1
|
Masson S, Chialva M, Bongiovanni D, Adamo M, Stefanini I, Lanfranco L. A systematic scoping review reveals that geographic and taxonomic patterns influence the scientific and societal interest in urban soil microbial diversity. ENVIRONMENTAL MICROBIOME 2025; 20:17. [PMID: 39905522 DOI: 10.1186/s40793-025-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Urban green areas provide multiple ecosystem services in cities, mitigating environmental risks and providing a healthier environment for humans. Even if urban ecology has become popular in the last decade, the soil environment with its microbiota, which sustains many other biodiversity layers, remains overlooked. Here, a comprehensive database of scientific papers published in the last 30 years investigating different aspects of soil microbial diversity was built and systematically reviewed. The aim was to identify the taxa, experimental methods and geographical areas that have been investigated, and to highlight gaps in knowledge and research prospects. Our results show that current knowledge on urban soil microbiota remains incomplete, mainly due to the lack of publications on functional aspects, and is biased, in terms of investigated taxa, with most studies focused on Prokaryotes, and geographic representativeness, with the interest focused on a few large cities in the Northern hemisphere. By coupling bibliometrics with statistical modelling we found that soil microbial traits such as biomass and respiration and omics techniques attract the interest of the scientific community while multi-taxa and time-course studies appeal more to the general public.
Collapse
Affiliation(s)
- Simon Masson
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Matteo Chialva
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Davide Bongiovanni
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Martino Adamo
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology (DBIOS), University of Torino, Viale Mattioli, 25, Torino, I-10125, Italy.
| |
Collapse
|
2
|
Maron PA, Ranjard L. [Urban soils and microbial biodiversity]. Med Sci (Paris) 2024; 40:858-863. [PMID: 39656983 DOI: 10.1051/medsci/2024147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Aware of the degradation of their environment, cities engage in a transition towards sustainable development models. They are based on the search for solutions promoting the "return of nature to the city", which is acclaimed by citizen wishing to improve their living environment. As a support of this nature, there is a knowledge issue regard soil to define management practices and design methods to optimize its functioning. Among this knowledge, that relating to the ecology and microbial diversity of the soil is essential since microorganisms are responsible for many of the services essential to the sustainability of urban systems. This article provides a brief overview of knowledge on the microbial diversity of urban soils and the tools available to assess it. It also presents examples of ongoing projects to study soil biodiversity in major French cities.
Collapse
|
3
|
Wiener EA, Ewald JM, LeFevre GH. Fungal diversity and key functional gene abundance in Iowa bioretention cells: implications for stormwater remediation potential. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1796-1810. [PMID: 39192758 DOI: 10.1039/d4em00275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Stormwater bioretention cells are green stormwater infrastructure systems that can help mitigate flooding and remove contaminants. Plants and bacteria improve nutrient removal and degrade organic contaminants; however, the roles of fungi in bioretention cells are less known. Although mycorrhizal fungi aid in plant growth/improve nutrient uptake, there is a notable lack of research investigating fungal diversity in bioretention cells. Other types of fungi could benefit bioretention cells (e.g., white rot fungi degrade recalcitrant contaminants). This study addresses the knowledge gap of fungal function and diversity within stormwater bioretention cells. We collected multiple soil samples from 27 different bioretention cells in temperate-climate eastern Iowa USA, characterized soil physicochemical parameters, sequenced the internal transcribed spacer (ITS) amplicon to identify fungal taxa from extracted DNA, and measured functional gene abundances for two fungal laccases (Cu1, Cu1A) and a fungal nitrite reductase gene (nirKf). Fungal biodegradation functional genes were present in bioretention soils (mean copies per g: 7.4 × 105nirKf, 3.2 × 106Cu1, 4.0 × 108Cu1A), with abundance of fungal laccase and fungal nitrite reductase genes significantly positively correlated with soil pH and organic matter (Pearson's R: >0.39; rho < 0.05). PERMANOVA analysis determined soil characteristics were not significant explanatory variables for community composition (beta diversity). In contrast, planting specifications significantly impacted fungal diversity; the presence/absence of a few planting types and predominant vegetation type in the cell explained 89% of variation in fungal diversity. These findings further emphasize the importance of plants and media as key design parameters for bioretention cells, with implications for fungal bioremediation of captured stormwater contaminants.
Collapse
Affiliation(s)
- Erica A Wiener
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Jessica M Ewald
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
O'Malley K, McNamara P, Marshall C, LaMartina EL, Lam TD, Ali N, McDonald W. Environmental drivers impact the accumulation and diversity of antibiotic resistance in green stormwater infrastructure. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133923. [PMID: 38457973 DOI: 10.1016/j.jhazmat.2024.133923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/12/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Antibiotic resistance poses an urgent public health concern, with the environment playing a crucial role in the development and dissemination of resistant bacteria. There is a growing body of research indicating that stormwater is a significant source and transport vector of resistance elements. This research sought to characterize the role of green stormwater infrastructure (GSI), designed for stormwater infiltration, in accumulating and propagating antibiotic resistance in the urban water cycle. Sampling included 24 full-scale GSI systems representing three distinct types of GSI - bioswales, bioretention cells, and constructed wetlands. The results indicated that GSI soils accumulate antibiotic resistance genes (ARGs) at elevated concentrations compared to nonengineered soils. Bioretention cells specifically harbored higher abundances of ARGs, suggesting that the type of GSI influences ARG accumulation. Interestingly, ARG diversity in GSI soils was not impacted by the type of GSI design or the diversity of the microbial community and mobile genetic elements. Instead, environmental factors (catchment imperviousness, metals, nutrients, and salts) were identified as significant drivers of ARG diversity. These findings highlight how environmental selective pressures in GSI promote ARG persistence and proliferation independently of the microbial community. Therefore, GSI systems have the potential to be a substantial contributor of abundant and diverse ARGs to the urban water cycle.
Collapse
Affiliation(s)
- Kassidy O'Malley
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA
| | - Patrick McNamara
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA
| | - Christopher Marshall
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Emily Lou LaMartina
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA; Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Thuy Duyen Lam
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA
| | - Numair Ali
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Walter McDonald
- Department of Civil, Construction, and Environmental Engineering, Marquette University, Milwaukee, WI 53233, USA.
| |
Collapse
|
5
|
Gupta S, de Rink R, Klok JBM, Muyzer G, Plugge CM. Process conditions affect microbial diversity and activity in a haloalkaline biodesulfurization system. Appl Environ Microbiol 2024; 90:e0186423. [PMID: 38078763 PMCID: PMC10807427 DOI: 10.1128/aem.01864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieks de Rink
- Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands
- Paqell B.V., Utrecht, the Netherlands
| | - Johannes B. M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
6
|
Liu C, Wang Y, Zhou Z, Wang S, Wei Z, Ravanbakhsh M, Shen Q, Xiong W, Kowalchuk GA, Jousset A. Protist predation promotes antimicrobial resistance spread through antagonistic microbiome interactions. THE ISME JOURNAL 2024; 18:wrae169. [PMID: 39259188 PMCID: PMC11453101 DOI: 10.1093/ismejo/wrae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Antibiotic resistance has grown into a major public health threat. In this study, we reveal predation by protists as an overlooked driver of antibiotic resistance dissemination in the soil microbiome. While previous studies have primarily focused on the distribution of antibiotic resistance genes, our work sheds light on the pivotal role of soil protists in shaping antibiotic resistance dynamics. Using a combination of metagenomics and controlled experiments in this study, we demonstrate that protists cause an increase in antibiotic resistance. We mechanistically link this increase to a fostering of antimicrobial activity in the microbiome. Protist predation gives a competitive edge to bacteria capable of producing antagonistic secondary metabolites, which secondary metabolites promote in turn antibiotic-resistant bacteria. This study provides insights into the complex interplay between protists and soil microbiomes in regulating antibiotic resistance dynamics. This study highlights the importance of top-down control on the spread of antibiotic resistance and directly connects it to cross-kingdom interactions within the microbiome. Managing protist communities may become an important tool to control outbreaks of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Chen Liu
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Yijin Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zeyuan Zhou
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Shimei Wang
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - Wu Xiong
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexandre Jousset
- Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Key Laboratory of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, No. 1 Weigang, Xuanwu district, Nanjing 210095, People’s Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
7
|
Bodus B, O'Malley K, Dieter G, Gunawardana C, McDonald W. Review of emerging contaminants in green stormwater infrastructure: Antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167195. [PMID: 37777137 DOI: 10.1016/j.scitotenv.2023.167195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Green stormwater infrastructure is a growing management approach to capturing, infiltrating, and treating runoff at the source. However, there are several emerging contaminants for which green stormwater infrastructure has not been explicitly designed to mitigate and for which removal mechanisms are not yet well defined. This is an issue, as there is a growing understanding of the impact of emerging contaminants on human and environmental health. This paper presents a review of five emerging contaminants - antibiotic resistance genes, microplastics, tire wear particles, PFAS, and temperature - and seeks to improve our understanding of how green stormwater infrastructure is impacted by and can be designed to mitigate these emerging contaminants. To do so, we present a review of the source and transport of these contaminants to green stormwater infrastructure, specific treatment mechanisms within green infrastructure, and design considerations of green stormwater infrastructure that could lead to their removal. In addition, common removal mechanisms across these contaminants and limitations of green infrastructure for contaminant mitigation are discussed. Finally, we present future research directions that can help to advance the use of green infrastructure as a first line of defense for downstream water bodies against emerging contaminants of concern.
Collapse
Affiliation(s)
- Benjamin Bodus
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Kassidy O'Malley
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Greg Dieter
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Charitha Gunawardana
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| | - Walter McDonald
- Department of Civil, Construction and Environmental Engineering, Marquette University, 1637 W. Wisconsin Ave, Milwaukee, WI 53233, USA.
| |
Collapse
|
8
|
Li L, Li S, Ma X, Yan Y. Effects of Urban Green Infrastructure Designs on Soil Bacterial Community Composition and Function. Ecosystems 2022. [DOI: 10.1007/s10021-022-00797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Scientific Evidence behind the Ecosystem Services Provided by Sustainable Urban Drainage Systems. LAND 2022. [DOI: 10.3390/land11071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Urban green infrastructure such as sustainable urban drainage systems are potential providers of ecosystem services. This paper reviews the field studies that empirically verify the potential benefits of SUDS. The cultural, provisioning, supporting, and regulating ecosystem services investigated in real cases have been studied and classified according to climatology (except for the control of urban hydrology, which has been widely corroborated). Although successful cases of runoff decontamination are numerous, there is heterogeneity in the results of the systems beyond those associated with climatic differences. The other ecosystem services have not been as widely studied, giving very variable and even negative results in some cases such as climate change control (in some instances, these techniques can emit greenhouse gases). Installations in temperate climates are, by far, the most studied. These services derive from the biological processes developed in green infrastructure and they depend on climate, so it would be advisable to carry out specific studies that could serve as the basis for a design that optimizes potential ecosystem services, avoiding possible disservices.
Collapse
|
10
|
Wang T, Xia X, Chen J, Liu H, Jing H. Spatio-Temporal Variation of Synechococcus Assemblages at DNA and cDNA Levels in the Tropical Estuarine and Coastal Waters. Front Microbiol 2022; 13:837037. [PMID: 35308375 PMCID: PMC8928118 DOI: 10.3389/fmicb.2022.837037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
Synechococcus is a major contributor to global marine primary production. Here, its spatio-temporal variations in abundance and phylogenetic structure were studied at three stations of the South China Sea at both DNA and cDNA levels. Synechococcus cell abundance was lowest in March, but highest in October at two coastal stations. Its abundance was higher at the estuarine station, which reached a peak value of 1.36 × 105 cells/ml in April, owing to the nitrogen nutrients discharged from the Sanya River. Gene and gene transcript abundances of four Synechococcus lineages, clades II, III, VIII, and S5.3, were studied by quantitative PCR, which showed that clade II was the most abundant lineage at both DNA and cDNA levels. High-throughput sequencing revealed that, at the DNA level, Synechococcus assemblage was dominated by clade SY4 (a novel clade defined in this study), S5.2, and clade II in the coastal waters and was dominated by freshwater/S5.2 Synechococcus, reaching a value up to 88.61% in June, in estuarine waters. Changes in salinity and nutrient concentration caused by seasonal monsoonal forcing and river discharge were the key determinants of the spatio-temporal variation in Synechococcus assemblages at the DNA level. In comparison, high dissimilation among samples at the same stations and in the same seasons leads to the imperceptible spatio-temporal variation pattern of Synechococcus assemblages at the cDNA level. Furthermore, co-occurrence networks disclosed that Synechococcus community had closer and more complex internal interactions at the cDNA level. These discrepancies highlighted the necessity to study Synechococcus assemblages at both DNA and cDNA levels.
Collapse
Affiliation(s)
- Ting Wang
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xiaomin Xia
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Jiawei Chen
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
11
|
Cao S, Davis A, Kjellerup BV. Presence of bacteria capable of PCB biotransformation in stormwater bioretention cells. FEMS Microbiol Ecol 2022; 97:6492079. [PMID: 34978329 DOI: 10.1093/femsec/fiab159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/04/2021] [Indexed: 11/13/2022] Open
Abstract
Core samples from bioretention cell media as well as surface stormwater sediment samples from seven urban areas were collected to assess the potential for biotransformation activity of polychlorinated biphenyls (PCBs). The presence of putative organohalide-respiring bacteria in these samples was studied. Based on extracted DNA, Dehalobacter, Dehalogenimonas and Dehalococcoides were detected. Other organohalide-respiring bacteria like Desulfitobacterium and Sulfurospirillum were not studied. Bacteria containing the genes encoding for biphenyl 2,3-dioxygenase (bphA) or 2,3-dihydroxybiphenyl 1,2-dioxygenase (bphC) were detected in 29 of the 32 samples. These genes are key factors in PCB aerobic degradation. Transcribed bacterial genes from putative organohalide-respiring bacteria as well as genes encoding for bphA and bphC were obtained from the microbial community, thus showing the potential of organohalide respiration of PCBs and aerobic PCB degradation under both aerobic and anaerobic conditions in the surface samples collected at the bioretention site. Presence and concentrations of 209 PCB congeners in the bioretention media were also assessed. The total PCB concentration ranged from 38.4 ± 2.3 ng/g at the top layer of the inlet to 11.6 ± 1.2 ng/g at 20-30 cm at 3 m from the inlet. These results provide documentation that bacteria capable of PCB transformation, including both anaerobic dechlorination and aerobic degradation, were present and active in the bioretention.
Collapse
Affiliation(s)
- Siqi Cao
- Department of Civil and Environmental Engineering, University of Maryland, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Allen Davis
- Department of Civil and Environmental Engineering, University of Maryland, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, 1147 Glenn L. Martin Hall, College Park, MD 20742, USA
| |
Collapse
|
12
|
Buzzard V, Gil-Loaiza J, Graf Grachet N, Talkington H, Youngerman C, Tfaily MM, Meredith LK. Green infrastructure influences soil health: Biological divergence one year after installation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149644. [PMID: 34428660 DOI: 10.1016/j.scitotenv.2021.149644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Global threats to soils remain one of the greatest concerns and challenges of the 21st century. Built landscapes have profound local and global effects because they create urban heat islands, increase habitat fragmentation, and reduce biological diversity. Additionally, impervious surfaces alter natural watersheds and reduce infiltration increasing runoff that leads to erosion and soil degradation. To combat these effects, green infrastructure (GI) practices, like water harvesting rain gardens, are implemented in the Southwest United States to restore natural ecological function, yet little is known about how GI impacts soil health. Soil health can be measured using indicators that include physical, chemical, and biological characteristics that support ecosystem processes. This study aimed to evaluate changes in water holding capacity, bulk density, pH, electrical conductivity, Gibbs free energy, species richness and Shannon diversity in response to rain gardens that received different inputs (frequency and amount) and sources of harvested water (rain, municipal, greywater) one year after installation. We hypothesized that soil health indicators in GI diverge from the unaltered control treatment one year following installation. Although physical and chemical indicators were comparatively less sensitive to GI treatments than biological indicators, they varied within treatments after one year of GI management (pH increased: H = 36.37; p-value = 0.00; electrical conductivity decreased: H = 33.94; p-value = 0.00). Overall, we observed significantly higher soil microbial diversity (F = 4.29; p-value = 0.015) and richness (F = 4.02; p-value = 0.019) in surface soils in GI treatments after one year of management. Our findings suggest GI practices enhanced soil biological health which may lead to positive feedbacks that assist gradual changes in the abiotic environment thus enhancing soil health over time. These findings have broad implications for effectively assessing the success of GI management practices over short time periods using soil biological health indicators.
Collapse
Affiliation(s)
- Vanessa Buzzard
- School of Natural Resources and the Environment, University of Arizona, United States of America.
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, United States of America
| | - Nathalia Graf Grachet
- The Department of Environmental Science, University of Arizona, United States of America
| | - Hannah Talkington
- School of Natural Resources and the Environment, University of Arizona, United States of America
| | - Connor Youngerman
- School of Natural Resources and the Environment, University of Arizona, United States of America
| | - Malak M Tfaily
- The Department of Environmental Science, University of Arizona, United States of America
| | - Laura K Meredith
- School of Natural Resources and the Environment, University of Arizona, United States of America; BIO5 Institute, University of Arizona, United States of America
| |
Collapse
|
13
|
Runte GC, Smith AH, Moeller HV, Bogar LM. Spheres of Influence: Host Tree Proximity and Soil Chemistry Shape rRNA, but Not DNA, Communities of Symbiotic and Free-Living Soil Fungi in a Mixed Hardwood-Conifer Forest. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Host and symbiont diversity are inextricably linked across partnerships and ecosystems, with degree of partner reliance governing the strength of this correlation. In many forest soils, symbiotic ectomycorrhizal fungi coexist and compete with free-living saprotrophic fungi, with the outcomes of these interactions shaping resource availability and competitive outcomes for the trees aboveground. Traditional approaches to characterizing these communities rely on DNA sequencing of a ribosomal precursor RNA gene (the internal transcribed spacer region), but directly sequencing the precursor rRNA may provide a more functionally relevant perspective on the potentially active fungal communities. Here, we map ectomycorrhizal and saprotrophic soil fungal communities through a mixed hardwood-conifer forest to assess how above- and belowground diversity linkages compare across these differently adapted guilds. Using highly spatially resolved transects (sampled every 2 m) and well-mapped stands of varying host tree diversity, we sought to understand the relative influence of symbiosis versus environment in predicting fungal diversity measures. Canopy species in this forest included two oaks (Quercus agrifolia and Quercus douglasii) and one pine (Pinus sabiniana). At the scale of our study, spatial turnover in rRNA-based communities was much more predictable from measurable environmental attributes than DNA-based communities. And while turnover of ectomycorrhizal fungi and saprotrophs were predictable by the presence and abundance of different canopy species, they both responded strongly to soil nutrient characteristics, namely pH and nitrogen availability, highlighting the niche overlap of these coexisting guilds and the strong influence of aboveground plants on belowground fungal communities.
Collapse
|
14
|
Green Infrastructures and the Consideration of Their Soil-Related Ecosystem Services in Urban Areas—A Systematic Literature Review. SUSTAINABILITY 2021. [DOI: 10.3390/su13063322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although urban soils are strongly influenced by human activities, they provide a wide range of Ecosystem Services (ES) as long as they are not sealed off. This is a major sustainability issue as the loss of soil functions directly impacts ES and further on the possibility to adapt to the effects of the climate crisis. Green Infrastructure (GI) measures can be utilized to restore previously covered soil surfaces and compensate for lost soil functions. We conducted a systematic literature review to investigate the extent of peer-reviewed publications on GI measures in (peri-) urban areas covering soil-related ES. After identifying the relevant publications (n = 284), we generated an overview of the annual, spatial, and thematic distribution of the publications. Then, we employed an extended content analysis of the published focus topics to assess the representation of soil-related ES provided by GI. The content analysis revealed that the representation of soil-related ES in GI measures focused heavily on the contribution of soil to stormwater management. Detailed assessment of the interconnection of GI measures with key soil-related ES were missing. So far, the assessment of the loss of soil-related ES is not covered extensively in GI research publications.
Collapse
|
15
|
Hermans SM, Buckley HL, Curran-Cournane F, Taylor M, Lear G. Temporal variation in soil bacterial communities can be confounded with spatial variation. FEMS Microbiol Ecol 2020; 96:5909033. [PMID: 32949457 DOI: 10.1093/femsec/fiaa192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/17/2020] [Indexed: 11/12/2022] Open
Abstract
Investigating temporal variation in soil bacterial communities advances our fundamental understanding of the causal processes driving biological variation, and how the composition of these important ecosystem members may change into the future. Despite this, temporal variation in soil bacteria remains understudied, and the effects of spatial heterogeneity in bacterial communities on the detection of temporal changes is largely unknown. Using 16S rRNA gene amplicon sequencing, we evaluated temporal patterns in soil bacterial communities from indigenous forest and human-impacted sites sampled repeatedly over a 5-year period. Temporal variation appeared to be greater when fewer spatial samples per site were analysed, as well as in human-impacted compared to indigenous sites (P < 0.01 for both). The biggest portion of variation in bacterial community richness and composition was explained by soil physicochemical variables (13-24%) rather than spatial distance or sampling time (<1%). These results highlight the importance of adequate spatiotemporal replication when sampling soil communities for environmental monitoring, and the importance of conducting temporal research across a wide variety of land uses. This will ensure we have a true understanding of how bacterial communities change over space and time; the work presented here provides important considerations for how such research should be designed.
Collapse
Affiliation(s)
- Syrie M Hermans
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, 34 St Paul Street, Auckland 1010, New Zealand
| | - Fiona Curran-Cournane
- Ministry for the Environment-Manatū Mō Te Taiao, 45 Queen Street, Auckland 1010, New Zealand
| | - Matthew Taylor
- Waikato Regional Council, 401 Grey Street, Hamilton 3216, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
16
|
Exploring the Diversity of Active Ureolytic Bacteria in the Rumen by Comparison of cDNA and gDNA. Animals (Basel) 2020; 10:ani10112162. [PMID: 33233592 PMCID: PMC7699693 DOI: 10.3390/ani10112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Ureolytic bacteria produce urease that hydrolyzes dietary or recycled urea to ammonia, which can then be converted into microbial proteins. The diversity of ruminal ureolytic bacteria benefits N utilization efficiency in ruminants. However, there is no information at the complementary DNA (cDNA) level to reflect the active status of ureolytic bacteria. To reveal the diversity of active ureolytic bacteria in the rumen, we compared ureC amplicons between genomic DNA (gDNA) and cDNA. These results revealed distinct ureolytic bacterial community profiles based on gDNA and cDNA. The dominant ureolytic bacterial had high transcriptional activity, and the differential were mainly distributed in the genus of low abundance. Abstract In this study we revealed the diversity of active ureolytic bacteria in the rumen by compared ureC amplicons between gDNA and cDNA. Rumen fluid was collected from four Holstein dairy cows with rumen fistulas at 0, 2, and 6 h after morning feeding. Total microbial gDNA and RNA were isolated, and the RNA was reverse-transcribed into cDNA. The ureC gene amplicons of gDNA and cDNA were produced and sequenced by MiSeq. These results revealed that the sampling time had no significant difference on the alphssa and beta diversity indices of the ureolytic bacteria. The Shannon diversity of the ureC gene for cDNA was greater than that for gDNA (p < 0.05). There were significant difference in the beta diversity of ureolytic bacteria between gDNA and cDNA (p < 0.01), which indicates a shift in the community of active ureolytic bacteria. Approximately 67% of ureC sequences from cDNA could not be confidently classified at the genus level. The active ureolytic bacteria were mainly from Helicobacter, Herbaspirillum, Clostridium, Paenibacillus, Synechococcus, and Sphingobacterium sp. Changes in the operational taxonomic units revealed that the top abundant ureC genes were mostly consistent between gDNA and cDNA, and most differences occurred in the ureC genes with lower abundances. These results revealed distinct ureolytic bacteria community profiles based on gDNA and cDNA. The dominant ureolytic bacteria had high transcriptional activity, and the differential were mainly distributed in the genus of low abundance.
Collapse
|
17
|
Gill AS, Purnell K, Palmer MI, Stein J, McGuire KL. Microbial Composition and Functional Diversity Differ Across Urban Green Infrastructure Types. Front Microbiol 2020; 11:912. [PMID: 32582043 PMCID: PMC7291602 DOI: 10.3389/fmicb.2020.00912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/17/2020] [Indexed: 01/04/2023] Open
Abstract
Functional and biogeographical properties of soil microbial communities in urban ecosystems are poorly understood despite their role in metabolic processes underlying valuable ecosystem services. The worldwide emergence of engineered habitats in urban landscapes-green roofs, bioswales, and other types of soil-based green infrastructure-highlights the importance of understanding how environmental changes affect the community assembly processes that shape urban microbial diversity and function. In this study we investigated (1) whether engineered green roofs and bioswales in New York City had distinct microbial community composition and trait-associated diversity compared to non-engineered soils in parks and tree pits, and (2) if these patterns were consistent with divergent community assembly processes associated with engineered specifications of green infrastructure habitats not present in conventional, non-engineered green infrastructure; specifically, tree pit and park lawn soils. We found that green roofs and bioswales each had distinct bacterial and fungal communities, but that community composition and diversity were not significantly associated with geographic distance, suggesting that the processes structuring these differences are related to aspects of the habitats themselves. Bioswales, and to a lesser extent green roofs, also contained increased functional potential compared to conventional GI soils, based on the diversity and abundance of taxa associated with nitrogen cycling, biodegradation, decomposition, and traits positively associated with plant growth. We discuss these results in the context of community assembly theory, concluding that urban soil microbial community composition and diversity in engineered habitats are driven largely by environmental filtering, whereas stochastic processes are more important among non-engineered soils.
Collapse
Affiliation(s)
- Aman S. Gill
- Department of Environmental Science and Policy Management, University of California, Berkeley, Berkeley, CA, United States
| | - Kai Purnell
- Department of Biology, Barnard College, New York, NY, United States
| | - Matthew I. Palmer
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Jaime Stein
- Programs for Sustainable Planning and Development, School of Architecture, Pratt Institute, Brooklyn, NY, United States
| | - Krista L. McGuire
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| |
Collapse
|
18
|
Argudo M, Gich F, Bonet B, Espinosa C, Gutiérrez M, Guasch H. Responses of resident (DNA) and active (RNA) microbial communities in fluvial biofilms under different polluted scenarios. CHEMOSPHERE 2020; 242:125108. [PMID: 31669992 DOI: 10.1016/j.chemosphere.2019.125108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/24/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
Pollution from human activities is a major threat to the ecological integrity of fluvial ecosystems. Microbial communities are the most abundant organisms in biofilms, and are key indicators of various pollutants. We investigated the effects some human stressors (nutrients and heavy metals) have on the structure and activity of microbial communities in seven sampling sites located in the Ter River basin (NE Spain). Water and biofilm samples were collected in order to characterize physicochemical and biofilm parameters. The 16S rRNA gene was analysed out from DNA and RNA extracts to obtain α and β diversity. Principal coordinates analyses (PCoA) of the operational taxonomic units (OTUs) in the resident microbial community revealed that nutrients and conductivity were the main driving forces behind the diversity and composition. The effects of mining have had mainly seen on the taxonomic composition of the active microbial community, but also at the OTUs level. Remarkably, metal-impacted communities were very active, which would indicate a close link with the stress faced, that is probably related to the stimulation of detoxification.
Collapse
Affiliation(s)
- María Argudo
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain
| | - Frederic Gich
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain
| | - Berta Bonet
- School of Geography, Earth and Environmental Sciences (GEES), University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Carmen Espinosa
- BETA Tech Center. TECNIO Network, U Science Tech, University of Vic - Central University of Catalonia, de La Laura 13, 08500, Vic, Spain; Centre d'Estudis dels Rius Mediterranis, Museu Industrial del Ter. Passeig del Ter, 2, 08560, Manlleu, Spain
| | - Marina Gutiérrez
- Department of Engineering, University of Ferrara, Via Saragat 1, I-44122 Ferrara, Italy
| | - Helena Guasch
- Institute of Aquatic Ecology, University of Girona, Campus de Montilivi, 17071, Girona, Spain; Center for Advanced Studies of Blanes (CEAB-CSIC), Accés a La Cala Sant Francesc 14, 17300, Blanes, Girona, Spain.
| |
Collapse
|
19
|
Ishaq SL, Rapp M, Byerly R, McClellan LS, O'Boyle MR, Nykanen A, Fuller PJ, Aas C, Stone JM, Killpatrick S, Uptegrove MM, Vischer A, Wolf H, Smallman F, Eymann H, Narode S, Stapleton E, Cioffi CC, Tavalire HF. Framing the discussion of microorganisms as a facet of social equity in human health. PLoS Biol 2019; 17:e3000536. [PMID: 31770370 PMCID: PMC6879114 DOI: 10.1371/journal.pbio.3000536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
What do “microbes” have to do with social equity? These microorganisms are integral to our health, that of our natural environment, and even the “health” of the environments we build. The loss, gain, and retention of microorganisms—their flow between humans and the environment—can greatly impact our health. It is well-known that inequalities in access to perinatal care, healthy foods, quality housing, and the natural environment can create and arise from social inequality. Here, we focus on the argument that access to beneficial microorganisms is a facet of public health, and health inequality may be compounded by inequitable microbial exposure. What do microbes have to do with social equity? This Essay explores the argument that access to beneficial microorganisms is a facet of public health, and that health inequality may be compounded by inequitable microbial exposure.
Collapse
Affiliation(s)
- Suzanne L Ishaq
- Biology and the Built Environment Center, University of Oregon, Eugene, Oregon, United States of America.,Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Maurisa Rapp
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America.,Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Risa Byerly
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America.,Department of Human Physiology, University of Oregon, Eugene, Oregon, United States of America
| | - Loretta S McClellan
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Maya R O'Boyle
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Anika Nykanen
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Patrick J Fuller
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America.,Charles H. Lundquist College of Business, University of Oregon, Eugene, Oregon, United States of America
| | - Calvin Aas
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Jude M Stone
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Sean Killpatrick
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America.,Charles H. Lundquist College of Business, University of Oregon, Eugene, Oregon, United States of America
| | - Manami M Uptegrove
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Alex Vischer
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Hannah Wolf
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Fiona Smallman
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Houston Eymann
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America.,School of Journalism and Communication, University of Oregon, Eugene, Oregon, United States of America
| | - Simon Narode
- Robert D. Clark Honors College, University of Oregon, Eugene, Oregon, United States of America
| | - Ellee Stapleton
- Department of Landscape Architecture, University of Oregon, Eugene, Oregon, United States of America
| | - Camille C Cioffi
- Counselling Psychology and Human Services, College of Education, University of Oregon, Eugene, Oregon, United States of America
| | - Hannah F Tavalire
- Institute of Ecology and Evolution, University of Oregon, Eugene, Eugene, Oregon, United States of America
| |
Collapse
|
20
|
Brodsky OL, Shek KL, Dinwiddie D, Bruner SG, Gill AS, Hoch JM, Palmer MI, McGuire KL. Microbial Communities in Bioswale Soils and Their Relationships to Soil Properties, Plant Species, and Plant Physiology. Front Microbiol 2019; 10:2368. [PMID: 31824435 PMCID: PMC6879463 DOI: 10.3389/fmicb.2019.02368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/30/2019] [Indexed: 11/28/2022] Open
Abstract
Bioswales and other forms of green infrastructure can be effective means to reduce environmental stresses in urban ecosystems; however, few studies have evaluated the ecology of these systems, or the role that plant selection and microbial assembly play in their function. For the current study, we examined the relationship between plant transpiration rates for five commonly planted herbaceous species in three bioswales in New York City, as well as bioswale soil microbial composition and soil chemistry. Soils were sampled near individual plants, with distinction made between upper (bioswale inlet) and lower slopes (bioswale outlet). We found high variation in transpiration rates across species, and that Nepeta × faassenii was the highest conductor (13.65 mmol H2O m-2s-1), while Panicum virgatum was the lowest conductor (2.67 mmol H2O m-2s-1) (p < 0.001). There was significant variation in percent N of leaves and soil, which did not relate to the higher water conductance in bioswales. Significantly higher C, N, and water content on the high end of bioswale slopes suggest storm water run-off is mostly absorbed on the inlet side. Bacterial and fungal communities were significantly clustered by bioswale and by plant species within each bioswale implying there are micro-environmental controls on the soil microbial composition, and that plant composition matters for microbial assemblages within bioswales. Plants with higher transpiration rates were associated with greater fungal and bacterial diversity at the level of the bioswale and at scale of the individual plant, suggesting a possible link between plant physiological traits and soil microbial communities. These data suggest that the specific plant palette selected for planting bioswales can have deterministic effects on the surrounding microbial communities which may further influence functions such as transpiration and nutrient cycling. These results may have implications for bioswale management to improve urban water quality and reduce stress on sewage systems after storm events by revising plant species palette selection based on the functional consequences of plant-microbial associations in engineered green infrastructure.
Collapse
Affiliation(s)
- Olivia L. Brodsky
- Department of Environmental Science, Barnard College, Columbia University, New York, NY, United States
| | - Katherine L. Shek
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Devin Dinwiddie
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| | - Sarah G. Bruner
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Aman S. Gill
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States
| | - Jessica M. Hoch
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Matthew I. Palmer
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Krista L. McGuire
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR, United States
| |
Collapse
|
21
|
Evaluating the effects of canine urine on urban soil microbial communities. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R. Tree Species Shape Soil Bacterial Community Structure and Function in Temperate Deciduous Forests. Front Microbiol 2019; 10:1519. [PMID: 31338079 PMCID: PMC6629791 DOI: 10.3389/fmicb.2019.01519] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
Amplicon-based analysis of 16S rRNA genes and transcripts was used to assess the effect of tree species composition on soil bacterial community structure and function in a temperate deciduous forest. Samples were collected from mono and mixed stands of Fagus sylvatica (beech), Carpinus betulus (hornbeam), Tilia sp. (lime), and Quercus sp. (oak) in spring, summer, and autumn. Soil bacterial community exhibited similar taxonomic composition at total (DNA-based) and potentially active community (RNA-based) level, with fewer taxa present at active community level. Members of Rhizobiales dominated at both total and active bacterial community level, followed by members of Acidobacteriales, Solibacterales, Rhodospirillales, and Xanthomonadales. Bacterial communities at total and active community level showed a significant positive correlation with tree species identity (mono stands) and to a lesser extent with tree species richness (mixed stands). Approximately 58 and 64% of indicator operational taxonomic units (OTUs) showed significant association with only one mono stand at total and active community level, respectively, indicating a strong impact of tree species on soil bacterial community composition. Soil C/N ratio, pH, and P content similarly exhibited a significant positive correlation with soil bacterial communities, which was attributed to direct and indirect effects of forest stands. Seasonality was the strongest driver of predicted metabolic functions related to C fixation and degradation, and N metabolism. Carbon and nitrogen metabolic processes were significantly abundant in spring, while C degradation gene abundances increased from summer to autumn, corresponding to increased litterfall and decomposition. The results revealed that in a spatially homogenous forest soil, tree species diversity and richness are dominant drivers of structure and composition in soil bacterial communities.
Collapse
Affiliation(s)
- Amélie Dukunde
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| | - Marcus Schmidt
- Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Edzo Veldkamp
- Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, Büsgen Institute, Georg-August University of Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
23
|
Xiao Y, Yaohari H, Zhou Z, Sze CC, Stuckey DC. Autoinducer-2-mediated quorum sensing partially regulates the toxic shock response of anaerobic digestion. WATER RESEARCH 2019; 158:94-105. [PMID: 31022531 DOI: 10.1016/j.watres.2019.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
This study discovered a strong correlation between the autoinducer-2 (AI-2)-mediated quorum sensing (QS) with the performance of a submerged anaerobic membrane bioreactor during its recovery from a pentachlorophenol (PCP) shock: a decrease in AI-2 levels coincided with a reduction in volatile fatty acid concentrations, and corresponded significantly to a decrease in the relative abundance of Firmicutes, and to an increase in the relative abundance of Bacteroidetes and Synergistetes. Further batch experiments with the addition of an AI-2-regulating Escherichia coli mutant culture showed that a reduction in AI-2 levels resulted in the highest biogas production rate during a PCP shock. In contrast, an increase in AI-2 levels via addition of the E. coli wild type strain or an AI-2 precursor showed no obvious effects on biogas production. These results suggest that the AI-2 level in anaerobic sludge was governed primarily by Firmicutes, and the AI-2-mediated QS partially regulates the toxic shock response of anaerobic sludge via tuning the activities of Firmicutes and Synergistetes. A decrease in the AI-2 level might reduce acetogenesis and favor hydrogenotrophic methanogenesis, thus resulting in less VFA accumulation and higher methane production during the PCP shock. This study is the first of this type that exploits the role of quorum sensing in the toxic shock response of anaerobic sludge; it demonstrates a novel approach to shortening the recovery period of anaerobic processes via manipulating the AI-2-mediated QS.
Collapse
Affiliation(s)
- Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, 515063, China; Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Hazarki Yaohari
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Zhongbo Zhou
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Chun Chau Sze
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Joyner JL, Kerwin J, Deeb M, Lozefski G, Prithiviraj B, Paltseva A, McLaughlin J, Groffman P, Cheng Z, Muth TR. Green Infrastructure Design Influences Communities of Urban Soil Bacteria. Front Microbiol 2019; 10:982. [PMID: 31156569 PMCID: PMC6531853 DOI: 10.3389/fmicb.2019.00982] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The importance of natural ecosystem processes is often overlooked in urban areas. Green Infrastructure (GI) features have been constructed in urban areas as elements to capture and treat excess urban runoff while providing a range of ancillary benefits, e.g., ecosystem processes mediated by microorganisms that improve air and water quality, in addition to the associations with plant and tree rhizospheres. The objective of this study was to characterize the bacterial community and diversity in engineered soils (Technosols) of five types of GI in New York City; vegetated swales, right of way bioswales (ROWB; including street-side infiltration systems and enhanced tree pits), and an urban forest. The design of ROWB GI features directly connects with the road to manage street runoff, which can increase the Technosol saturation and exposure to urban contaminants washed from the street and carried into the GI feature. This GI design specifically accommodates dramatic pulses of water that influence the bacterial community composition and diversity through the selective pressure of contaminants or by disturbance. The ROWB had the highest biodiversity, but no significant correlation with levels of soil organic matter and microbially-mediated biogeochemical functions. Another important biogeochemical parameter for soil bacterial communities is pH, which influenced the bacterial community composition, consistent with studies in non-urban soils. Bacterial community composition in GI features showed signs of anthropogenic disturbance, including exposure to animal feces and chemical contaminants, such as petroleum products. Results suggest the overall design and management of GI features with a channeled connection with street runoff, such as ROWB, have a comprehensive effect on soil parameters (particularly organic matter) and the bacterial community. One key consideration for future assessments of GI microbial community would be to determine the source of organic matter and elucidate the relationship between vegetation, Technosol, and bacteria in the designed GI features.
Collapse
Affiliation(s)
- Jessica Lee Joyner
- Department of Biological Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States.,Department of Biology, Georgia State University, Atlanta, Georgia
| | - Jordan Kerwin
- Department of Biological Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States
| | - Maha Deeb
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States
| | - George Lozefski
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States
| | - Bharath Prithiviraj
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States.,Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, United States
| | - Anna Paltseva
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States.,Graduate Center of The City University of New York (CUNY), New York, NY, United States
| | - John McLaughlin
- New York City Department of Environmental Protection, Flushing, NY, United States
| | - Peter Groffman
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States.,Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, United States
| | - Zhongqi Cheng
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States.,Graduate Center of The City University of New York (CUNY), New York, NY, United States
| | - Theodore R Muth
- Department of Biological Sciences, Brooklyn College of The City University of New York, Brooklyn, NY, United States.,Graduate Center of The City University of New York (CUNY), New York, NY, United States
| |
Collapse
|
25
|
Li H, Su JQ, Yang XR, Zhu YG. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:422-430. [PMID: 30176455 DOI: 10.1016/j.scitotenv.2018.08.373] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/24/2018] [Accepted: 08/26/2018] [Indexed: 05/11/2023]
Abstract
Rhizosphere microbes are critical for plant health and biogeochemical cycles. Understanding the diversity of active microorganisms in the rhizosphere is key to enhancing plant growth and productivity. We examined rhizosphere bacterial communities of rice by comparison of the 16S ribosomal subunit amplicons generated from both the total (DNA-based, 16S rRNA gene) and the active (RNA-based, 16S rRNA) soil microbiota. Analysis based on the 16S rRNA gene showed a higher microbial diversity, but with little change in bacterial populations across the growth stages of the plant. Analysis of 16S rRNA recovered much less diversity, demonstrating that much of the 16S signal was derived from free DNA, dead or inactive cells. The rRNA analysis showed a stable microbial population present in the rhizosphere, and this was distinct from that in the bulk soil, which was also stable across the growth period. Root exudates (e.g., acetate, lactate, oxalate and succinate), which are major components contributing to the rhizosphere effect, appeared to shape the bacterial community, with some taxa (e.g., Oxobacter, Lachnospiraceae, Coprococcus and α-Proteobacteria) being enhanced in the rhizosphere. Soil compartments (rhizosphere vs. bulk) had a greater effect on the bacterial communities than did the plant phenological stages, especially at the rRNA level. These results suggest that the rhizosphere effect plays a key role in structuring the bacterial communities in rhizosphere soils with a distinct effect on active and total bacterial communities.
Collapse
Affiliation(s)
- Hu Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
26
|
Shu D, Guo J, Zhang B, He Y, Wei G. rDNA- and rRNA-derived communities present divergent assemblage patterns and functional traits throughout full-scale landfill leachate treatment process trains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:1069-1079. [PMID: 30235593 DOI: 10.1016/j.scitotenv.2018.07.388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Understanding the influences of microbial interactions and niche heterogeneities on microbial communities and functional traits is critical for determining its engineering and ecological significance. However, little is known about microbial community assemblage and functional gene expression throughout full-scale landfill leachate treatment plants. Here, we applied a combination of 16S rRNA and rDNA amplicon sequencing, shotgun metagenomic, and qPCR approaches to unveil the ecological associations between distinct communities, functional gene expression and nitrogen cycling processes. By comparing the rDNA and rRNA-derived communities, the rRNA/rDNA ratios suggested that 57.2% of rare taxa were active, and their abundance decreased as increasing of potential activities. In particular, rDNA- and rRNA-based communities exhibited divergent assemblage patterns, and stronger intra-associations among core taxa in the rRNA-based communities than in rDNA-based communities. Furthermore, results regarding both bacterial assemblage and functional traits indicated that the habitat filtering and niche differentiation (treatment units) exerted selection on microbial communities based on functional traits, particular for key ecological functions related to nitrogen cycling. Collectively, our findings provide insights into structure-function associations at the local level and shed light on ecological rules guiding rDNA- and rRNA-based community assembly in landfill leachate treatment systems.
Collapse
Affiliation(s)
- Duntao Shu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Baogang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanling He
- School of Human Settlements & Civil Engineering, Xi'an Jiaotong University, Shaanxi 710049, China.
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|