1
|
Brango-Vanegas J, Leite ML, Macedo MLR, Cardoso MH, Franco OL. Capping motifs in antimicrobial peptides and their relevance for improved biological activities. Front Chem 2024; 12:1382954. [PMID: 38873409 PMCID: PMC11169826 DOI: 10.3389/fchem.2024.1382954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
N-capping (N-cap) and C-capping (C-cap) in biologically active peptides, including specific amino acids or unconventional group motifs, have been shown to modulate activity against pharmacological targets by interfering with the peptide's secondary structure, thus generating unusual scaffolds. The insertion of capping motifs in linear peptides has been shown to prevent peptide degradation by reducing its susceptibility to proteolytic cleavage, and the replacement of some functional groups by unusual groups in N- or C-capping regions in linear peptides has led to optimized peptide variants with improved secondary structure and enhanced activity. Furthermore, some essential amino acid residues that, when placed in antimicrobial peptide (AMP) capping regions, are capable of complexing metals such as Cu2+, Ni2+, and Zn2+, give rise to the family known as metallo-AMPs, which are capable of boosting antimicrobial efficacy, as well as other activities. Therefore, this review presents and discusses the different strategies for creating N- and C-cap motifs in AMPs, aiming at fine-tuning this class of antimicrobials.
Collapse
Affiliation(s)
- José Brango-Vanegas
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Michel Lopes Leite
- Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil
| | - Maria L. R. Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Marlon H. Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Campo Grande, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| |
Collapse
|
2
|
Sowers A, Wang G, Xing M, Li B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 2023; 11:1129. [PMID: 37317103 PMCID: PMC10223199 DOI: 10.3390/microorganisms11051129] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 06/16/2023] Open
Abstract
Antimicrobial peptides (AMPs) have been investigated for their potential use as an alternative to antibiotics due to the increased demand for new antimicrobial agents. AMPs, widely found in nature and obtained from microorganisms, have a broad range of antimicrobial protection, allowing them to be applied in the treatment of infections caused by various pathogenic microorganisms. Since these peptides are primarily cationic, they prefer anionic bacterial membranes due to electrostatic interactions. However, the applications of AMPs are currently limited owing to their hemolytic activity, poor bioavailability, degradation from proteolytic enzymes, and high-cost production. To overcome these limitations, nanotechnology has been used to improve AMP bioavailability, permeation across barriers, and/or protection against degradation. In addition, machine learning has been investigated due to its time-saving and cost-effective algorithms to predict AMPs. There are numerous databases available to train machine learning models. In this review, we focus on nanotechnology approaches for AMP delivery and advances in AMP design via machine learning. The AMP sources, classification, structures, antimicrobial mechanisms, their role in diseases, peptide engineering technologies, currently available databases, and machine learning techniques used to predict AMPs with minimal toxicity are discussed in detail.
Collapse
Affiliation(s)
- Alexa Sowers
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
- School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Guangshun Wang
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Bingyun Li
- Department of Orthopaedics, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
3
|
Donaghy C, Javellana JG, Hong YJ, Djoko K, Angeles-Boza AM. The Synergy between Zinc and Antimicrobial Peptides: An Insight into Unique Bioinorganic Interactions. Molecules 2023; 28:2156. [PMID: 36903402 PMCID: PMC10004757 DOI: 10.3390/molecules28052156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of innate immunity across all species. AMPs have become the focus of attention in recent years, as scientists are addressing antibiotic resistance, a public health crisis that has reached epidemic proportions. This family of peptides represents a promising alternative to current antibiotics due to their broad-spectrum antimicrobial activity and tendency to avoid resistance development. A subfamily of AMPs interacts with metal ions to potentiate antimicrobial effectiveness, and, as such, they have been termed metalloAMPs. In this work, we review the scientific literature on metalloAMPs that enhance their antimicrobial efficacy when combined with the essential metal ion zinc(II). Beyond the role played by Zn(II) as a cofactor in different systems, it is well-known that this metal ion plays an important role in innate immunity. Here, we classify the different types of synergistic interactions between AMPs and Zn(II) into three distinct classes. By better understanding how each class of metalloAMPs uses Zn(II) to potentiate its activity, researchers can begin to exploit these interactions in the development of new antimicrobial agents and accelerate their use as therapeutics.
Collapse
Affiliation(s)
- Caroline Donaghy
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | | | - Young-Jin Hong
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Karrera Djoko
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Alfredo M. Angeles-Boza
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Sciences, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
Peptide Designs for Use in Caries Management: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044247. [PMID: 36835657 PMCID: PMC9961499 DOI: 10.3390/ijms24044247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The objective of this study was to review the design methods that have been used to create peptides for use in caries management. Two independent researchers systematically reviewed many in vitro studies in which peptides were designed for use in caries management. They assessed the risk of bias in the included studies. This review identified 3592 publications, of which 62 were selected. Forty-seven studies reported 57 antimicrobial peptides. Among them, 31 studies (66%, 31/47) used the template-based design method; 9 studies (19%, 9/47) used the conjugation method; and 7 studies (15%, 7/47) used other methods, such as the synthetic combinatorial technology method, the de novo design method and cyclisation. Ten studies reported mineralising peptides. Seven of these (70%, 7/10) used the template-based design method, two (20%, 2/10) used the de novo design method, and one study (10%, 1/10) used the conjugation method. In addition, five studies developed their own peptides with antimicrobial and mineralising properties. These studies used the conjugation method. Our assessment for the risk of bias in the 62 reviewed studies showed that 44 publications (71%, 44/62) had a medium risk and that 3 publications had a low risk (5%, 3/62). The two most common methods for developing peptides for use in caries management that were used in these studies were the template-based design method and the conjugation method.
Collapse
|
5
|
Bellotti D, D’Accolti M, Pula W, Huang N, Simeliere F, Caselli E, Esposito E, Remelli M. Calcitermin-Loaded Smart Gels Activity against Candida albicans: A Preliminary In Vitro Study. Gels 2023; 9:gels9020165. [PMID: 36826335 PMCID: PMC9957098 DOI: 10.3390/gels9020165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Calcitermin is an antimicrobial peptide of 15 amino acids found in human nasal fluid characterized by antifungal and antibacterial properties. Candida albicans is the most common human fungal pathogen affecting many tissues, such as vaginal mucosa. In this study a formulation suitable for calcitermin administration on vaginal mucosa was developed for the treatment of fungal infections. To favor topical application, mucosal adhesion, and permanence, gels based on poloxamer 407 and xanthan gum were designed and compared with regard to their rheological behavior, erosion, and leakage. The selected gel was loaded with calcitermin, whose release kinetic was evaluated in vitro by Franz cells. An antifungal activity assay was conducted to assess the calcitermin anticandidal potential and the effect of its inclusion in the selected gel. The rheological study revealed the elastic and viscous moduli behavior as a function of poloxamer 407 and xanthan gum concentration. Xanthan gum presence decreased the transition temperature of the gel, while prolonging its erosion and leakage. Particularly, poloxamer 407, 18% and xanthan gum 0.4% were chosen. The calcitermin loading in the selected gel resulted in a transparent and homogeneous formulation and in a 4-fold decrease of the release rate with respect to the calcitermin solution, as evidenced by Franz cell study. The anticandidal activity tests demonstrated that calcitermin-loaded gel was more active against Candida albicans with respect to the peptide solution.
Collapse
Affiliation(s)
- Denise Bellotti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Maria D’Accolti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Walter Pula
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| | - Nicolas Huang
- Institut Galien Paris-Saclay (CNRS UMR 8612), Faculté de Pharmacie, Bâtiment Henri Moissan, Université Paris-Saclay, 91400 Orsay, France
| | - Fanny Simeliere
- Institut Galien Paris-Saclay (CNRS UMR 8612), Faculté de Pharmacie, Bâtiment Henri Moissan, Université Paris-Saclay, 91400 Orsay, France
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.C.); (E.E.)
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
- Correspondence: (E.C.); (E.E.)
| | - Maurizio Remelli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
6
|
Antimicrobial and Functional Properties of Duckweed ( Wolffia globosa) Protein and Peptide Extracts Prepared by Ultrasound-Assisted Extraction. Foods 2022; 11:foods11152348. [PMID: 35954113 PMCID: PMC9367961 DOI: 10.3390/foods11152348] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Wolffia globosa is an interesting alternative plant-based protein source containing up to 40% protein dry weight. Dried duckweed protein extract (PE) was obtained using ultrasound-assisted extraction (UAE) before isoelectric precipitation (pH 3.5) to yield protein concentrate (PC) and protein solution (PS). The PC was hydrolyzed using Alcalase enzyme to obtain protein concentrate hydrolysate (PCH). Among all fractions, PCH exhibited antimicrobial properties by decreasing populations of Vibrio parahaemolyticus and Candida albicans at 0.43 ± 1.31 log reduction (66.21%) and 3.70 ± 0.11 log reduction (99.98%), respectively. The PE and PS also showed high solubilities at pH 8 of 90.49% and 86.84%, respectively. The PE demonstrated the highest emulsifying capacity (EC) (71.29%) at pH 4, while the highest emulsifying stability (ES) (~98%) was obtained from the PE and PS at pH 6 and pH 2, respectively. The major molecular weights (Mw) of the PE, PC, PCH and PS were observed at 25, 45, 63 and 100 kDa, with a decrease in the Mw of the PCH (<5 kDa). The PCH contained the highest total amino acids, with aspartic acid and glutamic acid being the major components. The results revealed the antimicrobial and functional properties of duckweed protein and hydrolysate for the first time and showed their potential for further development as functional food ingredients.
Collapse
|
7
|
Omidbakhsh Amiri E, Farmani J, Raftani Amiri Z, Dehestani A, Mohseni M. Antimicrobial activity, environmental sensitivity, mechanism of action, and food application of αs165-181 peptide. Int J Food Microbiol 2021; 358:109403. [PMID: 34543802 DOI: 10.1016/j.ijfoodmicro.2021.109403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/23/2021] [Accepted: 09/08/2021] [Indexed: 01/30/2023]
Abstract
αs165-181 is a peptide derived from αs2-casein of ovine milk. Herein, we report the antimicrobial activity and mechanism, and food application of the peptide. αs165-181 showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes, Bacillus cereus, and Salmonella enterica serovar Enteritidis in a dose-dependent manner. The minimum inhibitory concentration of the peptide was 3.9 mg/ml for E. coli and 7.8 mg/ml for the other bacteria. The peptide did not show antimicrobial activity against Lactobacillus plantarum up to 3.9 mg/ml concentration. The minimum bactericidal concentration of αs165-181 peptide was 7.8 mg/ml for E. coli, S. aureus, L. monocytogenes, and B. cereus. The peptide was sensitive to monovalent and divalent cations, pH, and high temperatures. Transmission electron microscopy, cytoplasmic β-galactosidase leakage, and DNA electrophoresis analyses showed that αs165-181 peptide affects bacteria by damaging cell membrane and binding to the genomic DNA. When αs165-181 peptide was applied to minced beef or UHT cream, the antimicrobial activity (7.8 mg/g) was almost the same as or even better than nisin (0.5 mg/g). This study helps understand the antimicrobial mode of action of αs165-181 peptide and develop strategies for application in food products.
Collapse
Affiliation(s)
- Elahe Omidbakhsh Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran
| | - Jamshid Farmani
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran.
| | - Zeynab Raftani Amiri
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran
| | - Ali Dehestani
- Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Sciences and Natural Resources University, Sari, PO box 578, Iran
| | - Mojtaba Mohseni
- Department of Microbiology, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
8
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 245] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
9
|
Li J, Hu S, Jian W, Xie C, Yang X. Plant antimicrobial peptides: structures, functions, and applications. BOTANICAL STUDIES 2021; 62:5. [PMID: 33914180 PMCID: PMC8085091 DOI: 10.1186/s40529-021-00312-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 05/20/2023]
Abstract
Antimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.
Collapse
Affiliation(s)
- Junpeng Li
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Shuping Hu
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Wei Jian
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China
| | - Chengjian Xie
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| | - Xingyong Yang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
10
|
Portelinha J, Heilemann K, Jin J, Angeles-Boza AM. Unraveling the implications of multiple histidine residues in the potent antimicrobial peptide Gaduscidin-1. J Inorg Biochem 2021; 219:111391. [PMID: 33770667 DOI: 10.1016/j.jinorgbio.2021.111391] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/07/2021] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
The development of antimicrobial peptides (AMPs) as potential therapeutics requires resolving the foundational principles behind their structure-activity relationships. The role of histidine residues within AMPs remains a mystery despite the fact that several potent peptides containing this amino acid are being considered for further clinical development. Gaduscidin-1 (Gad-1) is a potent AMP from Atlantic cod fish that has a total of five His residues. Herein, the role of His residues and metal-potentiated activity of Gad-1 was studied. The five His residues contribute to the broad-spectrum activity of Gad-1. We demonstrated that Gad-1 can coordinate two Cu2+ ions, one at the N-terminus and one at the C-terminus, where the C-terminal binding site is a novel Cu2+ binding motif. High affinity Cu2+ binding at both sites was observed using mass spectrometry and isothermal titration calorimetry. Electron paramagnetic resonance was used to determine the coordination environment of the Cu2+ ions. Cu2+ binding was shown to be responsible for an increase in antimicrobial activity and a new mode of action. Along with the traditional AMP mode of action of pore formation, Gad-1 in the presence of Cu2+ (per)oxidizes lipids. Importantly, His3, His11, His17, and His21 were found to be important to lipid (per)oxidation. This insight will help further understand the inclusion and role of His residues in AMPs, the role of the novel C-terminal binding site, and can contribute to the field of designing potent AMPs that bind metal ions to potentiate activity.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, United States of America
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, United States of America
| | - Jing Jin
- Magnetic Resonance Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, United States of America
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, CT 06269, United States of America; Institute of Material Science, University of Connecticut, 97 N. Eagleville Road, Storrs, CT 06269, United States of America.
| |
Collapse
|
11
|
Niu JY, Yin IX, Wu WKK, Li QL, Mei ML, Chu CH. Antimicrobial peptides for the prevention and treatment of dental caries: A concise review. Arch Oral Biol 2020; 122:105022. [PMID: 33418434 DOI: 10.1016/j.archoralbio.2020.105022] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was to perform a comprehensive review of the use of antimicrobial peptides for the prevention and treatment of dental caries. The study included publications in the English language that addressed the use of antimicrobial peptides in the prevention and treatment of caries. These publications were also searchable on PubMed, Web of Science, Embase, Scopus, the Collection of Anti-Microbial Peptides and the Antimicrobial Peptide Database. A total of 3,436 publications were identified, and 67 publications were included. Eight publications reported seven natural human antimicrobial peptides as bactericidal to Streptococcus mutans. Fifty-nine publications reported 43 synthetic antimicrobial peptides developed to mimic natural antimicrobial peptides, fusing peptides with functional sequences and implementing new designs. The 43 synthetic antimicrobial peptides were effective against Streptococcus mutans, and nine peptides specifically targeted Streptococcus mutans. Ten antimicrobial peptides had an affinity for hydroxyapatite to prevent bacterial adhesion. Six antimicrobial peptides were also antifungal. Four antimicrobial peptides promoted remineralisation or prevented the demineralisation of teeth by binding calcium to hydroxyapatite. In conclusion, this study identified 67 works in the literature that reported seven natural and 43 synthetic antimicrobial peptides for the prevention and treatment of caries. Most of the antimicrobial peptides were bactericidal, and some prevented bacterial adhesion. A few antimicrobial peptides displayed remineralising properties with hydroxyapatite.
Collapse
Affiliation(s)
- John Yun Niu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - William Ka Kei Wu
- Department of Anaesthesia & Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Quan-Li Li
- School of Stomatology, Anhui Medical University, Hefei, China.
| | - May Lei Mei
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Chun Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
Janicka-Kłos A, Janek T, Burger J, Czapor-Irzabek H. Human salivary MUC7 mucin fragment and its analogues. Coordination and biological studies. J Inorg Biochem 2020; 203:110923. [DOI: 10.1016/j.jinorgbio.2019.110923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
|
13
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2020; 7:872. [PMID: 31998680 PMCID: PMC6965326 DOI: 10.3389/fchem.2019.00872] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C. van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J. Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Lachowicz JI, Dalla Torre G, Cappai R, Randaccio E, Nurchi VM, Bachor R, Szewczuk Z, Jaremko L, Jaremko M, Pisano MB, Cosentino S, Orrù G, Ibba A, Mujika J, Lopez X. Metal self-assembly mimosine peptides with enhanced antimicrobial activity: towards a new generation of multitasking chelating agents. Dalton Trans 2020; 49:2862-2879. [DOI: 10.1039/c9dt04545g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mimosine is a non-protein amino acid that can be used as a building block in peptides with metal coordination ability.
Collapse
|
15
|
Chetan, Vijayalakshmi U. A systematic review of the interaction and effects generated by antimicrobial metallic substituents in bone tissue engineering. Metallomics 2020; 12:1458-1479. [DOI: 10.1039/d0mt00127a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes brought about by metal ions and metal nanoparticles within bacterial cells and the damage caused to the cellular membrane upon contact with negatively charged surface components.
Collapse
Affiliation(s)
- Chetan
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore-632 014
- India
| | - Uthirapathy Vijayalakshmi
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore-632 014
- India
| |
Collapse
|
16
|
Verderosa AD, Totsika M, Fairfull-Smith KE. Bacterial Biofilm Eradication Agents: A Current Review. Front Chem 2019; 7:824. [PMID: 31850313 PMCID: PMC6893625 DOI: 10.3389/fchem.2019.00824] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Most free-living bacteria can attach to surfaces and aggregate to grow into multicellular communities encased in extracellular polymeric substances called biofilms. Biofilms are recalcitrant to antibiotic therapy and a major cause of persistent and recurrent infections by clinically important pathogens worldwide (e.g., Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus). Currently, most biofilm remediation strategies involve the development of biofilm-inhibition agents, aimed at preventing the early stages of biofilm formation, or biofilm-dispersal agents, aimed at disrupting the biofilm cell community. While both strategies offer some clinical promise, neither represents a direct treatment and eradication strategy for established biofilms. Consequently, the discovery and development of biofilm eradication agents as comprehensive, stand-alone biofilm treatment options has become a fundamental area of research. Here we review our current understanding of biofilm antibiotic tolerance mechanisms and provide an overview of biofilm remediation strategies, focusing primarily on the most promising biofilm eradication agents and approaches. Many of these offer exciting prospects for the future of biofilm therapeutics for a large number of infections that are currently refractory to conventional antibiotics.
Collapse
Affiliation(s)
- Anthony D Verderosa
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kathryn E Fairfull-Smith
- School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Song J, Wang J, Zhan N, Sun T, Yu W, Zhang L, Shan A, Zhang A. Therapeutic Potential of Trp-Rich Engineered Amphiphiles by Single Hydrophobic Amino Acid End-Tagging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43820-43834. [PMID: 31687796 DOI: 10.1021/acsami.9b12706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
End-tagging with a single hydrophobic residue contributes to improve the cell selectivity of antimicrobial peptides (AMPs), but systematic studies have been lacking. Thus, this study aimed to systematically investigate how end-tagging with hydrophobic residues at the C-terminus and Gly capped at the N-terminus of W4 (RWRWWWRWR) affects the bioactivity of W4 variants. Among all the hydrophobic residues, only Ala end-tagging improved the antibacterial activity of W4. Meanwhile, Gly capped at the N-terminus could promote the helical propensity of the end-tagged peptides in dodecylphosphocholine micelles, increasing their antimicrobial activities. Of these peptides, GW4A (GRWRWWWRWRA) showed the best antibacterial activity against the 19 species of bacteria tested (GMMIC = 1.86 μM) with low toxicity, thus possessing the highest cell selectivity (TIall = 137.63). It also had rapid sterilization, good salt and serum resistance, and LPS-neutralizing activity. Antibacterial mechanism studies showed that the short peptide GW4A killed bacteria by destroying cell membrane integrity and causing cytoplasmic leakage. Overall, these findings suggested that systematic studies on terminal modifications promoted the development of peptide design theory and provided a potential method for optimization of effective AMPs.
Collapse
Affiliation(s)
- Jing Song
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Na Zhan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Taotao Sun
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Weikang Yu
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , Heilongjiang , P. R. China
| | - Aizhong Zhang
- College of Animal Science and Veterinary Medicine , Bayi Agricultural University , Daqing 163000 , Heilongjiang , P. R. China
| |
Collapse
|
18
|
Vincenzi M, Mercurio FA, Leone M. About TFE: Old and New Findings. Curr Protein Pept Sci 2019; 20:425-451. [PMID: 30767740 DOI: 10.2174/1389203720666190214152439] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023]
Abstract
The fluorinated alcohol 2,2,2-Trifluoroethanol (TFE) has been implemented for many decades now in conformational studies of proteins and peptides. In peptides, which are often disordered in aqueous solutions, TFE acts as secondary structure stabilizer and primarily induces an α -helical conformation. The exact mechanism through which TFE plays its stabilizing roles is still debated and direct and indirect routes, relying either on straight interaction between TFE and molecules or indirect pathways based on perturbation of solvation sphere, have been proposed. Another still unanswered question is the capacity of TFE to favor in peptides a bioactive or a native-like conformation rather than simply stimulate the raise of secondary structure elements that reflect only the inherent propensity of a specific amino-acid sequence. In protein studies, TFE destroys unique protein tertiary structure and often leads to the formation of non-native secondary structure elements, but, interestingly, gives some hints about early folding intermediates. In this review, we will summarize proposed mechanisms of TFE actions. We will also describe several examples, in which TFE has been successfully used to reveal structural properties of different molecular systems, including antimicrobial and aggregation-prone peptides, as well as globular folded and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia A Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
19
|
Zhong C, Zhu N, Zhu Y, Liu T, Gou S, Xie J, Yao J, Ni J. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Eur J Pharm Sci 2019; 141:105123. [PMID: 31676352 DOI: 10.1016/j.ejps.2019.105123] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
With the alarming burden of antibiotic resistance, antimicrobial peptides (AMPs) seem to be novel antimicrobial alternatives for infection treatment due to their rapid broad-spectrum antimicrobial activity and low tendency for bacterial resistance. To obtain promising AMPs, a series of new peptides were designed and synthesized by conjugating various lengths of fatty acid chains onto the side chain of the position 4 or 7 D-amino acid of Ano-D4,7 (analogue of anoplin with D-amino acid substitutions at positions 4 and 7). The new peptides exhibited excellent antimicrobial activity against a range of bacteria, especially multidrug-resistant bacteria in contrast to conventional antibiotics. Moreover, the new peptides conjugated with fatty acid chains ranging from 8 to 12 carbons in length presented preferable antimicrobial selectivity and anti-biofilm activity. Additionally, the new peptides also exerted high stability to trypsin, serum, salts and different pH environments. Most notably, the new peptides showed a low tendency to develop bacterial resistance and they displayed optimal antimicrobial activity against the obtained resistant strains. Furthermore, the results from the outer/inner membrane permeabilization and cytoplasmic membrane depolarization assays and flow cytometry and scanning electron microscopy analyses demonstrated that the new peptides exert antimicrobial effects by typical non-receptor-mediated membrane mechanisms, as well as intracellular targets characterized by gel retardation and reactive oxygen species (ROS) generation assays. Furthermore, the new peptides presented remarkable in vivo antimicrobial potency, anti-inflammatory activity, and endotoxin neutralization. Collectively, the conjugation of fatty acids to the side chains of D-amino acids is a potential strategy for designing hopeful antimicrobial alternatives to tackle the risk of bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
20
|
Yang Z, He S, Wang J, Yang Y, Zhang L, Li Y, Shan A. Rational Design of Short Peptide Variants by Using Kunitzin-RE, an Amphibian-Derived Bioactivity Peptide, for Acquired Potent Broad-Spectrum Antimicrobial and Improved Therapeutic Potential of Commensalism Coinfection of Pathogens. J Med Chem 2019; 62:4586-4605. [PMID: 30958004 DOI: 10.1021/acs.jmedchem.9b00149] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Commensalism coinfection of pathogens has seriously jeopardized human health. Currently, Kunitzin-RE, as an amphibian-derived bioactivity peptide, is regarded as a potential antimicrobial candidate. However, its antimicrobial properties were unsatisfactory. In this study, a set of shortened variants of Kunitzin-RE was developed by the interception of a peptide fragment and single-site mutation to investigate the effect of chain length, positive charge, hydrophobicity, amphipathicity, and secondary structure on antimicrobial properties. Among them, W8 (AARIILRWRFR) significantly broadened the antimicrobial spectrum and showed the highest antimicrobial activity (GMall = 2.48 μM) against all the fungi and bacteria tested. Additionally, W8 showed high cell selectivity and salt tolerance in vitro, whereas it showed high effectiveness against mice keratitis cause by infection by C. albicans 2.2086. Additionally, it also had obviously lipopolysaccharide-binding ability and a potent membrane-disruptive mechanism. Overall, these findings contributed to the design of short antimicrobial peptides and to combat the serious threat of commensalism coinfection of pathogens.
Collapse
Affiliation(s)
- Zhanyi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Shiqi He
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Jiajun Wang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yi Yang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Licong Zhang
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| | - Yanbing Li
- College of Animal Science and Veterinary Medicine , Bayi Agricultural University , Daqing 163000 , P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition , Northeast Agricultural University , Harbin 150030 , P. R. China
| |
Collapse
|
21
|
Duay SS, Sharma G, Prabhakar R, Angeles-Boza AM, May ER. Molecular Dynamics Investigation into the Effect of Zinc(II) on the Structure and Membrane Interactions of the Antimicrobial Peptide Clavanin A. J Phys Chem B 2019; 123:3163-3176. [PMID: 30908921 DOI: 10.1021/acs.jpcb.8b11496] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clavanin A (ClavA) is an antimicrobial peptide (AMP) whose antimicrobial activity is enhanced in the presence of Zn(II) ions. The antimicrobial activity of ClavA has been shown to increase 16-fold in the presence of Zn(II) ions. In this study, we investigate the potential sources of this enhancement, namely, the effect of Zn(II) binding on the helical conformation of ClavA and on the ClavA interaction with a model for gram-negative bacterial membranes. In addition, we investigate the effect of Zn(II) on the membrane mechanical properties. We employed all-atom equilibrium molecular dynamics simulations initiated from both fully helical and random coil structures of ClavA. We observe that Zn(II) can stabilize an existing helical conformation in the Zn(II)-binding region, but we do not observe induction of helical conformations in systems initiated in random coil configurations. Zn(II) binding to ClavA provides more favorable electrostatics for membrane association in the C-terminal region. This is evidenced by longer and stronger C-terminal-lipid interactions. Zn(II) is also capable of modulating the membrane properties in a manner which favors ClavA insertion and the potential for enhanced translocation into the cell. This work provides insights into the role of divalent metal cations in the antimicrobial activity of ClavA. This information can be used for the development of synthetic AMPs containing motifs that can bind metals (metalloAMPs) for therapeutic and medical purposes.
Collapse
Affiliation(s)
| | - Gaurav Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Rajeev Prabhakar
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Eric R May
- Department of Molecular and Cell Biology , University of Connecticut , 91 N. Eagleville Road , Storrs , Connecticut 06269 , United States
| |
Collapse
|
22
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2019. [PMID: 31998680 DOI: 10.3389/fchem.2019.00872/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.,Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
23
|
Dong N, Chou S, Li J, Xue C, Li X, Cheng B, Shan A, Xu L. Short Symmetric-End Antimicrobial Peptides Centered on β-Turn Amino Acids Unit Improve Selectivity and Stability. Front Microbiol 2018; 9:2832. [PMID: 30538681 PMCID: PMC6277555 DOI: 10.3389/fmicb.2018.02832] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are excellent candidates to combat the increasing number of multi- or pan-resistant pathogens worldwide based on their mechanism of action, which is different from that of antibiotics. In this study, we designed short peptides by fusing an α-helix and β-turn sequence-motif in a symmetric-end template to promote the higher cell selectivity, antibacterial activity and salt-resistance of these structures. The results showed that the designed peptides PQ and PP tended to form an α-helical structure upon interacting with a membrane-mimicking environment. They displayed high cell selectivity toward bacterial cells over eukaryotic cells. Their activities were mostly maintained in the presence of different conditions (salts, serum, heat, and pH), which indicated their stability in vivo. Fluorescence spectroscopy and electron microscopy analyses indicated that PP and PQ killed bacterial cells through membrane pore formation, thereby damaging membrane integrity. This study revealed the potential application of these designed peptides as new candidate antimicrobial agents.
Collapse
Affiliation(s)
- Na Dong
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Shuli Chou
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Chenyu Xue
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xinran Li
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Baojing Cheng
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Li Xu
- The Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
24
|
Wang J, Dou X, Song J, Lyu Y, Zhu X, Xu L, Li W, Shan A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med Res Rev 2018; 39:831-859. [PMID: 30353555 DOI: 10.1002/med.21542] [Citation(s) in RCA: 359] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs), critical components of the innate immune system, are widely distributed throughout the animal and plant kingdoms. They can protect against a broad array of infection-causing agents, such as bacteria, fungi, parasites, viruses, and tumor cells, and also exhibit immunomodulatory activity. AMPs exert antimicrobial activities primarily through mechanisms involving membrane disruption, so they have a lower likelihood of inducing drug resistance. Extensive studies on the structure-activity relationship have revealed that net charge, hydrophobicity, and amphipathicity are the most important physicochemical and structural determinants endowing AMPs with antimicrobial potency and cell selectivity. This review summarizes the recent advances in AMPs development with respect to characteristics, structure-activity relationships, functions, antimicrobial mechanisms, expression regulation, and applications in food, medicine, and animals.
Collapse
Affiliation(s)
- Jiajun Wang
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xiujing Dou
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Jing Song
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yinfeng Lyu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Xin Zhu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Lin Xu
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Weizhong Li
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Department of Animal Nutrition, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Almoudi MM, Hussein AS, Abu Hassan MI, Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent J 2018; 30:283-291. [PMID: 30202164 PMCID: PMC6128804 DOI: 10.1016/j.sdentj.2018.06.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES The aim of this study was to systematically review the growth inhibition effectiveness of zinc against Streptococcus mutans. The main question was, "Does the zinc inhibit the growth of oral Streptococcus mutans in vitro? METHODS Literature search on PubMed, Medline, and science direct databases was carried out for in vitro studies published in English from 1990 to 2016, and the reported outcomes of minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBC), zone of inhibition (ZOI) and bacterial count method using colony forming unit (CFU) were used to assess the antibacterial effectiveness of zinc. RESULTS Seventeen studies were included in this review. Seven studies reported MIC and MBC. Four studies reported ZOI, and eight studies reported CFU. MIC values using zinc chloride and zinc oxide nanoparticles were ranged from 0.025 to 0.2 mM and 0.390 to 500 ± 306.18 µg/ml respectively. MBC values using zinc oxide nanoparticles have ranged from 3.125 to 500 µg/ml. ZOI ranged from no inhibition zone to 21 ± 1.4 mm using 23.1% zinc oxide. A considerable reduction in the bacterial count was reported after adding zinc. However, only two studies have reported no inhibitory effect of zinc. CONCLUSION This review indicated a significant growth inhibition effectiveness of zinc even at lower concentrations which indicate it's safely to be used in oral health products.
Collapse
Affiliation(s)
- Manal Mohamed Almoudi
- Centre of Paediatric Dentistry and Orthodontics Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - Alaa Sabah Hussein
- Centre of Paediatric Dentistry and Orthodontics Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - Mohamed Ibrahim Abu Hassan
- Centre of Restorative Dentistry Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| | - Nurhayati Mohamad Zain
- Centre of PreClinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Selangor, Malaysia
| |
Collapse
|
26
|
Rizk Z, Rayess YE, Ghanem C, Mathieu F, Taillandier P, Nehme N. Identification of multiple-derived peptides produced by Saccharomyces cerevisiae involved in malolactic fermentation inhibition. FEMS Yeast Res 2018; 18:5059576. [DOI: 10.1093/femsyr/foy080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/22/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ziad Rizk
- Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn Fanar- Lebanon
| | - Youssef El Rayess
- Faculty of Agricultural and Food Sciences- Holy Spirit University of Kaslik- P.O. Box 446, Jounieh- Lebanon
| | - Chantal Ghanem
- Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn Fanar- Lebanon
| | - Florence Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France
| | - Patricia Taillandier
- Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France
| | - Nancy Nehme
- Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh- Lebanon
| |
Collapse
|
27
|
Branco P, Albergaria H, Arneborg N, Prista C. Effect of GAPDH-derived antimicrobial peptides on sensitive yeasts cells: membrane permeability, intracellular pH and H+-influx/-efflux rates. FEMS Yeast Res 2018; 18:4931723. [DOI: 10.1093/femsyr/foy030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 01/04/2023] Open
Affiliation(s)
- Patrícia Branco
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- Unit of Bioenergy, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Helena Albergaria
- Unit of Bioenergy, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal
| | - Nils Arneborg
- Department of Food Science, Faculty of Sciences, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Catarina Prista
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
- DRAT, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
28
|
Sharma C, Rokana N, Chandra M, Singh BP, Gulhane RD, Gill JPS, Ray P, Puniya AK, Panwar H. Antimicrobial Resistance: Its Surveillance, Impact, and Alternative Management Strategies in Dairy Animals. Front Vet Sci 2018; 4:237. [PMID: 29359135 PMCID: PMC5766636 DOI: 10.3389/fvets.2017.00237] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/15/2017] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR), one among the most common priority areas identified by both national and international agencies, is mushrooming as a silent pandemic. The advancement in public health care through introduction of antibiotics against infectious agents is now being threatened by global development of multidrug-resistant strains. These strains are product of both continuous evolution and un-checked antimicrobial usage (AMU). Though antibiotic application in livestock has largely contributed toward health and productivity, it has also played significant role in evolution of resistant strains. Although, a significant emphasis has been given to AMR in humans, trends in animals, on other hand, are not much emphasized. Dairy farming involves surplus use of antibiotics as prophylactic and growth promoting agents. This non-therapeutic application of antibiotics, their dosage, and withdrawal period needs to be re-evaluated and rationally defined. A dairy animal also poses a serious risk of transmission of resistant strains to humans and environment. Outlining the scope of the problem is necessary for formulating and monitoring an active response to AMR. Effective and commendably connected surveillance programs at multidisciplinary level can contribute to better understand and minimize the emergence of resistance. Besides, it requires a renewed emphasis on investments into research for finding alternate, safe, cost effective, and innovative strategies, parallel to discovery of new antibiotics. Nevertheless, numerous direct or indirect novel approaches based on host-microbial interaction and molecular mechanisms of pathogens are also being developed and corroborated by researchers to combat the threat of resistance. This review places a concerted effort to club the current outline of AMU and AMR in dairy animals; ongoing global surveillance and monitoring programs; its impact at animal human interface; and strategies for combating resistance with an extensive overview on possible alternates to current day antibiotics that could be implemented in livestock sector.
Collapse
Affiliation(s)
- Chetan Sharma
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Namita Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Mudit Chandra
- Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Brij Pal Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Rohini Devidas Gulhane
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Jatinder Paul Singh Gill
- School of Public Health and Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Pallab Ray
- Department of Medical Microbiology, Post Graduate Institute for Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Kumar Puniya
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, India
| |
Collapse
|
29
|
Łoboda D, Kozłowski H, Rowińska-Żyrek M. Antimicrobial peptide–metal ion interactions – a potential way of activity enhancement. NEW J CHEM 2018. [DOI: 10.1039/c7nj04709f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We discuss the potential correlation between the antimicrobial peptide–metal binding mode, structure, thermodynamics and mode of action.
Collapse
Affiliation(s)
- D. Łoboda
- Faculty of Chemistry
- University of Wroclaw
- 50-383 Wroclaw
- Poland
| | - H. Kozłowski
- Public Higher Medical Professional School in Opole
- 45-060 Opole
- Poland
| | | |
Collapse
|
30
|
Dong N, Li XR, Xu XY, Lv YF, Li ZY, Shan AS, Wang JL. Characterization of bactericidal efficiency, cell selectivity, and mechanism of short interspecific hybrid peptides. Amino Acids 2017; 50:453-468. [PMID: 29282543 DOI: 10.1007/s00726-017-2531-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
Facing rising global antibiotics resistance, physical membrane-damaging antimicrobial peptides (AMPs) represent promising antimicrobial agents. Various strategies to design effective hybrid peptides offer many advantages in overcoming the adverse effects of natural AMPs. In this study, hybrid peptides from different species were investigated, and three hybrid antimicrobial peptides, LI, LN, and LC, were designed by combining the typical fragment of human cathelicidin-derived LL37 with either indolicidin, pig nematode cecropin P1 (CP-1) or rat neutrophil peptide-1 (NP-1). In an aqueous solution, all hybrid peptides had an unordered conformation. In simulated membrane conditions, the hybrid peptide LI displayed more β-turn and β-hairpin structures, whereas LN and LC folded into α-helix structures. The three interspecific hybrid peptides LI, LN, and LC exhibited different levels of antimicrobial activity against Gram-positive and Gram-negative bacteria. LI demonstrated the highest antimicrobial activity and cell selectivity. The results of the swimming motility indicated that LI repressed bacterial motility in a concentration-dependent method. Endotoxin binding assay demonstrated that hybrid peptide LI conserved the binding ability to LPS (polyanionic lipopolysaccharides) of its parental peptides. Fluorescence assays, flow cytometry, and SEM further revealed that hybrid peptide LI acted through different bacteriostatic mechanisms than LL37 and indolicidin and that LI killed bacterial cells via membrane damage. In summary, this study demonstrated that hybrid peptide LI produced by interspecific hybrid synthesis possessed strong cell selectivity and is a promising therapeutic candidate for drug-resistant bacteria infection.
Collapse
Affiliation(s)
- N Dong
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - X R Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - X Y Xu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Y F Lv
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - Z Y Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China
| | - A S Shan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, People's Republic of China.
| | - J L Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
31
|
Melo MMA, Daniele-Silva A, Teixeira DG, Estrela AB, Melo KRT, Oliveira VS, Rocha HAO, Ferreira LDS, Pontes DL, Lima JPMS, Silva-Júnior AA, Barbosa EG, Carvalho E, Fernandes-Pedrosa MF. Structure and in vitro activities of a Copper II-chelating anionic peptide from the venom of the scorpion Tityus stigmurus. Peptides 2017; 94:91-98. [PMID: 28552408 DOI: 10.1016/j.peptides.2017.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 01/09/2023]
Abstract
Anionic Peptides are molecules rich in aspartic acid (Asp) and/or glutamic acid (Glu) residues in the primary structure. This work presents, for the first time, structural characterization and biological activity assays of an anionic peptide from the venom of the scorpion Tityus stigmurus, named TanP. The three-dimensional structure of TanP was obtained by computational modeling and refined by molecular dynamic (MD) simulations. Furthermore, we have performed circular dichroism (CD) analysis to predict TanP secondary structure, and UV-vis spectroscopy to evaluate its chelating activity. CD indicated predominance of random coil conformation in aqueous medium, as well as changes in structure depending on pH and temperature. TanP has chelating activity on copper ions, which modified the peptide's secondary structure. These results were corroborated by MD data. The molar ratio of binding (TanP:copper) depends on the concentration of peptide: at lower TanP concentration, the molar ratio was 1:5 (TanP:Cu2+), whereas in concentrated TanP solution, the molar ratio was 1:3 (TanP:Cu2+). TanP was not cytotoxic to non-neoplastic or cancer cell lines, and showed an ability to inhibit the in vitro release of nitric oxide by LPS-stimulated macrophages. Altogether, the results suggest TanP is a promising peptide for therapeutic application as a chelating agent.
Collapse
Affiliation(s)
- Menilla M A Melo
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Alessandra Daniele-Silva
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Diego G Teixeira
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Andréia B Estrela
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Karolline R T Melo
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Hugo A O Rocha
- Laboratório de Biotecnologia de Polímeros Naturais, UFRN, Natal, RN, Brazil
| | | | - Daniel L Pontes
- Laboratório de Química de Coordenação e Polímeros, UFRN, Natal, RN, Brazil
| | - João P M S Lima
- Laboratório de Sistemas Metabólicos, Centro de Biociências, UFRN, Natal, RN, Brazil
| | - Arnóbio A Silva-Júnior
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil
| | - Euzebio G Barbosa
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil; Laboratório de Química Farmacêutica, UFRN, Natal, RN, Brazil
| | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, SP, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRN, Natal, RN, Brazil.
| |
Collapse
|
32
|
Taskova M, Mantsiou A, Astakhova K. Synthetic Nucleic Acid Analogues in Gene Therapy: An Update for Peptide-Oligonucleotide Conjugates. Chembiochem 2017; 18:1671-1682. [PMID: 28614621 DOI: 10.1002/cbic.201700229] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Indexed: 12/29/2022]
Abstract
The main objective of this work is to provide an update on synthetic nucleic acid analogues and nanoassemblies as tools in gene therapy. In particular, the synthesis and properties of peptide-oligonucleotide conjugates (POCs), which have high potential in research and as therapeutics, are described in detail. The exploration of POCs has already led to fruitful results in the treatment of neurological diseases, lung disorders, cancer, leukemia, viral, and bacterial infections. However, delivery and in vivo stability are the major barriers to the clinical application of POCs and other analogues that still have to be overcome. This review summarizes recent achievements in the delivery and in vivo administration of synthetic nucleic acid analogues, focusing on POCs, and compares their efficiency.
Collapse
Affiliation(s)
- Maria Taskova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Anna Mantsiou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Kira Astakhova
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.,Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Poole K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol 2017; 25:820-832. [PMID: 28526548 DOI: 10.1016/j.tim.2017.04.010] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
Abstract
Environmental influences on antibiotic activity and resistance can wreak havoc with in vivo antibiotic efficacy and, ultimately, antimicrobial chemotherapy. In nature, bacteria encounter a variety of metal ions, particularly copper (Cu) and zinc (Zn), as contaminants in soil and water, as feed additives in agriculture, as clinically-used antimicrobials, and as components of human antibacterial responses. Importantly, there is a growing body of evidence for Cu/Zn driving antibiotic resistance development in metal-exposed bacteria, owing to metal selection of genetic elements harbouring both metal and antibiotic resistance genes, and metal recruitment of antibiotic resistance mechanisms. Many classes of antibiotics also form complexes with metal cations, including Cu and Zn, and this can hinder (or enhance) antibiotic activity. This review highlights the ways in which Cu/Zn influence antibiotic resistance development and antibiotic activity, and in so doing impact in vivo antibiotic efficacy.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6.
| |
Collapse
|
34
|
Juliano SA, Pierce S, deMayo JA, Balunas MJ, Angeles-Boza AM. Exploration of the Innate Immune System of Styela clava: Zn2+ Binding Enhances the Antimicrobial Activity of the Tunicate Peptide Clavanin A. Biochemistry 2017; 56:1403-1414. [DOI: 10.1021/acs.biochem.6b01046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samuel A. Juliano
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Scott Pierce
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - James A. deMayo
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marcy J. Balunas
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alfredo M. Angeles-Boza
- Department
of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
35
|
Cabrefiga J, Montesinos E. Lysozyme enhances the bactericidal effect of BP100 peptide against Erwinia amylovora, the causal agent of fire blight of rosaceous plants. BMC Microbiol 2017; 17:39. [PMID: 28212623 PMCID: PMC5316217 DOI: 10.1186/s12866-017-0957-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/14/2017] [Indexed: 11/24/2022] Open
Abstract
Background Fire blight is an important disease affecting rosaceous plants. The causal agent is the bacteria Erwinia amylovora which is poorly controlled with the use of conventional bactericides and biopesticides. Antimicrobial peptides (AMPs) have been proposed as a new compounds suitable for plant disease control. BP100, a synthetic linear undecapeptide (KKLFKKILKYL-NH2), has been reported to be effective against E. amylovora infections. Moreover, BP100 showed bacteriolytic activity, moderate susceptibility to protease degradation and low toxicity. However, the peptide concentration required for an effective control of infections in planta is too high due to some inactivation by tissue components. This is a limitation beause of the high cost of synthesis of this compound. We expected that the combination of BP100 with lysozyme may produce a synergistic effect, enhancing its activity and reducing the effective concentration needed for fire blight control. Results The combination of a synhetic multifunctional undecapeptide (BP100) with lysozyme produces a synergistic effect. We showed a significant increase of the antimicrobial activity against E. amylovora that was associated to the increase of cell membrane damage and to the reduction of cell metabolism. Combination of BP100 with lysozyme reduced the time required to achieve cell death and the minimal inhibitory concentration (MIC), and increased the activity of BP100 in the presence of leaf extracts even when the peptide was applied at low doses. The results obtained in vitro were confirmed in leaf infection bioassays. Conclusions The combination of BP100 with lysozyme showed synergism on the bactericidal activity against E. amylovora and provide the basis for developing better formulations of antibacterial peptides for plant protection.
Collapse
Affiliation(s)
- Jordi Cabrefiga
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17003, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-CIDSAV-XaRTA, University of Girona, Girona, 17003, Spain.
| |
Collapse
|
36
|
Lam SJ, Wong EHH, O'Brien-Simpson NM, Pantarat N, Blencowe A, Reynolds EC, Qiao GG. Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33446-33456. [PMID: 27960388 DOI: 10.1021/acsami.6b11402] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
'Structurally nanoengineered antimicrobial peptide polymers' (SNAPPs), in the form of star-shaped peptide polymer nanoparticles, have been recently demonstrated as a new class of antimicrobial agents with superior in vitro and in vivo efficacy against Gram-negative pathogens, including multidrug-resistant species. Herein, we present a detailed bionano interaction study on SNAPPs by assessing their antimicrobial activities against several Gram-negative bacteria in complex biological matrices. Simulated body fluid and animal serum were used as test media to reveal factors that influence the antimicrobial efficacy of SNAPPs. With the exception of Acinetobacter baumannii, the presence of divalent cations at physiological concentrations reduced the antimicrobial efficacy of SNAPPs from minimum inhibitory concentrations (MICs) within the nanomolar range (40-300 nM) against Escherichia coli, Pseudomanas aeruginosa, and Klebsiella pneumoniae to 0.6-4.7 μM. By using E. coli as a representative bacterial species, we demonstrated that the reduction in activity was due to a decrease in the ability of SNAPPs to cause outer and inner membrane disruption. This effect could be reversed through coadministration with a chelating agent. Interestingly, the potency of SNAPPs against A. baumannii was retained even under high salt concentrations. The presence of serum proteins was also found to affect the interaction of SNAPPs with bacterial membranes, possibly through intermolecular binding. Collectively, this study highlights the need to consider the possible interactions of (bio)molecules present in vivo with any new antimicrobial agent under development. We also demonstrate that outer membrane disruption/destabilization is an important but hitherto under-recognized target for the antimicrobial action of peptide-based agents, such as antimicrobial peptides (AMPs). Overall, the findings presented herein could aid in the design of more efficient peptide-based antimicrobial agents with uncompromised potency even under physiological conditions.
Collapse
Affiliation(s)
- Shu J Lam
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Namfon Pantarat
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Anton Blencowe
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Eric C Reynolds
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
37
|
Malik E, Dennison SR, Harris F, Phoenix DA. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel) 2016; 9:ph9040067. [PMID: 27809281 PMCID: PMC5198042 DOI: 10.3390/ph9040067] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Frederick Harris
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK.
| |
Collapse
|
38
|
Duarte CEM, Abranches MV, Silva PF, de Paula SO, Cardoso SA, Oliveira LL. A new TRAF-like protein from B. oleracea ssp. botrytis with lectin activity and its effect on macrophages. Int J Biol Macromol 2016; 94:508-514. [PMID: 27771409 DOI: 10.1016/j.ijbiomac.2016.10.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 10/20/2022]
Abstract
Lectins are involved in a wide range of biological mechanisms, like immunomodulatory agent able to activate the innate immunity. In this study, we purified and characterized a new lectin from cauliflower (Brassica oleracea ssp. botrytis - BOL) by three sequential chromatographic steps and confirmed the purity by SDS-PAGE. Additionally, we evaluated the role of the lectin in innate immunity by a phagocytosis assay, production of H2O2 and NO. BOL was characterized like a non-glycosylated protein that showed a molecular mass of ∼34kDa in SDS-PAGE. Its N-terminal sequence (ETRAFREERPSSKIVTIAG) did not reveal any similarity to the other lectins; nevertheless, it showed 100% homology to a putative TRAF-like protein from Brassica rapa and Brassica napus. This is a first report of the TRAF-protein with lectinic activity. The BOL retained its complete hemagglutination activity from 4°C up to 60°C, with stability being more apparent between pH 7.0 and 8.0. Moreover, the lectin was able to stimulate phagocytosis and induce the production of H2O2 and NO. Therefore, BOL can be explored as an immunomodulatory agent by being able to activate the innate immunity and favor antigen removal.
Collapse
Affiliation(s)
- Christiane E M Duarte
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Monise V Abranches
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, MG, Brazil
| | - Patrick F Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Sérgio O de Paula
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Silvia A Cardoso
- Departamento de Medicina e Enfermagem, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Leandro L Oliveira
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
39
|
Zanni E, Chandraiahgari CR, De Bellis G, Montereali MR, Armiento G, Ballirano P, Polimeni A, Sarto MS, Uccelletti D. Zinc Oxide Nanorods-Decorated Graphene Nanoplatelets: A Promising Antimicrobial Agent against the Cariogenic Bacterium Streptococcus mutans. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E179. [PMID: 28335307 PMCID: PMC5245199 DOI: 10.3390/nano6100179] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/12/2022]
Abstract
Nanomaterials are revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antimicrobial activity against pathogens. In this study, the antimicrobial and antibiofilm properties of a novel nanomaterial composed by zinc oxide nanorods-decorated graphene nanoplatelets (ZNGs) are investigated. ZNGs were produced by hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. The antimicrobial activity of ZNGs was evaluated against Streptococcus mutans, the main bacteriological agent in the etiology of dental caries. Cell viability assay demonstrated that ZNGs exerted a strikingly high killing effect on S. mutans cells in a dose-dependent manner. Moreover, FE-SEM analysis revealed relevant mechanical damages exerted by ZNGs at the cell surface of this dental pathogen rather than reactive oxygen species (ROS) generation. In addition, inductively coupled plasma mass spectrometry (ICP-MS) measurements showed negligible zinc dissolution, demonstrating that zinc ion release in the suspension is not associated with the high cell mortality rate. Finally, our data indicated that also S. mutans biofilm formation was affected by the presence of graphene-zinc oxide (ZnO) based material, as witnessed by the safranin staining and growth curve analysis. Therefore, ZNGs can be a remarkable nanobactericide against one of the main dental pathogens. The potential applications in dental care and therapy are very promising.
Collapse
Affiliation(s)
- Elena Zanni
- BBCD, Department of Biology and Biotechnology, Sapienza University of Rome, Rome 00185, Italy.
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
| | - Chandrakanth Reddy Chandraiahgari
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, Rome 00185, Italy.
| | - Giovanni De Bellis
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, Rome 00185, Italy.
| | - Maria Rita Montereali
- Sustainable Territorial and Production Systems Department (SSPT) PROTER Division, BioGeoChemistry Laboratory, ENEA, National Agency for New Technologies, Energy and Sustainable Economic Development, Rome 00123, Italy.
| | - Giovanna Armiento
- Sustainable Territorial and Production Systems Department (SSPT) PROTER Division, BioGeoChemistry Laboratory, ENEA, National Agency for New Technologies, Energy and Sustainable Economic Development, Rome 00123, Italy.
| | - Paolo Ballirano
- Department of Earth Science, Sapienza University of Rome, Rome 00185, Italy.
| | - Antonella Polimeni
- Department of Dentistry and Maxillo-Facial Sciences, Unit of Pediatric Dentistry Sapienza University of Rome, Rome 00185, Italy.
| | - Maria Sabrina Sarto
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
- DIAEE, Department of Astronautical, Electrical, Energy Engineering, Sapienza University of Rome, Rome 00185, Italy.
| | - Daniela Uccelletti
- BBCD, Department of Biology and Biotechnology, Sapienza University of Rome, Rome 00185, Italy.
- SNN Lab, Sapienza Nanotechnology & Nano-Science Laboratory, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
40
|
Sim CP, Dashper SG, Reynolds EC. Oral microbial biofilm models and their application to the testing of anticariogenic agents. J Dent 2016; 50:1-11. [DOI: 10.1016/j.jdent.2016.04.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/04/2016] [Accepted: 04/24/2016] [Indexed: 01/05/2023] Open
|
41
|
Deslouches B, Hasek ML, Craigo JK, Steckbeck JD, Montelaro RC. Comparative functional properties of engineered cationic antimicrobial peptides consisting exclusively of tryptophan and either lysine or arginine. J Med Microbiol 2016; 65:554-565. [PMID: 27046192 DOI: 10.1099/jmm.0.000258] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We previously reported a series of de novo engineered cationic antibiotic peptides (eCAPs) consisting exclusively of arginine and tryptophan (WR) that display potent activity against diverse multidrug-resistant (MDR) bacterial strains. In this study, we sought to examine the influence of arginine compared to lysine on antibacterial properties by direct comparison of the WR peptides (8-18 residues) with a parallel series of engineered peptides containing only lysine and tryptophan. WR and WK series were compared for antibacterial activity by bacterial killing and growth inhibition assays and for mechanism of peptide-bacteria interactions by surface plasmon resonance and flow cytometry. Mammalian cytotoxicity was also assessed by flow cytometry, haemolytic and tetrazolium-based assays. The shortest arginine-containing peptides (8 and 10 mers) displayed a statistically significant increase in activity compared to the analogous lysine-containing peptides. The WR and WK peptides achieved maximum antibacterial activity at the 12-mer peptide (WK12 or WR12). Further examination of antibacterial mechanisms of the optimally active 12-mer peptides using surface plasmon resonance and flow cytometry demonstrates stronger interactions with Pseudomonasaeruginosa, greater membrane permeabilizing activity, and lower inhibitory effects of divalent cations on activity and membrane permeabilization properties of WR12 compared to WK12 (P < 0.05). Importantly, WK12 and WR12 displayed similar negligible haemolytic and cytotoxic effects at peptide concentrations up to ten times the MIC or 20 times the minimum bactericidal concentration. Thus, arginine, compared to lysine, can indeed yield enhanced antibacterial activity to minimize the required length to achieve functional antimicrobial peptides.
Collapse
Affiliation(s)
- Berthony Deslouches
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary L Hasek
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jodi K Craigo
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan D Steckbeck
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronald C Montelaro
- Center for Vaccine Research and Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics Antimicrob Proteins 2016; 3:68. [PMID: 26781572 DOI: 10.1007/s12602-011-9076-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dental caries is a multifactorial disease that is a growing and costly global health concern. The onset of disease is a consequence of an ecological imbalance within the dental plaque biofilm that favors specific acidogenic and aciduric caries pathogens, namely Streptococcus mutans and Streptococcus sobrinus. It is now recognized by the scientific and medical community that it is neither possible nor desirable to totally eliminate dental plaque. Conversely, the chemical biocides most commonly used for caries prevention and treatment indiscriminately attack all plaque microorganisms. These treatments also suffer from other drawbacks such as bad taste, irritability, and staining. Furthermore, the public demand for safe and natural personal hygiene products continues to rise. Therefore, there are opportunities that exist to develop new strategies for the treatment of this disease. As an alternative to conventional antibiotics, antibacterial peptides have been explored greatly over the last three decades for many different therapeutic uses. There are currently tens of hundreds of antibacterial peptides characterized across the evolutionary spectrum, and among these, many demonstrate physical and/or biological properties that may be suitable for a more targeted approach to the selective control or elimination of putative caries pathogens. Additionally, many peptides, such as nisin, are odorless, colorless, and tasteless and do not cause irritation or staining. This review focuses on antibacterial peptides for their potential role in the treatment and prevention of dental caries and suggests candidates that need to be explored further. Practical considerations for the development of antibacterial peptides as oral treatments are also discussed.
Collapse
|
43
|
Lakshmaiah Narayana J, Chen JY. Antimicrobial peptides: Possible anti-infective agents. Peptides 2015; 72:88-94. [PMID: 26048089 DOI: 10.1016/j.peptides.2015.05.012] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/10/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022]
Abstract
Multidrug-resistant bacterial, fungal, viral, and parasitic infections are major health threats. The Infectious Diseases Society of America has expressed concern on the decrease of pharmaceutical companies working on antibiotic research and development. However, small companies, along with academic research institutes, are stepping forward to develop novel therapeutic methods to overcome the present healthcare situation. Among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly distributed in nature. AMPs exhibit broad-spectrum activity against a wide variety of bacteria, fungi, viruses, and parasites, and even cancerous cells. They also show potential immunomodulatory properties, and are highly responsive to infectious agents and innate immuno-stimulatory molecules. In recent years, many AMPs have undergone or are undergoing clinical development, and a few are commercially available for topical and other applications. In this review, we outline selected anion and cationic AMPs which are at various stages of development, from preliminary analysis to clinical drug development. Moreover, we also consider current production methods and delivery tools for AMPs, which must be improved for the effective use of these agents.
Collapse
Affiliation(s)
- Jayaram Lakshmaiah Narayana
- Doctoral Degree Program in Marine Biotechnology, Institute of Cellular and Orgasmic Biology, Academia Sinica and National Sun-Yat Sen University, Kaohsiung, Taiwan; Marine Research Station, Institute of Cellular and Orgasmic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan
| | - Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Orgasmic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
| |
Collapse
|
44
|
Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015. [PMID: 26210299 DOI: 10.1016/j.bbamem.2015.07.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OP-145, a synthetic antimicrobial peptide developed from a screen of the human cathelicidin LL-37, displays strong antibacterial activities and is--at considerably higher concentrations--lytic to human cells. To obtain more insight into its actions, we investigated the interactions between OP-145 and liposomes composed of phosphatidylglycerol (PG) and phosphatidylcholine (PC), resembling bacterial and mammalian membranes, respectively. Circular dichroism analyses of OP-145 demonstrated a predominant α-helical conformation in the presence of both membrane mimics, indicating that the different membrane-perturbation mechanisms are not due to different secondary structures. Membrane thinning and formation of quasi-interdigitated lipid-peptide structures was observed in PG bilayers, while OP-145 led to disintegration of PC liposomes into disk-like micelles and bilayer sheets. Although OP-145 was capable of binding lipoteichoic acid and peptidoglycan, the presence of these bacterial cell wall components did not retain OP-145 and hence did not interfere with the activity of the peptide toward PG membranes. Furthermore, physiological Ca++ concentrations did neither influence the membrane activity of OP-145 in model systems nor the killing of Staphylococcus aureus. However, addition of OP-145 at physiological Ca++-concentrations to PG membranes, but not PC membranes, resulted in the formation of elongated enrolled structures similar to cochleate-like structures. In summary, phospholipid-driven differences in incorporation of OP-145 into the lipid bilayers govern the membrane activity of the peptide on bacterial and mammalian membrane mimics.
Collapse
|
45
|
Branco P, Viana T, Albergaria H, Arneborg N. Antimicrobial peptides (AMPs) produced by Saccharomyces cerevisiae induce alterations in the intracellular pH, membrane permeability and culturability of Hanseniaspora guilliermondii cells. Int J Food Microbiol 2015; 205:112-8. [PMID: 25897995 DOI: 10.1016/j.ijfoodmicro.2015.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 11/27/2022]
Abstract
Saccharomyces cerevisiae produces antimicrobial peptides (AMPs) during alcoholic fermentation that are active against several wine-related yeasts (e.g. Hanseniaspora guilliermondii) and bacteria (e.g. Oenococcus oeni). In the present study, the physiological changes induced by those AMPs on sensitive H. guilliermondii cells were evaluated in terms of intracellular pH (pHi), membrane permeability and culturability. Membrane permeability was evaluated by staining cells with propidium iodide (PI), pHi was determined by a fluorescence ratio imaging microscopy (FRIM) technique and culturability by a classical plating method. Results showed that the average pHi of H. guilliermondii cells dropped from 6.5 (healthy cells) to 5.4 (damaged cells) after 20 min of exposure to inhibitory concentrations of AMPs, and after 24 h 77.0% of the cells completely lost their pH gradient (∆pH=pHi-pHext). After 24h of exposure to AMPs, PI-stained (dead) cells increased from 0% to 77.7% and the number of viable cells fell from 1×10(5) to 10 CFU/ml. This means that virtually all cells (99.99%) became unculturable but that a sub-population of 22.3% of the cells remained viable (as determined by PI staining). Besides, pHi results showed that after 24h, 23% of the AMP-treated cells were sub-lethally injured (with 0<∆pH<3). Taken together, these results indicated that this subpopulation was under a viable but non-culturable (VBNC) state, which was further confirmed by recuperation assays. In summary, our study reveals that these AMPs compromise the plasma membrane integrity (and possibly also the vacuole membrane) of H. guilliermondii cells, disturbing the pHi homeostasis and inducing a loss of culturability.
Collapse
Affiliation(s)
- Patrícia Branco
- Unit of Bioenergy, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Tiago Viana
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017 Lisboa, Portugal; Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| | - Helena Albergaria
- Unit of Bioenergy, Laboratório Nacional de Energia e Geologia (LNEG), Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal.
| | - Nils Arneborg
- Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg C, Denmark
| |
Collapse
|
46
|
Libardo MDJ, Angeles-Boza AM. Bioinorganic Chemistry of Antimicrobial and Host-Defense Peptides. COMMENT INORG CHEM 2014. [DOI: 10.1080/02603594.2014.960923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
47
|
Dong N, Zhu X, Chou S, Shan A, Li W, Jiang J. Antimicrobial potency and selectivity of simplified symmetric-end peptides. Biomaterials 2014; 35:8028-39. [PMID: 24952979 DOI: 10.1016/j.biomaterials.2014.06.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/01/2014] [Indexed: 11/19/2022]
Abstract
Because antimicrobial peptides (AMPs) are potentially useful for the treatment of multidrug-resistant infections, more attention is being paid to the structural modification and structure-function relationship of both naturally occurring and synthetic AMPs. Previous studies indicated that Protegrin-1 (PG-1), isolated from porcine leukocytes, exhibited considerable antimicrobial activity and cytotoxicity. The β-turn of PG-1 floated on the surface of bacterial membrane, while its β-strand inserted into the bacterial membrane and formed pores that were dedicated to producing cytotoxicity. For reducing cytotoxicity and improving cells selectivity, we designed a series of simplified symmetric-end peptides by combining the β-turn of PG-1 with simple amino acid repeat sequences. The sequence of designed symmetric-end peptides is (XR)nH(RX)n, (n = 1,2; X represents I, F, W and P; H represents CRRRFC). The symmetric-end peptides displayed antimicrobial activity against both gram-positive and gram-negative bacteria. In particular, (XR)2H(RX)2 (X here is I, F and W) showed greater antimicrobial potency than PG-1. Hemolysis activity and cytotoxicity, detected by using human red blood cells (RBCs) and human embryonic lung fibroblasts MRC-5 cells, were observably lower than the native peptide PG-1. (IR)2H(RI)2 (IR2), folded into β-sheet structures, displayed the highest therapeutic index, suggesting its great cell selectivity. The fluorescence spectroscopy, flow cytometry, and electron microscopy observation indicated that IR2 exhibited great membrane penetration potential by inducing membrane blebbing, disruption and lysis. Collectively, generating symmetric-end β-sheet peptides is a promising strategy for designing effective AMPs with great antimicrobial activities and cell selectivity.
Collapse
Affiliation(s)
- Na Dong
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, PR China
| | - Xin Zhu
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, PR China
| | - Shuli Chou
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, PR China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, PR China.
| | - Weizhong Li
- Laboratory of Molecular Nutrition and Immunity, The Institute of Animal Nutrition, Northeast Agricultural University, Harbin, PR China
| | - Junguang Jiang
- The State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, PR China
| |
Collapse
|
48
|
Xu W, Zhu X, Tan T, Li W, Shan A. Design of embedded-hybrid antimicrobial peptides with enhanced cell selectivity and anti-biofilm activity. PLoS One 2014; 9:e98935. [PMID: 24945359 PMCID: PMC4063695 DOI: 10.1371/journal.pone.0098935] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial peptides have attracted considerable attention because of their broad-spectrum antimicrobial activity and their low prognostic to induce antibiotic resistance which is the most common source of failure in bacterial infection treatment along with biofilms. The method to design hybrid peptide integrating different functional domains of peptides has many advantages. In this study, we designed an embedded-hybrid peptide R-FV-I16 by replacing a functional defective sequence RR7 with the anti-biofilm sequence FV7 embedded in the middle position of peptide RI16. The results demonstrated that the synthetic hybrid the peptide R-FV-I16 had potent antimicrobial activity over a wide range of Gram-negative and Gram-positive bacteria, as well as anti-biofilm activity. More importantly, R-FV-I16 showed lower hemolytic activity and cytotoxicity. Fluorescent assays demonstrated that R-FV-I16 depolarized the outer and the inner bacterial membranes, while scanning electron microscopy and transmission electron microscopy further indicated that this peptide killed bacterial cells by disrupting the cell membrane, thereby damaging membrane integrity. Results from SEM also provided evidence that R-FV-I16 inherited anti-biofilm activity from the functional peptide sequence FV7. Embedded-hybrid peptides could provide a new pattern for combining different functional domains and showing an effective avenue to screen for novel antimicrobial agents.
Collapse
Affiliation(s)
- Wei Xu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xin Zhu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tingting Tan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Weizhong Li
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Anshan Shan
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
49
|
Théolier J, Fliss I, Jean J, Hammami R. Antimicrobial Peptides of Dairy Proteins: From Fundamental to Applications. FOOD REVIEWS INTERNATIONAL 2014. [DOI: 10.1080/87559129.2014.896017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Liu L, Pushalkar S, Saxena D, LeGeros RZ, Zhang Y. Antibacterial property expressed by a novel calcium phosphate glass. J Biomed Mater Res B Appl Biomater 2014; 102:423-9. [PMID: 24039127 PMCID: PMC4035028 DOI: 10.1002/jbm.b.33019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/03/2013] [Accepted: 08/10/2013] [Indexed: 11/07/2022]
Abstract
We have developed a calcium phosphate glass (CPG) doped with Zn(2+) or F(-) or combined Zn(2+) and F(-) ions, which are naturally found in the human body and play a dual role in bone formation and antibacterial activity. Previously, we have demonstrated that this family of CPGs has superior osteoconductive and resorbable properties in vivo. This study aimed to investigate the antibacterial property of CPGs incorporating Zn(2+) and/or F(-) . We used Streptococcus mutans as a model organism because it is one of the major human oral pathogens and an early colonizer, and it has been associated with several oral infections, such as dental caries, periodontitis, and peri-implantitis. CPGs of 0.01 and 0.05 g were incubated with S. mutans for 0, 2, 4, and 6 h. Serial dilutions were plated in triplicate and colony forming units were determined. The antimicrobial effect of CPG incorporating Zn(2+) or F(-) was greater than CPG incorporating both these ions. CPG without doping produced a moderate antimicrobial effect. This family of CPGs, previously shown to promote new bone formation in vivo, is demonstrated to have superior bactericidal properties.
Collapse
Affiliation(s)
- Lela Liu
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 E. 24 Street, New York, NY 10010, USA
| | - Smruti Pushalkar
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E. 24 Street, New York, NY 10010, USA
| | - Deepak Saxena
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 E. 24 Street, New York, NY 10010, USA
| | - Racquel Z. LeGeros
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 E. 24 Street, New York, NY 10010, USA
| | - Yu Zhang
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, 345 E. 24 Street, New York, NY 10010, USA
| |
Collapse
|