1
|
Mettler MK, Espinosa-Ortiz EJ, Goeres DM, Peyton BM. Considerations for testing anti-fouling coatings designed for implementation into Earth-based and spacecraft water systems. BIOFOULING 2025; 41:225-243. [PMID: 40143541 DOI: 10.1080/08927014.2025.2479692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
Biofilms are common in water systems and can lead to mechanical failure or illness of water system users. Methods for evaluating anti-fouling coatings have largely been informed by the medical industry and have not been tailored to industrial or spacecraft water systems. The goal of the paper is to help guide researchers in designing experiments to evaluate coatings that accurately represent the system under investigation. This review identified eight experimental design considerations when evaluating coatings in water systems: biofilm reactor operation, microorganism selection, reinoculation, coating surface area, liquid medium, experiment duration, coating performance evaluation, and the use of microgravity. The impact of each decision made within each of these considerations is presented. Further, the methods featured in eight studies investigating coatings for Earth-based or spacecraft water systems are discussed. This review serves to guide researchers toward improved experimental design to enable successful technology transfer from the lab bench to Earth and beyond.
Collapse
Affiliation(s)
- Madelyn K Mettler
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| | | | - Darla M Goeres
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
| | - Brent M Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, Montana, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
2
|
Paul P, Roy R, Das S, Sarkar S, Chatterjee S, Mallik M, Shukla A, Chakraborty P, Tribedi P. The combinatorial applications of 1,4-naphthoquinone and tryptophan inhibit the biofilm formation of Staphylococcus aureus. Folia Microbiol (Praha) 2023; 68:801-811. [PMID: 37097592 DOI: 10.1007/s12223-023-01054-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
Microorganisms embedded within an extracellular polymeric matrix are known as biofilm. The extensive use of antibiotics to overcome the biofilm-linked challenges has led to the emergence of multidrug-resistant strains. Staphylococcus aureus is one such nosocomial pathogen that is known to cause biofilm-linked infections. Thus, novel strategies have been adopted in this study to inhibit the biofilm formation of S. aureus. Two natural compounds, namely, 1,4-naphthoquinone (a quinone derivative) and tryptophan (aromatic amino acid), have been chosen as they could independently show efficient antibiofilm activity. To enhance the antibiofilm potential, the two compounds were combined and tested against the same organism. Several experiments like crystal violet (CV) assay, protein estimation, extracellular polymeric substance (EPS) extraction, and estimation of metabolic activity confirmed that the combination of the two compounds could significantly inhibit the biofilm formation of S. aureus. To comprehend the underlying mechanism, efforts were further directed to understand whether the two compounds could inhibit biofilm formation by compromising the cell surface hydrophobicity of the bacteria. The results revealed that the cell surface hydrophobicity got reduced by ~ 49% when the compounds were applied together. Thus, the combinations could show enhanced antibiofilm activity by attenuating cell surface hydrophobicity. Further studies revealed that the selected concentrations of the compounds could disintegrate (~ 70%) the pre-existing biofilm of the test bacteria without showing any antimicrobial activity. Hence, the combined application of tryptophan and 1,4-naphthoquinone could be used to inhibit the biofilm threats of S. aureus.
Collapse
Affiliation(s)
- Payel Paul
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Ritwik Roy
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sharmistha Das
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sarita Sarkar
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Sudipta Chatterjee
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Moumita Mallik
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Aditya Shukla
- Department of Microbiology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Poulomi Chakraborty
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India
| | - Prosun Tribedi
- Microbial Ecology Research Laboratory, Department of Biotechnology, The Neotia University, Sarisha, West Bengal, 743368, India.
| |
Collapse
|
3
|
Klopper KB, Bester E, Wolfaardt GM. Listeria monocytogenes Biofilms Are Planktonic Cell Factories despite Peracetic Acid Exposure under Continuous Flow Conditions. Antibiotics (Basel) 2023; 12:antibiotics12020209. [PMID: 36830120 PMCID: PMC9952409 DOI: 10.3390/antibiotics12020209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Listeria monocytogenes biofilms are ubiquitous in the food-processing environment, where they frequently show resistance against treatment with disinfectants such as peracetic acid (PAA) due to sub-lethal damage resulting in biofilm persistence or the formation of secondary biofilms. L. monocytogenes serovar ½a EGD-e biofilms were cultivated under continuous flow conditions at 10 °C, 22 °C, and 37 °C and exposed to industrially relevant PAA concentrations. The effect of PAA on biofilm metabolic activity and biomass was monitored in real-time using the CEMS-BioSpec system, in addition to daily measurement of biofilm-derived planktonic cell production. Biofilm-derived planktonic cell yields proved to be consistent with high yields during biofilm establishment (≥106 CFU.mL-1). The exposure of biofilms to the minimum inhibitory PAA concentration (0.16%) resulted in only a brief disruption in whole-biofilm metabolic activity and biofilm biomass accumulation. The recovered biofilm accumulated more biomass and greater activity, but cell yields remained similar. Increasing concentrations of PAA (0.50%, 1.5%, and 4.0%) had a longer-lasting inhibitory effect. Only the maximum dose resulted in a lasting inhibition of biofilm activity and biomass-a factor that needs due consideration in view of dilution in industrial settings. Better disinfection monitoring tools and protocols are required to adequately address the problem of Listeria biofilms in the food-processing environment, and more emphasis should be placed on biofilms serving as a "factory" for cell proliferation rather than only a survival mechanism.
Collapse
Affiliation(s)
- Kyle B. Klopper
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elanna Bester
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Gideon M. Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Correspondence:
| |
Collapse
|
4
|
Sinclair P, Brackley CA, Carballo-Pacheco M, Allen RJ. Model for Quorum-Sensing Mediated Stochastic Biofilm Nucleation. PHYSICAL REVIEW LETTERS 2022; 129:198102. [PMID: 36399746 DOI: 10.1103/physrevlett.129.198102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Surface-attached bacterial biofilms cause disease and industrial biofouling, as well as being widespread in the natural environment. Density-dependent quorum sensing is one of the mechanisms implicated in biofilm initiation. Here we present and analyze a model for quorum-sensing triggered biofilm initiation. In our model, individual, planktonic bacteria adhere to a surface, proliferate, and undergo a collective transition to a biofilm phenotype. This model predicts a stochastic transition between a loosely attached, finite layer of bacteria near the surface and a growing biofilm. The transition is governed by two key parameters: the collective transition density relative to the carrying capacity and the immigration rate relative to the detachment rate. Biofilm initiation is complex, but our model suggests that stochastic nucleation phenomena may be relevant.
Collapse
Affiliation(s)
- Patrick Sinclair
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Chris A Brackley
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Martín Carballo-Pacheco
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Rosalind J Allen
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- Theoretical Microbial Ecology, Faculty of Biological Sciences, Institute of Microbiology, Friedrich Schiller University Jena, Buchaer Strasse 6, 07745 Jena, Germany
| |
Collapse
|
5
|
Reddersen K, Güllmar A, Tonndorf-Martini S, Sigusch BW, Ewald A, Dauben TJ, Martin K, Wiegand C. Critical parameters in cultivation of experimental biofilms using the example of Pseudomonas fluorescens. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:96. [PMID: 34406486 PMCID: PMC8373757 DOI: 10.1007/s10856-021-06568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Formation and treatment of biofilms present a great challenge for health care and industry. About 80% of human infections are associated with biofilms including biomaterial centered infections, like infections of prosthetic heart valves, central venous catheters, or urinary catheters. Additionally, biofilms can cause food and drinking water contamination. Biofilm research focusses on application of experimental biofilm models to study initial adherence processes, to optimize physico-chemical properties of medical materials for reducing interactions between materials and bacteria, and to investigate biofilm treatment under controlled conditions. Exploring new antimicrobial strategies plays a key role in a variety of scientific disciplines, like medical material research, anti-infectious research, plant engineering, or wastewater treatment. Although a variety of biofilm models exist, there is a lack of standardization for experimental protocols, and designing experimental setups remains a challenge. In this study, a number of experimental parameters critical for material research have been tested that influence formation and stability of an experimental biofilm using the non-pathogenic model strain of Pseudomonas fluorescens. These parameters include experimental time frame, nutrient supply, inoculum concentration, static and dynamic cultivation conditions, material properties, and sample treatment during staining for visualization of the biofilm. It was shown, that all tested parameters critically influence the experimental biofilm formation process. The results obtained in this study shall support material researchers in designing experimental biofilm setups.
Collapse
Affiliation(s)
- Kirsten Reddersen
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Jena, Germany.
| | - André Güllmar
- Poliklinik für Konservierende Zahnheilkunde und Parodontologie, Universitätsklinikum Jena, Jena, Germany
| | - Silke Tonndorf-Martini
- Poliklinik für Konservierende Zahnheilkunde und Parodontologie, Universitätsklinikum Jena, Jena, Germany
| | - Bernd W Sigusch
- Poliklinik für Konservierende Zahnheilkunde und Parodontologie, Universitätsklinikum Jena, Jena, Germany
| | - Andrea Ewald
- Lehrstuhl für Funktionswerkstoffe der Medizin und Zahnheilkunde, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Thomas J Dauben
- Lehrstuhl für Materialwissenschaft, Otto-Schott-Institut für Materialforschung, Jena, Germany
| | - Karin Martin
- Hans-Knöll-Institut, Leibnitz-Institut für Naturstoff-Forschung und Infektionsbiologie, Jena, Germany
| | - Cornelia Wiegand
- Klinik für Hautkrankheiten, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
6
|
Influence of the incubation temperature and total dissolved solids concentration on the biofilm and spore formation of dairy isolates of Geobacillus stearothermophilus. Appl Environ Microbiol 2021; 87:AEM.02311-20. [PMID: 33547059 PMCID: PMC8091125 DOI: 10.1128/aem.02311-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Geobacillus species are an important contaminant in the dairy industry and their presence is often considered as an indicator of poor plant hygiene with the potential to cause spoilage. They can form heat resistant spores that adhere to surfaces of processing equipment and germinate to form biofilms. Therefore, strategies aimed towards preventing or controlling biofilm formation in the dairy industry are desirable. In this study we demonstrate that the preferred temperature for biofilm and spore formation among Geobacillus stearothermophilus A1, D1, P3 and ATCC 12980 was 65°C. Increasing the total dissolved milk solids concentration to 20% (w/v) caused an apparent delay in the onset of biofilm and spore formation to detectable concentrations among all the strains at 55°C. Compared to the onset time of the biofilm formation of A1 in 10% (w/v) reconstituted skim milk, addition of milk protein (whey protein and sodium caseinate) caused an apparent delay in the onset of biofilm formation to detectable concentrations by an average of 10 h at 55°C. This study proposes that temperature and total dissolved solids concentration have a cumulative effect on the biofilm and spore formation of G. stearothermophilus A1, D1, P3 and ATCC 12980. In addition, the findings from this study may indicate that preconditioning of stainless-steel surface with adsorbed milk proteins may delay the onset of biofilm and spore formation of thermophilic bacteria during milk powder manufacture.IMPORTANCE The thermophilic bacilli, Geobacillus stearothermophilus is a predominant spoilage bacterium in milk powder manufacturing plants. If their numbers exceed the accepted levels, this may incur financial loses by lowering the price of the end product. Furthermore, they can form heat resistant spores which adhere to processing surfaces and can germinate to form biofilms. Previously conducted research had highlighted the variation in the spore and biofilm formation among three specific strains of G. stearothermophilus isolated from a milk powder manufacturing plant in New Zealand. The significance of our research is demonstrating the effect of two abiotic factors namely temperature and total dissolved solids concentration on the biofilm and spore formation of these three dairy isolates, leading to modifications in the thermal processing steps aimed towards controlling the biofilm and spore formation of G. stearothermophilus in the dairy industry.
Collapse
|
7
|
Stone W, Louw TM, Booysen MJ, Wolfaardt GM. Canary in the coliform mine: Exploring the industrial application limits of a microbial respiration alarm system. PLoS One 2021; 16:e0247910. [PMID: 33661997 PMCID: PMC7932117 DOI: 10.1371/journal.pone.0247910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/16/2021] [Indexed: 11/18/2022] Open
Abstract
Fundamental ecological principles of ecosystem-level respiration are extensively applied in greenhouse gas and elemental cycle studies. A laboratory system termed CEMS (Carbon Dioxide Evolution Measurement System), developed to explore microbial biofilm growth and metabolic responses, was evaluated as an early-warning system for microbial disturbances in industrial settings: in (a) potable water system contamination, and (b) bioreactor inhibition. Respiration was detected as CO2 production, rather than O2 consumption, including aerobic and anaerobic metabolism. Design, thresholds, and benefits of the remote CO2 monitoring technology were described. Headspace CO2 correlated with contamination levels, as well as chemical (R2 > 0.83-0.96) and microbiological water quality indicators (R2 > 0.78-0.88). Detection thresholds were limiting factors in monitoring drinking water to national and international standards (0 CFU/100 mL fecal coliforms) in both open- (>1500 CFU/mL) and closed-loop CO2 measuring regimes (>100 CFU/100 mL). However, closed-loop detection thresholds allow for the detection of significant contamination events, and monitoring less stringent systems such as irrigation water (<100 CFU/mL). Whole-system respiration was effectively harnessed as an early-warning system in bioreactor performance monitoring. Models were used to deconvolute biological CO2 fluctuations from chemical CO2 dynamics, to optimize this real-time, sustainable, low-waste technology, facilitating timeous responses to biological disturbances in bioreactors.
Collapse
Affiliation(s)
- Wendy Stone
- Water Institute and Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- * E-mail:
| | - Tobi M. Louw
- Department of Process Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Marthinus J. Booysen
- Department of E&E Engineering, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon M. Wolfaardt
- Water Institute and Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
- Department of Chemistry and Biology, Ryerson University, Toronto, Canada
| |
Collapse
|
8
|
Su T, Liu H, Zhang C, Shang D, Wang C, Qiu L. Taisui TS-2007S, a Large Microbial Mat Discovered in Soil in China. Front Microbiol 2020; 11:592034. [PMID: 33281790 PMCID: PMC7690426 DOI: 10.3389/fmicb.2020.592034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
In this study, Taisui TS-2007S, a previously unidentified biological object discovered in soil in China, was identified. TS-2007S was shown to contain abundant carbohydrates but a scarcity of protein, fat, and minerals. The exopolymers of TS-2007S showed FT-IR spectra that were similar to those of xanthan gum (XG) but that were dissimilar to those of polyvinyl alcohol (PVA). The NMR spectra of TS-2007S exopolymers in D2O were similar to those of PVA but differed from those of xanthan gum. Unlike PVA, TS-2007S exopolymers and xanthan gum were not soluble in dimethyl sulfoxide (DMSO). Furthermore, the exopolymers contained many monosaccharide components, including fucose, rhamnose, mannose, and glucuronic acid in a molar ratio of 87.90:7.49:4.45:0.15. The exopolymers also included traces of glucuronic acid, galactose, and xylose. Taken together, these results suggest that the exopolymers are microbial extracellular polymeric substances (EPSs). The microbial community structure in TS-2007S showed that the predominant bacterial, archaeal, and fungal phyla were Proteobacteria, Euryarchaeota, and Ascomycota at high relative abundances of 90.77, 97.15, and 87.43%, respectively, different from those observed in water and soil environments. Based on these results, we strongly propose that TS-2007S should be defined as a microbial mat formed in soil.
Collapse
Affiliation(s)
- Tongfu Su
- College of Sciences, Henan Agricultural University, Zhengzhou, China
| | - Haohao Liu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chaohui Zhang
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Di Shang
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Chaojiang Wang
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
- *Correspondence: Chaojiang Wang,
| | - Liyou Qiu
- Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Liyou Qiu,
| |
Collapse
|
9
|
Klopper KB, de Witt RN, Bester E, Dicks LMT, Wolfaardt GM. Biofilm dynamics: linking in situ biofilm biomass and metabolic activity measurements in real-time under continuous flow conditions. NPJ Biofilms Microbiomes 2020; 6:42. [PMID: 33087727 PMCID: PMC7578832 DOI: 10.1038/s41522-020-00153-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
The tools used to study biofilms generally involve either destructive, end-point analyses or periodic measurements. The advent of the internet of things (IoT) era allows circumvention of these limitations. Here we introduce and detail the development of the BioSpec; a modular, nondestructive, real-time monitoring system, which accurately and reliably track changes in biofilm biomass over time. The performance of the system was validated using a commercial spectrophotometer and produced comparable results for variations in planktonic and sessile biomass. BioSpec was combined with the previously developed carbon dioxide evolution measurement system (CEMS) to allow simultaneous measurement of biofilm biomass and metabolic activity and revealed a differential response of these interrelated parameters to changing environmental conditions. The application of this system can facilitate a greater understanding of biofilm mass-function relationships and aid in the development of biofilm control strategies.
Collapse
Affiliation(s)
- Kyle B Klopper
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Riaan N de Witt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Elanna Bester
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Gideon M Wolfaardt
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa.
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
10
|
Effects of sodium citrate on the structure and microbial community composition of an early-stage multispecies biofilm model. Sci Rep 2020; 10:16585. [PMID: 33024198 PMCID: PMC7538881 DOI: 10.1038/s41598-020-73731-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
In recent years, most biofilm studies have focused on fundamental investigations using multispecies biofilm models developed preferentially in simulated naturally occurring low-nutrient medium than in artificial nutrient-rich medium. Because biofilm development under low-nutrient growth media is slow, natural media are often supplemented with an additional carbon source to increase the rate of biofilm formation. However, there are knowledge gaps in interpreting the effects of such supplementation on the resulting biofilm in terms of structure and microbial community composition. We investigated the effects of supplementation of a simulated freshwater medium with sodium citrate on the resulting structure, bacterial community composition, and microbial network interactions of an early-stage multispecies biofilm model. Qualitative and quantitative analyses of acquired confocal laser scanning microscopy data confirmed that sodium citrate supplementation distinctly increased biofilm biomass. Sequencing data revealed that the microbial community structure of biofilms grown in sodium citrate-supplemented conditions was characterized with increased relative abundance and dominance of Proteobacteria compared with that of biofilms grown in sodium citrate-free conditions. Our findings suggest that the supplementation of a low-nutrient medium with a carbon source in experiments involving multispecies biofilms may lead to structural and compositional biases of the microbial community, causing changes in biofilm phenotype.
Collapse
|
11
|
Chirathanamettu TR, Pawar PD. Quorum sensing-induced phenotypic switching as a regulatory nutritional stress response in a competitive two-species biofilm: An individual-based cellular automata model. J Biosci 2020. [DOI: 10.1007/s12038-020-00092-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Improved understanding of biofilm development by Piscirickettsia salmonis reveals potential risks for the persistence and dissemination of piscirickettsiosis. Sci Rep 2020; 10:12224. [PMID: 32699383 PMCID: PMC7376020 DOI: 10.1038/s41598-020-68990-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 06/30/2020] [Indexed: 02/03/2023] Open
Abstract
Piscirickettsia salmonis is the causative agent of piscirickettsiosis, a disease with high socio-economic impacts for Chilean salmonid aquaculture. The identification of major environmental reservoirs for P. salmonis has long been ignored. Most microbial life occurs in biofilms, with possible implications in disease outbreaks as pathogen seed banks. Herein, we report on an in vitro analysis of biofilm formation by P. salmonis Psal-103 (LF-89-like genotype) and Psal-104 (EM-90-like genotype), the aim of which was to gain new insights into the ecological role of biofilms using multiple approaches. The cytotoxic response of the salmon head kidney cell line to P. salmonis showed interisolate differences, depending on the source of the bacterial inoculum (biofilm or planktonic). Biofilm formation showed a variable-length lag-phase, which was associated with wider fluctuations in biofilm viability. Interisolate differences in the lag phase emerged regardless of the nutritional content of the medium, but both isolates formed mature biofilms from 288 h onwards. Psal-103 biofilms were sensitive to Atlantic salmon skin mucus during early formation, whereas Psal-104 biofilms were more tolerant. The ability of P. salmonis to form viable and mucus-tolerant biofilms on plastic surfaces in seawater represents a potentially important environmental risk for the persistence and dissemination of piscirickettsiosis.
Collapse
|
13
|
Jang H, Eom Y. Repurposing auranofin to combat uropathogenic
Escherichia coli
biofilms. J Appl Microbiol 2019; 127:459-471. [DOI: 10.1111/jam.14312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/27/2019] [Accepted: 05/10/2019] [Indexed: 12/29/2022]
Affiliation(s)
- H.‐I. Jang
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| | - Y.‐B. Eom
- Department of Medical Sciences, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
- Department of Biomedical Laboratory Science, College of Medical Sciences Soonchunhyang University Asan Republic of Korea
| |
Collapse
|
14
|
Farhat NM, Javier L, Van Loosdrecht MCM, Kruithof JC, Vrouwenvelder JS. Role of feed water biodegradable substrate concentration on biofouling: Biofilm characteristics, membrane performance and cleanability. WATER RESEARCH 2019; 150:1-11. [PMID: 30508707 DOI: 10.1016/j.watres.2018.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Biofouling severely impacts operational performance of membrane systems increasing the cost of water production. Understanding the effect of critical parameters of feed water such as biodegradable substrate concentration on the developed biofilm characteristics enables development of more effective biofouling control strategies. In this study, the effect of substrate concentration on the biofilm characteristics was examined using membrane fouling simulators (MFSs). A feed channel pressure drop (PD) increase of 200 mbar was used as a benchmark to study the developed biofilm. The amount and characteristics of the formed biofilm were analysed in relation to membrane performance indicators: feed channel pressure drop and permeate flux. The effect of the characteristics of the biofilm developed at three substrate concentrations on the removal efficiency of the different biofilms was evaluated applying acid/base cleaning. Results showed that a higher feed water substrate concentration caused a higher biomass amount, a faster PD increase, but a lower permeate flux decline. The permeate flux decline was affected by the spatial location and the physical characteristics of the biofilm rather than the total amount of biofilm. The slower growing biofilm developed at the lowest substrate concentration was harder to remove by NaOH/HCl cleanings than the biofilm developed at the higher substrate concentrations. Effective biofilm removal is essential to prevent a fast biofilm regrowth after cleaning. While substrate limitation is a generally accepted biofouling control strategy delaying biofouling, development of advanced cleaning methods to remove biofilms formed under substrate limited conditions is of paramount importance.
Collapse
Affiliation(s)
- N M Farhat
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia.
| | - L Javier
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - M C M Van Loosdrecht
- Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| | - J C Kruithof
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, the Netherlands
| | - J S Vrouwenvelder
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia; Delft University of Technology, Faculty of Applied Sciences, Department of Biotechnology, Van der Maasweg 9, 2629, HZ, Delft, the Netherlands
| |
Collapse
|
15
|
Caschera A, Mistry KB, Bedard J, Ronan E, Syed MA, Khan AU, Lough AJ, Wolfaardt G, Foucher DA. Surface-attached sulfonamide containing quaternary ammonium antimicrobials for textiles and plastics. RSC Adv 2019; 9:3140-3150. [PMID: 35518965 PMCID: PMC9059942 DOI: 10.1039/c8ra10173f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/13/2019] [Indexed: 11/21/2022] Open
Abstract
With the risks associated with healthcare-associated infections and the rise of antibiotic resistant microorganisms, there is an important need to control the proliferation of these factors in hospitals, retirement homes and other institutions. This work explores the development and application of a novel class of sulfonamide-based quaternary ammonium antimicrobial coatings, anchored to commercially and clinically relevant material surfaces. Synthesized in high yields (60–97%), benzophenone-anchored antimicrobials were spray-coated and UV grafted onto plastic surfaces, while silane-anchored variants were adhered to select textiles via dip-coating. Surface modified samples were characterised by advancing contact angle, anionic dye staining, X-ray photoelectron spectroscopy and atomic force microscopy. After verifying coating quality through the above characterization methods, microbiological testing was performed on batch samples in conditions that simulate the natural inoculation of surfaces and objects (solid/air) and water containers (solid/liquid). Using the previously established Large Drop Inoculum (LDI) protocol at solid/air interfaces, all treated samples showed a full reduction (105–107 CFU) of viable Arthrobacter sp., S. aureus, and E. coli after 3 h of contact time. Additional testing of the walls of plastic LDPE vials treated with a UV-cured sulfonamide antimicrobial at a solid/liquid interface using the newly developed Large Reservoir Inoculum (LRI) protocol under static conditions revealed a complete kill (>106 reduction) of Gram-positive Arthrobacter sp., and a partial kill (>104 reduction) of Gram-negative E. coli within 24–48 h of contact. A series of surface attached silane or benzophenone sulfonamide quaternary ammonium antimicrobials show potent efficacy at solid/air and solid/liquid interfaces.![]()
Collapse
Affiliation(s)
- Alexander Caschera
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3
| | - Kamlesh B Mistry
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3
| | - Joseph Bedard
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3
| | - Evan Ronan
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3
| | - Moiz A Syed
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3
| | - Aman U Khan
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3
| | - Alan J Lough
- Department of Chemistry, University of Toronto 80 St. George Street Toronto Ontario Canada M5S 3H6
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3 .,Stellenbosch University Water Institute Secretariat, Faculty of Natural Science, Stellenbosch University South Africa
| | - Daniel A Foucher
- Department of Chemistry and Biology, Ryerson University 350 Victoria Street Toronto Ontario Canada M5B-2K3
| |
Collapse
|
16
|
Pousti M, Joly M, Roberge P, Amirdehi MA, Bégin-Drolet A, Greener J. Linear Scanning ATR-FTIR for Chemical Mapping and High-Throughput Studies of Pseudomonas sp. Biofilms in Microfluidic Channels. Anal Chem 2018; 90:14475-14483. [DOI: 10.1021/acs.analchem.8b04279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mohammad Pousti
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Maxime Joly
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrice Roberge
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Andre Bégin-Drolet
- Département de génie mécanique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jesse Greener
- Département de chimie, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- CHU de Quebec Research Centre, Laval University, 10 rue de l’Espinay, Québec, QC G1L 3L5, Canada
| |
Collapse
|
17
|
Zhang G, Yu L, Liu P, Fan Z, Li T, Chen T, Zhang X. Ammonium removal by native microbes and activated sludge within the Jialu River basin and the associated microbial community structures. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3358-3367. [PMID: 29236015 DOI: 10.2166/wst.2017.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To explore the availability of native microbes and activated sludge for ammonium removal, the native microbes and activated sludge in Jialu River basin were investigated in terms of ammonium-removing activities and their microbial communities using spectrophotometry and high-throughput sequencing. NH4+-N and total nitrogen (TN) in the targeted river ranged from 2.45 ± 1.76 to 8.56 ± 2.54 mg/L and from 3.42 ± 2.79 to 13.49 ± 5.06 mg/L, respectively. Both the native microbes and activated sludge had strong ammonium-removing activities with the removal efficiencies of more than 94%. High-throughput sequencing results indicated that, after five batches of operation, the class Gammaproteobacteria (28.55%), Alphaproteobacteria (14.55%), Betaproteobacteria (13.89%), Acidobacteria (8.82%) and Bacilli (7.04%) were dominated in native community, and there was a predominance of Gammaproteobacteria (21.57%), Betaproteobacteria (16.33%), Acidobacteria (12.41%), Alphaproteobacteria (10.01%), Sphingobacteriia (6.92%) and Bacilli (6.66%) in activated sludge. These two microbial sources were able to remove ammonium, while activated sludge was more cost-effective.
Collapse
Affiliation(s)
- Guangyi Zhang
- School of Water Conservancy and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China E-mail:
| | - Luji Yu
- School of Water Conservancy and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China E-mail:
| | - Panlong Liu
- School of Water Conservancy and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China E-mail:
| | - Zheng Fan
- School of Water Conservancy and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China E-mail:
| | - Tingmei Li
- School of Water Conservancy and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China E-mail:
| | - Tao Chen
- School of Water Conservancy and Environment, Zhengzhou University, Kexue Road 100, Zhengzhou 450001, China E-mail:
| | - Xiaojing Zhang
- Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Henan Province, Zhengzhou 45001, China
| |
Collapse
|
18
|
Ferreira M, Rzhepishevska O, Grenho L, Malheiros D, Gonçalves L, Almeida AJ, Jordão L, Ribeiro IA, Ramstedt M, Gomes P, Bettencourt A. Levofloxacin-loaded bone cement delivery system: Highly effective against intracellular bacteria and Staphylococcus aureus biofilms. Int J Pharm 2017; 532:241-248. [PMID: 28851574 DOI: 10.1016/j.ijpharm.2017.08.089] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is a major pathogen in bone associated infections due to its ability to adhere and form biofilms on bone and/or implants. Moreover, recrudescent and chronic infections have been associated with S. aureus capacity to invade and persist within osteoblast cells. With the growing need of novel therapeutic tools, this research aimed to evaluate some important key biological properties of a novel carrier system composed of acrylic bone cement (polymethylmethacrylate - PMMA), loaded with a release modulator (lactose) and an antibiotic (levofloxacin). Levofloxacin-loaded bone cement (BC) exhibited antimicrobial effects against planktonic and biofilm forms of S. aureus (evaluated by a flow chamber system). Moreover, novel BC formulation showed high anti-bacterial intraosteoblast activity. This fact led to the conclusion that levofloxacin released from BC matrices could penetrate the cell membrane of osteoblasts and be active against S. aureus strains in the intracellular environment. Furthermore, levofloxacin-BC formulations showed no significant in vitro cytotoxicity and no allergic potential (measured by the in vivo chorioallantoic membrane assay). Our results indicate that levofloxacin-loaded BC has potential as a local antibiotic delivery system for treating S. aureus associated bone infections.
Collapse
Affiliation(s)
- Magda Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Porto, Portugal
| | | | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa Jordão
- National Institute of Health Dr Ricardo Jorge, Department of Environmental Health, Lisbon, Portugal
| | - Isabel A Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Pedro Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, U. Porto, Porto, Portugal; REQUIMTE/LAQV - Universidade do Porto, Porto, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
19
|
Pozo G, Lu Y, Pongy S, Keller J, Ledezma P, Freguia S. Selective cathodic microbial biofilm retention allows a high current-to-sulfide efficiency in sulfate-reducing microbial electrolysis cells. Bioelectrochemistry 2017; 118:62-69. [PMID: 28719849 DOI: 10.1016/j.bioelechem.2017.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
Selective microbial retention is of paramount importance for the long-term performance of cathodic sulfate reduction in microbial electrolysis cells (MECs) due to the slow growth rate of autotrophic sulfate-reducing bacteria. In this work, we investigate the biofilm retention and current-to-sulfide conversion efficiency using carbon granules (CG) or multi-wall carbon nanotubes deposited on reticulated vitreous carbon (MWCNT-RVC) as electrode materials. For ~2months, the MECs were operated at sulfate loading rates of 21 to 309gSO4 -S/m2/d. Although MWCNT-RVC achieved a current density of 57±11A/m2, greater than the 32±9A/m2 observed using CG, both materials exhibited similar sulfate reduction rates (SRR), with MWCNT-RVC reaching 104±16gSO4 -S/m2/d while 110±13gSO4 -S/m2/d were achieved with CG. Pyrosequencing analysis of the 16S rRNA at the end of experimentation revealed a core community dominated by Desulfovibrio (28%), Methanobacterium (19%) and Desulfomicrobium (14%), on the MWCNT-RVC electrodes. While a similar Desulfovibrio relative abundance of 29% was found in CG-biofilms, Desulfomicrobium was found to be significantly less abundant (4%) and Methanobacterium practically absent (0.2%) on CG electrodes. Surprisingly, our results show that CG can achieve higher current-to-sulfide efficiencies at lower power consumption than the nano-modified three-dimensional MWCNT-RVC.
Collapse
Affiliation(s)
- Guillermo Pozo
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yang Lu
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| | - Sebastien Pongy
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia; Département Génie Energétique et Environnement, INSA Lyon, 69621 Villeurbanne Cedex, France
| | - Jürg Keller
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| | - Pablo Ledezma
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| | - Stefano Freguia
- Advanced Water Management Centre, the University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
20
|
Rath H, Stumpp SN, Stiesch M. Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials. PLoS One 2017; 12:e0172095. [PMID: 28187188 PMCID: PMC5302373 DOI: 10.1371/journal.pone.0172095] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/31/2017] [Indexed: 11/28/2022] Open
Abstract
Since the introduction of modern dental implants in the 1980s, the number of inserted implants has steadily increased. Implant systems have become more sophisticated and have enormously enhanced patients’ quality of life. Although there has been tremendous development in implant materials and clinical methods, bacterial infections are still one of the major causes of implant failure. These infections involve the formation of sessile microbial communities, called biofilms. Biofilms possess unique physical and biochemical properties and are hard to treat conventionally. There is a great demand for innovative methods to functionalize surfaces antibacterially, which could be used as the basis of new implant technologies. Present, there are few test systems to evaluate bacterial growth on these surfaces under physiological flow conditions. We developed a flow chamber model optimized for the assessment of dental implant materials. As a result it could be shown that biofilms of the five important oral bacteria Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans, can be reproducibly formed on the surface of titanium, a frequent implant material. This system can be run automatically in combination with an appropriate microscopic device and is a promising approach for testing the antibacterial effect of innovative dental materials.
Collapse
Affiliation(s)
- Henryke Rath
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Sascha Nico Stumpp
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department for Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
21
|
Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model. Bull Math Biol 2017; 79:594-618. [PMID: 28127665 DOI: 10.1007/s11538-017-0246-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Abstract
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.
Collapse
|
22
|
Greener J, Parvinzadeh Gashti M, Eslami A, Zarabadi MP, Taghavi SM. A microfluidic method and custom model for continuous, non-intrusive biofilm viscosity measurements under different nutrient conditions. BIOMICROFLUIDICS 2016; 10:064107. [PMID: 27965730 PMCID: PMC5116028 DOI: 10.1063/1.4968522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/09/2016] [Indexed: 05/24/2023]
Abstract
Straight, low-aspect ratio micro flow cells are used to support biofilm attachment and preferential accumulation at the short side-wall, which progressively reduces the effective channel width. The biofilm shifts downstream at measurable velocities under the imposed force from the constant laminar co-flowing nutrient stream. The dynamic behaviour of the biofilm viscosity is modeled semi-analytically, based on experimental measurements of biofilm dimensions and velocity as inputs. The technique advances the study of biofilm mechanical properties by strongly limiting biases related to non-Newtonian biofilm properties (e.g., shear dependent viscosity) with excellent time resolution. To demonstrate the proof of principle, young Pseudomonas sp. biofilms were analyzed under different nutrient concentrations and constant micro-flow conditions. The striking results show that large initial differences in biofilm viscosities grown under different nutrient concentrations become nearly identical in less than one day, followed by a continuous thickening process. The technique verifies that in 50 h from inoculation to early maturation stages, biofilm viscosity could grow by over 2 orders of magnitude. The approach opens the way for detailed studies of mechanical properties under a wide variety of physiochemical conditions, such as ionic strength, temperature, and shear stress.
Collapse
Affiliation(s)
- J Greener
- Department of Chemistry, Université Laval , 1045 Ave. de la Médecine, Québec, Québec G1V 0A6, Canada
| | - M Parvinzadeh Gashti
- Department of Chemistry, Université Laval , 1045 Ave. de la Médecine, Québec, Québec G1V 0A6, Canada
| | - A Eslami
- Department of Chemical Engineering, Université Laval , Québec, Québec G1V 0A6, Canada
| | - M P Zarabadi
- Department of Chemistry, Université Laval , 1045 Ave. de la Médecine, Québec, Québec G1V 0A6, Canada
| | - S M Taghavi
- Department of Chemical Engineering, Université Laval , Québec, Québec G1V 0A6, Canada
| |
Collapse
|
23
|
Amund O. Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria. Can J Microbiol 2016; 62:715-25. [DOI: 10.1139/cjm-2016-0186] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses is crucial probiotic selection criteria. While the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties, such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.
Collapse
Affiliation(s)
- O.D. Amund
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| |
Collapse
|
24
|
Ronan E, Edjiu N, Kroukamp O, Wolfaardt G, Karshafian R. USMB-induced synergistic enhancement of aminoglycoside antibiotics in biofilms. ULTRASONICS 2016; 69:182-190. [PMID: 27111871 DOI: 10.1016/j.ultras.2016.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
This study evaluated the effect of combining antibiotics with ultrasound and microbubbles (USMB) toward the eradication of biofilms. Pseudomonas aeruginosa PAO1 biofilms were treated with the antibiotics gentamicin sulfate or streptomycin sulfate, or a combination of USMB with the respective antibiotics. Biofilm structure was quantified using confocal laser scanning microscopy with COMSTAT analysis, while activity was measured as whole-biofilm CO2 production in a continuous-flow biofilm model. The combined antibiotic-USMB treatment significantly impacted biofilm biomass, thickness and surface roughness compared to antibiotics alone (p<0.05). USMB exposure caused the formation of craters (5-20μm in diameter) in the biofilms, and when combined with gentamicin, activity was significantly lower, compared to gentamicin, USMB or untreated controls, respectively. Interestingly, the CO2 production rate following combined streptomycin-USMB treatment was higher than after streptomycin alone, but significantly lower than USMB alone and untreated control. These results show strong evidence of a synergistic effect between antibiotics and USMB, although the varied response to different antibiotics emphasize the need to optimize the USMB exposure conditions to maximize this synergism and ultimately transfer this technology into clinical or industrial practice.
Collapse
Affiliation(s)
- Evan Ronan
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Narbeh Edjiu
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Gideon Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Raffi Karshafian
- Department of Physics, Ryerson University, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Rodrigues CJC, de Carvalho CCCR. Rhodococcus erythropolis cells adapt their fatty acid composition during biofilm formation on metallic and non-metallic surfaces. FEMS Microbiol Ecol 2015; 91:fiv135. [PMID: 26538565 DOI: 10.1093/femsec/fiv135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2015] [Indexed: 11/13/2022] Open
Abstract
Several parameters are involved in bacterial adhesion and biofilm formation including surface type, medium composition and cellular surface hydrophobicty. When the cells are placed inside tubes, parameters such as oxygen availability should also influence cell adhesion. To understand which cellular lipids are involved in the molecular events of biofilm formation in Rhodococcus erythropolis, cell adhesion was promoted on different metallic and non-metallic surfaces immersed in culture media. These cells were able to modulate the fatty acid composition of the cell membrane in response to both the surface to which they adhered and the growth medium used. To assess the response of the cells to both surfaces and operational conditions, biofilms were also promoted inside a reactor built with five different types of tubes and with medium recirculation. The biofilm biomass could be directly related not to the hydrophobicity of the tubes used but to the oxygen permeability of the tubes. Besides this, cell age influenced the adhesion of the R. erythropolis cells to the tubes. Principal component analysis showed that the lipid composition of the cells could separate cells attached to metallic from those on non-metallic surfaces in the plane formed by PC1 and PC2, and influence biofilm biomass.
Collapse
Affiliation(s)
- Carlos J C Rodrigues
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Carla C C R de Carvalho
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
26
|
Jackson LMD, Kroukamp O, Wolfaardt GM. Effect of carbon on whole-biofilm metabolic response to high doses of streptomycin. Front Microbiol 2015; 6:953. [PMID: 26441887 PMCID: PMC4566048 DOI: 10.3389/fmicb.2015.00953] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/28/2015] [Indexed: 01/10/2023] Open
Abstract
Biofilms typically exist as complex communities comprising multiple species with the ability to adapt to a variety of harsh conditions. In clinical settings, antibiotic treatments based on planktonic susceptibility tests are often ineffective against biofilm infections. Using a CO2 evolution measurement system we delineated the real-time metabolic response in continuous flow biofilms to streptomycin doses much greater than their planktonic susceptibilities. Stable biofilms from a multispecies culture (containing mainly Pseudomonas aeruginosa and Stenotrophomonas maltophilia), Gram-negative environmental isolates, and biofilms formed by pure culture P. aeruginosa strains PAO1 and PAO1 ΔMexXY (minimum planktonic inhibitory concentrations between 1.5 and 3.5 mg/l), were exposed in separate experiments to 4000 mg/l streptomycin for 4 h after which growth medium resumed. In complex medium, early steady state multispecies biofilms were susceptible to streptomycin exposure, inferred by a cessation of CO2 production. However, multispecies biofilms survived high dose exposures when there was extra carbon in the antibiotic medium, or when they were grown in defined citrate medium. The environmental isolates and PAO1 biofilms showed similar metabolic profiles in response to streptomycin; ceasing CO2 production after initial exposure, with CO2 levels dropping toward baseline levels prior to recovery back to steady state levels, while subsequent antibiotic exposure elicited increased CO2 output. Monitoring biofilm metabolic response in real-time allowed exploration of conditions resulting in vulnerability after antibiotic exposure compared to the resistance displayed following subsequent exposures.
Collapse
Affiliation(s)
| | - Otini Kroukamp
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada
| | - Gideon M Wolfaardt
- Department of Chemistry and Biology, Ryerson University, Toronto ON, Canada ; Department of Microbiology, Stellenbosch University Stellenbosch, South Africa
| |
Collapse
|
27
|
Martin NL, Bass P, Liss SN. Antibacterial Properties and Mechanism of Activity of a Novel Silver-Stabilized Hydrogen Peroxide. PLoS One 2015; 10:e0131345. [PMID: 26154263 PMCID: PMC4496041 DOI: 10.1371/journal.pone.0131345] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Huwa-San peroxide (hydrogen peroxide; HSP) is a NSF Standard 60 (maximum 8 mg/L(-1)) new generation peroxide stabilized with ionic silver suitable for continuous disinfection of potable water. Experiments were undertaken to examine the mechanism of HSP against planktonic and biofilm cultures of indicator bacterial strains. Contact/kill time (CT) relationships that achieve effective control were explored to determine the potential utility in primary disinfection. Inhibitory assays were conducted using both nutrient rich media and a medium based on synthetic wastewater. Assays were compared for exposures to three disinfectants (HSP, laboratory grade hydrogen peroxide (HP) and sodium hypochlorite) at concentrations of 20 ppm (therefore at 2.5 and 5 times the NSF limit for HP and sodium hypochlorite, respectively) and at pH 7.0 and 8.5 in dechlorinated tap water. HSP was found to be more or equally effective as hypochlorite or HP. Results from CT assays comparing HSP and HP at different bacterial concentrations with neutralization of residual peroxide with catalase suggested that at a high bacterial concentration HSP, but not HP, was protected from catalase degradation possibly through sequestration by bacterial cells. Consistent with this hypothesis, at a low bacterial cell density residual HSP was more effectively neutralized as less HSP was associated with bacteria and therefore accessible to catalase. Silver in HSP may facilitate this association through electrostatic interactions at the cell surface. This was supported by experiments where the addition of mono (K(+)) and divalent (Ca(+2)) cations (0.005-0.05M) reduced the killing efficacy of HSP but not HP. Experiments designed to distinguish any inhibitory effect of silver from that of peroxide in HSP were carried out by monitoring the metabolic activity of established P. aeruginosa PAO1 biofilms. Concentrations of 70-500 ppm HSP had a pronounced effect on metabolic activity while the equivalent concentrations of ionic silver (50- 375 ppb) had a negligible effect, demonstrating that the microbiocidal activity of HSP was due to peroxide rather than silver. Overall, it was found that the antimicrobial activity of HSP is enhanced over that of hydrogen peroxide; the presence of the ionic silver enhances interactions of HSP with the bacterial cell surface rather than acting directly as a biocide at the tested concentrations.
Collapse
Affiliation(s)
- Nancy L. Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paul Bass
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Steven N. Liss
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
28
|
Aznaveh NB, Safdar M, Wolfaardt G, Greener J. Micropatterned biofilm formations by laminar flow-templating. LAB ON A CHIP 2014; 14:2666-72. [PMID: 24722812 DOI: 10.1039/c4lc00084f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a microfluidic device capable of patterning linear biofilm formations using a flow templating approach. We describe the design considerations and fabrication methodology of a two level flow-templating micro-bioreactor (FT-μBR), which generates a biofilm growth stream surrounded on 3 sides by a growth inhibiting confinement stream. Through a combination of experiments and simulations we comprehensively evaluate and exploit control parameters to manipulate the biofilm growth template stream dimensions. The FT-μBR is then used to grow biofilm patterns with controllable dimensions. A proof-of-principle study using the device demonstrates its utility in conducting biofilm growth rate measurements under different shear stress environments. This opens the way for quantitative studies into the effects of the local shear environment on biofilm properties and for the synthesis of a new generation of functional biomaterials with controllable properties.
Collapse
Affiliation(s)
- Nahid Babaei Aznaveh
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| | | | | | | |
Collapse
|
29
|
Grande R, Nistico L, Sambanthamoorthy K, Longwell M, Iannitelli A, Cellini L, Di Stefano A, Hall Stoodley L, Stoodley P. Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus UAMS-1 biofilm formation and the structural role of extracellular DNA and carbohydrates. Pathog Dis 2014; 70:414-22. [PMID: 24535842 DOI: 10.1111/2049-632x.12158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 11/29/2022] Open
Abstract
Extracellular DNA (eDNA) is an important component of the extracellular polymeric substance matrix and is important in the establishment and persistence of Staphylococcus aureus UAMS-1 biofilms. The aim of the study was to determine the temporal expression of genes involved in early biofilm formation and eDNA production. We used qPCR to investigate expression of agrB, which is associated with secreted virulence factors and biofilm dispersal, cidA, which is associated with biofilm adherence and genomic DNA release, and alsS, which is associated with cell lysis, eDNA release and acid tolerance. The contribution of eDNA to the stability of the biofilm matrix was assessed by digesting with DNase I (Pulmozyme) and quantifying structure by confocal microscopy and comstat image analysis. AgrB expression initially increased at 24 h but then dramatically decreased at 72 h in an inverse relationship to biomass, supporting its role in regulating biofilm dispersal. cidA and alsS expression steadily increased over 72 h, suggesting that eDNA was an important component of early biofilm development. DNase I had no effect on biomass, but did cause the biofilms to become more heterogeneous. Carbohydrates in the matrix appeared to play an important role in structural stability.
Collapse
Affiliation(s)
- Rossella Grande
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Pittsburgh, PA, USA; Department of Pharmacy, University 'G. d'Annunzio', Chieti-Pescara, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Biofilms' role in planktonic cell proliferation. Int J Mol Sci 2013; 14:21965-82. [PMID: 24201127 PMCID: PMC3856045 DOI: 10.3390/ijms141121965] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/10/2013] [Accepted: 10/22/2013] [Indexed: 11/16/2022] Open
Abstract
The detachment of single cells from biofilms is an intrinsic part of this surface-associated mode of bacterial existence. Pseudomonas sp. strain CT07gfp biofilms, cultivated in microfluidic channels under continuous flow conditions, were subjected to a range of liquid shear stresses (9.42 mPa to 320 mPa). The number of detached planktonic cells was quantified from the effluent at 24-h intervals, while average biofilm thickness and biofilm surface area were determined by confocal laser scanning microscopy and image analysis. Biofilm accumulation proceeded at the highest applied shear stress, while similar rates of planktonic cell detachment was maintained for biofilms of the same age subjected to the range of average shear rates. The conventional view of liquid-mediated shear leading to the passive erosion of single cells from the biofilm surface, disregards the active contribution of attached cell metabolism and growth to the observed detachment rates. As a complement to the conventional conceptual biofilm models, the existence of a biofilm surface-associated zone of planktonic cell proliferation is proposed to highlight the need to expand the traditional perception of biofilms as promoting microbial survival, to include the potential of biofilms to contribute to microbial proliferation.
Collapse
|
31
|
Burgess SA, Flint SH, Lindsay D. Characterization of thermophilic bacilli from a milk powder processing plant. J Appl Microbiol 2013; 116:350-9. [PMID: 24119100 DOI: 10.1111/jam.12366] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/18/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022]
Abstract
AIMS To determine whether strains of Geobacillus stearothermophilus isolated from a milk powder manufacturing plant were different in their ability to form biofilms and produce spores. In addition, this study evaluated whether there were other physiological characteristics that could differentiate these strains. METHODS AND RESULTS Ten G. stearothermophilus strains and one Anoxybacillus species were isolated from a milk powder manufacturing plant. A microtitre plate assay was used to show that these strains differed in their abilities to form biofilms and produce spores. Scanning electron microscopy showed differences in the biofilm morphologies of three of the G. stearothermophilus strains. Biochemical profiling, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and fatty acid profiling further showed that they had distinct characteristics. CONCLUSIONS These G. stearothermophilus strains, isolated from the same environment, showed differences in their ability to form biofilms and produce endospores. Based on the multiple characterization methods used in this study, these strains of G. stearothermophilus isolated from one manufacturing plant are diverse. SIGNIFICANCE AND IMPACT OF THE STUDY Differences in the ability of G. stearothermophilus to form biofilms and produce spores may influence the cleaning method used to control the growth of thermophilic bacilli in a dairy processing environment.
Collapse
Affiliation(s)
- S A Burgess
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand.,Fonterra Research and Development Centre, Palmerston North, New Zealand
| | - S H Flint
- Institute of Food, Nutrition and Human Health, Massey University, Palmerston North, New Zealand
| | - D Lindsay
- Fonterra Research and Development Centre, Palmerston North, New Zealand
| |
Collapse
|
32
|
Bonilla-Rosso G, Peimbert M, Alcaraz LD, Hernández I, Eguiarte LE, Olmedo-Alvarez G, Souza V. Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin II: community structure and composition in oligotrophic environments. ASTROBIOLOGY 2012; 12:659-73. [PMID: 22920516 PMCID: PMC3426889 DOI: 10.1089/ast.2011.0724] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Microbial mats are self-sustained, functionally complex ecosystems that make good models for the understanding of past and present microbial ecosystems as well as putative extraterrestrial ecosystems. Ecological theory suggests that the composition of these communities might be affected by nutrient availability and disturbance frequency. We characterized two microbial mats from two contrasting environments in the oligotrophic Cuatro Ciénegas Basin: a permanent green pool and a red desiccation pond. We analyzed their taxonomic structure and composition by means of 16S rRNA clone libraries and metagenomics and inferred their metabolic role by the analysis of functional traits in the most abundant organisms. Both mats showed a high diversity with metabolically diverse members and strongly differed in structure and composition. The green mat had a higher species richness and evenness than the red mat, which was dominated by a lineage of Pseudomonas. Autotrophs were abundant in the green mat, and heterotrophs were abundant in the red mat. When comparing with other mats and stromatolites, we found that taxonomic composition was not shared at species level but at order level, which suggests environmental filtering for phylogenetically conserved functional traits with random selection of particular organisms. The highest diversity and composition similarity was observed among systems from stable environments, which suggests that disturbance regimes might affect diversity more strongly than nutrient availability, since oligotrophy does not appear to prevent the establishment of complex and diverse microbial mat communities. These results are discussed in light of the search for extraterrestrial life.
Collapse
Affiliation(s)
- Germán Bonilla-Rosso
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| | - Mariana Peimbert
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Cuajimalpa, Álvaro Obregón, México D.F., México
| | - Luis David Alcaraz
- Departamento de Genómica y Salud, Centro Superior de Investigación en Salud Pública, Valencia, España
| | - Ismael Hernández
- Departamento de Ingeniería Genética, Cinvestav, Campus Guanajuato, Irapuato, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| | | | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Coyoacán, México D.F., México
| |
Collapse
|
33
|
Bester E, Kroukamp O, Hausner M, Edwards E, Wolfaardt G. Biofilm form and function: carbon availability affects biofilm architecture, metabolic activity and planktonic cell yield. J Appl Microbiol 2010; 110:387-98. [DOI: 10.1111/j.1365-2672.2010.04894.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|