1
|
Behrmann LV, Meier K, Vollmer J, Chiedu CC, Schiefer A, Hoerauf A, Pfarr K. In vitro extracellular replication of Wolbachia endobacteria. Front Microbiol 2024; 15:1405287. [PMID: 39091298 PMCID: PMC11293327 DOI: 10.3389/fmicb.2024.1405287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Obligate intracellular endobacteria of the genus Wolbachia are widespread in arthropods and several filarial nematodes. Control programs for vector-borne diseases (dengue, Zika, malaria) and anti-filarial therapy with antibiotics are based on this important endosymbiont. Investigating Wolbachia, however, is impeded by the need for host cells. In this study, the requirements for Wolbachia wAlbB growth in a host cell-free in vitro culture system were characterized via qPCRs. A cell lysate fraction from Aedes albopictus C6/36 insect cells containing cell membranes and medium with fetal bovine serum were identified as requisite for cell-free replication of Wolbachia. Supplementation with the membrane fraction of insect cell lysate increased extracellular Wolbachia replication by 4.2-fold. Replication rates in the insect cell-free culture were lower compared to Wolbachia grown inside insect cells. However, the endobacteria were able to replicate for up to 12 days and to infect uninfected C6/36 cells. Cell-free Wolbachia treated with the lipid II biosynthesis inhibitor fosfomycin had an enlarged phenotype, seen previously for intracellular Wolbachia in C6/36 cells, indicating that the bacteria were unable to divide. In conclusion, we have developed a cell-free culture system in which Wolbachia replicate for up to 12 days, providing an in vitro tool to elucidate the biology of these endobacteria, e.g., cell division by using compounds that may not enter the C6/36 cells. A better understanding of Wolbachia biology, and in particular host-symbiont interactions, is key to the use of Wolbachia in vector control programs and to future drug development against filarial diseases.
Collapse
Affiliation(s)
- Lara Vanessa Behrmann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kirstin Meier
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jennifer Vollmer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Chukwuebuka Chibuzo Chiedu
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Andrea Schiefer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
2
|
Bell-Sakyi L, Haines LR, Petrucci G, Beliavskaia A, Hartley C, Khoo JJ, Makepeace BL, Abd-Alla AMM, Darby AC. Establishment and partial characterisation of a new cell line derived from adult tissues of the tsetse fly Glossina morsitans morsitans. Parasit Vectors 2024; 17:231. [PMID: 38760668 PMCID: PMC11100113 DOI: 10.1186/s13071-024-06310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/27/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Insect cell lines play a vital role in many aspects of research on disease vectors and agricultural pests. The tsetse fly Glossina morsitans morsitans is an important vector of salivarian trypanosomes in sub-Saharan Africa and, as such, is a major constraint on human health and agricultural development in the region. METHODS Here, we report establishment and partial characterisation of a cell line, GMA/LULS61, derived from tissues of adult female G. m. morsitans. GMA/LULS61 cells, grown at 28 °C in L-15 (Leibovitz) medium supplemented with foetal bovine serum and tryptose phosphate broth, have been taken through 23 passages to date and can be split 1:1 at 2-week intervals. Karyotyping at passage 17 revealed a predominantly haploid chromosome complement. Species origin and absence of contaminating bacteria were confirmed by PCR amplification and sequencing of fragments of the COI gene and pan-bacterial 16S rRNA gene respectively. However, PCR screening of RNA extracted from GMA/LULS61 cells confirmed presence of the recently described Glossina morsitans morsitans iflavirus and Glossina morsitans morsitans negevirus, but absence of Glossina pallipides salivary gland hypertrophy virus. GMA/LULS61 cells supported infection and growth of 6/7 different insect-derived strains of the intracellular bacterial symbiont Wolbachia. CONCLUSIONS The GMA/LULS61 cell line has potential for application in a variety of studies investigating the biology of G. m. morsitans and its associated pathogenic and symbiotic microorganisms.
Collapse
Affiliation(s)
- Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| | - Lee R Haines
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Giovanni Petrucci
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Alexandra Beliavskaia
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Catherine Hartley
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jing Jing Khoo
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Benjamin L Makepeace
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Alistair C Darby
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Löckener I, Behrmann LV, Reuter J, Schiefer A, Klöckner A, Krannich S, Otten C, Mölleken K, Ichikawa S, Hoerauf A, Schneider T, Pfarr KM, Henrichfreise B. The MraY Inhibitor Muraymycin D2 and Its Derivatives Induce Enlarged Cells in Obligate Intracellular Chlamydia and Wolbachia and Break the Persistence Phenotype in Chlamydia. Antibiotics (Basel) 2024; 13:421. [PMID: 38786149 PMCID: PMC11117252 DOI: 10.3390/antibiotics13050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Chlamydial infections and diseases caused by filarial nematodes are global health concerns. However, treatment presents challenges due to treatment failures potentially caused by persisting Chlamydia and long regimens against filarial infections accompanied by low compliance. A new treatment strategy could be the targeting of the reduced peptidoglycan structures involved in cell division in the obligate intracellular bacteria Chlamydia and Wolbachia, the latter being obligate endosymbionts supporting filarial development, growth, and survival. Here, cell culture experiments with C. trachomatis and Wolbachia showed that the nucleoside antibiotics muraymycin and carbacaprazamycin interfere with bacterial cell division and induce enlarged, aberrant cells resembling the penicillin-induced persistence phenotype in Chlamydia. Enzymatic inhibition experiments with purified C. pneumoniae MraY revealed that muraymycin derivatives abolish the synthesis of the peptidoglycan precursor lipid I. Comparative in silico analyses of chlamydial and wolbachial MraY with the corresponding well-characterized enzyme in Aquifex aeolicus revealed a high degree of conservation, providing evidence for a similar mode of inhibition. Muraymycin D2 treatment eradicated persisting non-dividing C. trachomatis cells from an established penicillin-induced persistent infection. This finding indicates that nucleoside antibiotics may have additional properties that can break bacterial persistence.
Collapse
Affiliation(s)
- Iris Löckener
- Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany (C.O.); (B.H.)
| | - Lara Vanessa Behrmann
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (L.V.B.)
| | - Jula Reuter
- Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany (C.O.); (B.H.)
| | - Andrea Schiefer
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (L.V.B.)
| | - Anna Klöckner
- Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany (C.O.); (B.H.)
| | - Sebastian Krannich
- Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany (C.O.); (B.H.)
| | - Christian Otten
- Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany (C.O.); (B.H.)
| | - Katja Mölleken
- Institute for Functional Microbial Genomics, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany;
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (L.V.B.)
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany (C.O.); (B.H.)
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Kenneth M. Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (L.V.B.)
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Beate Henrichfreise
- Institute for Pharmaceutical Microbiology (IPM), University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany (C.O.); (B.H.)
| |
Collapse
|
4
|
Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. INSECTS 2021; 12:insects12100871. [PMID: 34680640 PMCID: PMC8539649 DOI: 10.3390/insects12100871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Diverse strains of Wolbachia bacteria, carried by many arthropods, as well as some nematodes, interact in many different ways with their hosts. These include male killing, reproductive incompatibility, nutritional supplementation and suppression or enhancement of the transmission of diseases such as dengue and malaria. Consequently, Wolbachia have an important role to play in novel strategies to control human and livestock diseases and their vectors. Similarly, cell lines derived from insect hosts of Wolbachia constitute valuable research tools in this field. During the generation of novel cell lines from mosquito and sand fly vectors, we isolated two strains of Wolbachia and demonstrated their infectivity for cells from a range of other insects and ticks. These new insect cell lines and Wolbachia strains will aid in the fight against mosquitoes, sand flies and, potentially, ticks and the diseases that these arthropods transmit to humans and their domestic animals. Abstract Endosymbiotic intracellular bacteria of the genus Wolbachia are harboured by many species of invertebrates. They display a wide range of developmental, metabolic and nutritional interactions with their hosts and may impact the transmission of arboviruses and protozoan parasites. Wolbachia have occasionally been isolated during insect cell line generation. Here, we report the isolation of two strains of Wolbachia, wPip and wPap, during cell line generation from their respective hosts, the mosquito Culex pipiens and the sand fly Phlebotomus papatasi. wPip was pathogenic for both new C. pipiens cell lines, CPE/LULS50 and CLP/LULS56, requiring tetracycline treatment to rescue the lines. In contrast, wPap was tolerated by the P. papatasi cell line PPL/LULS49, although tetracycline treatment was applied to generate a Wolbachia-free subline. Both Wolbachia strains were infective for a panel of heterologous insect and tick cell lines, including two novel lines generated from the sand fly Lutzomyia longipalpis, LLE/LULS45 and LLL/LULS52. In all cases, wPip was more pathogenic for the host cells than wPap. These newly isolated Wolbachia strains, and the novel mosquito and sand fly cell lines reported here, will add to the resources available for research on host–endosymbiont relationships, as well as on C. pipiens, P. papatasi, L. longipalpis and the pathogens that they transmit.
Collapse
|
5
|
Isolation and Propagation of Laboratory Strains and a Novel Flea-Derived Field Strain of Wolbachia in Tick Cell Lines. Microorganisms 2020; 8:microorganisms8070988. [PMID: 32630209 PMCID: PMC7409115 DOI: 10.3390/microorganisms8070988] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022] Open
Abstract
Wolbachia are intracellular endosymbionts of several invertebrate taxa, including insects and nematodes. Although Wolbachia DNA has been detected in ticks, its presence is generally associated with parasitism by insects. To determine whether or not Wolbachia can infect and grow in tick cells, cell lines from three tick species, Ixodes scapularis, Ixodes ricinus and Rhipicephalus microplus, were inoculated with Wolbachia strains wStri and wAlbB isolated from mosquito cell lines. Homogenates prepared from fleas collected from cats in Malaysia were inoculated into an I. scapularis cell line. Bacterial growth and identity were monitored by microscopy and PCR amplification and sequencing of fragments of Wolbachia genes. The wStri strain infected Ixodes spp. cells and was maintained through 29 passages. The wAlbB strain successfully infected Ixodes spp. and R. microplus cells and was maintained through 2–5 passages. A novel strain of Wolbachia belonging to the supergroup F, designated wCfeF, was isolated in I. scapularis cells from a pool of Ctenocephalides sp. cat fleas and maintained in vitro through two passages over nine months. This is the first confirmed isolation of a Wolbachia strain from a flea and the first isolation of any Wolbachia strain outside the “pandemic” A and B supergroups. The study demonstrates that tick cells can host multiple Wolbachia strains, and can be added to panels of insect cell lines to improve success rates in isolation of field strains of Wolbachia.
Collapse
|
6
|
Wan Sulaiman WA, Kamtchum-Tatuene J, Mohamed MH, Ramachandran V, Ching SM, Sazlly Lim SM, Hashim HZ, Inche Mat LN, Hoo FK, Basri H. Anti- Wolbachia therapy for onchocerciasis & lymphatic filariasis: Current perspectives. Indian J Med Res 2020; 149:706-714. [PMID: 31496523 PMCID: PMC6755775 DOI: 10.4103/ijmr.ijmr_454_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Onchocerciasis and lymphatic filariasis (LF) are human filarial diseases belonging to the group of neglected tropical diseases, leading to permanent and long-term disability in infected individuals in the endemic countries such as Africa and India. Microfilaricidal drugs such as ivermectin and albendazole have been used as the standard therapy in filariasis, although their efficacy in eliminating the diseases is not fully established. Anti-Wolbachia therapy employs antibiotics and is a promising approach showing potent macrofilaricidal activity and also prevents embryogenesis. This has translated to clinical benefits resulting in successful eradication of microfilarial burden, thus averting the risk of adverse events from target species as well as those due to co-infection with loiasis. Doxycycline shows potential as an anti-Wolbachia treatment, leading to the death of adult parasitic worms. It is readily available, cheap and safe to use in adult non-pregnant patients. Besides doxycycline, several other potential antibiotics are also being investigated for the treatment of LF and onchocerciasis. This review aims to discuss and summarise recent developments in the use of anti-Wolbachia drugs to treat onchocerciasis and LF.
Collapse
Affiliation(s)
- Wan Aliaa Wan Sulaiman
- Department of Medicine, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Joseph Kamtchum-Tatuene
- Liverpool Brain Infection Group, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Mohd Hazmi Mohamed
- Department of Surgery, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Vasudevan Ramachandran
- Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Sazlyna Mohd Sazlly Lim
- Department of Medicine, Faculty of Medicine & Health Sciences, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hasnur Zaman Hashim
- Department of Medicine, Faculty of Medicine & Health Sciences, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Medicine, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Fan Kee Hoo
- Department of Medicine, Faculty of Medicine & Health Sciences, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hamidon Basri
- Department of Medicine, Faculty of Medicine & Health Sciences; Laboratory of Medical Gerontology, Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
7
|
Hübner MP, Koschel M, Struever D, Nikolov V, Frohberger SJ, Ehrens A, Fendler M, Johannes I, von Geldern TW, Marsh K, Turner JD, Taylor MJ, Ward SA, Pfarr K, Kempf DJ, Hoerauf A. In vivo kinetics of Wolbachia depletion by ABBV-4083 in L. sigmodontis adult worms and microfilariae. PLoS Negl Trop Dis 2019; 13:e0007636. [PMID: 31381563 PMCID: PMC6695197 DOI: 10.1371/journal.pntd.0007636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/15/2019] [Accepted: 07/17/2019] [Indexed: 11/18/2022] Open
Abstract
Depletion of Wolbachia endosymbionts of human pathogenic filariae using 4–6 weeks of doxycycline treatment can lead to permanent sterilization and adult filarial death. We investigated the anti-Wolbachia drug candidate ABBV-4083 in the Litomosoides sigmodontis rodent model to determine Wolbachia depletion kinetics with different regimens. Wolbachia reduction occurred in mice as early as 3 days after the initiation of ABBV-4083 treatment and continued throughout a 10-day treatment period. Importantly, Wolbachia levels continued to decline after a 5-day-treatment from 91.5% to 99.9% during a 3-week washout period. In jirds, two weeks of ABBV-4083 treatment (100mg/kg once-per-day) caused a >99.9% Wolbachia depletion in female adult worms, and the kinetics of Wolbachia depletion were recapitulated in peripheral blood microfilariae. Similar to Wolbachia depletion, inhibition of embryogenesis was time-dependent in ABBV-4083-treated jirds, leading to a complete lack of late embryonic stages (stretched microfilariae) and lack of peripheral microfilariae in 5/6 ABBV-4083-treated jirds by 14 weeks after treatment. Twice daily treatment in comparison to once daily treatment with ABBV-4083 did not significantly improve Wolbachia depletion. Moreover, up to 4 nonconsecutive daily treatments within a 14-dose regimen did not significantly erode Wolbachia depletion. Within the limitations of an animal model that does not fully recapitulate human filarial disease, our studies suggest that Wolbachia depletion should be assessed clinically no earlier than 3–4 weeks after the end of treatment, and that Wolbachia depletion in microfilariae may be a viable surrogate marker for the depletion within adult worms. Furthermore, strict daily adherence to the dosing regimen with anti-Wolbachia candidates may not be required, provided that the full regimen is subsequently completed. Onchocerciasis and lymphatic filariasis represent debilitating neglected tropical diseases that are caused by parasitic filarial nematodes. Current efforts to eliminate onchocerciasis are hampered by the lack of drugs that lead to permanent sterilization of the adult worms or provide a macrofilaricidal effect, i.e. kill the adult worms. In the past, doxycycline has been shown to deplete Wolbachia endosymbionts of filarial nematodes, leading to permanent sterilization and macrofilaricidal efficacy in filariae causing both onchocerciasis and lymphatic filariasis. However, contraindications and a requirement for at least 4 weeks of doxycycline treatment impair its broader use, creating a need for drugs with a shorter treatment regimen and potentially fewer contraindications. ABBV-4083 is such an anti-Wolbachia candidate that was efficacious in several filarial animal models and has recently been tested in a phase 1 clinical trial. The present studies addressed several points that are important for subsequent phase 2 clinical trials, namely the comparison of once vs. twice-per-day treatments, the impact of missed treatments, and a comparison of the kinetics of Wolbachia depletion in adult worms and microfilariae, the latter of which has the potential to be a surrogate indicator to avoid the necessity of surgically removing nodules with adult worms at repeated time points.
Collapse
Affiliation(s)
- Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- * E-mail:
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Dominique Struever
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Venelin Nikolov
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Martina Fendler
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Iliana Johannes
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Thomas W. von Geldern
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, Illinois, United States of America
- Franciscan Institute for World Health, Franciscan University, Steubenville, Ohio, United States of America
| | - Kennan Marsh
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, Illinois, United States of America
| | - Joseph D. Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mark J. Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen A. Ward
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Dale J. Kempf
- Global Pharmaceutical Research and Development, AbbVie, North Chicago, Illinois, United States of America
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
8
|
Johnston KL, Cook DAN, Berry NG, David Hong W, Clare RH, Goddard M, Ford L, Nixon GL, O’Neill PM, Ward SA, Taylor MJ. Identification and prioritization of novel anti- Wolbachia chemotypes from screening a 10,000-compound diversity library. SCIENCE ADVANCES 2017; 3:eaao1551. [PMID: 28959730 PMCID: PMC5617373 DOI: 10.1126/sciadv.aao1551] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Lymphatic filariasis and onchocerciasis are two important neglected tropical diseases (NTDs) that cause severe disability. Control efforts are hindered by the lack of a safe macrofilaricidal drug. Targeting the Wolbachia bacterial endosymbionts in these parasites with doxycycline leads to a macrofilaricidal outcome, but protracted treatment regimens and contraindications restrict its widespread implementation. The Anti-Wolbachia consortium aims to develop improved anti-Wolbachia drugs to overcome these barriers. We describe the first screening of a large, diverse compound library against Wolbachia. This whole-organism screen, streamlined to reduce bottlenecks, produced a hit rate of 0.5%. Chemoinformatic analysis of the top 50 hits led to the identification of six structurally diverse chemotypes, the disclosure of which could offer interesting avenues of investigation to other researchers active in this field. An example of hit-to-lead optimization is described to further demonstrate the potential of developing these high-quality hit series as safe, efficacious, and selective anti-Wolbachia macrofilaricides.
Collapse
Affiliation(s)
- Kelly L. Johnston
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Darren A. N. Cook
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | - W. David Hong
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | - Rachel H. Clare
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Megan Goddard
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Louise Ford
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Gemma L. Nixon
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK
| | - Stephen A. Ward
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Mark J. Taylor
- Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
9
|
Aljayyoussi G, Tyrer HE, Ford L, Sjoberg H, Pionnier N, Waterhouse D, Davies J, Gamble J, Metuge H, Cook DAN, Steven A, Sharma R, Guimaraes AF, Clare RH, Cassidy A, Johnston KL, Myhill L, Hayward L, Wanji S, Turner JD, Taylor MJ, Ward SA. Short-Course, High-Dose Rifampicin Achieves Wolbachia Depletion Predictive of Curative Outcomes in Preclinical Models of Lymphatic Filariasis and Onchocerciasis. Sci Rep 2017; 7:210. [PMID: 28303006 PMCID: PMC5428297 DOI: 10.1038/s41598-017-00322-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 12/29/2022] Open
Abstract
Lymphatic filariasis (LF) and onchocerciasis are priority neglected tropical diseases targeted for elimination. The only safe drug treatment with substantial curative activity against the filarial nematodes responsible for LF (Brugia malayi, Wuchereria bancrofti) or onchocerciasis (Onchocerca volvulus) is doxycycline. The target of doxycycline is the essential endosymbiont, Wolbachia. Four to six weeks doxycycline therapy achieves >90% depletion of Wolbachia in worm tissues leading to blockade of embryogenesis, adult sterility and premature death 18-24 months post-treatment. Long treatment length and contraindications in children and pregnancy are obstacles to implementing doxycycline as a public health strategy. Here we determine, via preclinical infection models of Brugia malayi or Onchocerca ochengi that elevated exposures of orally-administered rifampicin can lead to Wolbachia depletions from filariae more rapidly than those achieved by doxycycline. Dose escalation of rifampicin achieves >90% Wolbachia depletion in time periods of 7 days in B. malayi and 14 days in O. ochengi. Using pharmacokinetic-pharmacodynamic modelling and mouse-human bridging analysis, we conclude that clinically relevant dose elevations of rifampicin, which have recently been determined as safe in humans, could be administered as short courses to filariasis target populations with potential to reduce anti-Wolbachia curative therapy times to between one and two weeks.
Collapse
Affiliation(s)
- Ghaith Aljayyoussi
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hayley E Tyrer
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Louise Ford
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Hanna Sjoberg
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicolas Pionnier
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David Waterhouse
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jill Davies
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Joanne Gamble
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Haelly Metuge
- Research Foundation in Tropical Medicine and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Darren A N Cook
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Andrew Steven
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Raman Sharma
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Ana F Guimaraes
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rachel H Clare
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Andrew Cassidy
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Kelly L Johnston
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura Myhill
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Laura Hayward
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Wanji
- Research Foundation in Tropical Medicine and the Environment, Buea, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Joseph D Turner
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Mark J Taylor
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Stephen A Ward
- Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
10
|
Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Sci Rep 2016; 6:35559. [PMID: 27752109 PMCID: PMC5067710 DOI: 10.1038/srep35559] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, induce neutrophilic responses to the human helminth pathogen Onchocerca volvulus. The formation of Neutrophil Extracellular Traps (NETs), has been implicated in anti-microbial defence, but has not been identified in human helminth infection. Here, we demonstrate NETs formation in human onchocerciasis. Extracellular NETs and neutrophils were visualised around O. volvulus in nodules excised from untreated patients but not in nodules from patients treated with the anti-Wolbachia drug, doxycycline. Whole Wolbachia or microspheres coated with a synthetic Wolbachia lipopeptide (WoLP) of the major nematode Wolbachia TLR2/6 ligand, peptidoglycan associated lipoprotein, induced NETosis in human neutrophils in vitro. TLR6 dependency of Wolbachia and WoLP NETosis was demonstrated using purified neutrophils from TLR6 deficient mice. Thus, we demonstrate for the first time that NETosis occurs during natural human helminth infection and demonstrate a mechanism of NETosis induction via Wolbachia endobacteria and direct ligation of Wolbachia lipoprotein by neutrophil TLR2/6.
Collapse
|
11
|
Johnston KL, Ford L, Umareddy I, Townson S, Specht S, Pfarr K, Hoerauf A, Altmeyer R, Taylor MJ. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 4:278-86. [PMID: 25516838 PMCID: PMC4266796 DOI: 10.1016/j.ijpddr.2014.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
There is an urgent need to discover a macrofilaricide for filariasis. The A·WOL approach is to target the Wolbachia bacteria of filarial nematodes. The human pharmacopoeia was screened against Wolbachia for potential repurposing. 69 orally available hits from different drug categories were identified in vitro. In vivo, the tetracyclines, fluoroquinolones and rifamycins were the most active.
Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA). The anti-Wolbachia (A·WOL) Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs) for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases.
Collapse
Affiliation(s)
- Kelly L Johnston
- Filariasis Research Group, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Louise Ford
- Filariasis Research Group, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Indira Umareddy
- CombinatoRx-Singapore Ptd Ltd, 11 Biopolis Way, 138667 Singapore, Singapore
| | - Simon Townson
- Tropical Parasitic Diseases Unit, Northwick Park Institute for Medical Research, Watford Road, Harrow, Middlesex HA1 3UJ, UK
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology & Parasitology, University Hospital of Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology & Parasitology, University Hospital of Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology & Parasitology, University Hospital of Bonn, Sigmund Freud Strasse 25, 53105 Bonn, Germany
| | - Ralf Altmeyer
- CombinatoRx-Singapore Ptd Ltd, 11 Biopolis Way, 138667 Singapore, Singapore ; Institut Pasteur Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, 200031 Shanghai, People's Republic of China
| | - Mark J Taylor
- Filariasis Research Group, Department of Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
12
|
Integrated transcriptomic and proteomic analysis of the global response of Wolbachia to doxycycline-induced stress. ISME JOURNAL 2013; 8:925-37. [PMID: 24152719 PMCID: PMC3960535 DOI: 10.1038/ismej.2013.192] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/12/2013] [Accepted: 09/20/2013] [Indexed: 01/05/2023]
Abstract
The bacterium Wolbachia (order Rickettsiales), representing perhaps the most abundant vertically transmitted microbe worldwide, infects arthropods and filarial nematodes. In arthropods, Wolbachia can induce reproductive alterations and interfere with the transmission of several arthropod-borne pathogens. In addition, Wolbachia is an obligate mutualist of the filarial parasites that cause lymphatic filariasis and onchocerciasis in the tropics. Targeting Wolbachia with tetracycline antibiotics leads to sterilisation and ultimately death of adult filariae. However, several weeks of treatment are required, restricting the implementation of this control strategy. To date, the response of Wolbachia to stress has not been investigated, and almost nothing is known about global regulation of gene expression in this organism. We exposed an arthropod Wolbachia strain to doxycycline in vitro, and analysed differential expression by directional RNA-seq and label-free, quantitative proteomics. We found that Wolbachia responded not only by modulating expression of the translation machinery, but also by upregulating nucleotide synthesis and energy metabolism, while downregulating outer membrane proteins. Moreover, Wolbachia increased the expression of a key component of the twin-arginine translocase (tatA) and a phosphate ABC transporter ATPase (PstB); the latter is associated with decreased susceptibility to antimicrobials in free-living bacteria. Finally, the downregulation of 6S RNA during translational inhibition suggests that this small RNA is involved in growth rate control. Despite its highly reduced genome, Wolbachia shows a surprising ability to regulate gene expression during exposure to a potent stressor. Our findings have general relevance for the chemotherapy of obligate intracellular bacteria and the mechanistic basis of persistence in the Rickettsiales.
Collapse
|
13
|
Khoo CCH, Venard CMP, Fu Y, Mercer DR, Dobson SL. Infection, growth and maintenance of Wolbachia pipientis in clonal and non-clonal Aedes albopictus cell cultures. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:251-260. [PMID: 23113940 DOI: 10.1017/s0007485312000648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Insect cell lines provide useful in vitro models for studying biological systems, including interactions between mosquitoes and obligate intracellular endosymbionts such as Wolbachia pipientis. The Aedes albopictus Aa23 cell line was the first cell line developed to allow examination of Wolbachia infections. However, Wolbachia studies using Aa23 can be complicated by the presence of different cell types in the cell line and the substantial temporal variation in infection level. Two approaches were examined to ameliorate infection variability. In the first approach, multiple Aa23 passaging regimes were tested for an effect on infection variability. Fluorescence in situ hybridization (FISH) staining was used to characterize Wolbachia infection level over time. The results demonstrate an impact of passaging method on Wolbachia infection level, with some methods resulting in loss of infection. None of the passaging methods succeeded in effectively mitigating infection level variation. In a second approach, the clonal C7-10 A. albopictus cell line was infected with Wolbachia from Aa23 cells and Drosophila simulans (Riverside), resulting in cell lines designated C7-10B and C7-10R, respectively. Characterization via FISH staining showed greater stability and uniformity of Wolbachia infection in C7-10R relative to the infection in C7-10B. Characterization of the Aa23, C7-10B and C7-10R lines is discussed as a tool for the study of Wolbachia-host cell interactions.
Collapse
Affiliation(s)
- C C H Khoo
- Department of Entomology, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | | | |
Collapse
|
14
|
Schiefer A, Schmitz A, Schäberle TF, Specht S, Lämmer C, Johnston KL, Vassylyev DG, König GM, Hoerauf A, Pfarr K. Corallopyronin A specifically targets and depletes essential obligate Wolbachia endobacteria from filarial nematodes in vivo. J Infect Dis 2012; 206:249-57. [PMID: 22586066 DOI: 10.1093/infdis/jis341] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Doxycycline and rifampicin deplete essential Wolbachia from filarial nematodes that cause lymphatic filariasis or onchocerciasis, resulting in blocked worm development and death. However, doxycycline is contraindicated for children and pregnant/breastfeeding women, as is rifampicin in the latter group with the additional specter of possible resistance development in Mycobacterium spp. Novel antibiotics with a narrower spectrum would aid in eliminating filarial diseases. Corallococcus coralloides synthesizes corallopyronin A, a noncompetitive inhibitor of RNA polymerase ineffective against Mycobacterium spp. Corallopyronin A depleted Wolbachia from infected insect cells (1.89 Thus the antibiotic is effective against intracellular bacteria despite the many intervening surfaces (blood vessels, pleura, worm cuticle) and membranes (worm cell, vesicle, Wolbachia inner and outer membranes). Corallopyronin A is an antibiotic to develop further for filariasis elimination without concern for cross-resistance development in tuberculosis.
Collapse
Affiliation(s)
- Andrea Schiefer
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hansen RDE, Trees AJ, Bah GS, Hetzel U, Martin C, Bain O, Tanya VN, Makepeace BL. A worm's best friend: recruitment of neutrophils by Wolbachia confounds eosinophil degranulation against the filarial nematode Onchocerca ochengi. Proc Biol Sci 2010; 278:2293-302. [PMID: 21177682 PMCID: PMC3119012 DOI: 10.1098/rspb.2010.2367] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Onchocerca ochengi, a filarial parasite of cattle, represents the closest relative of the human pathogen, Onchocerca volvulus. Both species harbour Wolbachia endosymbionts and are remarkable in that adult female worms remain viable but sessile for many years while surrounded by host cells and antibodies. The basis of the symbiosis between filariae and Wolbachia is thought to be metabolic, although a role for Wolbachia in immune evasion has received little attention. Neutrophils are attracted to Wolbachia, but following antibiotic chemotherapy they are replaced by eosinophils that degranulate on the worm cuticle. However, it is unclear whether the eosinophils are involved in parasite killing or if they are attracted secondarily to dying worms. In this study, cattle infected with Onchocerca ochengi received adulticidal regimens of oxytetracycline or melarsomine. In contrast to oxytetracycline, melarsomine did not directly affect Wolbachia viability. Eosinophil degranulation increased significantly only in the oxytetracycline group; whereas nodular gene expression of bovine neutrophilic chemokines was lowest in this group. Moreover, intense eosinophil degranulation was initially associated with worm vitality, not degeneration. Taken together, these data offer strong support for the hypothesis that Wolbachia confers longevity on O. ochengi through a defensive mutualism, which diverts a potentially lethal effector cell response.
Collapse
Affiliation(s)
- Rowena D E Hansen
- Liverpool School of Tropical Medicine, School of Veterinary Science and Institute of Infection and Global Health, University of Liverpool, , Liverpool L69 7ZJ, UK
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Johnston KL, Wu B, Guimarães A, Ford L, Slatko BE, Taylor MJ. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes. Parasit Vectors 2010; 3:99. [PMID: 20946650 PMCID: PMC2964653 DOI: 10.1186/1756-3305-3-99] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lymphatic filariasis and onchocerciasis are debilitating diseases caused by filarial nematodes. Disease pathogenesis is induced by inflammatory responses following the death of the parasite. Wolbachia endosymbionts of filariae are potent inducers of innate and adaptive inflammation and bacterial lipoproteins have been identified as the ligands that bind toll-like receptors (TLR) 2 and TLR6. Lipoproteins are important structural and functional components of bacteria and therefore enzymes involved in Wolbachia lipoprotein biosynthesis are potential chemotherapeutic targets. RESULTS Globomycin, a signal peptidase II (LspA) inhibitor, has activity against Gram-negative bacteria and a putative lspA gene has been identified from the Wolbachia genome of Brugia malayi (wBm). The amino acids required for function are strictly conserved and functionality was verified by complementation tests in a temperature-sensitive Escherichia coli lspA mutant. Also, transformation of wild type E. coli with Wolbachia lspA conferred significant globomycin resistance. A cell-based screen has been developed utilizing a Wolbachia-containing Aedes albopictus cell line to assay novel compounds active against Wolbachia. Globomycin was screened using this assay, which resulted in a dose-dependent reduction in Wolbachia load. Furthermore, globomycin was also effective in reducing the motility and viability of adult B. malayi in vitro. CONCLUSIONS These studies validate lipoprotein biosynthesis as a target in an organism for which no genetic tools are available. Further studies to evaluate drugs targeting this pathway are underway as part of the A-WOL drug discovery and development program.
Collapse
Affiliation(s)
- Kelly L Johnston
- Filariasis Research Laboratory, Molecular and Biochemical Parasitology Group, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Johnston KL, Taylor MJ. Wolbachia in filarial parasites: targets for filarial infection and disease control. Curr Infect Dis Rep 2010; 9:55-9. [PMID: 17254505 DOI: 10.1007/s11908-007-0023-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes. These nematodes have evolved a mutualistic symbiosis with intracellular bacteria of the genus Wolbachia, which are required for nematode embryogenesis and survival. The essential role of these bacteria in the biology of the nematode and their demonstrated involvement in the pathogenesis of filariasis make Wolbachia a promising novel chemotherapeutic target for the control of filarial infection and disease. This article reviews the recent findings, which highlight potential processes that form the basis of the symbiosis, the role of Wolbachia in filarial pathogenesis, and the efficacy of Wolbachia-targeted antibiotic chemotherapy in human trials. Future prospects for the development of an anti-Wolbachia treatment regimen suitable for integration into mass drug administration programs are also discussed.
Collapse
Affiliation(s)
- Kelly L Johnston
- Filariasis Research Laboratory, Molecular and Biochemical Parasitology, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, UK
| | | |
Collapse
|
18
|
Dingman P, Levy JK, Kramer LH, Johnson CM, Lappin MR, Greiner EC, Courtney CH, Tucker SJ, Morchon R. Association of Wolbachia with heartworm disease in cats and dogs. Vet Parasitol 2010; 170:50-60. [DOI: 10.1016/j.vetpar.2010.01.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/15/2010] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
|
19
|
Henrichfreise B, Schiefer A, Schneider T, Nzukou E, Poellinger C, Hoffmann TJ, Johnston KL, Moelleken K, Wiedemann I, Pfarr K, Hoerauf A, Sahl HG. Functional conservation of the lipid II biosynthesis pathway in the cell wall-less bacteria Chlamydia and Wolbachia: why is lipid II needed? Mol Microbiol 2009; 73:913-23. [PMID: 19656295 DOI: 10.1111/j.1365-2958.2009.06815.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cell division and cell wall biosynthesis in prokaryotes are driven by partially overlapping multiprotein machineries whose activities are tightly controlled and co-ordinated. So far, a number of protein components have been identified and acknowledged as essential for both fundamental cellular processes. Genes for enzymes of both machineries have been found in the genomes of the cell wall-less genera Chlamydia and Wolbachia, raising questions as to the functionality of the lipid II biosynthesis pathway and reasons for its conservation. We provide evidence on three levels that the lipid II biosynthesis pathway is indeed functional and essential in both genera: (i) fosfomycin, an inhibitor of MurA, catalysing the initial reaction in lipid II biosynthesis, has a detrimental effect on growth of Wolbachia cells; (ii) isolated cytoplasmic membranes from Wolbachia synthesize lipid II ex vivo; and (iii) recombinant MraY and MurG from Chlamydia and Wolbachia exhibit in vitro activity, synthesizing lipid I and lipid II respectively. We discuss the hypothesis that the necessity for maintaining lipid II biosynthesis in cell wall-lacking bacteria reflects an essential role of the precursor in prokaryotic cell division. Our results also indicate that the lipid II pathway may be exploited as an antibacterial target for chlamydial and filarial infections.
Collapse
Affiliation(s)
- Beate Henrichfreise
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Filariasis: new drugs and new opportunities for lymphatic filariasis and onchocerciasis. Curr Opin Infect Dis 2008; 21:673-81. [DOI: 10.1097/qco.0b013e328315cde7] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Detection of Wolbachia bacteria in multiple organs and feces of the triatomine insect Rhodnius pallescens (Hemiptera, Reduviidae). Appl Environ Microbiol 2008; 75:547-50. [PMID: 19028913 DOI: 10.1128/aem.01665-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
At least two types of Wolbachia bacteria were detected in wild and insectarium-raised Rhodnius pallescens, a natural vector of Trypanosoma cruzi and Trypanosoma rangeli. Wolbachia was detected in all the organs and tissues studied and in the feces, and this provided a methodological advantage for determining the presence of this endosymbiont in this host, obviating the need to kill the specimens. The occurrence of trypanosomatids in wild individuals was also studied.
Collapse
|