1
|
Li D, Li Y, Wang J, Yang W, Cui K, Su R, Li L, Ren X, Li X, Wang Y. In-depth analysis of the treatment effect and synergistic mechanism of TanReQing injection on clinical multi-drug resistant Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0272623. [PMID: 38415603 PMCID: PMC10986576 DOI: 10.1128/spectrum.02726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/17/2023] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance is a recognized and concerning public health issue. Gram-negative bacilli, such as Pseudomonas aeruginosa (P. aeruginosa), are notorious for their rapid development of drug resistance, leading to treatment failures. TanReQing injection (TRQ) was chosen to explore its pharmacological mechanisms against clinical multidrug-resistant P. aeruginosa (MDR-PA), given its antibacterial and anti-inflammatory properties. We revealed the expression of proteins and genes in P. aeruginosa after co-culture with TRQ. This study developed an assessment method to evaluate clinical resistance of P. aeruginosa using MALDI-TOF MS identification and Biotyper database searching techniques. Additionally, it combined MIC determination to investigate changes in MDR-PA treated by TRQ. TRQ effectively reduced the MICs of ceftazidime and cefoperazone and enhanced the confidence scores of MDR-PA as identified by mass spectrometry. Using this evaluation method, the fingerprints of standard P. aeruginosa and MDR-PA were compared, and the characteristic peptide sequence (Seq-PA No. 1) associated with flagellum was found. The phenotypic experiments were conducted to confirm the effect of TRQ on the motility and adhesion of P. aeruginosa. A combination of co-immunoprecipitation and proteome analysis was employed, and 16 proteins were significantly differentially expressed and identified as potential candidates for investigating the mechanism of inhibiting resistance in P. aeruginosa treated by TRQ. The candidates were verified by quantitative real-time PCR analysis, and TRQ may affect these core proteins (MexA, MexB, OprM, OprF, OTCase, IDH, and ASL) that influence resistance of P. aeruginosa. The combination of multiple methods helps elucidate the synergistic mechanism of TRQ in overcoming resistance of P. aeruginosa.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen closely associated with various life-threatening acute and chronic infections. The presence of antimicrobial resistance and multidrug resistance in P. aeruginosa infections significantly complicates antibiotic treatment. The expression of β-lactamase, efflux systems such as MexAB-OprM, and outer membrane permeability are considered to have the greatest impact on the sensitivity of P. aeruginosa. The study used a method to assess the clinical resistance of P. aeruginosa using matrix-assisted laser desorption ionization time of flight mass spectrometry identification and Biotyper database search techniques. TanReQing injection (TRQ) effectively reduced the MICs of ceftazidime and cefoperazone in multidrug-resistant P. aeruginosa (MDR-PA) and improved the confidence scores for co-cultured MDR-PA. The study found a characteristic peptide sequence for distinguishing whether P. aeruginosa is resistant. Through co-immunoprecipitation and proteome analysis, we explored the mechanism of TRQ overcoming resistance of P. aeruginosa.
Collapse
Affiliation(s)
- Dongying Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yueyi Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingyi Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weifeng Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaiyu Cui
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Renjing Su
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xing Ren
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xianyu Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Cacciotto P, Basciu A, Oliva F, Malloci G, Zacharias M, Ruggerone P, Vargiu AV. Molecular rationale for the impairment of the MexAB-OprM efflux pump by a single mutation in MexA. Comput Struct Biotechnol J 2021; 20:252-260. [PMID: 35024097 PMCID: PMC8717590 DOI: 10.1016/j.csbj.2021.11.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Efflux pumps of the Resistance-Nodulation-cell Division (RND) superfamily contribute to intrinsic and acquired resistance in Gram-negative pathogens by expelling chemically unrelated antibiotics with high efficiency. They are tripartite systems constituted by an inner-membrane-anchored transporter, an outer membrane factor protein, and a membrane fusion protein. Multimerization of the membrane fusion protein is an essential prerequisite for full functionality of these efflux pumps. In this work, we employed complementary computational techniques to investigate the stability of a dimeric unit of MexA (the membrane fusion protein of the MexAB-OprM RND efflux pump of Pseudomonas aeruginosa), and to provide a molecular rationale for the effect of the G72S substitution, which affects MexAB-OprM functionality by impairing the assembly of MexA. Our findings indicate that: i) dimers of this protein are stable in multiple µs-long molecular dynamics simulations; ii) the mutation drastically alters the conformational equilibrium of MexA, favouring a collapsed conformation that is unlikely to form dimers or higher order assemblies. Unveiling the mechanistic aspects underlying large conformational distortions induced by minor sequence changes is informative to efforts at interfering with the activity of this elusive bacterial weapon. In this respect, our work further confirms how molecular simulations can give important contribution and useful insights to characterize the mechanism of highly complex biological systems.
Collapse
Affiliation(s)
- Pierpaolo Cacciotto
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Andrea Basciu
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Francesco Oliva
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Giuliano Malloci
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Martin Zacharias
- Physics Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| | - Attilio V Vargiu
- Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu km 0.700, I-09042 Monserrato (CA), Italy
| |
Collapse
|
3
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
4
|
Abdali N, Parks JM, Haynes KM, Chaney JL, Green AT, Wolloscheck D, Walker JK, Rybenkov VV, Baudry J, Smith JC, Zgurskaya HI. Reviving Antibiotics: Efflux Pump Inhibitors That Interact with AcrA, a Membrane Fusion Protein of the AcrAB-TolC Multidrug Efflux Pump. ACS Infect Dis 2017; 3:89-98. [PMID: 27768847 DOI: 10.1021/acsinfecdis.6b00167] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Antibiotic resistance is a major threat to human welfare. Inhibitors of multidrug efflux pumps (EPIs) are promising alternative therapeutics that could revive activities of antibiotics and reduce bacterial virulence. Identification of new druggable sites for inhibition is critical for the development of effective EPIs, especially in light of constantly emerging resistance. Here, we describe EPIs that interact with periplasmic membrane fusion proteins, critical components of efflux pumps that are responsible for the activation of the transporter and the recruitment of the outer-membrane channel. The discovered EPIs bind to AcrA, a component of the prototypical AcrAB-TolC pump, change its structure in vivo, inhibit efflux of fluorescent probes, and potentiate the activities of antibiotics in Escherichia coli and other Gram-negative bacteria. Our findings expand the chemical and mechanistic diversity of EPIs, suggest the mechanism for regulation of the efflux pump assembly and activity, and provide a promising path for reviving the activities of antibiotics in resistant bacteria.
Collapse
Affiliation(s)
- Narges Abdali
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerry M. Parks
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Keith M. Haynes
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Julie L. Chaney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Adam T. Green
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - John K. Walker
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jerome Baudry
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jeremy C. Smith
- UT/ORNL Center
for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry and Cellular
and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Bai J, Mosley L, Fralick JA. Evidence that the C-terminus of OprM is involved in the assembly of the VceAB-OprM efflux pump. FEBS Lett 2010; 584:1493-7. [PMID: 20206171 DOI: 10.1016/j.febslet.2010.02.066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
Abstract
Although the architecture of tripartite multiple drug resistance (MDR) efflux pumps of Gram-negative bacteria has been well characterized, the means by which the components recognize each other and assemble into a functional pump remains obscure. In this study we present evidence that the C-terminal domain of the Pseudomonas aeruginosa OprM and the alpha-helical hairpin domain of Vibrio cholerae VceA play an important role in the recognition/specificity/recruitment step in the assembly of a functional, VceAB-OprM chimeric efflux pump. To our knowledge, this is the first evidence directly linking the C-terminal domain of an outer membrane efflux protein to its recruitment during the assembly of a tripartite efflux pump.
Collapse
Affiliation(s)
- Jiangping Bai
- Department of Microbiology and Immunology, Texas Tech University Health Science Center, Lubbock, TX 79430, USA
| | | | | |
Collapse
|
6
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
7
|
Drug transport mechanism of the AcrB efflux pump. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:782-93. [DOI: 10.1016/j.bbapap.2008.12.015] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 02/08/2023]
|
8
|
Misra R, Bavro VN. Assembly and transport mechanism of tripartite drug efflux systems. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:817-25. [PMID: 19289182 DOI: 10.1016/j.bbapap.2009.02.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 02/21/2009] [Accepted: 02/26/2009] [Indexed: 12/30/2022]
Abstract
Multidrug efflux (MDR) pumps remove a variety of compounds from the cell into the external environment. There are five different classes of MDR pumps in bacteria, and quite often a single bacterial species expresses multiple classes of pumps. Although under normal circumstances MDR pumps confer low-level intrinsic resistance to drugs, the presence of drugs and mutations in regulatory genes lead to high level expression of MDR pumps that can pose problems with therapeutic treatments. This review focuses on the resistance nodulation cell division (RND)-class of MDR pumps that assemble from three proteins. Significant recent advancement in structural aspects of the three pump components has shed new light on the mechanism by which the tripartite efflux pumps extrude drugs. This new information will be critical in developing inhibitors against MDR pumps to improve the potency of prescribed drugs.
Collapse
Affiliation(s)
- Rajeev Misra
- Faculty of Cellular and Molecular Biosciences, School of Life Sciences, Arizona State University, Tempe, AZ 85285-4501, USA.
| | | |
Collapse
|
9
|
Efflux unbalance in Pseudomonas aeruginosa isolates from cystic fibrosis patients. Antimicrob Agents Chemother 2009; 53:1987-97. [PMID: 19258280 DOI: 10.1128/aac.01024-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retrospective analysis of 189 nonredundant strains of Pseudomonas aeruginosa sequentially recovered from the sputum samples of 46 cystic fibrosis (CF) patients over a 10-year period (1998 to 2007) revealed that 53 out of 189 (28%) samples were hypersusceptible to the beta-lactam antibiotic ticarcillin (MIC < or = 4 microg/ml) (phenotype dubbed Tic(hs)). As evidenced by trans-complementation and gene inactivation experiments, the mutational upregulation of the efflux system MexXY was responsible for various degrees of resistance to aminoglycosides in a selection of 11 genotypically distinct strains (gentamicin MICs from 2 to 64 microg/ml). By demonstrating for the first time that the MexXY pump may evolve in CF strains, we found that a mutation leading to an F1018L change in the resistance-nodulation-cell division (RND) transporter MexY was able to increase pump-promoted resistance to aminoglycosides, cefepime, and fluoroquinolones twofold. The inactivation of the mexB gene (which codes for the RND transporter MexB) in the 11 selected strains showed that the Tic(hs) phenotype was due to a mutational or functional loss of function of MexAB-OprM, the multidrug efflux system known to contribute to the natural resistance of P. aeruginosa to beta-lactams (e.g., ticarcillin and aztreonam), fluoroquinolones, tetracycline, and novobiocin. Two of the selected strains synthesized abnormally low amounts of the MexB protein, and 3 of 11 strains expressed truncated MexB (n = 2) or MexA (n = 1) polypeptide as a result of mutations in the corresponding genes, while 7 of 11 strains produced wild-type though nonfunctional MexAB-OprM pumps at levels similar to or even higher than that of reference strain PAO1. Overall, our data indicate that while MexXY is necessary for P. aeruginosa to adapt to the hostile environment of the CF lung, the MexAB-OprM pump is dispensable and tends to be lost or inactivated in subpopulations of P. aeruginosa.
Collapse
|
10
|
Zgurskaya HI, Yamada Y, Tikhonova EB, Ge Q, Krishnamoorthy G. Structural and functional diversity of bacterial membrane fusion proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1794:794-807. [PMID: 19041958 DOI: 10.1016/j.bbapap.2008.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/21/2008] [Accepted: 10/22/2008] [Indexed: 10/21/2022]
Abstract
Membrane Fusion Proteins (MFPs) are functional subunits of multi-component transporters that perform diverse physiological functions in both Gram-positive and Gram-negative bacteria. MFPs associate with transporters belonging to Resistance-Nodulation-cell Division (RND), ATP-Binding Cassette (ABC) and Major Facilitator (MF) superfamilies of proteins. Recent studies suggested that MFPs interact with substrates and play an active role in transport reactions. In addition, the MFP-dependent transporters from Gram-negative bacteria recruit the outer membrane channels to expel various substrates across the outer membrane into external medium. This review is focused on the diversity, structure and molecular mechanism of MFPs that function in multidrug efflux. Using phylogenetic approaches we analyzed diversity and representation of multidrug MFPs in sequenced bacterial genomes. In addition to previously characterized MFPs from Gram-negative bacteria, we identified MFPs that associate with RND-, MF- and ABC-type transporters in Gram-positive bacteria. Sequence analyses showed that MFPs vary significantly in size (200-650 amino acid residues) with some of them lacking the signature alpha-helical domain of multidrug MFPs. Furthermore, many transport operons contain two- or three genes encoding distinct MFPs. We further discuss the diversity of MFPs in the context of current views on the mechanism and structure of MFP-dependent transporters.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- University of Oklahoma Department of Chemistry and Biochemistry 620 Parrington Oval, Room 208 Norman, OK 73019, USA.
| | | | | | | | | |
Collapse
|
11
|
Davidson AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 2008; 72:317-64, table of contents. [PMID: 18535149 PMCID: PMC2415747 DOI: 10.1128/mmbr.00031-07] [Citation(s) in RCA: 979] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
Collapse
Affiliation(s)
- Amy L Davidson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| | | | | | | |
Collapse
|
12
|
Nehme D, Poole K. Assembly of the MexAB-OprM multidrug pump of Pseudomonas aeruginosa: component interactions defined by the study of pump mutant suppressors. J Bacteriol 2007; 189:6118-27. [PMID: 17586626 PMCID: PMC1951894 DOI: 10.1128/jb.00718-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to identify key domains of the Pseudomonas aeruginosa MexAB-OprM drug efflux system involved in component interactions, extragenic suppressors of various inactivating mutations in individual pump constituents were isolated and studied. The multidrug hypersusceptibility of P. aeruginosa expressing MexB with a mutation in a region of the protein implicated in oligomerization (G220S) was suppressed by mutations in the alpha/beta domain of MexA. MexB(G220S) showed a reduced ability to bind MexA in vivo while representative MexA suppressors (V66M and V259F) restored the MexA-MexB interaction. Interestingly, these suppressors also restored resistance in P. aeruginosa expressing OprM proteins with mutations at the proximal (periplasmic) tip of OprM that is predicted to interact with MexB, suggesting that these suppressors generally overcame defects in MexA-MexB and MexB-OprM interaction. The multidrug hypersusceptibility arising from a mutation in the helical hairpin of MexA implicated in OprM interaction (V129M) was suppressed by mutations (T198I and F439I) in the periplasmic alpha-helical barrel of OprM. Again, the MexA mutation compromised an in vivo interaction with OprM that was restored by the T198I and F439I substitutions in OprM, consistent with the hairpin domain mediating MexA binding to this region of OprM. Interestingly, these OprM suppressor mutations restored multidrug resistance in P. aeruginosa expressing MexB(G220S). Finally, the oprM(T198I) suppressor mutation enhanced the yields of all three constituents of a MexA-MexB-OprM(T198I) pump as detected in whole-cell extracts. These data highlight the importance of MexA and interactions with this adapter in promoting MexAB-OprM pump assembly and in stabilizing the pump complex.
Collapse
Affiliation(s)
- Dominic Nehme
- Department of Microbiology and Immunology, Queen's University, Botterell Hall, Room 737, Kingston K7L 3N6, Canada
| | | |
Collapse
|
13
|
Narita SI, Tokuda H. Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 2007; 282:13372-8. [PMID: 17350956 DOI: 10.1074/jbc.m611839200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli lipoproteins with Asp at position 2 remain in the inner membrane, whereas those having other amino acids are targeted to the outer membrane by the Lol system. However, inner membrane lipoproteins without Asp at position 2 are found in other Gram-negative bacteria. MexA of Pseudomonas aeruginosa, an inner membrane-specific lipoprotein involved in multidrug efflux, has Gly at position 2. To identify the residue or region of MexA that functions as an inner membrane retention signal, we constructed chimeric lipoproteins comprising various regions of MexA and an outer membrane lipoprotein, OprM, and analyzed their membrane localization. Lys and Ser at positions 3 and 4, respectively, were found to be critical for the inner membrane localization of MexA in P. aeruginosa. Substitution of these residues with Leu and Ile, which are present in OprM, was sufficient to target the chimeric lipoprotein to the outer membrane and to abolish the ability of MexA to confer drug resistance. The membrane specificity of a model lipoprotein, lipoMalE, a lipidated variant of the periplasmic maltose-binding protein of E. coli, was also determined by the residues at positions 3 and 4 in P. aeruginosa. In contrast to the widely accepted "+2 rule" for E. coli lipoproteins, these results suggest a new "+3, +4 rule" for lipoprotein sorting in P. aeruginosa, namely, the final destination of lipoproteins is determined by the residues at positions 3 and 4.
Collapse
Affiliation(s)
- Shin-Ichiro Narita
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | | |
Collapse
|
14
|
Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev 2006; 30:673-91. [PMID: 16911039 DOI: 10.1111/j.1574-6976.2006.00024.x] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful beta-lactam antibiotics. The increasing incidence of beta-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies.
Collapse
Affiliation(s)
- Pauline Macheboeuf
- Institut de Biologie Structurale Jean-Pierre Ebel (CNRS/CEA/UJF), UMR 5075, Laboratoire des Protéines Membranaires, Grenoble, France
| | | | | | | | | |
Collapse
|
15
|
Seeger MA, Schiefner A, Eicher T, Verrey F, Diederichs K, Pos KM. Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism. Science 2006; 313:1295-8. [PMID: 16946072 DOI: 10.1126/science.1131542] [Citation(s) in RCA: 430] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The AcrA/AcrB/TolC complex spans the inner and outer membranes of Escherichia coli and serves as its major drug-resistance pump. Driven by the proton motive force, it mediates the efflux of bile salts, detergents, organic solvents, and many structurally unrelated antibiotics. Here, we report a crystallographic structure of trimeric AcrB determined at 2.9 and 3.0 angstrom resolution in space groups that allow asymmetry of the monomers. This structure reveals three different monomer conformations representing consecutive states in a transport cycle. The structural data imply an alternating access mechanism and a novel peristaltic mode of drug transport by this type of transporter.
Collapse
Affiliation(s)
- Markus A Seeger
- Institute of Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
16
|
|