1
|
Wang Y, Wang D, Chen S, Yu G, Ma Z, Wei Y, Li C, Wang Y, Shen C, Zhao Y. Genomic Analysis of Two Histamine-Producing Strains Isolated from Yellowfin Tuna. Foods 2025; 14:1532. [PMID: 40361615 PMCID: PMC12072131 DOI: 10.3390/foods14091532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Psychrotrophic Morganella spp. is a typical histamine producer commonly found in seafood, exhibiting a high histamine-producing capacity. In this study, two strains of Morganella (GWT 902 and GWT 904) isolated from yellowfin tuna were subjected to phenotypic and genotypic characterization. Phenotypic analysis reveals differences in growth temperature, NaCl tolerance, and D-galactose fermentation capacity between the two strains. Notably, the histamine production capacity of GWT 902 is significantly higher than that of GWT 904 at 4 °C. The complete genome sequences of strains GWT 902 and GWT 904 were sequenced, identifying GWT 902 as Morganella psychrotolerans and GWT 904 as Morganella morganii subsp. sibonii. Genomic analysis confirms the presence of histidine decarboxylase gene clusters (hdcT1, hdc, hdcT2, hisRS) in both strains, and sequence alignment shows that the amino acid sequence similarity of histidine decarboxylase encoded by the hdc gene was 95.24%. Gene function analysis further identified genes associated with putrescine biosynthesis, sulfur metabolism, lipase and protease secretion, and detected key genes in quorum sensing (QS), stress adaptation, and antibiotic resistance. This study provides valuable insights into the taxonomic analysis of psychrotrophic Morganella spp. and contributes to the development of efficient strategies for preventing histamine formation in seafood.
Collapse
Affiliation(s)
- Yazhe Wang
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.C.); (Y.W.); (C.L.); (Y.W.)
| | - Di Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.C.); (Y.W.); (C.L.); (Y.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| | - Shengjun Chen
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.C.); (Y.W.); (C.L.); (Y.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| | - Ya Wei
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.C.); (Y.W.); (C.L.); (Y.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| | - Chunsheng Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.C.); (Y.W.); (C.L.); (Y.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| | - Yueqi Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.C.); (Y.W.); (C.L.); (Y.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| | - Chaoming Shen
- Beihai Product Quality Testing Institute, Beihai 536000, China;
| | - Yongqiang Zhao
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (S.C.); (Y.W.); (C.L.); (Y.W.)
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572426, China; (G.Y.); (Z.M.)
| |
Collapse
|
2
|
Su W, Wang W, Li L, Zhang M, Xu H, Fu C, Pang X, Wang M. Mechanisms of tigecycline resistance in Gram-negative bacteria: A narrative review. ENGINEERING MICROBIOLOGY 2024; 4:100165. [PMID: 39629109 PMCID: PMC11610970 DOI: 10.1016/j.engmic.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 12/06/2024]
Abstract
Tigecycline serves as a critical "final-resort" antibiotic for treating bacterial infections caused by multidrug-resistant bacteria for which treatment options are severely limited. The increasing prevalence of tigecycline resistance, particularly among Gram-negative bacteria, is a major concern. Various mechanisms have been identified as contributors to tigecycline resistance, including upregulation of nonspecific Resistance Nodulation Division (RND) efflux pumps due to mutations in transcriptional regulators, enzymatic modification of tigecycline by monooxygenase enzymes, and mutations affecting tigecycline binding sites. This review aims to consolidate our understanding of tigecycline resistance mechanisms in Gram-negative bacteria and offer insights and perspectives for further drug development.
Collapse
Affiliation(s)
- Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Wenjia Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mengge Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Hai Xu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| | - Xiuhua Pang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
3
|
Wang J, Wan X, Meng H, Olsen RH, Chen X, Li L. Efflux Pumps and Different Genetic Contexts of tet(X4) Contribute to High Tigecycline Resistance in Escherichia fergusonii from Pigs. Int J Mol Sci 2023; 24:ijms24086923. [PMID: 37108087 PMCID: PMC10138661 DOI: 10.3390/ijms24086923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Tigecycline is a last-resort antibiotic for the treatment of infections caused by multidrug-resistant bacteria. The emergence of plasmid-mediated tigecycline resistance genes is posing a serious threat to food safety and human health and has attracted worldwide attention. In this study, we characterized six tigecycline-resistant Escherichia fergusonii strains from porcine nasal swab samples collected from 50 swine farms in China. All the E. fergusonii isolates were highly resistant to tigecycline with minimal inhibitory concentration (MIC) values of 16-32 mg/L, and all contained the tet(X4) gene. In addition, 13-19 multiple resistance genes were identified in these isolates, revealed by whole-genome sequencing analysis. The tet(X4) gene was identified as being located in two different genetic structures, hp-abh-tet(X4)-ISCR2 in five isolates and hp-abh-tet(X4)-ΔISCR2-ISEc57-IS26 in one isolate. The role of efflux pumps in tigecycline resistance was evaluated by using inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The MIC values of tigecycline showed a 2- to 4-fold reduction in the presence of CCCP, indicating the involvement of active efflux pumps in tigecycline resistance in E. fergusonii. The tet(X4) gene was found to be transferable to Escherichia coli J53 by conjugation and resulted in the acquisition of tigcycline resistances in the transconjugants. Whole-genome multilocus sequence typing (wgMLST) and phylogenetic analysis showed a close relationship of five isolates originating from different pig farms, suggesting the transmission of tet(X4)-positive E. fergusonii between farms. In conclusion, our findings suggest that E. fergusonii strains in pigs are reservoirs of a transferable tet(X4) gene and provide insights into the tigecycline resistance mechanism as well as the diversity and complexity of the genetic context of tet(X4) in E. fergusonii.
Collapse
Affiliation(s)
- Junlin Wang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xiulin Wan
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2820 Frederiksberg, Denmark
| | - Xun Chen
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Chukamnerd A, Pomwised R, Jeenkeawpiam K, Sakunrang C, Chusri S, Surachat K. Genomic insights into bla NDM-carrying carbapenem-resistant Klebsiella pneumoniae clinical isolates from a university hospital in Thailand. Microbiol Res 2022; 263:127136. [PMID: 35870342 DOI: 10.1016/j.micres.2022.127136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 07/13/2022] [Indexed: 11/18/2022]
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates is a serious threat to global health. Here, we elucidate the genetic features of blaNDM-carrying CRKP clinical isolates from a university hospital in Thailand. The entire genomes of 19 CRKP isolates were extracted and then sequenced using the MGISEQ200 platform. Using various bioinformatics tools, we analyzed the antimicrobial resistance (AMR), virulence factors, gene transfer, bacterial defense mechanisms, and genomic diversity of the CRKP isolates. The sequence type (ST) 16 was found in most of the isolates, along with carriages of the blaNDM-1, blaOXA-232, and blaCTX-M-15 genes. The IncFIB(pQil), Col440II, and ColKP3 plasmids were identified with high frequency. The CRKP isolates harbored genes encoding for virulence factors such as adherence, biofilm formation, immune evasion, and iron uptake. The CRISPR-Cas region in the CRKP9 isolate consisted of 28 distinct spacer sequences. The genomes of the CRKP isolates presented restriction-modification (R-M) sites (M.Kpn34618Dcm and M.Kpn928I) and integrated bacteriophage genomes (Klebsiella phage ST16-OXA48phi5.4 and Enterobacteria phage mEp390). Bottromycin and sactipeptides were also identified. The isolates could be separated into three clades according to STs and pairwise single nucleotide polymorphism (SNP) distance. Pairwise average nucleotide identity (ANI) values revealed intra-species. These findings support the importance of whole-genome sequencing (WGS) to the rapid and accurate genomic analysis of clinical isolates of CRKP.
Collapse
Affiliation(s)
- Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand; Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
5
|
Ryser LT, Arias-Roth E, Perreten V, Irmler S, Bruggmann R. Genetic and Phenotypic Diversity of Morganella morganii Isolated From Cheese. Front Microbiol 2021; 12:738492. [PMID: 34867855 PMCID: PMC8638253 DOI: 10.3389/fmicb.2021.738492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2021] [Indexed: 01/02/2023] Open
Abstract
The bacterium Morganella morganii can produce the biogenic amines (BA) cadaverine, putrescine, and histamine in vitro and is responsible for high histamine concentrations in fish products. These BA can have toxic effects upon ingestion and are undesired in food. The purpose of this study was to characterize the phenotype and genotype of 11 M. morganii isolated from cheese in regard to the BA formation. In addition, we investigated the phylogeny, trehalose fermentation ability, and antibiotic resistance of the cheese isolates. To do so, we sequenced their genomes using both long and short read technologies. Due to the presence of the trehalose operon and the ability to ferment trehalose, the cheese isolates can be assigned to the subsp. sibonii. Comparative genomics with public available M. morganii genomes shows that the genomes of the cheese isolates cluster together with other subsp. sibonii genomes. All genomes between subsp. morganii and subsp. sibonii are separated by an average nucleotide identity (ANI) of less than 95.0%. Therefore, the subspecies could represent two distinct species. Nine of the strains decarboxylated lysine yielding cadaverine in vitro. This metabolic activity is linked to a previously unknown gene cluster comprising genes encoding a lysine-tRNA ligase (lysS), an HTH-transcriptional regulator (argP), a cadaverine-lysine antiporter (cadB), and a lysine decarboxylase (cadA). The formation of putrescine is linked to the speF gene encoding an ornithine decarboxylase. The gene is disrupted in five strains by an insertion sequence, and these strains only exhibit a weak putrescine production. Antimicrobial susceptibility profiling revealed that all cheese strains are resistant to tetracycline, chloramphenicol, tigecycline, colistin, and ampicillin. These phenotypes, except for colistin which is intrinsic, could be linked to antimicrobial resistance genes located on the chromosome.
Collapse
Affiliation(s)
- Lorenz Timo Ryser
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.,Agroscope, Bern, Switzerland
| | | | - Vincent Perreten
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Yaghoubi S, Zekiy AO, Krutova M, Gholami M, Kouhsari E, Sholeh M, Ghafouri Z, Maleki F. Tigecycline antibacterial activity, clinical effectiveness, and mechanisms and epidemiology of resistance: narrative review. Eur J Clin Microbiol Infect Dis 2021; 41:1003-1022. [PMID: 33403565 PMCID: PMC7785128 DOI: 10.1007/s10096-020-04121-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Tigecycline is unique glycylcycline class of semisynthetic antimicrobial agents developed for the treatment of polymicrobial infections caused by multidrug-resistant Gram-positive and Gram-negative pathogens. Tigecycline evades the main tetracycline resistance genetic mechanisms, such as tetracycline-specific efflux pump acquisition and ribosomal protection, via the addition of a glycyclamide moiety to the 9-position of minocycline. The use of the parenteral form of tigecycline is approved for complicated skin and skin structure infections (excluding diabetes foot infection), complicated intra-abdominal infections, and community-acquired bacterial pneumonia in adults. New evidence also suggests the effectiveness of tigecycline for the treatment of severe Clostridioides difficile infections. Tigecycline showed in vitro susceptibility to Coxiella spp., Rickettsia spp., and multidrug-resistant Neisseria gonnorrhoeae strains which indicate the possible use of tigecycline in the treatment of infections caused by these pathogens. Except for intrinsic, or often reported resistance in some Gram-negatives, tigecycline is effective against a wide range of multidrug-resistant nosocomial pathogens. Herein, we summarize the currently available data on tigecycline pharmacokinetics and pharmacodynamics, its mechanism of action, the epidemiology of tigecycline resistance, and its clinical effectiveness.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russian Federation, Trubetskaya st., 8-2, 119991, Moscow, Russia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mehrdad Gholami
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran. .,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, P.O. Box 6939177143, Gorgan- Sari Road, Golestan Province, Gorgan, Iran.
| | - Mohammad Sholeh
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran.
| |
Collapse
|
7
|
Hennessen F, Miethke M, Zaburannyi N, Loose M, Lukežič T, Bernecker S, Hüttel S, Jansen R, Schmiedel J, Fritzenwanker M, Imirzalioglu C, Vogel J, Westermann AJ, Hesterkamp T, Stadler M, Wagenlehner F, Petković H, Herrmann J, Müller R. Amidochelocardin Overcomes Resistance Mechanisms Exerted on Tetracyclines and Natural Chelocardin. Antibiotics (Basel) 2020; 9:antibiotics9090619. [PMID: 32962088 PMCID: PMC7559539 DOI: 10.3390/antibiotics9090619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
The reassessment of known but neglected natural compounds is a vital strategy for providing novel lead structures urgently needed to overcome antimicrobial resistance. Scaffolds with resistance-breaking properties represent the most promising candidates for a successful translation into future therapeutics. Our study focuses on chelocardin, a member of the atypical tetracyclines, and its bioengineered derivative amidochelocardin, both showing broad-spectrum antibacterial activity within the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) panel. Further lead development of chelocardins requires extensive biological and chemical profiling to achieve favorable pharmaceutical properties and efficacy. This study shows that both molecules possess resistance-breaking properties enabling the escape from most common tetracycline resistance mechanisms. Further, we show that these compounds are potent candidates for treatment of urinary tract infections due to their in vitro activity against a large panel of multidrug-resistant uropathogenic clinical isolates. In addition, the mechanism of resistance to natural chelocardin was identified as relying on efflux processes, both in the chelocardin producer Amycolatopsis sulphurea and in the pathogen Klebsiella pneumoniae. Resistance development in Klebsiella led primarily to mutations in ramR, causing increased expression of the acrAB-tolC efflux pump. Most importantly, amidochelocardin overcomes this resistance mechanism, revealing not only the improved activity profile but also superior resistance-breaking properties of this novel antibacterial compound.
Collapse
Affiliation(s)
- Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Marcus Miethke
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Nestor Zaburannyi
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Maria Loose
- Clinic for Urology, Paediatric Urology & Andrology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Gießen, Germany; (M.L.); (F.W.)
| | - Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Steffen Bernecker
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stephan Hüttel
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Rolf Jansen
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Judith Schmiedel
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35390 Gießen, Germany; (J.S.); (M.F.); (C.I.)
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI) and Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; (J.V.); (A.J.W.)
| | - Alexander J. Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI) and Institute of Molecular Infection Biology (IMIB), University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany; (J.V.); (A.J.W.)
| | - Thomas Hesterkamp
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
| | - Marc Stadler
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Florian Wagenlehner
- Clinic for Urology, Paediatric Urology & Andrology, Justus-Liebig University Gießen, and German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Gießen, Germany; (M.L.); (F.W.)
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia;
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Correspondence: (J.H.); (R.M.); Tel.: +49-681-98806-3101 (J.H.); +49-681-98806-3000 (R.M.)
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)—Helmholtz Centre for Infection Research (HZI), and Department of Pharmacy, Saarland University Campus E8.1, 66123 Saarbrücken, Germany; (F.H.); (M.M.); (N.Z.); (T.L.)
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany; (S.B.); (S.H.); (R.J.); (T.H.); (M.S.)
- Correspondence: (J.H.); (R.M.); Tel.: +49-681-98806-3101 (J.H.); +49-681-98806-3000 (R.M.)
| |
Collapse
|
8
|
|
9
|
Miryala SK, Anbarasu A, Ramaiah S. Gene interaction network approach to elucidate the multidrug resistance mechanisms in the pathogenic bacterial strain Proteus mirabilis. J Cell Physiol 2020; 236:468-479. [PMID: 32542649 DOI: 10.1002/jcp.29874] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
Proteus mirabilis is one among the most frequently identified pathogen in patients with the urinary tract infection. The multidrug resistance exhibited by P. mirabilis renders the treatment ineffective, and new progressive strategies are needed to overcome the antibiotic resistance (AR). We have analyzed the evolutionary relationship of 29 P. mirabilis strains available in the National Center for Biotechnology Information-Genome database. The antimicrobial resistance genes of P. mirabilis along with the enriched pathways and the Gene Ontology terms are analyzed using gene networks to understand the molecular basis of AR. The genes rpoB, tufB, rpsl, fusA, and rpoA could be exploited as potential drug targets as they are involved in regulating the vital functions within the bacterium. The drug targets reported in the present study will aid researchers in developing new strategies to combat multidrug-resistant P. mirabilis.
Collapse
Affiliation(s)
- Sravan K Miryala
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
10
|
Gong Z, Li H, Cai Y, Stojkoska A, Xie J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J Cell Physiol 2019; 234:19237-19248. [PMID: 31012115 DOI: 10.1002/jcp.28720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022]
Abstract
The emergence of multidrug resistant (MDR) Mycobacterium tuberculosis strains and increased incidence of HIV coinfection fueled the difficulty in controlling tuberculosis (TB). MarR (multiple antibiotic resistance regulator) family transcription factors can regulate marRAB operon and are involved in resistance to multiple environmental stresses. We have summarized the structure, function, distribution, and regulation of the MarR family proteins, as well as their implications for novel targets for antibiotics, especially for tuberculosis.
Collapse
Affiliation(s)
- Zhen Gong
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hui Li
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yuhua Cai
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Andrea Stojkoska
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Target (MexB)- and Efflux-Based Mechanisms Decreasing the Effectiveness of the Efflux Pump Inhibitor D13-9001 in Pseudomonas aeruginosa PAO1: Uncovering a New Role for MexMN-OprM in Efflux of β-Lactams and a Novel Regulatory Circuit (MmnRS) Controlling MexMN Expression. Antimicrob Agents Chemother 2019; 63:AAC.01718-18. [PMID: 30420483 DOI: 10.1128/aac.01718-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Efflux pumps contribute to antibiotic resistance in Gram-negative pathogens. Correspondingly, efflux pump inhibitors (EPIs) may reverse this resistance. D13-9001 specifically inhibits MexAB-OprM in Pseudomonas aeruginosa Mutants with decreased susceptibility to MexAB-OprM inhibition by D13-9001 were identified, and these fell into two categories: those with alterations in the target MexB (F628L and ΔV177) and those with an alteration in a putative sensor kinase of unknown function, PA1438 (L172P). The alterations in MexB were consistent with reported structural studies of the D13-9001 interaction with MexB. The PA1438L172P alteration mediated a >150-fold upregulation of MexMN pump gene expression and a >50-fold upregulation of PA1438 and the neighboring response regulator gene, PA1437. We propose that these be renamed mmnR and mmnS for MexMN regulator and MexMN sensor, respectively. MexMN was shown to partner with the outer membrane channel protein OprM and to pump several β-lactams, monobactams, and tazobactam. Upregulated MexMN functionally replaced MexAB-OprM to efflux these compounds but was insusceptible to inhibition by D13-9001. MmnSL172P also mediated a decrease in susceptibility to imipenem and biapenem that was independent of MexMN-OprM. Expression of oprD, encoding the uptake channel for these compounds, was downregulated, suggesting that this channel is also part of the MmnSR regulon. Transcriptome sequencing (RNA-seq) of cells encoding MmnSL172P revealed, among other things, an interrelationship between the regulation of mexMN and genes involved in heavy metal resistance.
Collapse
|
12
|
Dean CR, Barkan DT, Bermingham A, Blais J, Casey F, Casarez A, Colvin R, Fuller J, Jones AK, Li C, Lopez S, Metzger LE, Mostafavi M, Prathapam R, Rasper D, Reck F, Ruzin A, Shaul J, Shen X, Simmons RL, Skewes-Cox P, Takeoka KT, Tamrakar P, Uehara T, Wei JR. Mode of Action of the Monobactam LYS228 and Mechanisms Decreasing In Vitro Susceptibility in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 2018; 62:e01200-18. [PMID: 30061293 PMCID: PMC6153799 DOI: 10.1128/aac.01200-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The monobactam scaffold is attractive for the development of new agents to treat infections caused by drug-resistant Gram-negative bacteria because it is stable to metallo-β-lactamases (MBLs). However, the clinically used monobactam aztreonam lacks stability to serine β-lactamases (SBLs) that are often coexpressed with MBLs. LYS228 is stable to MBLs and most SBLs. LYS228 bound purified Escherichia coli penicillin binding protein 3 (PBP3) similarly to aztreonam (derived acylation rate/equilibrium dissociation constant [k2/Kd ] of 367,504 s-1 M-1 and 409,229 s-1 M-1, respectively) according to stopped-flow fluorimetry. A gel-based assay showed that LYS228 bound mainly to E. coli PBP3, with weaker binding to PBP1a and PBP1b. Exposing E. coli cells to LYS228 caused filamentation consistent with impaired cell division. No single-step mutants were selected from 12 Enterobacteriaceae strains expressing different classes of β-lactamases at 8× the MIC of LYS228 (frequency, <2.5 × 10-9). At 4× the MIC, mutants were selected from 2 of 12 strains at frequencies of 1.8 × 10-7 and 4.2 × 10-9 LYS228 MICs were ≤2 μg/ml against all mutants. These frequencies compared favorably to those for meropenem and tigecycline. Mutations decreasing LYS228 susceptibility occurred in ramR and cpxA (Klebsiella pneumoniae) and baeS (E. coli and K. pneumoniae). Susceptibility of E. coli ATCC 25922 to LYS228 decreased 256-fold (MIC, 0.125 to 32 μg/ml) after 20 serial passages. Mutants accumulated mutations in ftsI (encoding the target, PBP3), baeR, acrD, envZ, sucB, and rfaI These results support the continued development of LYS228, which is currently undergoing phase II clinical trials for complicated intraabdominal infection and complicated urinary tract infection (registered at ClinicalTrials.gov under identifiers NCT03377426 and NCT03354754).
Collapse
Affiliation(s)
- Charles R Dean
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - David T Barkan
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Alun Bermingham
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Johanne Blais
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Fergal Casey
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Anthony Casarez
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Richard Colvin
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - John Fuller
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Adriana K Jones
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Cindy Li
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Sara Lopez
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Louis E Metzger
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Mina Mostafavi
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Ramadevi Prathapam
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Dita Rasper
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Folkert Reck
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Alexey Ruzin
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Jacob Shaul
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Xiaoyu Shen
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Robert L Simmons
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Peter Skewes-Cox
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Kenneth T Takeoka
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Pramila Tamrakar
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Tsuyoshi Uehara
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| | - Jun-Rong Wei
- Novartis Institutes for BioMedical Research, Emeryville, California, USA
| |
Collapse
|
13
|
Liu H, Zhu J, Hu Q, Rao X. Morganella morganii, a non-negligent opportunistic pathogen. Int J Infect Dis 2016; 50:10-7. [PMID: 27421818 DOI: 10.1016/j.ijid.2016.07.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/31/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022] Open
Abstract
Morganella morganii belongs to the tribe Proteeae of the Enterobacteriaceae family. This species is considered as an unusual opportunistic pathogen that mainly causes post-operative wound and urinary tract infections. However, certain clinical M. morganii isolates present resistance to multiple antibiotics by carrying various resistant genes (such as blaNDM-1, and qnrD1), thereby posing a serious challenge for clinical infection control. Moreover, virulence evolution makes M. morganii an important pathogen. Accumulated data have demonstrated that M. morganii can cause various infections, such as sepsis, abscess, purple urine bag syndrome, chorioamnionitis, and cellulitis. This bacterium often results in a high mortality rate in patients with some infections. M. morganii is considered as a non-negligent opportunistic pathogen because of the increased levels of resistance and virulence. In this review, we summarized the epidemiology of M. morganii, particularly on its resistance profile and resistant genes, as well as the disease spectrum and risk factors for its infection.
Collapse
Affiliation(s)
- Hui Liu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Junmin Zhu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
14
|
Osei Sekyere J, Govinden U, Bester LA, Essack SY. Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. J Appl Microbiol 2016; 121:601-17. [PMID: 27153928 DOI: 10.1111/jam.13169] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/13/2016] [Accepted: 05/02/2016] [Indexed: 01/31/2023]
Abstract
A literature review was undertaken to ascertain the molecular basis for tigecycline and colistin resistance mechanisms and the experimental basis for the detection and delineation of this resistance particularly in carbapenemase-producing Gram-negative bacteria. Pubmed, Google Scholar and Science Direct were searched with the keywords colistin, tigecycline, resistance mechanisms and detection methods. Trans-complementation and comparative MIC studies, mass spectrometry, chromatography, spectrofluorometry, PCR, qRT-PCR and whole genome sequencing (WGS) were commonly used to determine tigecycline and colistin resistance mechanisms, specifically modifications in the structural and regulatory efflux (acrAB, OqxAB, kpgABC adeABC-FGH-IJK, mexAB-XY-oprJM and soxS, rarA robA, ramRAB marRABC, adeLRS, mexRZ and nfxb) and lipid A (pmrHFIJFKLM, lpxA, lpxC lpxD and mgrB, pmrAB, phoPQ,) genes respectively. Mutations in the ribosomal 16S rRNA operon rrnBC, also yielded resistance to tigecycline through target site modifications. The mcr-1 gene conferring resistance to colistin was identified via WGS, trans-complementation and a murine thigh infection model studies. Common detection methods are mainly antibiotic sensitivity testing with broth microdilution while molecular identification tools are mostly PCR and WGS. Spectrofluorometry, MALDI-TOF MS, micro-array and real-time multiplex PCR hold much promise for the future as new detection tools.
Collapse
Affiliation(s)
- J Osei Sekyere
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - U Govinden
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - L A Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - S Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Current perspectives on tigecycline resistance in Enterobacteriaceae: susceptibility testing issues and mechanisms of resistance. Int J Antimicrob Agents 2016; 48:11-18. [DOI: 10.1016/j.ijantimicag.2016.04.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/23/2022]
|
16
|
Abstract
Tetracyclines possess many properties considered ideal for antibiotic drugs, including activity against Gram-positive and -negative pathogens, proven clinical safety, acceptable tolerability, and the availability of intravenous (IV) and oral formulations for most members of the class. As with all antibiotic classes, the antimicrobial activities of tetracyclines are subject to both class-specific and intrinsic antibiotic-resistance mechanisms. Since the discovery of the first tetracyclines more than 60 years ago, ongoing optimization of the core scaffold has produced tetracyclines in clinical use and development that are capable of thwarting many of these resistance mechanisms. New chemistry approaches have enabled the creation of synthetic derivatives with improved in vitro potency and in vivo efficacy, ensuring that the full potential of the class can be explored for use against current and emerging multidrug-resistant (MDR) pathogens, including carbapenem-resistant Enterobacteriaceae, MDR Acinetobacter species, and Pseudomonas aeruginosa.
Collapse
|
17
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|
18
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
19
|
Increase of multidrug efflux pump expression in fluoroquinolone-resistant Salmonella mutants induced by ciprofloxacin selective pressure. Res Vet Sci 2014; 97:182-6. [DOI: 10.1016/j.rvsc.2014.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 07/06/2014] [Accepted: 07/25/2014] [Indexed: 01/13/2023]
|
20
|
Ratnaraja NVDV, Hawkey PM. Current challenges in treating MRSA: what are the options? Expert Rev Anti Infect Ther 2014; 6:601-18. [DOI: 10.1586/14787210.6.5.601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Zhanel GG, Karlowsky JA, Rubinstein E, Hoban DJ. Tigecycline: a novel glycylcycline antibiotic. Expert Rev Anti Infect Ther 2014; 4:9-25. [PMID: 16441206 DOI: 10.1586/14787210.4.1.9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tigecycline, the first-in-class glycylcycline, was developed to recapture the broad spectrum of activity of the tetracycline class and to treat patients with difficult-to-treat bacterial infections. Tigecycline's in vitro spectrum of activity encompasses aerobic, facultative and anaerobic Gram-positive and -negative bacteria, including antimicrobial-resistant bacteria such as methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus faecalis and Enterococcus faecium, and extended-spectrum beta-lactamase-producing Enterobacteriaceae. Clinical trials involving patients with complicated skin and skin-structure infections and complicated intra-abdominal infections, including patients infected with methicillin-resistant S. aureus, demonstrated that tigecycline was bacteriologically and clinically effective with mild-to-moderate gastrointestinal adverse events (i.e., nausea, vomiting and diarrhea) the most commonly reported. Tigecycline is a promising new broad-spectrum parenteral monotherapy for the treatment of patients with Gram-positive and -negative bacterial infections.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology, Faculty of Medicine, Health Sciences Centre, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
22
|
Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance. Antimicrob Agents Chemother 2013; 58:1707-12. [PMID: 24379204 DOI: 10.1128/aac.01803-13] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Full genome sequences were determined for five Klebsiella pneumoniae strains belonging to the sequence type 512 (ST512) clone, producing KPC-3. Three strains were resistant to tigecycline, one showed an intermediate phenotype, and one was susceptible. Comparative analysis performed using the genome of the susceptible strain as a reference sequence identified genetic differences possibly associated with resistance to tigecycline. Results demonstrated that mutations in the ramR gene occurred in two of the three sequenced strains. Mutations in RamR were previously demonstrated to cause overexpression of the AcrAB-TolC efflux system and were implicated in tigecycline resistance in K. pneumoniae. The third strain showed a mutation located at the vertex of a very well conserved loop in the S10 ribosomal protein, which is located in close proximity to the tigecycline target site in the 30S ribosomal subunit. This mutation was previously shown to be associated with tetracycline resistance in Neisseria gonorrhoeae. A PCR-based approach was devised to amplify the potential resistance mechanisms identified by genomics and applied to two additional ST512 strains showing resistance to tigecycline, allowing us to identify mutations in the ramR gene.
Collapse
|
23
|
Linkevicius M, Sandegren L, Andersson DI. Mechanisms and fitness costs of tigecycline resistance in Escherichia coli. J Antimicrob Chemother 2013; 68:2809-19. [DOI: 10.1093/jac/dkt263] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26:185-230. [PMID: 23554414 PMCID: PMC3623377 DOI: 10.1128/cmr.00059-12] [Citation(s) in RCA: 675] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Collapse
Affiliation(s)
- Alejandro Beceiro
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña, Spain
| | | | | |
Collapse
|
25
|
Yu J, Schneiders T. Tigecycline challenge triggers sRNA production in Salmonella enterica serovar Typhimurium. BMC Microbiol 2012; 12:195. [PMID: 22958399 PMCID: PMC3511261 DOI: 10.1186/1471-2180-12-195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/14/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacteria employ complex transcriptional networks involving multiple genes in response to stress, which is not limited to gene and protein networks but now includes small RNAs (sRNAs). These regulatory RNA molecules are increasingly shown to be able to initiate regulatory cascades and modulate the expression of multiple genes that are involved in or required for survival under environmental challenge. Despite mounting evidence for the importance of sRNAs in stress response, their role upon antibiotic exposure remains unknown. In this study, we sought to determine firstly, whether differential expression of sRNAs occurs upon antibiotic exposure and secondly, whether these sRNAs could be attributed to microbial tolerance to antibiotics. RESULTS A small scale sRNA cloning strategy of Salmonella enterica serovar Typhimurium SL1344 challenged with half the minimal inhibitory concentration of tigecycline identified four sRNAs (sYJ5, sYJ20, sYJ75 and sYJ118) which were reproducibly upregulated in the presence of either tigecycline or tetracycline. The coding sequences of the four sRNAs were found to be conserved across a number of species. Genome analysis found that sYJ5 and sYJ118 mapped between the 16S and 23S rRNA encoding genes. sYJ20 (also known as SroA) is encoded upstream of the tbpAyabKyabJ operon and is classed as a riboswitch, whilst its role in antibiotic stress-response appears independent of its riboswitch function. sYJ75 is encoded between genes that are involved in enterobactin transport and metabolism. Additionally we find that the genetic deletion of sYJ20 rendered a reduced viability phenotype in the presence of tigecycline, which was recovered when complemented. The upregulation of some of these sRNAs were also observed when S. Typhimurium was challenged by ampicillin (sYJ5, 75 and 118); or when Klebsiella pneumoniae was challenged by tigecycline (sYJ20 and 118). CONCLUSIONS Small RNAs are overexpressed as a result of antibiotic exposure in S. Typhimurium where the same molecules are upregulated in a related species or after exposure to different antibiotics. sYJ20, a riboswitch, appears to possess a trans-regulatory sRNA role in antibiotic tolerance. These findings imply that the sRNA mediated response is a component of the bacterial response to antibiotic challenge.
Collapse
Affiliation(s)
- Jing Yu
- Centre for Infection and Immunity, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
26
|
McIntosh EDG. Efflux: how bacteria use pumps to control their microenvironment. Handb Exp Pharmacol 2012:153-166. [PMID: 23090601 DOI: 10.1007/978-3-642-28951-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Efflux pumps are a potent and clinically important cause of antibiotic resistance. The particular focus of this chapter is on the efflux pump as a target for antimicrobial therapy and the development of new antibacterials to address the efflux problem.Tigecycline is an example of how old antibiotics, in this case tetracyclines, which have become substrates for efflux pumps, can be extensively modified to restore antimicrobial activity and clinical efficacy.
Collapse
|
27
|
Greer ND. Tigecycline (Tygacil): the first in the glycylcycline class of antibiotics. Proc (Bayl Univ Med Cent) 2011; 19:155-61. [PMID: 16609746 PMCID: PMC1426172 DOI: 10.1080/08998280.2006.11928154] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Nickie D Greer
- Department of Pharmacy Services, Baylor University Medical Center, Dallas, Texas, USA.
| |
Collapse
|
28
|
Rosenblum R, Khan E, Gonzalez G, Hasan R, Schneiders T. Genetic regulation of the ramA locus and its expression in clinical isolates of Klebsiella pneumoniae. Int J Antimicrob Agents 2011; 38:39-45. [PMID: 21514798 PMCID: PMC3117140 DOI: 10.1016/j.ijantimicag.2011.02.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 02/14/2011] [Accepted: 02/15/2011] [Indexed: 12/25/2022]
Abstract
Tigecycline resistance has been attributed to ramA overexpression and subsequent acrA upregulation. The ramA locus, originally identified in Klebsiella pneumoniae, has homologues in Enterobacter and Salmonella spp. In this study, we identify in silico that the ramR binding site is also present in Citrobacter spp. and that Enterobacter, Citrobacter and Klebsiella spp. share key regulatory elements in the control of the romA-ramA locus. RACE (rapid amplification of cDNA ends) mapping indicated that there are two promoters from which romA-ramA expression can be regulated in K. pneumoniae. Correspondingly, electrophoretic binding studies clearly showed that purified RamA and RamR proteins bind to both of these promoters. Hence, there appear to be two RamR binding sites within the Klebsiella romA-ramA locus. Like MarA, RamA binds the promoter region, implying that it might be subject to autoregulation. We have identified changes within ramR in geographically distinct clinical isolates of K. pneumoniae. Intriguingly, levels of romA and ramA expression were not uniformly affected by changes within the ramR gene, thereby supporting the dual promoter finding. Furthermore, a subset of strains sustained no changes within the ramR gene but which still overexpressed the romA-ramA genes, strongly suggesting that a secondary regulator may control ramA expression.
Collapse
Affiliation(s)
- R Rosenblum
- Centre for Infection and Immunity, 4th Floor, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | | | | | | |
Collapse
|
29
|
In vitro selection of ramR and soxR mutants overexpressing efflux systems by fluoroquinolones as well as cefoxitin in Klebsiella pneumoniae. Antimicrob Agents Chemother 2011; 55:2795-802. [PMID: 21464248 DOI: 10.1128/aac.00156-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between efflux system overexpression and cross-resistance to cefoxitin, quinolones, and chloramphenicol has recently been reported in Klebsiella pneumoniae. In 3 previously published clinical isolates and 17 in vitro mutants selected with cefoxitin or fluoroquinolones, mutations in the potential regulator genes of the AcrAB efflux pump (acrR, ramR, ramA, marR, marA, soxR, soxS, and rob) were searched, and their impacts on efflux-related antibiotic cross-resistance were assessed. All mutants but 1, and 2 clinical isolates, overexpressed acrB. No mutation was detected in the regulator genes studied among the clinical isolates and 8 of the mutants. For the 9 remaining mutants, a mutation was found in the ramR gene in 8 of them and in the soxR gene in the last one, resulting in overexpression of ramA and soxS, respectively. Transformation of the ramR mutants and the soxR mutant with the wild-type ramR and soxR genes, respectively, abolished overexpression of acrB and ramA in the ramR mutants and of soxS in the soxR mutant, as well as antibiotic cross-resistance. Resistance due to efflux system overexpression was demonstrated for 4 new antibiotics: cefuroxime, cefotaxime, ceftazidime, and ertapenem. This study shows that the ramR and soxR genes control the expression of efflux systems in K. pneumoniae and suggests the existence of efflux pumps other than AcrAB and of other loci involved in the regulation of AcrAB expression.
Collapse
|
30
|
Horiyama T, Nikaido E, Yamaguchi A, Nishino K. Roles of Salmonella multidrug efflux pumps in tigecycline resistance. J Antimicrob Chemother 2010; 66:105-10. [DOI: 10.1093/jac/dkq421] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Ruzin A, Immermann FW, Bradford PA. RT-PCR and statistical analyses of adeABC expression in clinical isolates of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Microb Drug Resist 2010; 16:87-9. [PMID: 20438348 DOI: 10.1089/mdr.2009.0131] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The relationship between expression of adeABC and minimal inhibitory concentration (MIC) of tigecycline was investigated by RT-PCR and statistical analyses in a population of 106 clinical isolates (MIC range, 0.0313-16 microg/ml) of Acinetobacter calcoaceticus-Acinetobacter baumannii complex. There was a statistically significant linear relationship (p < 0.0001) between log-transformed expression values and log-transformed MIC values, indicating that overexpression of AdeABC efflux pump is a prevalent mechanism for decreased susceptibility to tigecycline in A. calcoaceticus-A. baumannii complex.
Collapse
Affiliation(s)
- Alexey Ruzin
- Department of Infectious Disease, Wyeth Research, Pearl River, New York, USA.
| | | | | |
Collapse
|
32
|
Devasahayam G, Scheld WM, Hoffman PS. Newer antibacterial drugs for a new century. Expert Opin Investig Drugs 2010; 19:215-34. [PMID: 20053150 DOI: 10.1517/13543780903505092] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
IMPORTANCE OF THE FIELD Antibacterial drug discovery and development has slowed considerably in recent years, with novel classes discovered decades ago and regulatory approvals tougher to get. Traditional approaches and the newer genomic mining approaches have not yielded novel classes of antibacterial compounds. Instead, improved analogues of existing classes of antibacterial drugs have been developed by improving potency, minimizing resistance and alleviating toxicity. AREAS COVERED IN THIS REVIEW This article is a comprehensive review of newer classes of antibacterial drugs introduced or approved after year 2000. WHAT THE READER WILL GAIN It describes their mechanisms of action/resistance, improved analogues, spectrum of activity and clinical trials. It also discusses new compounds in development with novel mechanisms of action, as well as novel unexploited bacterial targets and strategies that may pave the way for combating drug resistance and emerging pathogens in the twenty-first century. TAKE HOME MESSAGE The outlook of antibacterial drug discovery, though challenging, may not be insurmountable in the years ahead, with legislation on incentives and funding introduced for developing an antimicrobial discovery program and efforts to conserve antibacterial drug use.
Collapse
Affiliation(s)
- Gina Devasahayam
- University of Virginia, Department of Medicine, Room 2146 MR4 Bldg, 409 Lane Rd, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
33
|
ramR mutations in clinical isolates of Klebsiella pneumoniae with reduced susceptibility to tigecycline. Antimicrob Agents Chemother 2010; 54:2720-3. [PMID: 20350947 DOI: 10.1128/aac.00085-10] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Five Klebsiella pneumoniae isolates with reduced susceptibility to tigecycline (MIC, 2 microg/ml) were analyzed. A gene homologous to ramR of Salmonella enterica was identified in Klebsiella pneumoniae. Sequencing of ramR in the nonsusceptible Klebsiella strains revealed deletions, insertions, and point mutations. Transformation of mutants with wild-type ramR genes, but not with mutant ramR genes, restored susceptibility to tigecycline and repressed overexpression of ramA and acrB. Thus, this study reveals a molecular mechanism for tigecycline resistance in Klebsiella pneumoniae.
Collapse
|
34
|
Combined ramR mutation and presence of a Tn1721-associated tet(A) variant in a clinical isolate of Salmonella enterica serovar Hadar resistant to tigecycline. Antimicrob Agents Chemother 2009; 54:1319-22. [PMID: 20028818 DOI: 10.1128/aac.00993-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A Salmonella enterica serovar Hadar strain resistant to tigecycline (MIC, 16 microg/ml) was isolated. Molecular characterization revealed the presence of a plasmid-borne tet(A) variant associated with Tn1721 mediating a rise of the MIC for tigecycline when transferred to Escherichia coli. Additionally, a truncating mutation in ramR was detected. Transformation with wild-type ramR but not with the mutated ramR lowered the MIC for tigecycline. Characterization of this Salmonella isolate implicates ramR in resistance to tigecycline.
Collapse
|
35
|
Abstract
The emergence of multidrug-resistant (MDR) Gram-negative bacilli creates a challenge in the treatment of nosocomial infections. While the pharmaceutical pipeline is waning, two revived old antibacterials (colistin and fosfomycin), a newer one (tigecycline) and an 'improved' member of an existing class (doripenem) are the only therapeutic options left. The class of polymyxins, known since 1947 and represented mostly by polymyxin B and polymyxin E (colistin), has recently gained a principal role in the treatment of the most problematic MDR Gram-negative pathogens (such as Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae and Stenotrophomonas maltophilia). Future prospective studies are needed to answer important clinical questions, such as the possible benefit of combination with other antimicrobials versus monotherapy, the efficacy of colistin in neutropenic hosts and the role of inhaled colistin. As new pharmacokinetic data emerge, clarification of the pharmacokinetic/pharmacodynamic (PK/PD) profile of colistin as well as appropriate dosing seems urgent, while development of resistance must be carefully monitored. Fosfomycin tromethamine, a synthetic salt of fosfomycin discovered in 1969, has regained attention because of its in vitro activity against extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae and MDR P. aeruginosa. Although in use for decades in oral and parenteral formulations for a variety of infections without significant toxicity, its clinical utility in MDR infections remains to be explored in future studies. Tigecycline, the first representative of the new class of glycylcyclines, holds promise in infections from MDR K. pneumoniae (K. pneumoniae carbapenemase [KPC]- and ESBL-producing strains) and Enterobacteriaceae with various mechanisms of resistance. The in vitro activity of tigecycline against A. baumannii makes it a tempting option, as it is currently the most active compound against MDR strains along with colistin. However, the usual minimum inhibitory concentration values of this pathogen are approximately 2 mg/L and compromise clinical outcomes based on PK/PD issues. Its advantageous penetration into various tissues is useful in infections of the skin and soft tissues as well as intra-abdominal infections (official indications), whereas low serum concentrations compromise its use in bloodstream infections. Therefore, prospective studies with dose escalation are urgently needed, as well as clarification of its role in nosocomial pneumonia, after poor results in the study of ventilator-associated pneumonia. Finally, doripenem, the recently licensed member of the carbapenems (without significant spectrum alterations from the ascendant members) seems to possess a lower potential for resistance selection and a more favourable pharmacokinetic profile when given as an extended infusion. The latter strategy could prove helpful in overcoming low level resistance of A. baumannii and P. aeruginosa strains.
Collapse
Affiliation(s)
- Helen Giamarellou
- 4th Department of Internal Medicine, Athens University School of Medicine, ATTIKON University Hospital of Athens, Athens, Greece.
| | | |
Collapse
|
36
|
Jamal WY, Al Hashem G, Khodakhast F, Rotimi VO. Comparative in vitro activity of tigecycline and nine other antibiotics against gram-negative bacterial isolates, including ESBL-producing strains. J Chemother 2009; 21:261-6. [PMID: 19567345 DOI: 10.1179/joc.2009.21.3.261] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The enterobacteriaceae, especially Escherichia coli and Klebsiella spp., as well as Acinetobacter spp., are important agents of nosocomial infections in hospitalized patients. A total of 460 Gram-negative bacteria (GNb), were investigated for their susceptibility to tigecycline and 9 other antibiotics by the etest. ESBL production was inferred from ESBL etest phenotypes. All the GNb, including the ESBL-producers, were susceptible to tigecycline with MIC(90 )ranges of 0.25 to 2 microg/ml. Imipenem and meropenem were very active against ESBL and non-ESBL producers; mean MIC(90)s of 0.19 and 0.09 microg/ml and 0.05 microg/ml and 0.02 microg/ml, respectively. The MIC(90)s of imipenem and meropenem for the Acinetobacter spp. were 16 and >32 microg/ml, respectively with resistance rates of 64.3 and 66.1%. ESBL production was detected in 62% and 82.1% of the E. coli and K. pneumoniae isolates, respectively. Resistance to ciprofloxacin was higher among the ESBL-producing strains of E. coli and K. pneumoniae than the non-ESBL producers. Comparatively, tigecycline had excellent in vitro activities against ESBL-producing enterobacteriaceae and demonstrated superior activity against Acinetobacter spp. Increasing ESBL production and resistance to ciprofloxacin and gentamicin in enterobacteriaceae require careful selection of empirical therapy. Tigecycline holds promise as an alternative choice of therapy for infections caused by ESBL-producing isolates and multi-drug resistant Acinetobacter spp.
Collapse
Affiliation(s)
- W Y Jamal
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | | | | | | |
Collapse
|
37
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|
38
|
Abstract
Tigecycline derived from minocycline. It is part of a new class of antibiotics called glycylcyclines. Tigecycline is given intravenously and has activity against a variety of gram-positive and gram-negative bacterial pathogens, many of which are resistant to existing antibiotics. Tigecycline successfully completed phase III trials in which it was at least equal to intravenous vancomycin and aztreonam to treat complicated skin and skin structure infections (cSSSI), and to intravenous imipenem and cilastatin to treat complicated intra-abdominal infections (cIAI). Tigecycline side effects are primarily digestive upset. It should be a valuable addition to the armamentarium to treat even the most resistant pathogens.
Collapse
Affiliation(s)
- Noah Scheinfeld
- Department of Dermatology, St Lukes Roosevelt Hospital, New York, USA.
| |
Collapse
|
39
|
Bratu S, Landman D, George A, Salvani J, Quale J. Correlation of the expression of acrB and the regulatory genes marA, soxS and ramA with antimicrobial resistance in clinical isolates of Klebsiella pneumoniae endemic to New York City. J Antimicrob Chemother 2009; 64:278-83. [PMID: 19457933 DOI: 10.1093/jac/dkp186] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Nosocomial isolates of Klebsiella pneumoniae resistant to all commonly used antimicrobial agents have emerged in many regions of the world. It is unknown if efflux systems contribute to the multidrug resistance phenotype. METHODS The expression of genes encoding the efflux pump AcrAB and the global regulators MarA, SoxS and RamA were examined and correlated with antimicrobial resistance. RESULTS Twenty isolates belonged to the two important clones representing KPC-possessing strains endemic to our region. Virtually all of these isolates had negligible or absent expression of the genes, and resistance to fluoroquinolones and aminoglycosides could be explained by alternative mechanisms. All of these isolates were susceptible to tigecycline. A group of 14 heterogeneous isolates was also examined. There was a correlation between expression of marA with expression of soxS. Only expression of soxS was significantly correlated with expression of acrB. With a background substitution in GyrA, increased expression of acrB and marA appeared to contribute to fluoroquinolone resistance in some isolates. A correlation was noted between expression of soxS and ramA (but not marA and acrB) and tigecycline MICs. Following in vitro exposure to tigecycline, resistance occurred in association with a marked increase in marA and acrB expression in isolates lacking expression of soxS and ramA. CONCLUSIONS While laboratory-derived tigecycline resistance was associated with increased acrB expression, the variation in tigecycline MICs in clinical isolates was associated only with selected regulator genes. It appears that other mechanisms beyond activation of the acrAB system mediate tigecycline resistance.
Collapse
Affiliation(s)
- Simona Bratu
- Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | | | | | | | |
Collapse
|
40
|
Abstract
The first article in this supplement is an overall review of the first glycylcycline, tigecycline, which includes a brief overview of the problem of tetracycline resistance as well as tigecycline's mode of action, antibacterial activity, pharmacokinetics, pharmacodynamics, clinical efficacy, safety and tolerability. The remaining articles in the supplement report the European clinical experience from the pivotal clinical trials in complicated intra-abdominal infections, complicated skin and skin structure infections and community acquired pneumonia.
Collapse
Affiliation(s)
- G L French
- King's College and Guy's & St Thomas Hospital, Department of Infection, St Thomas' Hospital, London, UK.
| |
Collapse
|
41
|
Entenza JM, Moreillon P. Tigecycline in combination with other antimicrobials: a review of in vitro, animal and case report studies. Int J Antimicrob Agents 2009; 34:8.e1-9. [PMID: 19162449 DOI: 10.1016/j.ijantimicag.2008.11.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/03/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
Abstract
Tigecycline has been investigated in combination with other antibacterials against a wide range of susceptible and multiresistant Gram-positive and Gram-negative bacteria. Combinations have been analysed in vitro, in animal models and in human case reports. In vitro, tigecycline combined with other antimicrobials produces primarily an indifferent response (neither synergy nor antagonism). Nevertheless, synergy occurred when tigecycline was combined with rifampicin against 64-100% of Enterococcus spp., Streptococcus pneumoniae, Enterobacter spp. and Brucella melitensis isolates. Combinations of tigecycline with amikacin also showed synergy for 40-100% of Enterobacter spp., Klebsiella pneumoniae, Proteus spp. and Stenotrophomonas maltophilia isolates. Moreover, bactericidal synergisms occurred with tigecycline plus amikacin against problematic Acinetobacter baumannii and Proteus vulgaris, and with colistin against K. pneumoniae. Data from animal experiments and case reports, although limited, displayed consistent beneficial activity of tigecycline in combination with other antibacterials against multiresistant organisms, including vancomycin against penicillin-resistant S. pneumoniae in experimental meningitis, gentamicin against Pseudomonas aeruginosa in experimental pneumonia, daptomycin against Enterococcus faecium endocarditis, and colistin against K. pneumoniae bacteraemia and P. aeruginosa osteomyelitis. Antagonism was extremely rare in vitro and was not reported in vivo. Thus, tigecycline may be combined with a second antimicrobial as part of a combination regimen.
Collapse
Affiliation(s)
- J M Entenza
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
42
|
Kelesidis T, Karageorgopoulos DE, Kelesidis I, Falagas ME. Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother 2008; 62:895-904. [PMID: 18676620 DOI: 10.1093/jac/dkn311] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Antimicrobial drug resistance is spreading among Enterobacteriaceae, limiting the utility of traditionally used agents. We sought to systematically review the microbiological activity and clinical effectiveness of tigecycline for multidrug-resistant (MDR) Enterobacteriaceae, including those resistant to broad-spectrum beta-lactams due to the expression of extended-spectrum beta-lactamases (ESBLs), AmpC enzymes and carbapenemases (including metallo-beta-lactamases). METHODS PubMed was searched for articles including relevant data. RESULTS Twenty-six microbiological and 10 clinical studies were identified. Tigecycline was active against more than 99% of 1936 Escherichia coli isolates characterized by any of the above resistance patterns (including 1636 ESBL-producing isolates) using the US Food and Drug Administration (FDA) breakpoint of susceptibility (MIC < or = 2 mg/L). Findings were not different using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint (< or = 1 mg/L). Susceptibility rates for Klebsiella spp. with any of the above resistance patterns were 91.2% for 2627 isolates by the FDA criteria and 72.3% for 1504 isolates by the EUCAST criteria (92.3% for 2030 and 72.3% for 1284 ESBL-producing isolates, by the FDA and EUCAST criteria, respectively). The degree of microbiological activity of tigecycline against 576 MDR Enterobacter spp. isolates was moderate. In clinical studies, 69.7% of the 33 reported patients treated with tigecycline achieved resolution of an infection caused by a carbapenem-resistant or ESBL-producing or MDR Enterobacteriaceae. CONCLUSIONS Tigecycline is microbiologically active against almost all of the ESBL or MDR E. coli isolates and the great majority of ESBL or MDR Klebsiella spp. isolates. Further evaluation of its clinical utility against such resistant Enterobacteriaceae, particularly regarding non-labelled indications, is warranted.
Collapse
|
43
|
Real-time PCR and statistical analyses of acrAB and ramA expression in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 2008; 52:3430-2. [PMID: 18625776 DOI: 10.1128/aac.00591-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clinical isolates of Klebsiella pneumoniae were tested for a correlation between tigecycline MIC and expression of ramA by using real-time PCR. At MICs of 4 and 8 microg/ml, the expression of ramA was statistically significantly different from MICs of 2 microg/ml or less, supporting the tigecycline susceptibility breakpoint of <or=2 microg/ml for K. pneumoniae.
Collapse
|
44
|
The complete genome, comparative and functional analysis of Stenotrophomonas maltophilia reveals an organism heavily shielded by drug resistance determinants. Genome Biol 2008; 9:R74. [PMID: 18419807 PMCID: PMC2643945 DOI: 10.1186/gb-2008-9-4-r74] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/13/2008] [Accepted: 04/17/2008] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is a nosocomial opportunistic pathogen of the Xanthomonadaceae. The organism has been isolated from both clinical and soil environments in addition to the sputum of cystic fibrosis patients and the immunocompromised. Whilst relatively distant phylogenetically, the closest sequenced relatives of S. maltophilia are the plant pathogenic xanthomonads. RESULTS The genome of the bacteremia-associated isolate S. maltophilia K279a is 4,851,126 bp and of high G+C content. The sequence reveals an organism with a remarkable capacity for drug and heavy metal resistance. In addition to a number of genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, nine resistance-nodulation-division (RND)-type putative antimicrobial efflux systems are present. Functional genomic analysis confirms a role in drug resistance for several of the novel RND efflux pumps. S. maltophilia possesses potentially mobile regions of DNA and encodes a number of pili and fimbriae likely to be involved in adhesion and biofilm formation that may also contribute to increased antimicrobial drug resistance. CONCLUSION The panoply of antimicrobial drug resistance genes and mobile genetic elements found suggests that the organism can act as a reservoir of antimicrobial drug resistance determinants in a clinical environment, which is an issue of considerable concern.
Collapse
|
45
|
Roveta S, Marchese A, Debbia E. Tigecycline in vitro Activity against Gram-Negative and Gram-Positive Pathogens Collected in Italy. Chemotherapy 2007; 54:43-9. [DOI: 10.1159/000112415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 02/25/2007] [Indexed: 11/19/2022]
|
46
|
Vouillamoz J, Moreillon P, Giddey M, Entenza JM. In vitro activities of tigecycline combined with other antimicrobials against multiresistant gram-positive and gram-negative pathogens. J Antimicrob Chemother 2007; 61:371-4. [PMID: 18033780 DOI: 10.1093/jac/dkm459] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To test the activity of tigecycline combined with 16 antimicrobials in vitro against 22 gram-positive and 55 gram-negative clinical isolates. METHODS Antibiotic interactions were determined by chequerboard and time-kill methods. RESULTS By chequerboard, of 891 organism-drug interactions tested, 97 (11%) were synergistic, 793 (89%) were indifferent and 1 (0.1%) was antagonistic. Among gram-positive pathogens, most synergisms occurred against Enterococcus spp. (7/11 isolates) with the tigecycline/rifampicin combination. No antagonism was detected. Among gram-negative organisms, synergism was observed mainly with trimethoprim/sulfamethoxazole against Serratia marcescens (5/5 isolates), Proteus spp. (2/5) and Stenotrophomonas maltophilia (2/5), with aztreonam against S. maltophilia (3/5), with cefepime and imipenem against Enterobacter cloacae (3/5), with ceftazidime against Morganella morganii (3/5), and with ceftriaxone against Klebsiella pneumoniae (3/5). The only case of antagonism occurred against one S. marcescens with the tigecycline/imipenem combination. Selected time-kill assays confirmed the bacteriostatic interactions observed by the chequerboard method. Moreover, they revealed a bactericidal synergism of tigecycline with piperacillin/tazobactam against one penicillin-resistant Streptococcus pneumoniae and with amikacin against Proteus vulgaris. CONCLUSIONS Combinations of tigecycline with other antimicrobials produce primarily an indifferent response. Specific synergisms, especially against enterococci and problematic gram-negative isolates, might be worth investigating in in vitro models and/or in animal models simulating the human environment.
Collapse
Affiliation(s)
- Jacques Vouillamoz
- Laboratory of Infectious Diseases and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
47
|
Reid GE, Grim SA, Aldeza CA, Janda WM, Clark NM. Rapid development of Acinetobacter baumannii resistance to tigecycline. Pharmacotherapy 2007; 27:1198-201. [PMID: 17655518 DOI: 10.1592/phco.27.8.1198] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A 53-year-old woman experienced a multidrug-resistant (MDR) Acinetobacter baumannii urinary tract infection 5 months after undergoing kidney and liver transplantation. The tigecycline minimum inhibitory concentration (MIC) for her A. baumannii isolate was 1.5 microg/ml; the patient received 2 weeks of therapy with intravenous tigecycline as a 100-mg loading dose followed by 50 mg every 12 hours, with no lapses in treatment and with resolution of the infection. Three weeks later, MDR A. baumannii was isolated from her sputum in the setting of clinical evidence of pneumonia, and tigecycline was restarted; the tigecycline MIC for the A. baumannii isolate was 2 microg/ml. At approximately the same time, the patient was found to have a paraspinal abscess and spinal osteomyelitis. Cultures of the abscess fluid grew A. baumannii with a tigecycline MIC of 24 microg/ml. A follow-up sputum culture again yielded A. baumannii, but with a tigecycline MIC of 24 microg/ml. Urine culture at that time also grew A. baumannii with a tigecycline MIC of 24 microg/ml. Clinicians should be aware that tigecycline MICs for A. baumannii isolates may increase during therapy with tigecycline after only brief exposure to the drug. Patients receiving tigecycline for Acinetobacter should be monitored for the development of clinical resistance, and isolates should be monitored for evidence of microbiologic resistance.
Collapse
Affiliation(s)
- Gail E Reid
- Department of Medicine, Section of Infectious Diseases, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Antibiotic resistance is selected by antibiotic usage, which, in hospitals at least, is likely to increase driven by changes in demography, international development and advances elsewhere in medicine. Maintaining mankind's ability to treat infection therefore depends on better utilisation of present antimicrobials--better regimens as well as less unnecessary use--and on better infection control, but also on the development of new vaccines and antibiotics. Current developments include a raft of new agents active against meticillin-resistant Staphylococcus aureus (MRSA), but few that offer any advance against Gram-negative organisms. One that does have increased anti-Gram-negative activity, compared with earlier analogues, is tigecycline, a glycylcycline derivative of minocycline.
Collapse
Affiliation(s)
- David M Livermore
- Antibiotic Resistance Monitoring and Reference Laboratory, Centre for Infections, Health Protection Agency, 61 Colindale Avenue, London NW9 5EQ, UK.
| |
Collapse
|
49
|
Abstract
The incidence of nosocomial disease caused by Gram-negative pathogens is increasing, and infections caused by Enterobacter, Klebsiella, Acinetobacter, Escherichia coli and Pseudomonas aeruginosa are more commonly refractive to traditional antimicrobial agents, including aminoglycosides, fluoroquinolones and broad-spectrum cephalosporins. The most important mechanism of resistance to beta-lactam antibiotics among Gram-negative bacilli involves the production of beta-lactamases. Extended-spectrum beta-lactamases are particularly worrisome, since they are often associated with multidrug resistance phenotypes, which can pose a significant therapeutic challenge. Novel agents for the treatment of Gram-negative infections are uncommon, as recent emphasis has been placed on the development of agents targeting drug-resistant strains of Gram-positive bacteria, e.g., streptococci, enterococci and staphylococci. Tigecycline, a semi-synthetic derivative of minocycline, has a unique and novel mechanism of action, which not only allows this agent to overcome the well-known tet gene-encoded resistance mechanisms, but also maintains its activity against Gram-negative pathogens producing a broad array of extended-spectrum beta-lactamases. Tigecycline is the first example of a new class of glycylcyclines with activity against a wide range of clinically important Gram-negative pathogens. Tigecycline has potent antimicrobial activity, and has been associated with an excellent therapeutic response in animal infection models and recently reported clinical trials, which reflect the effectiveness of tigecycline against pathogens causing intra-abdominal, skin and soft-tissue infections, including susceptible or multidrug-resistant strains of most Enterobacteriaceae, as well as anaerobic pathogens.
Collapse
Affiliation(s)
- P Hawkey
- Health Protection Agency, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Birmingham, UK.
| | | |
Collapse
|
50
|
Ruzin A, Keeney D, Bradford PA. AdeABC multidrug efflux pump is associated with decreased susceptibility to tigecycline in Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Antimicrob Chemother 2007; 59:1001-4. [PMID: 17363424 DOI: 10.1093/jac/dkm058] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES To investigate the role of the AdeABC multidrug efflux pump in the decreased susceptibility of clinical isolates of Acinetobacter calcoaceticus-Acinetobacter baumannii complex to tigecycline. METHODS Gene expression was analysed by Taqman RT-PCR. A single cross-over achieved insertional inactivation of the adeB gene with a suicide plasmid construct carrying an adeB fragment obtained by PCR. Analysis of the adeRS locus was performed by PCR and sequencing. Ribotyping was performed with the RiboPrinter system. MICs were determined by Etest. RESULTS Expression analysis revealed constitutive overexpression of adeABC in less-susceptible clinical isolates G5139 and G5140 (tigecycline MIC=4 mg/L) when compared with the isogenic clinical isolates G4904 and G5141 (MIC=1.5 mg/L). Insertional mutants GC7945 (adeB knockout in G5139) and GC7951 (adeB knockout in G5140) were obtained, which resulted in tigecycline MICs of 0.5 mg/L. As reported previously, the expression of adeABC is regulated by the two-component signalling system encoded by the adeR and adeS genes. PCR and sequencing analyses revealed an insertion of an IS(ABA-1) element in the adeS gene of G5139 and G5140. CONCLUSIONS The results of this study suggest that decreased susceptibility to tigecycline in the A. calcoaceticus-A. baumannii complex is associated with the overexpression of the AdeABC multidrug efflux pump.
Collapse
Affiliation(s)
- Alexey Ruzin
- Department of Infectious Disease, Wyeth Research, Pearl River, NY 10965, USA.
| | | | | |
Collapse
|