MRSA limits therapeutic options and requires new approaches to “druggable” target discovery, as well as development of novel MRSA-active antibiotics. RNA polymerase primary σ70 (encoded by gene rpoD) is a highly conserved prokaryotic factor essential for transcription initiation in exponentially growing cells of diverse S. aureus, implying potential for antisense inhibition. Methodology/Principal Findings By synthesizing a serial of cell penetrating peptide conjugated peptide nucleic acids (PPNAs) based on software predicted parameters and further design optimization, we identified a target sequence (234 to 243 nt) within rpoD mRNA conserved region 3.0 being more sensitive to antisense inhibition. A (KFF)3K peptide conjugated 10-mer complementary PNA (PPNA2332) was developed for potent micromolar-range growth inhibitory effects against four pathogenic S. aureus strains with different resistance phenotypes, including clinical vancomycin-intermediate resistance S. aureus and MDR-MRSA isolates. PPNA2332 showed bacteriocidal antisense effect at 3.2 fold of MIC value against MRSA/VISA Mu50, and its sequence specificity was demonstrated in that PPNA with scrambled PNA sequence (Scr PPNA2332) exhibited no growth inhibitory effect at higher concentrations. Also, PPNA2332 specifically interferes with rpoD mRNA, inhibiting translation of its protein product σ70 in a concentration-dependent manner. Full decay of mRNA and suppressed expression of σ70 were observed for 40 µM or 12.5 µM PPNA2332 treatment, respectively, but not for 40 µM Scr PPNA2332 treatment in pure culture of MRSA/VISA Mu50 strain. PPNA2332 (≥1 µM) essentially cleared lethal MRSA/VISA Mu50 infection in epithelial cell cultures, and eliminated viable bacterial cells in a time- and concentration- dependent manner, without showing any apparent toxicity at 10 µM. Conclusions The present result suggested that RNAP primary σ70 is a very promising candidate target for developing novel antisense antibiotic to treat severe MRSA infections.
Collapse
|
33
|
Greenberg DE, Marshall-Batty KR, Brinster LR, Zarember KA, Shaw PA, Mellbye BL, Iversen PL, Holland SM, Geller BL. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J Infect Dis 2010; 201:1822-30. [PMID: 20438352 DOI: 10.1086/652807] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Members of the Burkholderia cepacia complex (Bcc) cause considerable morbidity and mortality in patients with chronic granulomatous disease and cystic fibrosis. Many Bcc strains are antibiotic resistant, which requires the exploration of novel antimicrobial approaches, including antisense technologies such as phosphorodiamidate morpholino oligomers (PMOs). METHODS Peptide-conjugated PMOs (PPMOs) were developed to target acpP, which encodes an acyl carrier protein (AcpP) that is thought to be essential for growth. Their antimicrobial activities were tested against different strains of Bcc in vitro and in infection models. RESULTS PPMOs targeting acpP were bactericidal against clinical isolates of Bcc (>4 log reduction), whereas a PPMO with a scrambled base sequence (scrambled PPMO) had no effect on growth. Human neutrophils were infected with Burkholderia multivorans and treated with AcpP PPMO. AcpP PPMO augmented killing, compared with neutrophils alone and compared with neutrophils alone plus scrambled PPMO. Mice with chronic granulomatous disease that were infected with B. multivorans were treated with AcpP PPMO, scrambled PPMO, or water at 0, 3, and 6 h after infection. Compared with water-treated control mice, the AcpP PPMO-treated mice showed an approximately 80% reduction in the risk of dying by day 30 of the experiment and relatively little pathology. CONCLUSION AcpP PPMO is active against Bcc infections in vitro and in vivo.
Collapse
Affiliation(s)
- David E Greenberg
- Immunopathogenesis Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, Office of Research Services, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mellbye BL, Weller DD, Hassinger JN, Reeves MD, Lovejoy CE, Iversen PL, Geller BL. Cationic phosphorodiamidate morpholino oligomers efficiently prevent growth of Escherichia coli in vitro and in vivo. J Antimicrob Chemother 2010; 65:98-106. [PMID: 19884121 DOI: 10.1093/jac/dkp392] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Phosphorodiamidate morpholino oligomers (PMOs) are uncharged DNA analogues that can inhibit bacterial growth by a gene-specific, antisense mechanism. Attaching cationic peptides to PMOs enables efficient penetration through the Gram-negative outer membrane. We hypothesized that cationic groups attached directly to the PMO would obviate the need to attach peptides. METHODS PMOs with identical 11-base sequence (AcpP) targeted to acpP (an essential gene) of Escherichia coli were synthesized with various numbers of either piperazine (Pip) or N-(6-guanidinohexanoyl)piperazine (Gux) coupled to the phosphorodiamidate linker. Peptide-PMO conjugates were made using the membrane-penetrating peptide (RXR)(4)XB (X is 6-aminohexanoic acid; B is beta-alanine). RESULTS MICs (microM/mg/L) were measured using E. coli: 3 + Pip-AcpP, 160/653; 6 + Pip-AcpP, 160/673; 2 + Gux-AcpP, 20/88; 5 + Gux-AcpP, 10/49; 8 + Gux-AcpP, 10/56; 3 + Pip-AcpP-(RXR)(4)XB, 0.3/2; and 5 + Gux-AcpP-(RXR)(4)XB, 0.6/4. In cell-free protein synthesis reactions, all PMOs inhibited gene expression approximately the same. These results suggested that Pip-PMOs inefficiently penetrated the outer membrane. Indeed, the MICs of 3 + Pip-AcpP and 6 + Pip-AcpP were reduced to 0.6 and 2.5 microM (1.2 and 10.5 mg/L), respectively, using as indicator a strain with a 'leaky' outer membrane. In vivo, mice were infected intraperitoneally with E. coli. Intraperitoneal treatment with 50 mg/kg 3 + Pip-AcpP, 15 mg/kg 5 + Gux-AcpP or 0.5 mg/kg 3 + Pip-AcpP-(RXR)(4)XB, or subcutaneous treatment with 15 mg/kg 5 + Gux-AcpP or (RXR)(4)XB-AcpP reduced bacteria in blood and increased survival. CONCLUSIONS Cationic PMOs inhibited bacterial growth in vitro and in vivo, and Gux-PMOs were more effective than Pip-PMOs. However, neither was as effective as the equivalent PMO-peptide conjugates. Subcutaneous treatment showed that 5 + Gux-AcpP or (RXR)(4)XB-AcpP entered the circulatory system, reduced infection and increased survival.
Collapse
|
35
|
Hatamoto M, Ohashi A, Imachi H. Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology. Appl Microbiol Biotechnol 2010; 86:397-402. [PMID: 20135118 DOI: 10.1007/s00253-009-2387-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 11/26/2009] [Accepted: 11/27/2009] [Indexed: 11/29/2022]
Abstract
Peptide nucleic acids (PNAs) are nucleic acid analogs having attractive properties such as quiet stability against nucleases and proteases, and they form strong complexes with complementary strands of DNA or RNA. Because of this attractive nature, PNA is often used in antisense technology to inhibit gene expression and microbial cell growth with high specificity. Many bacterial antisense or antiribosomal studies using PNA oligomers have been reported so far, and parameters to design effective antisense PNAs and to improve PNA cell entry for efficient inhibition of bacterial growth have been presented. However, there are still several obstacles such as low cellular uptake of PNA while applying antisense PNAs to a complex microbial community. On overcoming these problems, the PNA antisense technique might become a very attractive tool not only for controlling the microbial growth but also for further elucidating microbial ecology in complex microbial consortia. Here, we summarize and present recent studies on the development of antimicrobial PNAs targeting mRNAs and rRNAs. In addition, the application potentiality of antisense techniques in nonclinical biotechnology fields is discussed.
Collapse
Affiliation(s)
- Masashi Hatamoto
- Department of Social and Environmental Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima, 739-8527, Japan.
| | | | | |
Collapse
|
36
|
Inhibition of intracellular growth of Salmonella enterica serovar Typhimurium in tissue culture by antisense peptide-phosphorodiamidate morpholino oligomer. Antimicrob Agents Chemother 2009; 53:3700-4. [PMID: 19581453 DOI: 10.1128/aac.00099-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Two types of phosphorodiamidate morpholino oligomers (PMOs) were tested for inhibition of growth of Salmonella enterica serovar Typhimurium. Both PMOs have the same 11-base sequence that is antisense to the region near the start codon of acpP, which is essential for lipid biosynthesis and viability. To the 3' end of each is attached the membrane-penetrating peptide (RXR)4XB (R, X, and B indicate arginine, 6-aminohexanoic acid, and beta-alanine, respectively). One peptide-PMO (AcpP PPMO) has no charge on the PMO moiety. The second PPMO has three cations (piperazine) attached to the phosphorodiamidate linkages (3+Pip-AcpP PPMO). A scrambled-sequence PPMO (Scr PPMO) was synthesized for each type of PMO. The MICs of AcpP PPMO, 3+Pip-AcpP PPMO, and either one of the Scr PPMOs were 1.25 microM (7 microg/ml), 0.156 microM (0.94 microg/ml), and >160 microM (>900 microg/ml), respectively. 3+Pip-AcpP PPMO at 1.25 or 2.5 microM significantly reduced the growth rates of pure cultures, whereas AcpP PPMO or either Scr PPMO had no effect. However, the viable cell count was significantly reduced at either concentration of 3+Pip-AcpP PPMO or AcpP PPMO, but not with either Scr PPMO. In other experiments, macrophages were infected intracellularly with S. enterica and treated with 3 microM 3+Pip-AcpP PPMO. Intracellular bacteria were reduced >99% with 3+Pip-AcpP PPMO, whereas intracellular bacteria increased 3 orders of magnitude in untreated or Scr PPMO-treated cultures. We conclude that either AcpP PPMO or 3+Pip-AcpP PPMO inhibited growth of S. enterica in pure culture and that 3+Pip-AcpP PPMO reduced intracellular viability of S. enterica in macrophages.
Collapse
|
37
|
Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA. Appl Microbiol Biotechnol 2009; 84:1161-8. [PMID: 19578844 DOI: 10.1007/s00253-009-2099-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 12/22/2022]
Abstract
Peptide nucleic acid (PNA) targeted to the functional domains of 23S rRNA can inhibit translation and cell growth. However, effective inhibition of translation and cell growth using 16S rRNA-targeted PNA has still not been achieved. Here, we report that PNA targeted to the functional site of 16S rRNA could inhibit both gene expression in vitro and bacterial growth in pure culture with sequence specificity. We used 10-mer PNAs conjugated with a cell-penetrating peptide, which targeted the mRNA binding site at the 3' end of 16S rRNA. Using 0.6 microM of the peptide-PNAs, cell-free ss-galactosidase production decreased by 50%, whereas peptide-PNAs with one or two mismatches to the target sequence showed much weaker inhibition effects. To determine the growth inhibition and bactericidal effects of the peptide-PNA conjugate, we performed OD measurement and viable cell counting. We observed dose- and sequence-dependent inhibition of cell growth and bactericidal effects. These growth inhibitory effects are observed both in the Gram-negative bacterium of Escherichia coli and the Gram-positive bacteria Bacillus subtilis and Corynebacterium efficiens, although inhibitory concentrations were different for each bacterial species. These results present possibilities for 16S rRNA sequence-based specific bacterial growth inhibition using a peptide-PNA conjugate.
Collapse
|
38
|
Variations in amino acid composition of antisense peptide-phosphorodiamidate morpholino oligomer affect potency against Escherichia coli in vitro and in vivo. Antimicrob Agents Chemother 2008; 53:525-30. [PMID: 19015356 DOI: 10.1128/aac.00917-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The potency of antisense peptide-phosphorodiamidate morpholino oligomers (PPMOs) was improved by varying the peptide composition. An antisense phosphorodiamidate morpholino oligomer (PMO) complementary to the mRNA of the essential gene acpP (which encodes the acyl carrier protein required for lipid biosynthesis) in Escherichia coli was conjugated to the 5' ends of various cationic membrane-penetrating peptides. Each peptide had one of three repeating sequence motifs: C-N-N (motif 1), C-N (motif 2), or C-N-C (motif 3), where C is a cationic residue and N is a nonpolar residue. Variations in the cationic residues included arginine, lysine, and ornithine (O). Variations in the nonpolar residues included phenylalanine, valine, beta-alanine (B), and 6-aminohexanoic acid (X). The MICs of the PPMOs varied from 0.625 to >80 microM (about 3 to 480 microg/ml). Three of the most potent were the (RX)(6)B-, (RXR)(4)XB-, and (RFR)(4)XB-AcpP PMOs, which were further tested in mice infected with E. coli. The (RXR)(4)XB-AcpP PMO was the most potent of the three conjugates tested in mice. The administration of 30 microg (1.5 mg/kg of body weight) (RXR)(4)XB-AcpP PMO at 15 min postinfection reduced CFU/ml in blood by 10(2) to 10(3) within 2 to 12 h compared to the numbers in water-treated controls. All mice treated with 30 microg/dose of (RXR)(4)XB-AcpP PMO survived infection, whereas all water-treated mice died 12 h postinfection. The reduction in CFU/ml in blood was proportional to the dose of PPMO from 30 to 300 microg/ml. In summary, the C-N-C motif was more effective than the other two motifs, arginine was more effective than lysine or ornithine, phenylalanine was more effective than 6-aminohexanoic acid in vitro but not necessarily in vivo, and (RXR)(4)XB-AcpP PMO reduced bacterial infection and promoted survival at clinically relevant doses.
Collapse
|
39
|
Stein DA, Huang CYH, Silengo S, Amantana A, Crumley S, Blouch RE, Iversen PL, Kinney RM. Treatment of AG129 mice with antisense morpholino oligomers increases survival time following challenge with dengue 2 virus. J Antimicrob Chemother 2008; 62:555-65. [PMID: 18567576 PMCID: PMC7109848 DOI: 10.1093/jac/dkn221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives To determine the antiviral activity of phosphorodiamidate morpholino oligomers (PMO) and peptide-conjugated PMO (PPMO) in AG129 mice infected with dengue 2 virus (DENV-2). Methods Antisense PMO and PPMO were designed against the 5′ terminal region (5′SL) or the 3′-cyclization sequence region (3′CS) of DENV genomic RNA and administered to AG129 mice before and/or after infection with DENV-2. In addition, cell culture evaluations designed to determine optimum PPMO length, and pharmacokinetic and toxicity analysis of PPMO were also carried out. Results Mock-treated AG129 mice lived for 9–17 days following intraperitoneal (ip) infection with 104–106pfu of DENV-2 (strain New Guinea C). Intraperitoneal administration of 5′SL or 3′CS PPMO before and after DENV infection produced an increase in the average survival time of up to 8 days. Animals receiving only post-infection PPMO treatment did not benefit significantly. Cell culture studies showed that PPMO of 22–24 bases long produced substantially higher DENV titre reductions than did PPMO that were either shorter or longer. Pharmacokinetic and toxicology analysis with non-infected animals showed that nine consecutive once‐daily ip treatments of 10 mg/kg PPMO resulted in high concentrations of PPMO in the liver and caused little impact on overall health. Conclusions The data indicate that PPMO had considerable antiviral efficacy against DENV-2 in the AG129 mouse model and that PPMO treatment early in the course of an infection was critical to extending the survival times of DENV-2-infected mice in the AG129 model system.
Collapse
Affiliation(s)
- David A Stein
- AVI BioPharma Inc., 4575 SW Research Way, Corvallis, OR 97333, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Rasmussen LCV, Sperling-Petersen HU, Mortensen KK. Hitting bacteria at the heart of the central dogma: sequence-specific inhibition. Microb Cell Fact 2007; 6:24. [PMID: 17692125 PMCID: PMC1995221 DOI: 10.1186/1475-2859-6-24] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 08/10/2007] [Indexed: 12/16/2022] Open
Abstract
An important objective in developing new drugs is the achievement of high specificity to maximize curing effect and minimize side-effects, and high specificity is an integral part of the antisense approach. The antisense techniques have been extensively developed from the application of simple long, regular antisense RNA (asRNA) molecules to highly modified versions conferring resistance to nucleases, stability of hybrid formation and other beneficial characteristics, though still preserving the specificity of the original nucleic acids. These new and improved second- and third-generation antisense molecules have shown promising results. The first antisense drug has been approved and more are in clinical trials. However, these antisense drugs are mainly designed for the treatment of different human cancers and other human diseases. Applying antisense gene silencing and exploiting RNA interference (RNAi) are highly developed approaches in many eukaryotic systems. But in bacteria RNAi is absent, and gene silencing by antisense compounds is not nearly as well developed, despite its great potential and the intriguing possibility of applying antisense molecules in the fight against multiresistant bacteria. Recent breakthrough and current status on the development of antisense gene silencing in bacteria including especially phosphorothioate oligonucleotides (PS-ODNs), peptide nucleic acids (PNAs) and phosphorodiamidate morpholino oligomers (PMOs) will be presented in this review.
Collapse
Affiliation(s)
| | - Hans Uffe Sperling-Petersen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| | - Kim Kusk Mortensen
- Laboratory of BioDesign, Department of Molecular Biology, Aarhus University, Gustav Wieds Vej 10 C, DK-8000 Aarhus C, Denmark
| |
Collapse
|
41
|
Tilley LD, Hine OS, Kellogg JA, Hassinger JN, Weller DD, Iversen PL, Geller BL. Gene-specific effects of antisense phosphorodiamidate morpholino oligomer-peptide conjugates on Escherichia coli and Salmonella enterica serovar typhimurium in pure culture and in tissue culture. Antimicrob Agents Chemother 2006; 50:2789-96. [PMID: 16870773 PMCID: PMC1538669 DOI: 10.1128/aac.01286-05] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective was to improve efficacy of antisense phosphorodiamidate morpholino oligomers (PMOs) by improving their uptake into bacterial cells. Four different bacterium-permeating peptides, RFFRFFRFFXB, RTRTRFLRRTXB, RXXRXXRXXB, and KFFKFFKFFKXB (X is 6-aminohexanoic acid and B is beta-alanine), were separately coupled to two different PMOs that are complementary to regions near the start codons of a luciferase reporter gene (luc) and a gene required for viability (acpP). Luc peptide-PMOs targeted to luc inhibited luciferase activity 23 to 80% in growing cultures of Escherichia coli. In cell-free translation reactions, Luc RTRTRFLRRTXB-PMO inhibited luciferase synthesis significantly more than the other Luc peptide-PMOs or the Luc PMO not coupled to peptide. AcpP peptide-PMOs targeted to acpP inhibited growth of E. coli or Salmonella enterica serovar Typhimurium to various extents, depending on the strain. The concentrations of AcpP RFFRFFRFFXB-PMO, AcpP RTRTRFLRRTXB-PMO, AcpP KFFKFFKFFKXB-PMO, and ampicillin that reduced CFU/ml by 50% after 8 h of growth (50% inhibitory concentration [IC(50)]) were 3.6, 10.8, 9.5, and 7.5 microM, respectively, in E. coli W3110. Sequence-specific effects of AcpP peptide-PMOs were shown by rescuing growth of a merodiploid strain that expressed acpP with silent mutations in the region targeted by AcpP peptide-PMO. In Caco-2 cultures infected with enteropathogenic E. coli (EPEC), 10 microM AcpP RTRTRFLRRTXB-PMO or AcpP RFFRFFRFFXB-PMO essentially cleared the infection. The IC(50) of either AcpP RTRTRFLRRTXB-PMO or AcpP RFFRFFRFFXB-PMO in EPEC-infected Caco-2 culture was 3 microM. In summary, RFFRFFRFFXB, RTRTRFLRRTXB, or KFFKFFKFFXB, when covalently bonded to PMO, significantly increased inhibition of expression of targeted genes compared to PMOs without attached peptide.
Collapse
|
42
|
Zhang YM, Tung CH, He J, Liu N, Yanachkov I, Liu G, Rusckowski M, Vanderheyden JL. Construction of a novel chimera consisting of a chelator-containing Tat peptide conjugated to a morpholino antisense oligomer for technetium-99m labeling and accelerating cellular kinetics. Nucl Med Biol 2006; 33:263-9. [PMID: 16546682 DOI: 10.1016/j.nucmedbio.2005.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 10/18/2005] [Accepted: 10/26/2005] [Indexed: 10/24/2022]
Abstract
The attempt to target the limited copies of messenger RNA (mRNA) in vivo with radiolabeled nucleobase oligomers as antisense probes is challenging. Selecting an antisense molecule with superior properties, enhancing the cellular kinetics, and improving the radiolabeling chemistry would be the reasonable approach to accomplish this goal. The present study reports a method to construct a chimera of phosphorodiamidate morpholino nucleobase oligomer (MORF) covalently conjugated to a peptide containing a cell membrane transduction Tat peptide and an N(2)S(2) chelator for technetium-99m ((99m)Tc) radiolabeling (N(2)S(2)-Tat-MORF). The radiolabeling properties and cellular kinetics of (99m)Tc-N(2)S(2)-Tat-MORF were measured. As hypothesized, the preparation of (99m)Tc-N(2)S(2)-Tat-MORF could be achieved by an instant one-step method with labeling efficiency greater than 95%, and the (99m)Tc-N(2)S(2)-Tat-MORF showed distinct properties in cell culture from those of a control, the same MORF sequence without Tat but with mercaptoacetyltriglycine (MAG(3)) as chelator for (99m)Tc ((99m)Tc-MAG(3)-MORF). (99m)Tc-N(2)S(2)-Tat-MORF achieved maximum accumulation of about 35% within 2 h, while (99m)Tc-MAG(3)-MORF showed lower and steadily increasing accumulations but of less than 1% in 24 h. These preliminary results demonstrated that the proposed chimera has properties for easy labeling, and (99m)Tc-N(2)S(2)-Tat-MORF prepared by this method possesses enhanced cellular kinetics and merits further investigation for in vivo mRNA targeting.
Collapse
Affiliation(s)
- Yu-Min Zhang
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Geller BL, Deere J, Tilley L, Iversen PL. Antisense phosphorodiamidate morpholino oligomer inhibits viability of Escherichia coli in pure culture and in mouse peritonitis. J Antimicrob Chemother 2005; 55:983-8. [PMID: 15872045 DOI: 10.1093/jac/dki129] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Antisense phosphorodiamidate morpholino oligomers (PMOs) are synthetic DNA mimics that specifically inhibit gene expression in pure cultures of Escherichia coli. Previously, an 11 base PMO targeted to an essential gene (acpP) for phospholipid biosynthesis was shown to inhibit growth of a pure culture of E. coli AS19, which has an abnormally permeable outer membrane. The objectives of experiments in this report are to show that the AcpP PMO significantly inhibits growth of strain SM105, which has a normal, intact outer membrane, both in pure culture and in infected mice. METHODS In pure culture, SM105 was grown in rich broth supplemented with 20 muM AcpP PMO, and growth was monitored by optical density and viable cell count. Mice were infected by intraperitoneal injection with a non-lethal inoculum of either E. coli AS19 or SM105. Following infection, mice were treated intraperitoneally with 300 mug of the 11 base antisense PMO targeted to acpP, a scrambled sequence PMO or PBS. RESULTS Growth of SM105 was slower and viable cells were significantly reduced by up to 61% in pure cultures supplemented with AcpP PMO compared with untreated cultures or cultures supplemented with a scrambled sequence PMO. A single dose of AcpP PMO reduced peritoneal cfu of E. coli AS19 about 39- to 600-fold compared with controls at 2, 7, 13 and 23 h after treatment. The same PMO significantly reduced cfu of E. coli SM105 75% compared with controls at 12 h after treatment. However, there was no difference in cfu at 2, 7 or 24 h. A second dose at 24 h again reduced SM105 cfu about 10-fold by 48 h post-infection. In other experiments with infected mice, multiple doses of AcpP PMO sustained the approximately 10-fold reduction in SM105 cfu at 6, 12 and 24 h post-infection. Compared with equivalent (micromolar) doses of ampicillin, AcpP PMO was significantly more effective at all time points. Specificity of PMO inhibition was shown in other experiments by treating infected mice with a PMO targeted to a non-essential reporter gene for luciferase. A luciferase-specific PMO reduced both the amount and activity of luciferase to the same extent, whereas scrambled PMO had no effect. CONCLUSIONS An 11 base antisense PMO targeted to acpP significantly inhibited viability of a strain of E. coli with a normal, intact outer membrane both in pure culture and in infected mice. Inhibition by PMOs was sequence-specific.
Collapse
Affiliation(s)
- Bruce L Geller
- Department of Microbiology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331-3804, USA.
| | | | | | | |
Collapse
|