1
|
Xing G, Wang Y, Chen T, Yao Z, Chen J, Xiong J. Biological and ecological consequences of combined biofilm, shellfish and phytoremediation along a wastewater treatment system from shrimp aquafarm. AQUACULTURE 2025; 597:741937. [DOI: 10.1016/j.aquaculture.2024.741937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Liu Y, Guo W, Wei C, Huang H, Nan F, Liu X, Liu Q, Lv J, Feng J, Xie S. Rainfall-induced changes in aquatic microbial communities and stability of dissolved organic matter: Insight from a Fen river analysis. ENVIRONMENTAL RESEARCH 2024; 246:118107. [PMID: 38181848 DOI: 10.1016/j.envres.2024.118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Microbial communities are pivotal in aquatic ecosystems, as they affect water quality, energy dynamics, nutrient cycling, and hydrological stability. This study explored the effects of rainfall on hydrological and photosynthetic parameters, microbial composition, and functional gene profiles in the Fen River. Our results demonstrated that rainfall-induced decreases in stream temperature, dissolved oxygen, pH, total phosphorus, chemical oxygen demand, and dissolved organic carbon concentrations. In contrast, rainfall increased total dissolved solids, salinity, and ammonia-nitrogen concentrations. A detailed microbial community structure analysis revealed that Cyanobacteria was the dominant microbial taxon in the Fen River, accounting for approximately 75% and 25% of the microalgal and bacterial communities, respectively. The abundance of Chlorophyta and Bacillariophyta increased by 47.66% and 29.92%, respectively, whereas the relative abundance of Bacteroidetes decreased by 37.55% under rainfall conditions. Stochastic processes predominantly affected the assembly of the bacterial community on rainy days. Functional gene analysis revealed variations in bacterial functions between sunny (Sun) and rainy (Rain) conditions, particularly in genes associated with the carbon cycle. The 3-oxoacyl-[acyl-carrier-protein] reductase gene was more abundant in the Fen River bacterial community. Particular genes involved in metabolism and environmental information processing, including the acetyl-CoA C-acetyltransferase (atoB), enoyl-CoA hydratase (paaF), and branched-chain amino acid transport system gene (livK), which are integral to environmental information processing, were more abundant in Sun than the Rain conditions. In contrast, the phosphate transport system gene, the galactose metabolic gene, and the pyruvate metabolic gene were more abundant in Rain. The excitation-emission matrix analysis with parallel factor analysis identified four fluorescence components (C1-C4) in the river, which were predominantly protein- (C1) and humic-like (C2-C4) substances. Rainfall affected organic matter production and transport, leading to changes in the degradation and stability of dissolved organic matter. Overall, this study offers insight into how rainfall affects aquatic ecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Weinan Guo
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Caihua Wei
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Hanjie Huang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
3
|
Ji F, Sun Y, Yang Q. Early warning of red tides using bacterial and eukaryotic communities in nearshore waters. ENVIRONMENTAL RESEARCH 2023; 216:114711. [PMID: 36334824 DOI: 10.1016/j.envres.2022.114711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic discharge activities have increased nutrient pollution in coastal areas, leading to algal blooms and microbial community changes. Particularly, microbial communities could easily be affected with variation in nutrient pollution, and thus offered a promising strategy to predict early red tides warning via microbial community-levels variation and their keystone taxa hysteretic responses to nutrient pollution. Herein high-throughput sequencing technology from 52 samples were used to explore the variation of microbial communities and find the significant tipping points with aggravating nutrient conditions in Xiaoping Island coastal area. Results indicated that bacterial and microeukaryote communities were generally spatial and seasonal heterogeneity and were influenced by the different nutrient conditions. Procrustes test results showed that the comprehensive index of organics polluting (OPI), total nitrogen (TN), inorganic nitrogen (DIN), and total phosphorus (TP) were significantly correlated with the composition of bacteria and microeukaryotes. A SEGMENTED analysis revealed that the threshold of TN, DIN, and NH4-N for bacterial community were 0.23 ± 0.091 mg/L, 0.21 ± 0.084 mg/L, 0.09 ± 0.057 mg/L, respectively. Tipping points for TN, DIN, and NH4-N agreed with the concentration during Ceratium tripos and Skeletonema costatum blooms. Co-occurrence network results found that Planktomarina, Acinetobacter, and Verrucomicrobiaceae were keystone and OPI-discriminatory taxa. The abundant changes of Planktomarina at station A1 were significantly correlated with the development of C. tripos blooms (r = 0.55, p < 0.05), and also significantly correlated with TN, DIN, and NO3-N (r≥|0.55|, p < 0.05). The abundant changes of Acinetobacter and Verrucomicrobiaceae at station C1 were significantly correlated with the development of C. tripos blooms (r ≥ 0.77, p < 0.05), and also significantly correlated with PO4-P (r ≥ 0.64, p < 0.05). The dynamic abundance of keystone taxa showed that the trend of rapid changes could be monitored 1.5 months before the occurrence of red tide. Therefore, this study provides an assessment method for early warning of red tide occurrence and factors that trigger red tide.
Collapse
Affiliation(s)
- Fengyun Ji
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China; Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| | - Qing Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, Liaoning Province, 116026, China.
| |
Collapse
|
4
|
Vincent K, Holland-Moritz H, Solon AJ, Gendron EMS, Schmidt SK. Crossing Treeline: Bacterioplankton Communities of Alpine and Subalpine Rocky Mountain Lakes. Front Microbiol 2022; 12:533121. [PMID: 35046907 PMCID: PMC8762171 DOI: 10.3389/fmicb.2021.533121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/23/2021] [Indexed: 01/04/2023] Open
Abstract
From the aboveground vegetation to the belowground microbes, terrestrial communities differ between the highly divergent alpine (above treeline) and subalpine (below treeline) ecosystems. Yet, much less is known about the partitioning of microbial communities between alpine and subalpine lakes. Our goal was to determine whether the composition of bacterioplankton communities of high-elevation mountain lakes differed across treeline, identify key players in driving the community composition, and identify potential environmental factors that may be driving differences. To do so, we compared bacterial community composition (using 16S rDNA sequencing) of alpine and subalpine lakes in the Southern Rocky Mountain ecoregion at two time points: once in the early summer and once in the late summer. In the early summer (July), shortly after peak runoff, bacterial communities of alpine lakes were distinct from subalpine lakes. Interestingly, by the end of the summer (approximately 5 weeks after the first visit in August), bacterial communities of alpine and subalpine lakes were no longer distinct. Several bacterial amplicon sequence variants (ASVs) were also identified as key players by significantly contributing to the community dissimilarity. The community divergence across treeline found in the early summer was correlated with several environmental factors, including dissolved organic carbon (DOC), pH, chlorophyll-a (chl-a), and total dissolved nitrogen (TDN). In this paper, we offer several potential scenarios driven by both biotic and abiotic factors that could lead to the observed patterns. While the mechanisms for these patterns are yet to be determined, the community dissimilarity in the early summer correlates with the timing of increased hydrologic connections with the terrestrial environment. Springtime snowmelt brings the flushing of mountain watersheds that connects terrestrial and aquatic ecosystems. This connectivity declines precipitously throughout the summer after snowmelt is complete. Regional climate change is predicted to bring alterations to precipitation and snowpack, which can modify the flushing of solutes, nutrients, and terrestrial microbes into lakes. Future preservation of the unique alpine lake ecosystem is dependent on a better understanding of ecosystem partitioning across treeline and careful consideration of terrestrial-aquatic connections in mountain watersheds.
Collapse
Affiliation(s)
- Kim Vincent
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Hannah Holland-Moritz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Adam J Solon
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| | - Eli M S Gendron
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, United States
| | - Steven K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States
| |
Collapse
|
5
|
Wang D, Zheng Q, Lv Q, Cai Y, Zheng Y, Chen H, Zhang W. Analysis of Community Composition of Bacterioplankton in Changle Seawater in China by Illumina Sequencing Combined with Bacteria Culture. Orthop Surg 2021; 14:139-148. [PMID: 34816606 PMCID: PMC8755877 DOI: 10.1111/os.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/09/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES To characterize the abundance and relative composition of seawater bacterioplankton communities in Changle city using Illumina MiSeq sequencing and bacterial culture techniques. METHODS Seawater samples and physicochemical factors were collected from the coastal zone of Changle city on 8 September 2019. Nineteen filter membranes were obtained after using a suction filtration system. We randomly selected eight samples for total seawater bacteria (SWDNA group) sequencing and three samples for active seawater bacteria (SWRNA group) sequencing by Illumina MiSeq. The remaining eight samples were used for bacterial culture and identification. Alpha diversity including species coverage (Coverage), species diversity (Shannon-Wiener and Simpson index), richness estimators (Chao1), and abundance-based richness estimation (ACE) were calculated to assess biodiversity of seawater bacterioplankton. Beta diversity was used to evaluate the differences between samples. The species abundance differences were determined using the Wilcoxon rank-sum test. Statistical analyses were performed in R environment. RESULTS The Alpha diversity in the SWDNA group in each index was ACE 3206.99, Chao1 2615.12, Shannon 4.64, Simpson 0.05, and coverage 0.97; the corresponding index was ACE 1199.55, Chao1 934.75, Shannon 3.49, Simpson 0.09, and coverage 0.99. The sequencing results of seawater bacterial genes in the coastal waters of Changle city showed that the phyla of high-abundance bacteria of both the SWDNA and SWRNA groups included Cyanobacteria, Proteobacteria, and Bacteroidetes. The main classes included Oxyphotobacteria, Alphaproteobacteria, and Gammaproteobacteria. The main genera included Synechococcus CC9902, Chloroplast, and Cyanobium_PCC-6307. Beta diversity analysis showed a significant difference between the SWDNA and SWRNA groups (P < 0.05). The species abundance differences between SWDNA and SWRNA groups after Wilcoxon rank-sum test showed that, at the phylum level, Actinomycetes was more abundant in SWDNA group (9.17 vs 1.02%, P < 0.05); at the class level, Actinomycetes (δ- Proteus) was more abundant in SWDNA group (9.47% vs 1.01%, P < 0.05); and at the genus level, Chloroplast was more abundant in SWRNA group (13.07% vs 44.57%, P < 0.05). Nine species and 53 colonies were found by bacterial culture: 20 strains of Vibrio (37.74%), 22 strains of Enterobacter (41.51%), and 11 strains of non-fermentative bacteria (20.75%). CONCLUSION Illumi MiSeq sequencing of seawater bacteria revealed that the total bacterial community groups and the active bacterial community groups mainly comprised Cyanobacteria, Proteobacteria, and Bacteroides at the phylum level; Oxyphotobacteria, α-Proteobacteria, and γ-Proteobacteria at the class level; with Synechococcus_CC9902, Chloroplast, and Cyanobium_PCC-6307 comprising the predominant genera. Exploring the composition and differences of seawater bacteria assists understanding regarding the biodiversity and the infections related to seawater bacteria along the coast of the Changle, provides information that will aid in the diagnosis and treatment of such infections.
Collapse
Affiliation(s)
- Du Wang
- Department of Joint Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Yuanqing Cai
- Department of Joint Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Huidong Chen
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wenming Zhang
- Department of Joint Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Rajeev M, Sushmitha TJ, Aravindraja C, Toleti SR, Pandian SK. Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem. Sci Rep 2021; 11:17341. [PMID: 34462511 PMCID: PMC8405676 DOI: 10.1038/s41598-021-96969-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023] Open
Abstract
Despite accumulating evidence on the impact of global climate warming on marine microbes, how increasing seawater temperature influences the marine bacterioplankton communities is elusive. As temperature gradient created by thermal discharges provides a suitable in situ model to study the influence of warming on marine microorganisms, surface seawater were sampled consecutively for one year (September-2016 to August-2017) from the control (unimpacted) and thermal discharge-impacted areas of a coastal power plant, located in India. The bacterioplankton community differences between control (n = 16) and thermal discharge-impacted (n = 26) areas, as investigated using 16S rRNA gene tag sequencing revealed reduced richness and varied community composition at thermal discharge-impacted areas. The relative proportion of Proteobacteria was found to be higher (average ~ 15%) while, Bacteroidetes was lower (average ~ 10%) at thermal discharge-impacted areas. Intriguingly, thermal discharge-impacted areas were overrepresented by several potential pathogenic bacterial genera (e.g. Pseudomonas, Acinetobacter, Sulfitobacter, Vibrio) and other native marine genera (e.g. Marinobacter, Pseudoalteromonas, Alteromonas, Pseudidiomarina, Halomonas). Further, co-occurrence networks demonstrated that complexity and connectivity of networks were altered in warming condition. Altogether, results indicated that increasing temperature has a profound impact on marine bacterioplankton richness, community composition, and inter-species interactions. Our findings are immensely important in forecasting the consequences of future climate changes especially, ocean warming on marine microbiota.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | - T J Sushmitha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Subba Rao Toleti
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, 603 102, Tamil Nadu, India
| | - Shunmugiah Karutha Pandian
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 003, Tamil Nadu, India.
| |
Collapse
|
7
|
Dai L, Liu C, Peng L, Song C, Li X, Tao L, Li G. Different distribution patterns of microorganisms between aquaculture pond sediment and water. J Microbiol 2021; 59:376-388. [PMID: 33630250 DOI: 10.1007/s12275-021-0635-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/27/2022]
Abstract
Aquatic microorganisms in the sediment and water column are closely related; however, their distribution patterns between these two habitats still remain largely unknown. In this study, we compared sediment and water microeukaryotic and bacterial microorganisms in aquaculture ponds from different areas in China, and analyzed the influencing environmental factors as well as the inter-taxa relationships. We found that bacteria were significantly more abundant than fungi in both sediment and water, and the bacterial richness and diversity in sediment were higher than in water in all the sampling areas, but no significant differences were found between the two habitats for microeukaryotes. Bacterial taxa could be clearly separated through cluster analysis between the sediment and water, while eukaryotic taxa at all classification levels could not. Spirochaetea, Deltaproteobacteria, Nitrospirae, Ignavibacteriae, Firmicutes, Chloroflexi, and Lentimicrobiaceae were more abundantly distributed in sediment, while Betaproteobacteria, Alphaproteobacter, Cyanobacteria, Roseiflexaceae, Dinghuibacter, Cryomorphaceae, and Actinobacteria were more abundant in water samples. For eukaryotes, only Cryptomonadales were found to be distributed differently between the two habitats. Microorganisms in sediment were mainly correlated with enzymes related to organic matter decomposition, while water temperature, pH, dissolved oxygen, and nutrient levels all showed significant correlation with the microbial communities in pond water. Intensive interspecific relationships were also found among eukaryotes and bacteria. Together, our results indicated that eukaryotic microorganisms are distributed less differently between sediment and water in aquaculture ponds compared to bacteria. This study provides valuable data for evaluating microbial distributions in aquatic environments, which may also be of practical use in aquaculture pond management.
Collapse
Affiliation(s)
- Lili Dai
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Chengqing Liu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
- College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, P. R. China
| | - Liang Peng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Chaofeng Song
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Ling Tao
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China
| | - Gu Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 100141, P. R. China.
| |
Collapse
|
8
|
Li N, Chen X, Zhao H, Tang J, Jiang G, Li Z, Li X, Chen S, Zou S, Dong K, Xu Q. Spatial distribution and functional profile of the bacterial community in response to eutrophication in the subtropical Beibu Gulf, China. MARINE POLLUTION BULLETIN 2020; 161:111742. [PMID: 33075697 DOI: 10.1016/j.marpolbul.2020.111742] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
In this study, we investigated the specific bacterial distribution and the response of bacterial communities to shifts in environmental factors in the subtropical Beibu Gulf, southern China. The abundances of Actinobacteria, Bacilli, Planctomycetia, Thermoleophilia, Anaerolineae, and Synechococcophycideae were significantly higher in high eutrophic samples than in medium eutrophic and oligotrophic samples. Bacterial alpha-diversity was found greater in high eutrophication samples than in the other samples. Besides, Ponticaulis koreensis, Nautella italic, Anaerospora hongkongensis, Candidatus Aquiluna rubra, and Roseovarius pacificus were sensitive to trophic variation and thus could be used as eco-markers. In addition, the relative abundances of functional genes involving carbohydrate and amino acid metabolism were very high among the samples. We also found temperature, Chl-a, TDN and NO3- were the main environmental drivers of bacterial community structure. Overall, this study provides new insight into the composition of bacterial community and function response to gradients of eutrophication in Beibu Gulf.
Collapse
Affiliation(s)
- Nan Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xing Chen
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China; College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Huaxian Zhao
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Jinli Tang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Gonglingxia Jiang
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Zhuoting Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Xiaoli Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China
| | - Si Chen
- College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, People's Republic of China
| | - Shuqi Zou
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Ke Dong
- Department of biological sciences, Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16227, South Korea
| | - Qiangsheng Xu
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, 175 East Mingxiu Road, Nanning 530001, Guangxi, People's Republic of China.
| |
Collapse
|
9
|
Du Y, Yang W, Ding X, Zhang J, Zheng Z, Zhu J. High heterogeneity of bacterioplankton community shaped by spatially structured environmental factors in West Lake, a typical urban lake in eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42283-42293. [PMID: 32319051 DOI: 10.1007/s11356-020-08818-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Elucidating the bacterioplankton spatial distribution patterns and its determinants is a central topic in ecological research. However, research on the distribution patterns of bacterioplankton community composition (BCC) within a small-sized, highly dynamic freshwater lake remains unclear. In this study, we collected surface water samples from West Lake to investigate the spatiotemporal variation of BCC by 16S rRNA gene high-throughput sequencing. Clear spatial heterogeneity in BCC was identified both in summer and winter. The relatively high abundant taxa exhibited greater correlations with environmental factors and other abundant species in summer than in winter. Variation partitioning analysis was used to unravel the relative importance of environmental factors and spatial processes and further explore the underlying mechanism of BCC successions. Our results showed the predominant shared effect of environmental and spatial factors on BCC in summer (68.41%) and winter (57.37%), indicating that spatially structured environmental factors were the key determinants of structuring BCC spatial heterogeneity in West Lake in the two seasons. Furthermore, environmental factors alone explained a higher proportion of the variation in summer whereas spatial factors explained a higher proportion in winter. These divergences may be related to seasonal environmental changes and anthropogenic disturbances. Our study provided knowledge on BCC spatial heterogeneity in small freshwater habitats and their underlying determinants in different seasons.
Collapse
Affiliation(s)
- Yi Du
- School of Marine Science, Ningbo University, Ningbo, 315800, China
| | - Wen Yang
- School of Marine Science, Ningbo University, Ningbo, 315800, China
| | - Xiuying Ding
- Hangzhou West Lake Administration, Hangzhou, 310002, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Zhongming Zheng
- School of Marine Science, Ningbo University, Ningbo, 315800, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, Ningbo, 315800, China.
- , Ningbo, China.
| |
Collapse
|
10
|
Wu W, Xu Z, Dai M, Gan J, Liu H. Homogeneous selection shapes free‐living and particle‐associated bacterial communities in subtropical coastal waters. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Wenxue Wu
- School of Marine Sciences Sun Yat‐sen University Zhuhai China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering Sun Yat‐sen University Zhuhai China
| | - Zhimeng Xu
- Department of Ocean Science The Hong Kong University of Science and Technology Kowloon Hong Kong SAR China
| | - Minhan Dai
- State Key Laboratory of Marine Environmental Science Xiamen University Xiamen China
| | - Jianping Gan
- Department of Ocean Science The Hong Kong University of Science and Technology Kowloon Hong Kong SAR China
| | - Hongbin Liu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) Zhuhai China
- Department of Ocean Science The Hong Kong University of Science and Technology Kowloon Hong Kong SAR China
| |
Collapse
|
11
|
Bowman JP. Out From the Shadows - Resolution of the Taxonomy of the Family Cryomorphaceae. Front Microbiol 2020; 11:795. [PMID: 32431677 PMCID: PMC7214798 DOI: 10.3389/fmicb.2020.00795] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
The family Cryomorphaceae for many years has been a poorly defined taxonomic group within the order Flavobacteriales, phylum Bacteroidetes. Members of the Cryomorphaceae, apparently consisting of multiple-family level clades, have been mostly but not exclusively detected in saline ecosystems. The problems with the taxonomy of this group have stemmed from inadequate resolution of taxonomic groups using 16S rRNA gene sequences, sparse numbers of cultivated taxa, and limited phenotypic distinctiveness. The Genome Tiaxonomc Database (GTDB), which is based on normalized taxonomic ranks includes Cryomorphaceae as containing the genera Owenweeksia and Schleiferia. This is at odds with the official taxonomy that places these genera in the family Schleiferiaceae. The other Cryomorphaceae affiliated species have even more uncertain taxonomic positions including Cryomorpha ignava. To clarify the taxonomy of Cryomorphaceae, genomes were generated for all type strains of the family Cryomorphaceae lacking such data. The GTDB-toolkit (GTDB-tk) was used to place taxa in the GTDB, which revealed novelty at the family level for some of these type strains. 16S rRNA gene sequences and concatenated protein sequences were used to further evaluate the taxonomy of the order Flavobacteriales. From the data, the GTDB enabled successful clarification of the taxonomy of the family Cryomorphaceae. A number of placeholder families were given Latinized names. It is proposed that the family Cryomorphaceae is emended to include only the species Cryomorpha ignava. The family Schleiferiaceae is emended to account for the expansion of its membership. Luteibaculum oceani represents a new family designated Luteibaculaceae fam. nov. Vicingus serpentipes is the representative of Vicingaceae fam. nov. while Salibacter halophilus represents Salibacteraceae fam. nov.
Collapse
Affiliation(s)
- John P Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
12
|
Wang J, Yuan S, Tang L, Pan X, Pu X, Li R, Shen C. Contribution of heavy metal in driving microbial distribution in a eutrophic river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:136295. [PMID: 31945533 DOI: 10.1016/j.scitotenv.2019.136295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 05/27/2023]
Abstract
Urban rivers represent an important source of freshwater. Accelerated urban development has resulted in imbalances in the water ecological environment and even eutrophication. Moreover, both natural and anthropogenic sources result in frequent heavy metal pollution in urban rivers. However, the combined impact of eutrophication and heavy metal pollution on the diversity and structure of the river microbial communities has not been adequately addressed. The microbial community distribution and predicted functions were examined in six water and sediment samples from the Laojingshui (LJS) River using metagenomic sequencing. The results showed that there were distinct differences in the microbial composition along the river. Redundancy analysis (RDA) revealed that the redox potential (Eh) was the most influential factor, explaining 76.5% of the variation (p = 0.002), and the heavy metals Zn and Cu explained 4.5 and 3.9%, respectively (p < 0.05). The results revealed that high nitrogen and phosphorus concentrations may have affected the proliferation of opportunistic plant species, such as Eichhornia crassipes, but Eh and heavy metals may have had greater impacts than N and P on the microorganisms in the water and sediment. The sensitivities of Deltaproteobacteria, Acidobacteria, Gemmatimonadetes and Nitrospira were most significant under Zn and Cu contamination when accompanied by eutrophic conditions. The expression ratio of the CYS (Cystain) gene might explain why the spatial distribution of each metal differed. This study suggests that heavy metals in eutrophication water continue to be the main factors determining the composition of microbial community, so the treatment of eutrophic water still needs to attach great importance to the complex pollution of heavy metals.
Collapse
Affiliation(s)
- Jingting Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xiangdong Pan
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Xunchi Pu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ran Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Chao Shen
- Chengdu Engineering Corporation Limited, Power China, Chengdu 610041, China
| |
Collapse
|
13
|
Xuan L, Sheng Z, Lu J, Qiu Q, Chen J, Xiong J. Bacterioplankton community responses and the potential ecological thresholds along disturbance gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134015. [PMID: 31470324 DOI: 10.1016/j.scitotenv.2019.134015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 05/28/2023]
Abstract
Increasing intensity and frequency of coastal pollutions are the trajectory to be expected due to anthropogenic pressures. However, it is still unclear how and to what extent bacterioplankton communities respond to the two factors, despite the functional importance of bacterioplankton in biogeochemical cycles. In this study, significant organic pollution index (OPI) and offshore distance gradients, as respective proxies of disturbance intensity and disturbance frequency, were detected in a regional scale across the East China Sea. A multiple regression on matrices (MRM) revealed that the biogeography of bacterioplankton community depended on spatial scale, which was governed by local characters. Bacterioplankton community compositions (BCCs) were primarily governed by the conjointly direct (-0.28) and indirect (-0.48) effects of OPI, while offshore distance contributed a large indirectly effect (0.52). A SEGMENTED analysis depicted non-linear responses of BCCs to increasing disturbance intensity and disturbance frequency, as evidenced by significant tipping points. This was also true for the dominant bacterial phyla. Notably, we screened 30 OPI-discriminatory taxa that could quantitatively diagnose coastal OPI levels, with an overall 79.3% accuracy. Collectively, the buffer capacity of bacterioplankton communities to increasing disturbance intensity and disturbance frequency is limited, of which the significant tipping points afford a warning line for coastal management. In addition, coastal pollution level can be accurately diagnosed by a few OPI-discriminatory taxa.
Collapse
Affiliation(s)
- Lixia Xuan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Zheliang Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
14
|
Lukwambe B, Zhao L, Nicholaus R, Yang W, Zhu J, Zheng Z. Bacterioplankton community in response to biological filters (clam, biofilm, and macrophytes) in an integrated aquaculture wastewater bioremediation system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113035. [PMID: 31421576 DOI: 10.1016/j.envpol.2019.113035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Integrated systems with appropriate bio-filters can be used to treat aquaculture effluents. However, the information on bio-filters that alters the ecological functions of the bacterioplankton community (BC) in biodegradation of the aquaculture effluents remains controversial. In this study, we implemented a comprehensive restoration technology combined with bio-filters [biofilm, clam (Tegillarca granosa), and macrophytes (Spartina anglica)] to investigate their influence on the stability of the BC and nutrient removal. We found that the diversity of BC was linked with biogeochemical factors in processing and upcycling nitrogen-rich effluents into high-value biomass. The BC exhibited significant distinct patterns in the bio-filter areas. Potential biomarkers for constrained harmfully algae-bacteria (Nitriliruptoraceae, Bacillales, and Rhodobacteraceae) and nutrient removal were significantly higher in the bio-filters areas. The bio-filters significantly promoted the restoration effects of N and P balance by reducing 82.34% of total nitrogen (TN) and 81.64% of total phosphorus (TP) loads at the water interface. The main mechanisms for TN and TP removal and nutrient transformation were achieved by assimilation and absorption by the emergent macrophytes (Spartina anglica). The bio-filters significantly influenced the biodegradability and resolvability of particulate organic matter through ammonification, nitrification, and denitrification of microbes, which meliorated the nutrient removal. Beside bio-filter effects, the BC was significantly controlled by abiotic factors [nitrate (NO3--N), dissolved oxygen (DO), total nitrogen (TN), and water temperature (WT)], and biotic factors (chlorophyll ɑ and green algae). Our study revealed that the co-existence system with bio-filters may greatly improve our understanding on the ecological functions of the BC in aquaculture systems. Overall, combined bio-filters provide an opportunity for the development of efficient and optimized aquaculture wastewater treatment technology.
Collapse
Affiliation(s)
- Betina Lukwambe
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Department of Food Science and Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Li Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Regan Nicholaus
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Department of Natural Sciences, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315832, China.
| |
Collapse
|
15
|
Shi R, Xu S, Qi Z, Zhu Q, Huang H, Weber F. Influence of suspended mariculture on vertical distribution profiles of bacteria in sediment from Daya Bay, Southern China. MARINE POLLUTION BULLETIN 2019; 146:816-826. [PMID: 31426223 DOI: 10.1016/j.marpolbul.2019.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Mariculture is known to contribute to oxygen depletion, pH decline and accumulation of nutrients and organic matter in sediments. However, studies on the bacterial vertical distribution of mariculture area are very limited. The bacterial abundance in the non-culture site (3.8 ± 0.8 × 109 copies g-1) was significantly higher than that in the three mariculture sites (1.2 ± 0.2 × 109 copies g-1), and bacterial diversity in the non-culture site was significantly higher than that in fish cage-TF (p < 0.05). The vertical distribution profiles of bacteria in non-culture and oyster culture sites were similar but very different from that of fish cage-TF. In addition, significant downward trends in bacterial abundance and diversity were observed as sediment depth increased (p < 0.05), and the most relevant environmental factors were moisture content, total nitrogen, total organic carbon and carbon/nitrogen. The dominant bacterial phyla in sediment were Proteobacteria, Chloroflexi and Bacteroidetes.
Collapse
Affiliation(s)
- Rongjun Shi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Shumin Xu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Zhanhui Qi
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China.
| | - Qingzhi Zhu
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| | - Honghui Huang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment and Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, PR China
| | - Felix Weber
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
16
|
Santi I, Tsiola A, Dimitriou PD, Fodelianakis S, Kasapidis P, Papageorgiou N, Daffonchio D, Pitta P, Karakassis I. Prokaryotic and eukaryotic microbial community responses to N and P nutrient addition in oligotrophic Mediterranean coastal waters: Novel insights from DNA metabarcoding and network analysis. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104752. [PMID: 31326679 DOI: 10.1016/j.marenvres.2019.104752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The effects of the abrupt input of high quantities of dissolved inorganic nitrogen and phosphorus on prokaryotic and eukaryotic microbial plankton were investigated in an attempt to simulate the nutrient disturbances caused by eutrophication and climate change. Two nutrient levels were created through the addition of different quantities of dissolved nutrients in a mesocosm experiment. During the developed blooms, compositional differences were found within bacteria and microbial eukaryotes, and communities progressed towards species of faster metabolisms. Regarding the different nutrient concentrations, different microbial species were associated with each nutrient treatment and community changes spanned from the phylum to the operational taxonomic unit (OTU) level. Network analyses revealed important differences in the biotic connections developed: more competitive relationships were established in the more intense nutrient disturbance and networks of contrasting complexity were formed around species of different ecological strategies. This work highlights that sudden disturbances in water column chemistry lead to the development of entirely different microbial food webs with distinct ecological characteristics.
Collapse
Affiliation(s)
- Ioulia Santi
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece; Department of Biology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Anastasia Tsiola
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece; Department of Biology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Panagiotis D Dimitriou
- Department of Biology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Stilianos Fodelianakis
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Panagiotis Kasapidis
- Institute of Marine Biology, Biotechnology & Aquaculture, Hellenic Centre for Marine Research, PO Box 2214, 71003, Heraklion, Crete, Greece
| | - Nafsika Papageorgiou
- Department of Biology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| | - Daniele Daffonchio
- Biological & Environmental Sciences & Engineering Division, King Abdullah University of Science & Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Paraskevi Pitta
- Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), PO Box 2214, Heraklion, 71003, Crete, Greece.
| | - Ioannis Karakassis
- Department of Biology, University of Crete, Voutes Campus, Heraklion, 71003, Crete, Greece
| |
Collapse
|
17
|
Hornick KM, Buschmann AH. Insights into the diversity and metabolic function of bacterial communities in sediments from Chilean salmon aquaculture sites. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1317-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Wiese J, Saha M, Wenzel-Storjohann A, Weinberger F, Schmaljohann R, Imhoff JF. Vicingus serpentipes gen. nov., sp. nov., a new member of the Flavobacteriales from the North Sea. Int J Syst Evol Microbiol 2017; 68:333-340. [PMID: 29205136 DOI: 10.1099/ijsem.0.002509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A new member of the Flavobacteriales was isolated from the surface of a stone collected on the German North Sea shore. The bacterium, strain ANORD5T, is a mesophilic, chemoheterotrophic aerobic, typical marine bacterium. Optimal growth was observed at 20-30 °C, pH 7.0-8.5 and 1-2 % sea salt. The 16S rRNA gene sequence revealed a distant relationship with the representatives of the Cryomorphaceae, with less than 90 % sequence similarity. Strain ANORD5T forms a cluster together with Owenweeksia hongkongensis UST20020801T (89.9 %), Cryomorpha ignava 1-22T (87.9 %), Luteibaculum oceani CC-AMWY-103BT (88.1 %) and Phaeocystidibacter luteus PG2S01T (87.3 %). Strain ANORD5T has a low DNA G+C content (31 mol%). Based on morphological, physiological and phylogenetic data, strain ANORD5T is considered a type strain of a new species and a new genus of the family Cryomorphaceae for which the name Vicingus serpentipes is proposed. The type strain is ANORD5T (=NCIMB 15042T=DSM 103558T=MTCC 12686T).
Collapse
Affiliation(s)
- Jutta Wiese
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Mahasweta Saha
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Benthic Ecology, Hohenbergstraße 2, 24105 Kiel, Germany
| | - Arlette Wenzel-Storjohann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Florian Weinberger
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Benthic Ecology, Hohenbergstraße 2, 24105 Kiel, Germany
| | - Rolf Schmaljohann
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Johannes F Imhoff
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Microbiology, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
19
|
He Y, Sen B, Zhou S, Xie N, Zhang Y, Zhang J, Wang G. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α- Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea. Front Microbiol 2017; 8:1579. [PMID: 28868051 PMCID: PMC5563310 DOI: 10.3389/fmicb.2017.01579] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/03/2017] [Indexed: 11/13/2022] Open
Abstract
Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01) positive correlation with total phosphorus (TP), which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01) influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria) was the dominant one followed by Family II (phylum Cyanobacteria), representing 19.1-55.2% and 2.3-54.2% of total sequences, respectively. An inverse relationship (r = -0.82) was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was probably an indication of their competitive advantage over other bacterioplankton groups in the degradation of anthropogenic inputs. The results provided an evidence of their ecological significance in coastal waters impacted by seasonal inputs of the natural and anthropogenic matter. In conclusion, the findings anticipate future development of effective indicators of coastal health monitoring and subsequent management strategies to control the anthropogenic inputs in the Qinhuangdao coastal waters.
Collapse
Affiliation(s)
- Yaodong He
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Biswarup Sen
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Shuangyan Zhou
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Ningdong Xie
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China
| | - Yongfeng Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Jianle Zhang
- Qinhuangdao Marine Environmental Monitoring Central Station, State Oceanic AdministrationQinhuangdao, China
| | - Guangyi Wang
- Center for Marine Environmental Ecology, School of Environmental Science and Engineering, Tianjin UniversityTianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin UniversityTianjin, China
| |
Collapse
|
20
|
Dai W, Zhang J, Tu Q, Deng Y, Qiu Q, Xiong J. Bacterioplankton assembly and interspecies interaction indicating increasing coastal eutrophication. CHEMOSPHERE 2017; 177:317-325. [PMID: 28319885 DOI: 10.1016/j.chemosphere.2017.03.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/26/2017] [Accepted: 03/09/2017] [Indexed: 06/06/2023]
Abstract
Anthropogenic perturbations impose negative effects on coastal ecosystems, such as increasing levels of eutrophication. Given the biogeochemical significance of microorganisms, understanding the processes and mechanisms underlying their spatial distribution under changing environmental conditions is critical. To address this question, we examined how coastal bacterioplankton communities respond to increasing eutrophication levels created by anthropogenic perturbations. The results showed that the magnitude of changes in the bacterioplankton community compositions (BCCs) and the importance of deterministic processes that constrained bacterial assembly were closely associated with eutrophication levels. Moreover, increasing eutrophication significantly (P < 0.001) attenuated the distance decay rate, with a random spatial distribution of BCCs in the undisturbed location. In contrast, the complexity of interspecies interaction was enhanced under moderate eutrophication levels but declined under heavy eutrophication. Changes in the relative abundances of 27 bacterial families were significantly correlated with eutrophication levels. Notably, the pattern of enrichment or decrease for a given bacterial family was consistent with its known ecological functions. Our findings demonstrate that the magnitude of changes in BCCs and underlying determinism are dependent on eutrophication levels. However, the buffer capacity of bacterioplankton community is limited, with disrupted interspecies interaction occurring under heavy eutrophication. As such, bacterial assemblages are sensitive to changes in environmental conditions and could thus potentially serve as bio-indicators for increasing eutrophication.
Collapse
Affiliation(s)
- Wenfang Dai
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Jinjie Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Qichao Tu
- Department of Marine Sciences, Ocean College, Zhejiang University, Hangzhou, 310058, China
| | - Ye Deng
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, CAS, Beijing, 100085, China
| | - Qiongfen Qiu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, 315211, China.
| |
Collapse
|
21
|
Thiele S, Richter M, Balestra C, Glöckner FO, Casotti R. Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area. Mar Genomics 2017; 32:61-69. [DOI: 10.1016/j.margen.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 01/19/2023]
|
22
|
Seo JH, Kang I, Yang SJ, Cho JC. Characterization of spatial distribution of the bacterial community in the South Sea of Korea. PLoS One 2017; 12:e0174159. [PMID: 28306743 PMCID: PMC5357018 DOI: 10.1371/journal.pone.0174159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/03/2017] [Indexed: 11/18/2022] Open
Abstract
In order to investigate the importance of spatial and environmental factors on the structure and diversity of bacterial communities, high-resolution 16S rRNA gene tag pyrosequencing was applied to bacterial communities in the littoral sea. Seawater samples were prepared from seven different stations in the South Sea of Korea, the marginal sea in the western Pacific Ocean, and were divided into three groups according to distances from the coastline. The majority of 19,860 sequences were affiliated with Alphaproteobacteria (58.2%), Gammaproteobacteria (7.9%), and Bacteroidetes (13.9%). The bacterioplankton community at each station was highly diverse and varied among the samples. Major bacterial lineages showed different niche preferences among three locational groups. Alphaproteobacteria was the most abundant bacterial class, and it harbored the most frequently recorded operational taxonomic units (OTUs) in all sampling stations. However, dominant groups at the order levels showed a clear difference among the samples. The SAR11 clade was more abundant in coastal waters while the Roseobacter clade prevailed at stations far away from the coastline. Furthermore, members of Actinobacteria and Cyanobacteria also exhibited spatial variability. The OM1 clade in Actinobacteria constituted a predominant fraction in coastal samples, but it was essentially absent at the distal stations closer to open ocean. In contrast, Synechococcus was the predominant taxon in the distal samples, accounting for 7.1–19.5%, but was hardly detected in coastal waters, representing less than 0.7%. In Bacteroidetes, NS5 and NS9 groups tended to inhabit coastal waters while the genera Polaribacter and Ulvibacter were more abundant in distal stations. Clustering analysis and principle coordinates analysis based on OTU data indicated that bacterial communities in the studied area were separated into three groups that coincided with locational grouping. Statistical analysis showed that phosphate and dissolved oxygen concentration had a significant influence on the bacterial community composition.
Collapse
Affiliation(s)
- Ji-Hui Seo
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Seung-Jo Yang
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
23
|
Liu S, Wawrik B, Liu Z. Different Bacterial Communities Involved in Peptide Decomposition between Normoxic and Hypoxic Coastal Waters. Front Microbiol 2017; 8:353. [PMID: 28326069 PMCID: PMC5339267 DOI: 10.3389/fmicb.2017.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Proteins and peptides are key components of the labile dissolved organic matter pool in marine environments. Knowing which types of bacteria metabolize peptides can inform the factors that govern peptide decomposition and further carbon and nitrogen remineralization in marine environments. A 13C-labeled tetrapeptide, alanine-valine-phenylalanine-alanine (AVFA), was added to both surface (normoxic) and bottom (hypoxic) seawater from a coastal station in the northern Gulf of Mexico for a 2-day incubation experiment, and bacteria that incorporated the peptide were identified using DNA stable isotope probing (SIP). The decomposition rate of AVFA in the bottom hypoxic seawater (0.018–0.035 μM h-1) was twice as fast as that in the surface normoxic seawater (0.011–0.017 μM h-1). SIP experiments indicated that incorporation of 13C was highest among the Flavobacteria, Sphingobacteria, Alphaproteobacteria, Acidimicrobiia, Verrucomicrobiae, Cyanobacteria, and Actinobacteria in surface waters. In contrast, highest 13C-enrichment was mainly observed in several Alphaproteobacteria (Thalassococcus, Rhodobacteraceae, Ruegeria) and Gammaproteobacteria genera (Colwellia, Balneatrix, Thalassomonas) in the bottom water. These data suggest that a more diverse group of both oligotrophic and copiotrophic bacteria may be involved in metabolizing labile organic matter such as peptides in normoxic coastal waters, and several copiotrophic genera belonging to Alphaproteobacteria and Gammaproteobacteria and known to be widely distributed may contribute to faster peptide decomposition in the hypoxic waters.
Collapse
Affiliation(s)
- Shuting Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas TX, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, The University of Oklahoma, Norman OK, USA
| | - Zhanfei Liu
- Marine Science Institute, The University of Texas at Austin, Port Aransas TX, USA
| |
Collapse
|
24
|
Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Appl Microbiol Biotechnol 2016; 100:9683-9697. [PMID: 27557722 DOI: 10.1007/s00253-016-7802-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/09/2016] [Accepted: 08/09/2016] [Indexed: 12/22/2022]
Abstract
There are close exchanges between sediment and water in estuaries; however, the patterns of prokaryotic community assembly in these two habitat types are still unclear. This study investigated the bacterial and archaeal abundance, diversity, and community composition in the sediment and the overlying water of the Yellow River estuary. Notably higher prokaryotic abundance and diversity were detected in the sediment than in the water, and bacterial abundance and diversity were remarkably higher than those of archaea. Furthermore, the ratio of bacterial to archaeal 16S rRNA gene abundance was significantly lower in the sediment than in the water. Bacterial communities at different taxonomic levels were apparently distinct between the sediment and water, but archaeal communities were not. The most dominant bacteria were affiliated with Deltaproteobacteria and Gammaproteobacteria in sediment and with Alphaproteobacteria and Betaproteobacteria in water. Euryarchaeota and Thaumarchaeota were the most abundant archaea in both habitats. Although distinct prokaryotic distribution patterns were observed, most of the dominant bacteria and archaea present were related to carbon, nitrogen, and sulfur cycling processes, such as methanogenesis, ammonia oxidation, and sulfate reduction. Unexpectedly, prokaryotes from the water showed a higher sensitivity to environmental factors, while only a few factors affected sediment communities. Additionally, some potential co-occurrence relationships between prokaryotes were also found in this study. These results suggested distinct distribution patterns of bacterial and archaeal communities between sediment and overlying water in this important temperate estuary, which may serve as a useful community model for the further ecological and evolutionary study of prokaryotes in estuarine ecosystems.
Collapse
|
25
|
Cardona E, Gueguen Y, Magré K, Lorgeoux B, Piquemal D, Pierrat F, Noguier F, Saulnier D. Bacterial community characterization of water and intestine of the shrimp Litopenaeus stylirostris in a biofloc system. BMC Microbiol 2016; 16:157. [PMID: 27435866 PMCID: PMC4952143 DOI: 10.1186/s12866-016-0770-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 07/12/2016] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Biofloc technology (BFT), a rearing method with little or no water exchange, is gaining popularity in aquaculture. In the water column, such systems develop conglomerates of microbes, algae and protozoa, together with detritus and dead organic particles. The intensive microbial community presents in these systems can be used as a pond water quality treatment system, and the microbial protein can serve as a feed additive. The current problem with BFT is the difficulty of controlling its bacterial community composition for both optimal water quality and optimal shrimp health. The main objective of the present study was to investigate microbial diversity of samples obtained from different culture environments (Biofloc technology and clear seawater) as well as from the intestines of shrimp reared in both environments through high-throughput sequencing technology. RESULTS Analyses of the bacterial community identified in water from BFT and "clear seawater" (CW) systems (control) containing the shrimp Litopenaeus stylirostris revealed large differences in the frequency distribution of operational taxonomic units (OTUs). Four out of the five most dominant bacterial communities were different in both culture methods. Bacteria found in great abundance in BFT have two principal characteristics: the need for an organic substrate or nitrogen sources to grow and the capacity to attach to surfaces and co-aggregate. A correlation was found between bacteria groups and physicochemical and biological parameters measured in rearing tanks. Moreover, rearing-water bacterial communities influenced the microbiota of shrimp. Indeed, the biofloc environment modified the shrimp intestine microbiota, as the low level (27 %) of similarity between intestinal bacterial communities from the two treatments. CONCLUSION This study provides the first information describing the complex biofloc microbial community, which can help to understand the environment-microbiota-host relationship in this rearing system.
Collapse
Affiliation(s)
- Emilie Cardona
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
- />Ifremer, Unité de recherche Lagons, Ecosystèmes et Aquaculture Durable en Nouvelle Calédonie, Nouméa, New Caledonia
| | - Yannick Gueguen
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
- />Ifremer, UMR 5244 IHPE, UPVD, CNRS, Université de Montpellier, F-34095 Montpellier, France
| | - Kevin Magré
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
| | - Bénédicte Lorgeoux
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
| | - David Piquemal
- />ACOBIOM, 1682 rue de la Valsière, Cap Delta - CS77394, 34184 Montpellier Cedex 4, France
| | - Fabien Pierrat
- />ACOBIOM, 1682 rue de la Valsière, Cap Delta - CS77394, 34184 Montpellier Cedex 4, France
| | - Florian Noguier
- />ACOBIOM, 1682 rue de la Valsière, Cap Delta - CS77394, 34184 Montpellier Cedex 4, France
| | - Denis Saulnier
- />Ifremer, UMR 241 EIO, UPF-ILM-IRD, Labex Corail, B.P. 7004, 98719 Taravao, Tahiti French Polynesia
| |
Collapse
|
26
|
He P, Li L, Liu J, Bai Y, Fang X. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea. FEMS Microbiol Lett 2016; 363:fnw086. [DOI: 10.1093/femsle/fnw086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2016] [Indexed: 11/14/2022] Open
|
27
|
Xiong J, Chen H, Hu C, Ye X, Kong D, Zhang D. Evidence of bacterioplankton community adaptation in response to long-term mariculture disturbance. Sci Rep 2015; 5:15274. [PMID: 26471739 PMCID: PMC4607939 DOI: 10.1038/srep15274] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/21/2015] [Indexed: 11/21/2022] Open
Abstract
Understanding the underlying mechanisms that shape the temporal dynamics of a microbial community has important implications for predicting the trajectory of an ecosystem’s response to anthropogenic disturbances. Here, we evaluated the seasonal dynamics of bacterioplankton community composition (BCC) following more than three decades of mariculture disturbance in Xiangshan Bay. Clear seasonal succession and site (fish farm and control site) separation of the BCC were observed, which were primarily shaped by temperature, dissolved oxygen and sampling time. However, the sensitive bacterial families consistently changed in relative abundance in response to mariculture disturbance, regardless of the season. Temporal changes in the BCC followed the time-decay for similarity relationship at both sites. Notably, mariculture disturbance significantly (P < 0.001) flattened the temporal turnover but intensified bacterial species-to-species interactions. The decrease in bacterial temporal turnover under long-term mariculture disturbance was coupled with a consistent increase in the percentage of deterministic processes that constrained bacterial assembly based on a null model analysis. The results demonstrate that the BCC is sensitive to mariculture disturbance; however, a bacterioplankton community could adapt to a long-term disturbance via attenuating temporal turnover and intensifying species-species interactions. These findings expand our current understanding of microbial assembly in response to long-term anthropogenic disturbances.
Collapse
Affiliation(s)
- Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| | - Heping Chen
- Faculty of Architectural and Civil Engineering and Environment, Ningbo University, Ningbo, 315211, China
| | - Changju Hu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiansen Ye
- Marine Environmental Monitoring Center of Ningbo, State Oceanic Administration (SOA), Ningbo, 315040, China
| | - Dingjiang Kong
- Marine Environmental Monitoring Center of Ningbo, State Oceanic Administration (SOA), Ningbo, 315040, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, 315211, China
| |
Collapse
|
28
|
Wang K, Ye X, Chen H, Zhao Q, Hu C, He J, Qian Y, Xiong J, Zhu J, Zhang D. Bacterial biogeography in the coastal waters of northern Zhejiang, East China Sea is highly controlled by spatially structured environmental gradients. Environ Microbiol 2015; 17:3898-913. [PMID: 25912020 DOI: 10.1111/1462-2920.12884] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/29/2015] [Accepted: 04/16/2015] [Indexed: 11/30/2022]
Abstract
The underlying mechanisms of microbial community assembly in connective coastal environments are unclear. The coastal water area of northern Zhejiang, East China Sea, is a complex marine ecosystem with multiple environmental gradients, where the distributions and determinants of bacterioplankton communities remain unclear. We collected surface water samples from 95 sites across eight zones in this area for investigating bacterial community with 16S rRNA gene high-throughput sequencing. Bacterial alpha-diversity exhibits strong associations with water chemical parameters and latitude, with 75.5% of variation explained by suspended particle. The composition of dominant phyla can group the sampling sites into four bacterial provinces, and most key discriminant phyla and families/genera of each province strongly associate with specific environmental features, suggesting that local environmental conditions shape the biogeographic provincialism of bacterial taxa. At a broader and finer phylogenetic scale, bacterial beta-diversity is dominantly explained by the shared variation of environmental and spatial factors (63.3%); meanwhile, the environmental determinants of bacterial β-diversity generally exhibit spatially structured patterns, suggesting that bacterial assembly in surface water is highly controlled by spatially structured environmental gradients in this area. This study provides evidence for the unique biogeographic pattern of bacterioplankton communities at an entire scale of this marine ecosystem.
Collapse
Affiliation(s)
- Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, China
| | - Xiansen Ye
- Marine Environmental Monitoring Center of Ningbo, SOA, Ningbo, 315012, China
| | - Heping Chen
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, 315211, China
| | - Qunfen Zhao
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Changju Hu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiaying He
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yunxia Qian
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, China
| | - Jianlin Zhu
- Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo, 315211, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, China
| |
Collapse
|
29
|
Sanz-Lázaro C, Fodelianakis S, Guerrero-Meseguer L, Marín A, Karakassis I. Effects of organic pollution on biological communities of marine biofilm on hard substrata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 201:17-25. [PMID: 25752833 DOI: 10.1016/j.envpol.2015.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
We examined the effect of organic enrichment on diatom and bacterial assemblages of marine epilithic biofilms on two locations in the Mediterranean, one situated in Spain and the other in Greece. Total organic carbon, total organic nitrogen, stable isotopes (δ(13)C and δ(15)N) and chlorophyll a indicated significant incorporation of organic wastes, increased primary production and trophic niche modifications on the biofilms close to the organic enrichment source. In Spain, where the organic load was higher than in Greece, diatom and, to some extent, bacterial assemblages varied following the organic enrichment gradient. The taxonomic richness of diatom and bacterial communities was not influenced by organic enrichment. Classical community parameters showed consistent patterns to organic pollution in both locations, whereas community assemblages were only influenced when organic pollution was greatest. The successional patterns of these communities were similar to other epilithic communities. The modification of community assemblages induced by organic pollution may affect ecological functions.
Collapse
Affiliation(s)
- C Sanz-Lázaro
- Biology Department, University of Crete, PO Box 2208, 71409 Heraklion, Crete, Greece; Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | - S Fodelianakis
- Biology Department, University of Crete, PO Box 2208, 71409 Heraklion, Crete, Greece
| | - L Guerrero-Meseguer
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - A Marín
- Departamento de Ecología e Hidrología, Facultad de Biología, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | - I Karakassis
- Biology Department, University of Crete, PO Box 2208, 71409 Heraklion, Crete, Greece
| |
Collapse
|
30
|
Meziti A, Kormas KA, Moustaka-Gouni M, Karayanni H. Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area. Syst Appl Microbiol 2015; 38:358-67. [PMID: 25976032 DOI: 10.1016/j.syapm.2015.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 10/23/2022]
Abstract
Studies focusing on the temporal and spatial dynamics of bacterioplankton communities within littoral areas undergoing direct influences from the coast are quite limited. In addition, they are more complicated to resolve compared to communities in the open ocean. In order to elucidate the effects of spatial vs. temporal variability on bacterial communities in a highly land-influenced semi-enclosed gulf, surface bacterioplankton communities from five coastal sites in Igoumenitsa Gulf (Ionian Sea, Greece) were analyzed over a nine-month period using 16S rDNA 454-pyrosequencing. Temporal differences were more pronounced than spatial ones, with lower diversity indices observed during the summer months. During winter and early spring, bacterial communities were dominated by SAR11 representatives, while this pattern changed in May when they were abruptly replaced by members of Flavobacteriales, Pseudomonadales, and Alteromonadales. Additionally, correlation analysis showed high negative correlations between the presence of SAR11 OTUs in relation to temperature and sunlight that might have driven, directly or indirectly, the disappearance of these OTUs in the summer months. The dominance of SAR11 during the winter months further supported the global distribution of the clade, not only in the open-sea, but also in coastal systems. This study revealed that specific bacteria exhibited distinct succession patterns in an anthropogenic-impacted coastal system. The major bacterioplankton component was represented by commonly found marine bacteria exhibiting seasonal dynamics, while freshwater and terrestrial-related phylotypes were absent.
Collapse
Affiliation(s)
- Alexandra Meziti
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos A Kormas
- Department of Ichthyology and Aquatic Environment, University of Thessaly, 38446 Volos, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hera Karayanni
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|