1
|
Mhade S, Kaushik KS. Tools of the Trade: Image Analysis Programs for Confocal Laser-Scanning Microscopy Studies of Biofilms and Considerations for Their Use by Experimental Researchers. ACS OMEGA 2023; 8:20163-20177. [PMID: 37332792 PMCID: PMC10268615 DOI: 10.1021/acsomega.2c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023]
Abstract
Confocal laser-scanning microscopy (CLSM) is the bedrock of the microscopic visualization of biofilms. Previous applications of CLSM in biofilm studies have largely focused on observations of bacterial or fungal elements of biofilms, often seen as aggregates or mats of cells. However, the field of biofilm research is moving beyond qualitative observations alone, toward the quantitative analysis of the structural and functional features of biofilms, across clinical, environmental, and laboratory conditions. In recent times, several image analysis programs have been developed to extract and quantify biofilm properties from confocal micrographs. These tools not only vary in their scope and relevance to the specific biofilm features under study but also with respect to the user interface, compatibility with operating systems, and raw image requirements. Understanding these considerations is important when selecting tools for quantitative biofilm analysis, including at the initial experimental stages of image acquisition. In this review, we provide an overview of image analysis programs for confocal micrographs of biofilms, with a focus on tool selection and image acquisition parameters that are relevant for experimental researchers to ensure reliability and compatibility with downstream image processing.
Collapse
Affiliation(s)
- Shreeya Mhade
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| | - Karishma S Kaushik
- Department
of Biotechnology, Savitribai Phule Pune
University, Pune 411007, India
| |
Collapse
|
2
|
Rubini D, Farisa Banu S, Veda Hari BN, Ramya Devi D, Gowrishankar S, Karutha Pandian S, Nithyanand P. Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin- resistant Staphylococcus aureus. Food Chem Toxicol 2018; 118:733-744. [PMID: 29908268 DOI: 10.1016/j.fct.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 01/24/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus is a major cause of biofilm-associated and indwelling device related infections. The present study explores the anti-virulent and antibiofilm potency of chitosan extracted from the shells of the marine crab Portunus sanguinolentus against Methicillin Resistant Staphylococcus aureus (MRSA). The chemical characterization results revealed that the extracted chitosan (EC) has structural analogy to that of a commercial chitosan (CC). The extracted chitosan was found to be effective in reducing the staphyloxanthin pigment, a characteristic virulence feature of MRSA that promotes resistance to reactive oxygen species. Furthermore, Confocal laser scanning microscope (CLSM) revealed that EC exhibited a phenomenal dose dependent antibiofilm efficacy against mature biofilms of the standard as well as clinical MRSA strains and Scanning Electron Microscopy (SEM) confirmed EC had a higher efficacy in disrupting the thick Exopolysaccharide (EPS) layer than CC. Additionally, EC and CC did not have any cytotoxic effects when tested on lung epithelial cell lines. Thus, the study exemplifies the anti-virulent properties of a marine bioresource which is till date discarded as a biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - B Narayanan Veda Hari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Durai Ramya Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 004, Tamil Nadu, India
| | | | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
3
|
Extracellular polymeric substance architecture influences natural genetic transformation of Acinetobacter baylyi in biofilms. Appl Environ Microbiol 2014; 80:7752-7. [PMID: 25304505 DOI: 10.1128/aem.01984-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic exchange by natural transformation is an important mechanism of horizontal gene transfer in biofilms. Thirty-two biofilm metrics were quantified in a heavily encapsulated Acinetobacter baylyi strain and a miniencapsulated mutant strain, accounting for cellular architecture, extracellular polymeric substances (EPS) architecture, and their combined biofilm architecture. In general, transformation location, abundance, and frequency were more closely correlated to EPS architecture than to cellular or combined architecture. Transformation frequency and transformant location had the greatest correlation with the EPS metric surface area-to-biovolume ratio. Transformation frequency peaked when EPS surface area-to-biovolume ratio was greater than 3 μm(2)/μm(3) and less than 5 μm(2)/μm(3). Transformant location shifted toward the biofilm-bulk fluid interface as the EPS surface area-to-biovolume ratio increased. Transformant biovolume was most closely correlated with EPS biovolume and peaked when transformation occurred in close proximity to the substratum. This study demonstrates that biofilm architecture influences A. baylyi transformation frequency and transformant location and abundance. The major role of EPS may be to facilitate the binding and stabilization of plasmid DNA for cellular uptake.
Collapse
|
4
|
de Melo WCMA, Avci P, de Oliveira MN, Gupta A, Vecchio D, Sadasivam M, Chandran R, Huang YY, Yin R, Perussi LR, Tegos GP, Perussi JR, Dai T, Hamblin MR. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti Infect Ther 2014; 11:669-93. [PMID: 23879608 DOI: 10.1586/14787210.2013.811861] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents.
Collapse
Affiliation(s)
- Wanessa C M A de Melo
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Growth of Myxococcus xanthus in continuous-flow-cell bioreactors as a method for studying development. Appl Environ Microbiol 2014; 80:2461-7. [PMID: 24509931 DOI: 10.1128/aem.03369-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrient sensors and developmental timers are two classes of genes vital to the establishment of early development in the social soil bacterium Myxococcus xanthus. The products of these genes trigger and regulate the earliest events that drive the colony from a vegetative state to aggregates, which ultimately leads to the formation of fruiting bodies and the cellular differentiation of the individual cells. In order to more accurately identify the genes and pathways involved in the initiation of this multicellular developmental program in M. xanthus, we adapted a method of growing vegetative populations within a constant controllable environment by using flow cell bioreactors, or flow cells. By establishing an M. xanthus community within a flow cell, we are able to test developmental responses to changes in the environment with fewer concerns for effects due to nutrient depletion or bacterial waste production. This approach allows for greater sensitivity in investigating communal environmental responses, such as nutrient sensing. To demonstrate the versatility of our growth environment, we carried out time-lapse confocal laser scanning microscopy to visualize M. xanthus biofilm growth and fruiting body development, as well as fluorescence staining of exopolysaccharides deposited by biofilms. We also employed the flow cells in a nutrient titration to determine the minimum concentration required to sustain vegetative growth. Our data show that by using a flow cell, M. xanthus can be held in a vegetative growth state at low nutrient concentrations for long periods, and then, by slightly decreasing the nutrient concentration, cells can be allowed to initiate the developmental program.
Collapse
|
6
|
Bridier A, Briandet R, Bouchez T, Jabot F. A model-based approach to detect interspecific interactions during biofilm development. BIOFOULING 2014; 30:761-771. [PMID: 24963685 DOI: 10.1080/08927014.2014.923409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A model-based approach was developed to detect interspecific interactions during biofilm development. This approach relied on the comparison of experimental data with a simple null model of biofilm growth dynamics where individual species grew independently of one another, except that they competed for space. Such a model was directly parameterized with a 4D confocal image series of biofilms and then used as a null model to detect interspecific interactions between pairs of bacterial species. This approach was tested in two bispecific competitive trials. In the first trial, the progressive exclusion of Pseudomonas fluorescens by Pseudomonas putida appeared to be due solely to the different intrinsic growth rates of the two strains. In contrast, modelling results suggested the presence of interference competition between Pseudomonas aeruginosa and P. putida in mixed biofilms. The authors' approach enables the detection of ecologically relevant interactions which constitute a prerequisite to building a comprehensive view of the dynamics and functioning of spatially structured bacterial communities.
Collapse
|
7
|
Costa JC, Mesquita DP, Amaral AL, Alves MM, Ferreira EC. Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:5887-5912. [PMID: 23716077 DOI: 10.1007/s11356-013-1824-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Quantitative image analysis techniques have gained an undeniable role in several fields of research during the last decade. In the field of biological wastewater treatment (WWT) processes, several computer applications have been developed for monitoring microbial entities, either as individual cells or in different types of aggregates. New descriptors have been defined that are more reliable, objective, and useful than the subjective and time-consuming parameters classically used to monitor biological WWT processes. Examples of this application include the objective prediction of filamentous bulking, known to be one of the most problematic phenomena occurring in activated sludge technology. It also demonstrated its usefulness in classifying protozoa and metazoa populations. In high-rate anaerobic processes, based on granular sludge, aggregation times and fragmentation phenomena could be detected during critical events, e.g., toxic and organic overloads. Currently, the major efforts and needs are in the development of quantitative image analysis techniques focusing on its application coupled with stained samples, either by classical or fluorescent-based techniques. The use of quantitative morphological parameters in process control and online applications is also being investigated. This work reviews the major advances of quantitative image analysis applied to biological WWT processes.
Collapse
Affiliation(s)
- J C Costa
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Universidade do Minho, 4710-057, Braga, Portugal
| | | | | | | | | |
Collapse
|
8
|
Effect of ZnCl2 on plaque growth and biofilm vitality. Arch Oral Biol 2011; 57:369-75. [PMID: 22071420 DOI: 10.1016/j.archoralbio.2011.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/02/2011] [Accepted: 10/06/2011] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects of ZnCl(2) on plaque-growth and vitality pattern of dental biofilm and to determine the optimum zinc concentration for the inhibition of plaque formation. DESIGN Data were collected from nine volunteers for whom a special-designed acrylic appliance was prescribed after a careful dental check up. The volunteers rinsed twice daily for 2min with ZnCl(2) of 2.5, 5, 10, 20mM as treatment and double distilled water (DDW) as control in respective assigned test weeks. The plaque index (PI) was assessed after 48h of appliance wearing. The glass discs with the adhered biofilm were removed from the splints and stained with two fluorescent dyes. The biofilm thickness (BT) and bacterial vitality of the whole biofilm as well as the mean bacterial vitality (BV) of the inner, middle and outer layers of biofilm were evaluated under confocal laser scanning microscope (CLSM). RESULTS PI, BT and BV of biofilms treated by various concentrations of ZnCl(2) were reduced significantly when compared with the DDW group (p<0.05). PI, BT and BV of the 2.5mM ZnCl(2) group was significantly higher than groups of 5, 10, 20mM ZnCl(2) (p<0.05). The mean BV of the 3 layers (inner, middle and outer layers) showed that 2.5mM ZnCl(2) was the lowest concentration to inhibit BV in the outer layer, 5mM was the lowest concentration to extend this inhibition of BV to the middle layer, and none of the concentrations investigated in this study has shown any effect on bacteria inhibition in the inner layer. CONCLUSION Zinc ions exhibited possible inhibitory effects on plaque formation, and have a promising potential to be used as an antibacterial agent in future dentifrices and mouthrinses.
Collapse
|
9
|
Kniggendorf AK, Meinhardt-Wollweber M. Of microparticles and bacteria identification--(resonance) Raman micro-spectroscopy as a tool for biofilm analysis. WATER RESEARCH 2011; 45:4571-4582. [PMID: 21741670 DOI: 10.1016/j.watres.2011.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/28/2011] [Accepted: 06/04/2011] [Indexed: 05/31/2023]
Abstract
Confocal resonance Raman microscopy is a powerful tool for the non-invasive analysis of complex biological aggregates without preparation and prior knowledge of the samples. We present the capabilities of confocal resonance Raman microscopy with a spatial resolution of 350 nm2×2.0 μm and excitation times of 1 s and less per recorded spectrum. Granules sampled from two sequencing batch reactors (SBR) for anaerobic ammonium oxidization (anammox) were regularly mapped in vivo for three months after SBR startup. Uncultured microorganisms and mineral particles were tracked throughout operation and identified in situ by their (resonance) Raman spectra. Co-existing microcolonies of Nitrosomonae formed the outer layer of anammox granules. Polymorph TiO2 microparticles were found embedded in the outer layer of granules overgrown with purple bacteria, indicating bacterial response to the variant toxicity of the mineral phase.
Collapse
Affiliation(s)
- Ann-Kathrin Kniggendorf
- Gottfried Wilhelm Leibniz University of Hannover, Institute of Biophysics, Herrenhäuser Str. 2, 30149 Hannover, Germany.
| | | |
Collapse
|
10
|
Schlapp G, Scavone P, Zunino P, Härtel S. Development of 3D architecture of uropathogenic Proteus mirabilis batch culture biofilms-A quantitative confocal microscopy approach. J Microbiol Methods 2011; 87:234-40. [PMID: 21864585 DOI: 10.1016/j.mimet.2011.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
Abstract
This work studies the development of the 3D architecture of batch culture P. mirabilis biofilms on the basis of morpho-topological descriptors calculated from confocal laser scanning microscopy (CLSM) stacks with image processing routines. A precise architectonical understanding of biofilm organization on a morpho-topological level is necessary to understand emergent interactions with the environment and the appearance of functionally different progeny swarmer cells. P. mirabilis biofilms were grown on glass coverslips for seven days on LB broth and subjected to in situ immunofluorescence. Confocal image stacks were deconvolved prior to segmentation of regions of interest (ROI) that identify individual bacteria and extracellular material, followed by 3D reconstruction and calculation of different morpho-topological key descriptors. Results showed that P. mirabilis biofilm formation followed a five stage process: (i) reversible adhesion to the surface characterized by slow growth, presence of elongated bacteria, and absence of extracellular material, (ii) irreversible bacterial adhesion concomitant to decreasing elongation, and the beginning of extracellular polymer production, (iii) accelerated bacterial growth concomitant to continuously decreasing elongation and halting of extracellular polymer production, (iv) maturation of biofilm defined by maximum bacterial density, volume, minimum elongation, maximum extracellular material, and highest compaction, and (v) decreased bacterial density and extracellular material through detachment and dispersion. Swarmer cells do not play a role in P. mirabilis biofilm formation under the applied conditions. Our approach sets the basis for future studies of 3D biofilm architecture using dynamic in vivo models and different environmental conditions that assess clinical impacts of P. mirabilis biofilm.
Collapse
Affiliation(s)
- G Schlapp
- Department of Microbiology, Instituto de Investigaciones Biológicas Clemente Estable, Avda. Italia 3318, Montevideo, Uruguay
| | | | | | | |
Collapse
|
11
|
Daims H, Wagner M. In situ techniques and digital image analysis methods for quantifying spatial localization patterns of nitrifiers and other microorganisms in biofilm and flocs. Methods Enzymol 2011; 496:185-215. [PMID: 21514465 DOI: 10.1016/b978-0-12-386489-5.00008-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The spatial localization patterns of microorganisms in multispecies biofilms reflect numerous phenomena that influence sessile microbial life, such as substrate concentration gradients within the biofilm and biological interactions with other biofilm populations. Quantitative and population-specific in situ analyses of spatial patterns have a high potential to provide novel insights into the biology of biofilm organisms, including yet uncultured microbes, but such approaches have been developed and used in a few studies only. Here, we outline digital image analysis methods to quantify the coaggregation, mutual avoidance, or random distribution of microbial populations in biofilm and flocs. A protocol is provided for fluorescence in situ hybridization with rRNA-targeted probes, which preserves the three-dimensional biofilm architecture for confocal microscopy and image analysis, and the combined use of these approaches is demonstrated by spatial analyses of nitrifying bacteria in complex biofilm samples.
Collapse
Affiliation(s)
- Holger Daims
- Department of Microbial Ecology, Ecology Center, University of Vienna, Vienna, Austria
| | | |
Collapse
|
12
|
Shapiro JA, Nguyen VL, Chamberlain NR. Evidence for persisters in Staphylococcus epidermidis RP62a planktonic cultures and biofilms. J Med Microbiol 2011; 60:950-960. [PMID: 21415203 DOI: 10.1099/jmm.0.026013-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of Staphylococcus epidermidis in foreign device-related infections is attributed primarily to its ability to form biofilms on a polymer surface. One mechanism proposed for the survival of organisms in a biofilm is the presence of persister cells. Persister cells survive antibiotic treatment without acquiring heritable antibiotic resistance. This study was conducted to determine if S. epidermidis RP62a growing in planktonic cultures and biofilms could survive as persister cells following treatment with levofloxacin and vancomycin. S. epidermidis RP62a produced a small percentage of persisters (levofloxacin, 3.09×10⁻⁷%; vancomycin, 8.21×10⁻⁵ %) when grown to exponential phase, whereas biofilms contained 28 and 94 % persisters, following exposure to levofloxacin and vancomycin, respectively. The highest percentages of persisters were obtained during stationary phase in planktonic cultures and the lowest percentages of persisters were obtained during mid-exponential phase. An increase in persister number was not due to activation of quorum-sensing regulons. Confocal laser scanning microscopy images of biofilms exposed to levofloxacin demonstrated that the antibiotic was able to kill bacteria throughout the biofilm. Our results suggest that antibiotic tolerance in biofilms and in planktonic cultures of S. epidermidis RP62a is due in part to the presence of persister cells.
Collapse
Affiliation(s)
- Julie A Shapiro
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, 800 West Jefferson Street, Kirksville, MO 63501, USA
| | - Valerie L Nguyen
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, 800 West Jefferson Street, Kirksville, MO 63501, USA
| | - Neal R Chamberlain
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, 800 West Jefferson Street, Kirksville, MO 63501, USA
| |
Collapse
|
13
|
Global genotype-phenotype correlations in Pseudomonas aeruginosa. PLoS Pathog 2010; 6:e1001074. [PMID: 20865161 PMCID: PMC2928780 DOI: 10.1371/journal.ppat.1001074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 07/27/2010] [Indexed: 11/19/2022] Open
Abstract
Once the genome sequence of an organism is obtained, attention turns from identifying genes to understanding their function, their organization and control of metabolic pathways and networks that determine its physiology. Recent technical advances in acquiring genome-wide data have led to substantial progress in identifying gene functions. However, we still do not know the function of a large number of genes and, even when a gene product has been assigned to a functional class, we cannot normally predict its contribution to the phenotypic behaviour of the cell or organism--the phenome. In this study, we assessed bacterial growth parameters of 4030 non-redundant PA14 transposon mutants in the pathogenic bacterium Pseudomonas aeruginosa. The genome-wide simultaneous analysis of 119 distinct growth-related phenotypes uncovered a comprehensive phenome and provided evidence that most genotypes are not phenotypically isolated but rather define specific complex phenotypic clusters of genotypes. Since phenotypic overlap was demonstrated to reflect the relatedness of genotypes on a global scale, knowledge of an organism's phenome might significantly contribute to the advancement of functional genomics.
Collapse
|
14
|
Wagner M, Taherzadeh D, Haisch C, Horn H. Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography. Biotechnol Bioeng 2010; 107:844-53. [DOI: 10.1002/bit.22864] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Müsken M, Di Fiore S, Römling U, Häussler S. A 96-well-plate-based optical method for the quantitative and qualitative evaluation of Pseudomonas aeruginosa biofilm formation and its application to susceptibility testing. Nat Protoc 2010; 5:1460-9. [PMID: 20671729 DOI: 10.1038/nprot.2010.110] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A major reason for bacterial persistence during chronic infections is the survival of bacteria within biofilm structures, which protect cells from environmental stresses, host immune responses and antimicrobial therapy. Thus, there is concern that laboratory methods developed to measure the antibiotic susceptibility of planktonic bacteria may not be relevant to chronic biofilm infections, and it has been suggested that alternative methods should test antibiotic susceptibility within a biofilm. In this paper, we describe a fast and reliable protocol for using 96-well microtiter plates for the formation of Pseudomonas aeruginosa biofilms; the method is easily adaptable for antimicrobial susceptibility testing. This method is based on bacterial viability staining in combination with automated confocal laser scanning microscopy. The procedure simplifies qualitative and quantitative evaluation of biofilms and has proven to be effective for standardized determination of antibiotic efficiency on P. aeruginosa biofilms. The protocol can be performed within approximately 60 h.
Collapse
Affiliation(s)
- Mathias Müsken
- Chronic Pseudomonas Infection Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | | | | |
Collapse
|
16
|
Biofilm removal by medical device cleaners: comparison of two bioreactor detection assays. J Hosp Infect 2010; 74:160-7. [DOI: 10.1016/j.jhin.2009.10.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 10/09/2009] [Indexed: 11/20/2022]
|
17
|
Müsken M, Di Fiore S, Dötsch A, Fischer R, Häussler S. Genetic determinants of Pseudomonas aeruginosa biofilm establishment. Microbiology (Reading) 2010; 156:431-441. [DOI: 10.1099/mic.0.033290-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The establishment of bacterial biofilms on surfaces is a complex process that requires various factors for each consecutive developmental step. Here we report the screening of the comprehensive Harvard Pseudomonas aeruginosa PA14 mutant library for mutants exhibiting an altered biofilm phenotype. We analysed the capability of all mutants to form biofilms at the bottom of a 96-well plate by the use of an automated confocal laser-scanning microscope and found 394 and 285 genetic determinants of reduced and enhanced biofilm production, respectively. Overall, 67 % of the identified mutants were affected within genes encoding hypothetical proteins, indicating that novel developmental pathways are likely to be dissected in the future. Nevertheless, a common theme that emerged from the analysis of the genes with a predicted function is that the establishment of a biofilm requires regulatory components that are involved in survival under microaerophilic growth conditions, arginine metabolism, alkyl-quinolone signalling, pH homeostasis and the DNA repair system.
Collapse
Affiliation(s)
- Mathias Müsken
- Chronic Pseudomonas Infection Research Group, Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeck Str. 6, D-52704 Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, D-52704 Aachen, Germany
| | - Andreas Dötsch
- Chronic Pseudomonas Infection Research Group, Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeck Str. 6, D-52704 Aachen, Germany
| | - Susanne Häussler
- Twincore, Center for Experimental and Clinical Infection Research, a joint venture of the Helmholtz Center for Infection Research and the Medical School Hannover, Feodor Lynen Strasse 7, D-30265 Hannover, Germany
- Chronic Pseudomonas Infection Research Group, Helmholtz Center for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
18
|
Pamp SJ, Sternberg C, Tolker-Nielsen T. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry A 2009; 75:90-103. [PMID: 19051241 DOI: 10.1002/cyto.a.20685] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are agglomerates of microorganisms surrounded by a self-produced extracellular matrix. During the last 10 years, there has been an increasing recognition of biofilms as a highly significant topic in microbiology with relevance for a variety of areas in our society including the environment, industry, and human health. Accordingly a number of biofilm model systems, molecular tools, microscopic techniques, and image analysis programs have been employed for the study of biofilms under controlled and reproducible conditions. Studies using confocal laser scanning microscopy (CLSM) of biofilms formed in flow-chamber experimental systems by genetically color-coded bacteria have provided detailed knowledge about biofilm developmental processes, cell differentiations, spatial organization, and function of laboratory-grown biofilms, in some cases down to the single cell level. In addition, the molecular mechanisms underlying the increased tolerance that biofilm cells often display towards antibiotic treatment are beginning to be unravelled.
Collapse
Affiliation(s)
- Sünje Johanna Pamp
- Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark.
| | | | | |
Collapse
|
19
|
Time to “go large” on biofilm research: advantages of an omics approach. Biotechnol Lett 2008; 31:477-85. [DOI: 10.1007/s10529-008-9901-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/02/2008] [Accepted: 12/05/2008] [Indexed: 12/20/2022]
|
20
|
Effect of permeate drag force on the development of a biofouling layer in a pressure-driven membrane separation system. Appl Environ Microbiol 2008; 74:7338-47. [PMID: 18931284 DOI: 10.1128/aem.00631-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of permeate flux on the development of a biofouling layer on cross-flow separation membranes was studied by using a bench-scale system consisting of two replicate 100-molecular-weight-cutoff tubular ultrafiltration membrane modules, one that allowed flow of permeate and one that did not (control). The system was inoculated with Pseudomonas putida S-12 tagged with a red fluorescent protein and was operated using a laminar flow regimen under sterile conditions with a constant feed of diluted (1:75) Luria-Bertani medium. Biofilm development was studied by using field emission scanning electron microscopy and confocal scanning laser microscopy and was subsequently quantified by image analysis, as well as by determining live counts and by permeate flux monitoring. Biofilm development was highly enhanced in the presence of permeate flow, which resulted in the buildup of complex three-dimensional structures on the membrane. Bacterial transport toward the membrane by permeate drag was found to be a mechanism by which cross-flow filtration contributes to the buildup of a biofouling layer that was more dominant than transport of nutrients. Cellular viability was found to be not essential for transport and adhesion under cross-flow conditions, since the permeate drag overcame the effect of bacterial motility.
Collapse
|
21
|
Loehfelm TW, Luke NR, Campagnari AA. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J Bacteriol 2008; 190:1036-44. [PMID: 18024522 PMCID: PMC2223572 DOI: 10.1128/jb.01416-07] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 11/07/2007] [Indexed: 01/01/2023] Open
Abstract
We have identified a homologue to the staphylococcal biofilm-associated protein (Bap) in a bloodstream isolate of Acinetobacter baumannii. The fully sequenced open reading frame is 25,863 bp and encodes a protein with a predicted molecular mass of 854 kDa. Analysis of the nucleotide sequence reveals a repetitive structure consistent with bacterial cell surface adhesins. Bap-specific monoclonal antibody (MAb) 6E3 was generated to an epitope conserved among 41% of A. baumannii strains isolated during a recent outbreak in the U.S. military health care system. Flow cytometry confirms that the MAb 6E3 epitope is surface exposed. Random transposon mutagenesis was used to generate A. baumannii bap1302::EZ-Tn5, a mutant negative for surface reactivity to MAb 6E3 in which the transposon disrupts the coding sequence of bap. Time course confocal laser scanning microscopy and three-dimensional image analysis of actively growing biofilms demonstrates that this mutant is unable to sustain biofilm thickness and volume, suggesting a role for Bap in supporting the development of the mature biofilm structure. This is the first identification of a specific cell surface protein directly involved in biofilm formation by A. baumannii and suggests that Bap is involved in intercellular adhesion within the mature biofilm.
Collapse
Affiliation(s)
- Thomas W Loehfelm
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York 14214, USA
| | | | | |
Collapse
|