1
|
Nugroho S, Rahmadi HY, Simamora AN, Purba AR. 1H NMR metabolomic profiling of resistant and susceptible oil palm root tissues in response to Ganoderma boninense at the nursery stage. Sci Rep 2025; 15:16784. [PMID: 40369018 PMCID: PMC12078656 DOI: 10.1038/s41598-025-01691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025] Open
Abstract
Oil palm plantations face serious challenges from Ganoderma boninense, a pathogen that causes basal stem rot (BSR), leading to significant productivity losses, with an estimated economic impact of 68.73%. Ganoderma spreads through direct root contact and airborne spores, affecting plantations across Indonesia, Malaysia, and other countries. Understanding the mechanisms of oil palm resistance to Ganoderma is crucial for developing effective strategies. Metabolomic profiling, ¹H NMR spectroscopy, offers a promising tool for identifying and quantifying metabolic changes associated with Ganoderma resistance. This study, ¹H NMR was employed to analyze root tissues of resistant, susceptible, and control oil palm seedlings exposed to Ganoderma. The results indicated that PCA effectively differentiated resistant palms from susceptible ones, while PLS-DA identified 14 significant metabolites. Further analysis using OPLS-DA and ROC revealed that ascorbic acid, D-gluconic acid, D-fructose, and 2-oxoisovalerate could serve as potential biomarkers for screening resistant palms. The metabolites identified in this study hold considerable promise for supporting breeding programs to develop oil palm varieties with enhanced resistance to BSR.
Collapse
Affiliation(s)
- Syarul Nugroho
- Plant Breeding Research Group, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No. 51, Medan, 20158, North Sumatera, Indonesia.
- PT Riset Perkebunan Nusantara, Jl. Salak No. 1A, Bogor, 16128, West Java, Indonesia.
| | - Hernawan Yuli Rahmadi
- Plant Breeding Research Group, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No. 51, Medan, 20158, North Sumatera, Indonesia
- PT Riset Perkebunan Nusantara, Jl. Salak No. 1A, Bogor, 16128, West Java, Indonesia
| | - Arfan Nazhri Simamora
- Plant Breeding Research Group, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No. 51, Medan, 20158, North Sumatera, Indonesia
- PT Riset Perkebunan Nusantara, Jl. Salak No. 1A, Bogor, 16128, West Java, Indonesia
| | - Abdul Razak Purba
- Plant Breeding Research Group, Indonesian Oil Palm Research Institute, Jl. Brigjend Katamso No. 51, Medan, 20158, North Sumatera, Indonesia
| |
Collapse
|
2
|
Farooq I, Ahmad N, Porter C, Smith R, Scharf T, Cowley A, Jenkins A, Yates JD, Hill JT, Nielsen BL. Characterization of halotolerant Kushneria isolates that stimulate growth of alfalfa in saline conditions. PLoS One 2025; 20:e0322979. [PMID: 40333926 PMCID: PMC12057942 DOI: 10.1371/journal.pone.0322979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
A key barrier to crop production is soil salinity, which is a serious and growing problem world-wide due to inadequate water drainage, saline ground water, or inadequate rainfall to wash away soil salts. There is substantial promise for plant-associated microbes isolated from halophytes (salt-tolerant plants) to enhance growth of salt-sensitive crop plants in salty soils. The objective of this study was to identify salt-tolerant bacteria from native halophytes and characterize their ability to stimulate the growth of alfalfa in salty soil conditions. Several halotolerant bacteria, including Kushneria, Halomonas, and Bacillus, were identified from the rhizosphere or roots of three halophyte species (Salicornia rubra, Sarcocornia utahensis, and Allenrolfea occidentalis) in a saline area south of Utah Lake, Utah, USA. Biochemical properties, including indole acetic acid production, biofilm formation, phosphate solubilization and siderophore production activities, which have been associated with plant growth promoting (PGP) activity, were characterized for several isolates. Selected strains were screened for the ability to stimulate growth of alfalfa in controlled laboratory experiments. Among these strains, two independent isolates of the genus Kushneria were found to have significant growth-promoting activity for inoculated alfalfa plants grown under saline conditions (0.205 M or 1.2% NaCl) that mimic common salinity levels of affected soils. Plants inoculated with a combination of two Kushneria strains that have salt-tolerant PGP (ST-PGP) properties exhibited a statistically significant increase in plant growth over uninoculated plants. A GFP marker confirmed presence of Kushneria in the roots of inoculated plants. Bacteria with ST-PGP activity will be a key resource to facilitate increased crop yield from land affected by salinity, and the data presented here for two Kushneria isolates are promising.
Collapse
Affiliation(s)
- Iqra Farooq
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Cardon Porter
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Rachel Smith
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Thomas Scharf
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Aden Cowley
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Andrew Jenkins
- Department of Cell Biology & Physiology, Brigham Young University, Provo, Utah, United States of America
| | - Joshua D. Yates
- Department of Cell Biology & Physiology, Brigham Young University, Provo, Utah, United States of America
| | - Jonathon T. Hill
- Department of Cell Biology & Physiology, Brigham Young University, Provo, Utah, United States of America
| | - Brent L. Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
3
|
Breedt G, Korsten L, Gokul JK. Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications. Folia Microbiol (Praha) 2025:10.1007/s12223-025-01245-9. [PMID: 39907926 DOI: 10.1007/s12223-025-01245-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
In recent decades, there has been a growing interest in harnessing plant growth-promoting rhizobacteria (PGPR) as a possible mechanism to mitigate the environmental impact of conventional agricultural practices and promote sustainable agricultural production. This study investigated the transferability of promising PGPR research from maize to another Poaceae cereal crop, wheat. This multi-seasonal study evaluated the wheat grain yield effect of Lysinibacillus sphaericus (T19), Paenibacillus alvei (T29) when applied i. individually, ii. as a consortium with Bacillus safensis (S7), and iii. at a 75% reduced fertilizer rate. Whole genome sequencing allowed annotation of genes linked to plant growth promotion, providing potential genomic explanations for the observed in-field findings. Application of the consortium compared to a commercial PGPR showed significantly increased wheat yield by 30.71%, and 25.03%, respectively, in season one, and 63.92% and 58.45%, respectively, under reduced fertilizer rates in season two. Individual application of T19 and T29 showed varying results, with T19 increasing wheat yield by 9.33% and 16.22% during seasons three and four but a substantial reduction (33.39%) during season five. T29 exhibited yield increases during season three (9.31%) and five (5.61%) but led to a significant reduction (21.15%) in season four. Genomic analysis unveiled a spectrum of plant growth-promoting genes including those associated with ammonification, phosphate solubilization, ethylene, siderophore, catalase, and superoxide dismutase production. These findings offer valuable insights into the mechanisms behind observed field results, with potential implications for advancing sustainable agriculture and crop productivity in evolving agricultural landscapes.
Collapse
Affiliation(s)
- Gerhardus Breedt
- Limpopo Department of Agriculture and Rural Development, Towoomba ADC, Private Bag X1615, Bela-Bela, 0480, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
- Department of Science and Innovation - National Research Foundation Centre of Excellence in Food Security, Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Jarishma Keriuscia Gokul
- Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.
| |
Collapse
|
4
|
Galic I, Bez C, Bertani I, Venturi V, Stankovic N. Herbicide-treated soil as a reservoir of beneficial bacteria: microbiome analysis and PGP bioinoculants in maize. ENVIRONMENTAL MICROBIOME 2024; 19:107. [PMID: 39695885 DOI: 10.1186/s40793-024-00654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Herbicides are integral to agricultural weed management but can adversely affect non-target organisms, soil health, and microbiome. We investigated the effects of herbicides on the total soil bacterial community composition using 16S rRNA gene amplicon community profiling. Further, we aimed to identify herbicide-tolerant bacteria with plant growth-promoting (PGP) capabilities as a mitigative strategy for these negative effects, thereby promoting sustainable agricultural practices. RESULTS A bacterial community analysis explored the effects of long-term S-metolachlor application on soil bacterial diversity, revealing that the herbicide's impact on microbial communities is less significant than the effects of temporal factors (summer vs. winter) or agricultural practices (continuous maize cultivation vs. maize-winter wheat rotation). Although S-metolachlor did not markedly alter the overall bacteriome structure in our environmental context, the application of enrichment techniques enabled the selection of genera such as Pseudomonas, Serratia, and Brucella, which were rare in metagenome analysis of soil samples. Strain isolation revealed a rich source of herbicide-tolerant PGP bacteria within the culturable microbiome fraction, termed the high herbicide concentration tolerant (HHCT) bacterial culture collection. Within the HHCT collection, we isolated 120 strains that demonstrated significant in vitro PGP and biocontrol potential, and soil quality improvement abilities. The most promising HHCT isolates were combined into three consortia, each exhibiting a comprehensive range of plant-beneficial traits. We evaluated the efficacy and persistence of these multi-strain consortia during 4-week in pot experiments on maize using both agronomic parameters and 16S rRNA gene community analysis assessing early-stage plant development, root colonization, and rhizosphere persistence. Notably, 7 out of 10 inoculated consortia partners successfully established themselves and persisted in the maize root microbiome without significantly altering host root biodiversity. Our results further evidenced that all three consortia positively impacted both seed germination and early-stage plant development, increasing shoot biomass by up to 47%. CONCLUSIONS Herbicide-treated soil bacterial community analysis revealed that integrative agricultural practices can suppress the effects of continuous S-metolachlor application on soil microbial diversity and stabilize microbiome fluctuations. The HHCT bacterial collection holds promise as a source of beneficial bacteria that promote plant fitness while maintaining herbicide tolerance.
Collapse
Affiliation(s)
- Ivana Galic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia
| | - Cristina Bez
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
- African Genome Center, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, 43150, Ben Guerir, Morocco
| | - Nada Stankovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, Belgrade 152, 11042, Serbia.
| |
Collapse
|
5
|
Marasco R, Mosqueira MJ, Seferji KA, Al Romaih SM, Michoud G, Xu J, Bez C, Castillo Hernandez T, Venturi V, Blilou I, Daffonchio D. Desert-adapted plant growth-promoting pseudomonads modulate plant auxin homeostasis and mitigate salinity stress. Microb Biotechnol 2024; 17:e70043. [PMID: 39692704 PMCID: PMC11653947 DOI: 10.1111/1751-7915.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/17/2024] [Indexed: 12/19/2024] Open
Abstract
By providing adaptive advantages to plants, desert microorganisms are emerging as promising solutions to mitigate the negative and abrupt effects of climate change in agriculture. Among these, pseudomonads, commonly found in soil and in association with plants' root system, have been shown to enhance plant tolerance to salinity and drought, primarily affecting root system architecture in various hosts. However, a comprehensive understanding of how these bacteria affect plant responses at the cellular, physiological and molecular levels is still lacking. In this study, we investigated the effects of two Pseudomonas spp. strains, E102 and E141, which were previously isolated from date palm roots and have demonstrated efficacy in promoting drought tolerance in their hosts. These strains colonize plant roots, influencing root architecture by inhibiting primary root growth while promoting root hair elongation and lateral root formation. Strains E102 and E141 increased auxin levels in Arabidopsis, whereas this effect was diminished in IAA-defective mutant strains, which exhibited reduced IAA production. In all cases, the effectiveness of the bacteria relies on the functioning of the plant auxin response and transport machinery. Notably, such physiological and morphological changes provide an adaptive advantage to the plant, specifically under stress conditions such as salinity. Collectively, this study demonstrates that by leveraging the host's auxin signalling machinery, strains E102 and E141 significantly improve plant resilience to abiotic stresses, positioning them as potential biopromoters/bioprotectors for crop production and ecosystem restoration in alignment with Nature-based Solution approaches.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Maria J. Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Kholoud A. Seferji
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Sarah M. Al Romaih
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jian Xu
- Plant Systems PhysiologyRadboud UniversityNijmegenThe Netherlands
| | - Cristina Bez
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Tatiana Castillo Hernandez
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTriesteItaly
- African Genome CenterUniversity Mohammed VI PolytechnicBen GuerirMorocco
| | - Ikram Blilou
- Laboratory of Plant Cell and Developmental Biology, Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| |
Collapse
|
6
|
Singh T, Bisht N, Ansari MM, Chauhan PS. Pseudomonas putida triggers phosphorus bioavailability and P-transporters under different phosphate regimes to enhance maize growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109279. [PMID: 39522389 DOI: 10.1016/j.plaphy.2024.109279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The decline of available phosphorus in soil due to anthropogenic activities necessitates utilizing soil microorganisms that influence soil phosphorus levels. However, the specific mechanisms governing their interaction in Zea mays under diverse phosphate regimes remain largely unknown. The present study investigated the dynamics of phosphorus solubilization and the impact of organic acid supplementation in combination with the beneficial rhizobacterium Pseudomonas putida (RA) on maize growth under phosphorus-limiting and unavailable conditions. HPLC analysis revealed gluconic acid as the primary organic acid (OA) produced by P. putida across all three conditions (P-sufficient, P-limiting, and P-unavailable), with the highest production occurring under P-limiting conditions. The study evaluates the effects of RA, OA, and OA + RA on plant growth parameters under P-limiting and insufficient conditions, revealing significant alterations in growth and biochemical parameters (P = 0.05) compared to their respective untreated controls. Additionally, plants treated with organic acids and bacterial inoculation show increased phosphorus concentrations in both roots and shoots. Gene expression analysis of key phosphorus transporter genes (PHT1, PHO1, PTF, PHF1) further supports the role of organic acids and bacterial inoculation in enhancing phosphorus uptake. In conclusion, our study affirms that the secretion of gluconic acid by RA and its plant growth-promoting properties boost phosphorus uptake and maize growth by increasing phosphorus availability and influencing the expression of phosphorus transport-related genes.
Collapse
Affiliation(s)
- Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Yao L, Liu GH, Zhang SY, Gao P, Rensing C, Yang QE, Zhou SG. Genome-based taxonomy and functional prediction of Sphingomonas fuzhouensis sp. nov. and Massilia phyllosphaerae sp. nov. isolated from Pennisetum sp. with plant growth-promoting potential. Antonie Van Leeuwenhoek 2024; 118:6. [PMID: 39292388 DOI: 10.1007/s10482-024-02017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024]
Abstract
Two facultatively aerobic strains, designated SGZ-02T and SGZ-792T, were isolated from plant Pennisetum sp., exhibiting the highest 16S rRNA gene sequence similarities with the type strains of Sphingomonas zeae LMG 28739T (98.6%) and Massilia forsythiae NBRC 114511T (98.4%), respectively. SGZ-02T grew between 5 and 45 °C, pH 5.0-11.0 and tolerated NaCl concentrations of 0-4% (w/v), whereas SGZ-792T thrived at 5-40 °C, pH 5.0-11.0 and NaCl tolerance to 0-3.5% (w/v). The major quinone of SGZ-02T was ubiquinone-10, with the dominant fatty acids being C16:0 (13.5%), Summed Feature 3 (6.3%), C14:02-OH (5.3%) and Summed Feature 8 (66.3%). SGZ-792T predominantly contained ubiquinone-8, with major fatty acids being C16:0 (20.3%), Summed Feature 3 (5.0%) and Summed Feature 8 (54.7%). Average nucleotide identity and digital DNA-DNA hybridization values between two strains and their closest references strains were below the bacterial species threshold. Based on genotypic and phenotypic characteristics, strains SGZ-02T and SGZ-792T are proposed as novel species within the genera Sphingomonas and Massilia, respectively. The suggested names for the new species are Sphingomonas fuzhouensis sp. nov. (SGZ-02T = GDMCC 1.4033T = JCM 36769T) and Massilia phyllosphaerae sp. nov. (SGZ-792T = GDMCC 1.4211T = JCM 36643T), respectively.
Collapse
Affiliation(s)
- Ling Yao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Guo-Hong Liu
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou City, Fujian Province, 35003, People's Republic of China.
| | - Shu-Yi Zhang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Peng Gao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Christopher Rensing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Qiu-E Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, People's Republic of China.
| |
Collapse
|
8
|
Du GX, Yu WS, Su JK, Liu GC, Gao P, Hong XG, Qu LY. Complete genome sequence of Kushneria phosphatilytica YCWA18 T reveals the P-solubilizing activity of the genus Kushneria. Mar Genomics 2024; 76:101123. [PMID: 39009499 DOI: 10.1016/j.margen.2024.101123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 07/17/2024]
Abstract
Kushneria phosphatilytica YCWA18T (= CGMCC 1.9149T = NCCB 100306T) was isolated from sediment collected in a saltern on the eastern coast of Yellow Sea in China. The genome was sequenced and comprised of one circular chromosome with the size of 3,624,619 bp and DNA G + C content of 59.13%. A total of 3267 protein-coding genes, 64 tRNA genes and 12 rRNA genes were obtained. Genomic annotation indicated that the genome of K. phosphatilytica YCWA18T had 34 genes involved in phosphorus (P) solubilization/metabolism, e.g., gdh, pqq, phoA, phoD and phoX, which products can convert insoluble P-containing compounds to more bio-available dissolved inorganic P. Comparative genomic analysis of Kushneria strains revealed that gdh, pqq, phoA, phoD and phoX were widely distributed in these strains, indicating the genus Kushneria may play an important role in the P cycle. Additionally, a multitude of salt tolerance genes were detected in the genome of K. phosphatilytica YCWA18T. This study and the genome sequence data will be available for further research and will provide insights into potential biotechnological and agricultural applications of Kushneria strains.
Collapse
Affiliation(s)
- Guang-Xun Du
- North China Sea Development Research Institute, North China Sea Bureau, Ministry of Natural Resources, Qingdao 266100, People's Republic of China; Key Laboratory of Ecological Prewarning,Protection and Restoration of Bohai Sea, Ministry of Natural Resources, Qingdao 266000, People's Republic of China
| | - Wen-Sheng Yu
- North China Sea Development Research Institute, North China Sea Bureau, Ministry of Natural Resources, Qingdao 266100, People's Republic of China
| | - Ji-Kun Su
- North China Sea Development Research Institute, North China Sea Bureau, Ministry of Natural Resources, Qingdao 266100, People's Republic of China
| | - Guo-Chong Liu
- North China Sea Development Research Institute, North China Sea Bureau, Ministry of Natural Resources, Qingdao 266100, People's Republic of China
| | - Ping Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Xu-Guang Hong
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China
| | - Ling-Yun Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, People's Republic of China.
| |
Collapse
|
9
|
Poli N, Keel CJ, Garrido-Sanz D. Expanding the Pseudomonas diversity of the wheat rhizosphere: four novel species antagonizing fungal phytopathogens and with plant-beneficial properties. Front Microbiol 2024; 15:1440341. [PMID: 39077740 PMCID: PMC11284033 DOI: 10.3389/fmicb.2024.1440341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Plant-beneficial Pseudomonas bacteria hold the potential to be used as inoculants in agriculture to promote plant growth and health through various mechanisms. The discovery of new strains tailored to specific agricultural needs remains an open area of research. In this study, we report the isolation and characterization of four novel Pseudomonas species associated with the wheat rhizosphere. Comparative genomic analysis with all available Pseudomonas type strains revealed species-level differences, substantiated by both digital DNA-DNA hybridization and average nucleotide identity, underscoring their status as novel species. This was further validated by the phenotypic differences observed when compared to their closest relatives. Three of the novel species belong to the P. fluorescens species complex, with two representing a novel lineage in the Pseudomonas phylogeny. Functional genome annotation revealed the presence of specific features contributing to rhizosphere colonization, including flagella and components for biofilm formation. The novel species have the genetic potential to solubilize nutrients by acidifying the environment, releasing alkaline phosphatases and their metabolism of nitrogen species, indicating potential as biofertilizers. Additionally, the novel species possess traits that may facilitate direct promotion of plant growth through the modulation of the plant hormone balance, including the ACC deaminase enzyme and auxin metabolism. The presence of biosynthetic clusters for toxins such as hydrogen cyanide and non-ribosomal peptides suggests their ability to compete with other microorganisms, including plant pathogens. Direct inoculation of wheat roots significantly enhanced plant growth, with two strains doubling shoot biomass. Three of the strains effectively antagonized fungal phytopathogens (Thielaviopsis basicola, Fusarium oxysporum, and Botrytis cinerea), demonstrating their potential as biocontrol agents. Based on the observed genetic and phenotypic differences from closely related species, we propose the following names for the four novel species: Pseudomonas grandcourensis sp. nov., type strain DGS24T ( = DSM 117501T = CECT 31011T), Pseudomonas purpurea sp. nov., type strain DGS26T ( = DSM 117502T = CECT 31012T), Pseudomonas helvetica sp. nov., type strain DGS28T ( = DSM 117503T = CECT 31013T) and Pseudomonas aestiva sp. nov., type strain DGS32T ( = DSM 117504T = CECT 31014T).
Collapse
Affiliation(s)
| | - Christoph Joseph Keel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Baukova A, Bogun A, Sushkova S, Minkina T, Mandzhieva S, Alliluev I, Jatav HS, Kalinitchenko V, Rajput VD, Delegan Y. New Insights into Pseudomonas spp.-Produced Antibiotics: Genetic Regulation of Biosynthesis and Implementation in Biotechnology. Antibiotics (Basel) 2024; 13:597. [PMID: 39061279 PMCID: PMC11273644 DOI: 10.3390/antibiotics13070597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Pseudomonas bacteria are renowned for their remarkable capacity to synthesize antibiotics, namely mupirocin, gluconic acid, pyrrolnitrin, and 2,4-diacetylphloroglucinol (DAPG). While these substances are extensively employed in agricultural biotechnology to safeguard plants against harmful bacteria and fungi, their potential for human medicine and healthcare remains highly promising for common science. However, the challenge of obtaining stable producers that yield higher quantities of these antibiotics continues to be a pertinent concern in modern biotechnology. Although the interest in antibiotics of Pseudomonas bacteria has persisted over the past century, many uncertainties still surround the regulation of the biosynthetic pathways of these compounds. Thus, the present review comprehensively studies the genetic organization and regulation of the biosynthesis of these antibiotics and provides a comprehensive summary of the genetic organization of antibiotic biosynthesis pathways in pseudomonas strains, appealing to both molecular biologists and biotechnologists. In addition, attention is also paid to the application of antibiotics in plant protection.
Collapse
Affiliation(s)
- Alexandra Baukova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
| | - Svetlana Sushkova
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Ilya Alliluev
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Hanuman Singh Jatav
- Soil Science & Agricultural Chemistry, S.K.N. Agriculture University-Jobner, Jaipur 303329, Rajasthan, India;
| | - Valery Kalinitchenko
- Institute of Fertility of Soils of South Russia, 346493 Persianovka, Rostov Region, Russia;
- All-Russian Research Institute for Phytopathology of the Russian Academy of Sciences, Institute St., 5, 143050 Big Vyazyomy, Moscow Region, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (A.B.); (A.B.)
- Academy of Biology and Biotechnology behalf D.I. Ivanovskyi, Southern Federal University, 344006 Rostov-on-Don, Russia; (S.S.); (T.M.); (S.M.); (I.A.); (V.D.R.)
| |
Collapse
|
11
|
Nerke P, Korb J, Haala F, Hubmann G, Lütz S. Metabolic bottlenecks of Pseudomonas taiwanensis VLB120 during growth on d-xylose via the Weimberg pathway. Metab Eng Commun 2024; 18:e00241. [PMID: 39021639 PMCID: PMC11252243 DOI: 10.1016/j.mec.2024.e00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The microbial production of value-added chemicals from renewable feedstocks is an important step towards a sustainable, bio-based economy. Therefore, microbes need to efficiently utilize lignocellulosic biomass and its dominant constituents, such as d-xylose. Pseudomonas taiwanensis VLB120 assimilates d-xylose via the five-step Weimberg pathway. However, the knowledge about the metabolic constraints of the Weimberg pathway, i.e., its regulation, dynamics, and metabolite fluxes, is limited, which hampers the optimization and implementation of this pathway for bioprocesses. We characterized the Weimberg pathway activity of P. taiwanensis VLB120 in terms of biomass growth and the dynamics of pathway intermediates. In batch cultivations, we found excessive accumulation of the intermediates d-xylonolactone and d-xylonate, indicating bottlenecks in d-xylonolactone hydrolysis and d-xylonate uptake. Moreover, the intermediate accumulation was highly dependent on the concentration of d-xylose and the extracellular pH. To encounter the apparent bottlenecks, we identified and overexpressed two genes coding for putative endogenous xylonolactonases PVLB_05820 and PVLB_12345. Compared to the control strain, the overexpression of PVLB_12345 resulted in an increased growth rate and biomass generation of up to 30 % and 100 %, respectively. Next, d-xylonate accumulation was decreased by overexpressing two newly identified d-xylonate transporter genes, PVLB_18545 and gntP (PVLB_13665). Finally, we combined xylonolactonase overexpression with enhanced uptake of d-xylonate by knocking out the gntP repressor gene gntR (PVLB_13655) and increased the growth rate and biomass yield by 50 % and 24 % in stirred-tank bioreactors, respectively. Our study contributes to the fundamental knowledge of the Weimberg pathway in pseudomonads and demonstrates how to encounter the metabolic bottlenecks of the Weimberg pathway to advance strain developments and cell factory design for bioprocesses on renewable feedstocks.
Collapse
Affiliation(s)
- Philipp Nerke
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Jonas Korb
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Frederick Haala
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Georg Hubmann
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany
| |
Collapse
|
12
|
Li XL, Lv XY, Ji JB, Wang WD, Wang J, Wang C, He HB, Ben AL, Liu TL. Complete genome sequence of Nguyenibacter sp. L1, a phosphate solubilizing bacterium isolated from Lespedeza bicolor rhizosphere. Front Microbiol 2023; 14:1257442. [PMID: 38152372 PMCID: PMC10752598 DOI: 10.3389/fmicb.2023.1257442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Phosphorus (P) deficiency is a predominant constraint on plant growth in acidified soils, largely due to the sequestration of P by toxic aluminum (Al) compounds. Indigenous phosphorus-solubilizing bacteria (PSBs) capable of mobilizing Al-P in these soils hold significant promise. A novel Al-P-solubilizing strain, Al-P Nguyenibacter sp. L1, was isolated from the rhizosphere soil of healthy Lespedeza bicolor plants indigenous to acidic terrains. However, our understanding of the genomic landscape of bacterial species within the genus Nguyenibacter remains in its infancy. To further explore its biotechnological potentialities, we sequenced the complete genome of this strain, employing an amalgamation of Oxford Nanopore ONT and Illumina sequencing platforms. The resultant genomic sequence of Nguyenibacter sp. L1 manifests as a singular, circular chromosome encompassing 4,294,433 nucleotides and displaying a GC content of 66.73%. The genome was found to host 3,820 protein-coding sequences, 12 rRNAs, and 55 tRNAs. Intriguingly, annotations derived from the eggNOG and KEGG databases indicate the presence of genes affiliated with phosphorus solubilization and nitrogen fixation, including iscU, glnA, and gltB/D associated with nitrogen fixation, and pqqBC associated with inorganic phosphate dissolution. Several bioactive secondary metabolite genes in the genome, including pqqCDE, phytoene synthase and squalene synthase predicted by antiSMASH. Moreover, we uncovered a complete metabolic pathway for ammonia, suggesting an ammonia-affinity property inherent to Nguyenibacter sp. L1. This study verifies the nitrogen-fixing and phosphate-dissolving abilities of Nguyenibacter sp. L1 at the molecular level through genetic screening and analysis. The insights gleaned from this study offer strategic guidance for future strain enhancement and establish a strong foundation for the potential incorporation of this bacterium into agricultural practices.
Collapse
Affiliation(s)
- Xiao Li Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Xin Yang Lv
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Jun Bin Ji
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Wei Duo Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Ji Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Cong Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, China
| | - Hai Bin He
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ai Ling Ben
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Ting Li Liu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
13
|
Cui Y, Song K, Jin ZJ, Lee LH, Thawai C, He YW. Fructose promotes pyoluteorin biosynthesis via the CbrAB-CrcZ-Hfq/Crc pathway in the biocontrol strain Pseudomonas PA1201. Synth Syst Biotechnol 2023; 8:618-628. [PMID: 37823038 PMCID: PMC10562864 DOI: 10.1016/j.synbio.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Biocontrol strain Pseudomonas PA1201 produces pyoluteorin (Plt), which is an antimicrobial secondary metabolite. Plt represents a promising candidate pesticide due to its broad-spectrum antifungal and antibacterial activity. Although PA1201 contains a complete genetic cluster for Plt biosynthesis, it fails to produce detectable level of Plt when grown in media typically used for Pseudomonas strains. In this study, minimum medium (MM) was found to favor Plt biosynthesis. Using the medium M, which contains all the salts of MM medium except for mannitol, as a basal medium, we compared 10 carbon sources for their ability to promote Plt biosynthesis. Fructose, mannitol, and glycerol promoted Plt biosynthesis, with fructose being the most effective carbon source. Glucose or succinic acid had no significant effect on Plt biosynthesis, but effectively antagonized fructose-dependent synthesis of Plt. Promoter-lacZ fusion reporter strains demonstrated that fructose acted through activation of the pltLABCDEFG (pltL) operon but had no effect on other genes of plt gene cluster; glucose or succinic acid antagonized fructose-dependent pltL induction. Mechanistically, fructose-mediated Plt synthesis involved carbon catabolism repression. The two-component system CbrA/CbrB and small RNA catabolite repression control Z (crcZ) were essential for fructose-induced Plt synthesis. The small RNA binding protein Hfq and Crc negatively regulated fructose-induced Plt. Taken together, this study provides a new model of fructose-dependent Plt production in PA1201 that can help improve Plt yield by biosynthetic approaches.
Collapse
Affiliation(s)
- Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Chitti Thawai
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
14
|
Xia K, Feng Z, Zhang X, Zhou Y, Zhu H, Yao Q. Potential functions of the shared bacterial taxa in the citrus leaf midribs determine the symptoms of Huanglongbing. FRONTIERS IN PLANT SCIENCE 2023; 14:1270929. [PMID: 38034569 PMCID: PMC10682189 DOI: 10.3389/fpls.2023.1270929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Instruction Citrus is a globally important fruit tree whose microbiome plays a vital role in its growth, adaptability, and resistance to stress. Methods With the high throughput sequencing of 16S rRNA genes, this study focused on analyzing the bacterial community, especially in the leaf midribs, of healthy and Huanglongbing (HLB)-infected plants. Results We firstly identified the shared bacterial taxa in the midribs of both healthy and HLB-infected plants, and then analyzed their functions. Results showed that the shared bacterial taxa in midribs belonged to 62 genera, with approximately 1/3 of which modified in the infected samples. Furthermore, 366 metabolic pathways, 5851 proteins, and 1833 enzymes in the shared taxa were predicted. Among these, three metabolic pathways and one protein showed significant importance in HLB infection. With the random forest method, six genera were identified to be significantly important for HLB infection. Notably, four of these genera were also among the significantly different shared taxa. Further functional characterization of these four genera revealed that Pseudomonas and Erwinia likely contributed to plant defense against HLB, while Streptomyces might have implications for plant defense against HLB or the pathogenicity of Candidatus Liberibacter asiaticus (CLas). Disccusion Overall, our study highlights that the functions of the shared taxa in leaf midribs are distinguished between healthy and HLB-infected plants, and these microbiome-based findings can contribute to the management and protection of citrus crops against CLas.
Collapse
Affiliation(s)
- Kaili Xia
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianjiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Buch A, Gupta V. Unusual concurrence of P-solubilizing and biocontrol traits under P-limitation in plant-beneficial Pseudomonas aeruginosa P4: insights from in vitro metabolic and gene expression analysis. Arch Microbiol 2023; 205:355. [PMID: 37833514 DOI: 10.1007/s00203-023-03692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Plant-beneficial fluorescent Pseudomonas species with concurrent P-solubilizing and biocontrol traits could have improved rhizospheric survival and efficacy; this rare ability being subject to diverse environmental and endogenous regulations. This study correlates growth patterns, time-course analysis of selected metabolites, non-targeted metabolomics of exometabolites and selected gene expression analysis to elucidate P-limitation-induced physiological shifts enabling co-production of metabolites implied in P-solubilization and biocontrol by P. aeruginosa P4 (P4). P-limited culture supernatants showed enhanced production of selected biocontrol metabolites such as pyocyanin, pyoverdine and pyochelin and IAA while maintaining biomass yield despite reduced growth rate and glucose consumption. Non-targeted exometabolomics further indicated that P-limitation positively impacted pentose phosphate pathway as well as pyruvate, C5-branched dibasic acid and amino acid metabolism. Its correlation with unusually reduced aroC expression and growth phase-dependent changes in the expression of key biosynthetic genes pchA, pchE, pchG, pvdQ and phzM implied a probable regulation of biosynthesis of chorismate-derived secondary metabolites, not neglecting the possibility of multiple factors influencing the gene expression profiles. Similar increase in biocontrol metabolite production was also observed in Artificial Root Exudates (ARE)-grown P4 cultures. While such metabolic flexibility could impart physiological advantage in sustaining P-starvation stress, it manifests as unique coexistence of P-solubilizing and biocontrol abilities.
Collapse
Affiliation(s)
- Aditi Buch
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist, Anand, Changa, 388 421, Gujarat, India.
| | - Vaishnawi Gupta
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Dist, Anand, Changa, 388 421, Gujarat, India
| |
Collapse
|
16
|
Fugaban JII, Jung ES, Todorov SD, Holzapfel WH. Evaluation of Antifungal Metabolites Produced by Lactic Acid Bacteria. Probiotics Antimicrob Proteins 2023; 15:1447-1463. [PMID: 36227534 DOI: 10.1007/s12602-022-09995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/29/2022]
Abstract
This study aimed to select and characterize lactic acid bacteria (LAB) with potential antifungal activities against the filamentous fungi Alternaria alternata ATCC MYA-4642, Aspergillus flavus KACC 45470, Aspergillus niger KACC 42589, Cladosporium sphaerospermum ATCC MYA-4645, Penicillium chrysogenum ATCC MYA-4644, and Penicillium expansum KACC 40815. Initial screening of the antifungal activity has identified six LAB strains belonging to the genera Enterococcus and Leuconostoc, selected by their antagonistic activities against at least three of the filamentous fungi in the test panel. Preliminary prediction of bioactive compounds was carried out to narrow down the possible identity of the antagonistic metabolites produced by the studied LAB. Furthermore, metabolic profiles were assessed and used as a basis for the identification of key metabolites based on VIP scores and PCA plot scores. Key metabolites were identified to be β-phenyllactic acid, ⍺-hydroxyisobutyric acid, 1,3-butanediol, phenethylamine, and benzoic acid. Individual assessment of each metabolic compound against the test panel showed specificity inhibitory patterns; yet, combinations between them only showed additive, but not synergetic effects. The pH neutralization significantly reduced the antifungal activity of the cell-free supernatant (CFS), but no bioactive compounds were found to be stable in high temperatures and pressure. This study will be beneficial as an additional building block on the existing knowledge and future antifungal application of LAB produced metabolites. Furthermore, this study also provides a new bio-preservative perspective on unexplored antifungal metabolites produced by LAB as biocontrol agents.
Collapse
Affiliation(s)
- Joanna Ivy Irorita Fugaban
- ProBacLab Laboratory, Department of Advanced Convergence, Handong Global University, Handong-ro, Heunghae-eup, Gyeong-buk, Pohang, 37554, Republic of Korea
- Current address: National Food Institute, Technical University of Denmark, Kemitorvet, Kongens Lyngby, Denmark
| | - Eun Sung Jung
- HEMPharma Inc., 77, Changnyong-daero 256 Beon-gil, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab Laboratory, Department of Advanced Convergence, Handong Global University, Handong-ro, Heunghae-eup, Gyeong-buk, Pohang, 37554, Republic of Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos E Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Wilhelm Heinrich Holzapfel
- ProBacLab Laboratory, Department of Advanced Convergence, Handong Global University, Handong-ro, Heunghae-eup, Gyeong-buk, Pohang, 37554, Republic of Korea
| |
Collapse
|
17
|
Garrido-Sanz D, Čaušević S, Vacheron J, Heiman CM, Sentchilo V, van der Meer JR, Keel C. Changes in structure and assembly of a species-rich soil natural community with contrasting nutrient availability upon establishment of a plant-beneficial Pseudomonas in the wheat rhizosphere. MICROBIOME 2023; 11:214. [PMID: 37770950 PMCID: PMC10540321 DOI: 10.1186/s40168-023-01660-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/31/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Plant-beneficial bacterial inoculants are of great interest in agriculture as they have the potential to promote plant growth and health. However, the inoculation of the rhizosphere microbiome often results in a suboptimal or transient colonization, which is due to a variety of factors that influence the fate of the inoculant. To better understand the fate of plant-beneficial inoculants in complex rhizosphere microbiomes, composed by hundreds of genotypes and multifactorial selection mechanisms, controlled studies with high-complexity soil microbiomes are needed. RESULTS We analysed early compositional changes in a taxa-rich natural soil bacterial community under both exponential nutrient-rich and stationary nutrient-limited growth conditions (i.e. growing and stable communities, respectively) following inoculation with the plant-beneficial bacterium Pseudomonas protegens in a bulk soil or a wheat rhizosphere environment. P. protegens successfully established under all conditions tested and was more abundant in the rhizosphere of the stable community. Nutrient availability was a major factor driving microbiome composition and structure as well as the underlying assembly processes. While access to nutrients resulted in communities assembled mainly by homogeneous selection, stochastic processes dominated under the nutrient-deprived conditions. We also observed an increased rhizosphere selection effect under nutrient-limited conditions, resulting in a higher number of amplicon sequence variants (ASVs) whose relative abundance was enriched. The inoculation with P. protegens produced discrete changes, some of which involved other Pseudomonas. Direct competition between Pseudomonas strains partially failed to replicate the observed differences in the microbiome and pointed to a more complex interaction network. CONCLUSIONS The results of this study show that nutrient availability is a major driving force of microbiome composition, structure and diversity in both the bulk soil and the wheat rhizosphere and determines the assembly processes that govern early microbiome development. The successful establishment of the inoculant was facilitated by the wheat rhizosphere and produced discrete changes among other members of the microbiome. Direct competition between Pseudomonas strains only partially explained the microbiome changes, indicating that indirect interactions or spatial distribution in the rhizosphere or soil interface may be crucial for the survival of certain bacteria. Video Abstract.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Senka Čaušević
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Clara M Heiman
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vladimir Sentchilo
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
18
|
Patel JS, Selvaraj V, More P, Bahmani R, Borza T, Prithiviraj B. A Plant Biostimulant from Ascophyllum nodosum Potentiates Plant Growth Promotion and Stress Protection Activity of Pseudomonas protegens CHA0. PLANTS (BASEL, SWITZERLAND) 2023; 12:1208. [PMID: 36986897 PMCID: PMC10053968 DOI: 10.3390/plants12061208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction, and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE), and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion, and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan, alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum), and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization, and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan, alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR), pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped only occasionally those of growth-promoting parameters. Overall, the increased colonization and the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the increased activities of P. protegens CHA0 and the improved plant growth.
Collapse
|
19
|
Genomic Insights and Functional Analysis Reveal Plant Growth Promotion Traits of Paenibacillus mucilaginosus G78. Genes (Basel) 2023; 14:genes14020392. [PMID: 36833318 PMCID: PMC9956331 DOI: 10.3390/genes14020392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Paenibacillus mucilaginosus has widely been reported as a plant growth-promoting rhizobacteria (PGPR). However, the important genomic insights into plant growth promotion in this species remain undescribed. In this study, the genome of P. mucilaginosus G78 was sequenced using Illumina NovaSeq PE150. It contains 8,576,872 bp with a GC content of 58.5%, and was taxonomically characterized. Additionally, a total of 7337 genes with 143 tRNAs, 41 rRNAs, and 5 ncRNAs were identified. This strain can prohibit the growth of the plant pathogen, but also has the capability to form biofilm, solubilize phosphate, and produce IAA. Twenty-six gene clusters encoding secondary metabolites were identified, and the genotypic characterization indirectly proved its resistant ability to ampicillin, bacitracin, polymyxin and chloramphenicol. The putative exopolysaccharide biosynthesis and biofilm formation gene clusters were explored. According to the genetic features, the potential monosaccharides of its exopolysaccharides for P. mucilaginosus G78 may include glucose, mannose, galactose, fucose, that can probably be acetylated and pyruvated. Conservation of the pelADEFG compared with other 40 Paenibacillus species suggests that Pel may be specific biofilm matrix component in P. mucilaginosus. Several genes relevant to plant growth-promoting traits, i.e., IAA production and phosphate solubilization are well conserved compared with other 40 other Paenibacillus strains. The current study can benefit for understanding the plant growth-promoting traits of P. mucilaginosus as well as its potential application in agriculture as PGPR.
Collapse
|
20
|
Insights into Genomic Evolution and the Potential Genetic Basis of Klebsiella variicola subsp. variicola ZH07 Reveal Its Potential for Plant Growth Promotion and Autotoxin Degradation. Microbiol Spectr 2022; 10:e0084622. [PMID: 36377943 PMCID: PMC9769570 DOI: 10.1128/spectrum.00846-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The accumulation of autotoxins in soil causes continuous cropping obstacle stress in crops, and the bioremediation of autotoxins by microorganisms is an efficient process. In this study, strain ZH07 was isolated from the peanut rhizosphere and was found to be utilizing multiple autotoxins as its carbon sources. Based on its genomic characteristics and a phylogenetic analysis, ZH07 represents a member of Klebsiella variicola subsp. variicola. A comparative genomic analysis exhibited evolutionary dynamics exhibited by mobile genetic elements (MGEs), strain-specific genes, potential horizontal genes, and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to rhizosphere soil. Genome mining revealed the potential genomic properties associated with plant growth promotion, such as nitrogen fixation, indole acetic acid synthesis, phosphonate solubilization and assimilation, siderophore production, and secondary metabolite synthesis. Moreover, abundant genes putatively responsible for the biodegradation of aromatic xenobiotics, including benzoic acid, cinnamic acid, vanillic acid, protocatechuic acid, phenylacetic acid, and p-hydroxybenzoic acid were also observed in the ZH07 genome. Compared to autotoxin stress alone, the combination of ZH07 application promoted peanut germination and seedling growth. Our analysis revealed the genetic adaptation of ZH07 to the rhizosphere environment and the potential genetic basis and effectiveness of the isolate to serve as a plant growth stimulator. IMPORTANCE Continuous cropping obstacles reduce the production and quality of agricultural products, and the application of rhizosphere beneficial microbes is an important strategy. Strain ZH07 showed autotoxin-degrading and plant growth-promoting capacities. The objectives of this study were to characterize its genomic evolution and the potential genetic basis of the autotoxin degradation and plant growth promotion. ZH07 represents a member of Klebsiella variicola subsp. variicola, based on genomic and phylogenetic analyses. Its genomic components have undergone different degrees of purifying selection, and the disparity in the evolutionary rate may be associated with its niche adaptation. A systematic analysis of the ZH07 genome identified the potential genetic basis that contributes to plant growth promotion and to aromatic xenobiotic biodegradation. This study demonstrates that plant growth-promoting rhizobacteria (PGPR) play important roles in autotoxin biodegradation and can be used as biofertilizers to enhance the growth of peanuts in response to continuous cropping obstacle stress.
Collapse
|
21
|
Ulrich DEM, Clendinen CS, Alongi F, Mueller RC, Chu RK, Toyoda J, Gallegos-Graves LV, Goemann HM, Peyton B, Sevanto S, Dunbar J. Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis). Sci Rep 2022; 12:12581. [PMID: 35869127 PMCID: PMC9307599 DOI: 10.1038/s41598-022-16408-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/11/2022] [Indexed: 12/22/2022] Open
Abstract
Plant survival during environmental stress greatly affects ecosystem carbon (C) cycling, and plant–microbe interactions are central to plant stress survival. The release of C-rich root exudates is a key mechanism plants use to manage their microbiome, attracting beneficial microbes and/or suppressing harmful microbes to help plants withstand environmental stress. However, a critical knowledge gap is how plants alter root exudate concentration and composition under varying stress levels. In a greenhouse study, we imposed three drought treatments (control, mild, severe) on blue grama (Bouteloua gracilis Kunth Lag. Ex Griffiths), and measured plant physiology and root exudate concentration and composition using GC–MS, NMR, and FTICR. With increasing drought severity, root exudate total C and organic C increased concurrently with declining predawn leaf water potential and photosynthesis. Root exudate composition mirrored the physiological gradient of drought severity treatments. Specific compounds that are known to alter plant drought responses and the rhizosphere microbiome mirrored the drought severity-induced root exudate compositional gradient. Despite reducing C uptake, these plants actively invested C to root exudates with increasing drought severity. Patterns of plant physiology and root exudate concentration and composition co-varied along a gradient of drought severity.
Collapse
|
22
|
Zahoor S, Naz R, Keyani R, Roberts TH, Hassan MN, Yasmin H, Nosheen A, Farman S. Rhizosphere bacteria associated with Chenopodium quinoa promote resistance to Alternaria alternata in tomato. Sci Rep 2022; 12:19027. [PMID: 36347914 PMCID: PMC9643462 DOI: 10.1038/s41598-022-21857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
Microorganisms can interact with plants to promote plant growth and act as biocontrol agents. Associations with plant growth-promoting rhizobacteria (PGPR) enhance agricultural productivity by improving plant nutrition and enhancing protection from pathogens. Microbial applications can be an ideal substitute for pesticides or fungicides, which can pollute the environment and reduce biological diversity. In this study, we isolated 68 bacterial strains from the root-adhering soil of quinoa (Chenopodium quinoa) seedlings. Bacterial strains exhibited several PGPR activities in vitro, including nutrient solubilization, production of lytic enzymes (cellulase, pectinase and amylase) and siderophore synthesis. These bacteria were further found to suppress the mycelial growth of the fungal pathogen Alternaria alternata. Nine bacterial strains were selected with substantial antagonistic activity and plant growth-promotion potential. These strains were identified based on their 16S rRNA gene sequences and selected for in planta experiments with tomato (Solanum lycopersicum) to estimate their growth-promotion and disease-suppression activity. Among the selected strains, B. licheniformis and B. pumilus most effectively promoted tomato plant growth, decreased disease severity caused by A. alternata infection by enhancing the activities of antioxidant defense enzymes and contributed to induced systemic resistance. This investigation provides evidence for the effectiveness and viability of PGPR application, particularly of B. licheniformis and B. pumilus in tomato, to promote plant growth and induce systemic resistance, making these bacteria promising candidates for biofertilizers and biocontrol agents.
Collapse
Affiliation(s)
- Sidra Zahoor
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, Pakistan.
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Thomas H Roberts
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Muhammad N Hassan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Chak Shahzad, Islamabad, Pakistan
| | - Saira Farman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
23
|
Vassileva M, Mendes GDO, Deriu MA, Benedetto GD, Flor-Peregrin E, Mocali S, Martos V, Vassilev N. Fungi, P-Solubilization, and Plant Nutrition. Microorganisms 2022; 10:1716. [PMID: 36144318 PMCID: PMC9503713 DOI: 10.3390/microorganisms10091716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The application of plant beneficial microorganisms is widely accepted as an efficient alternative to chemical fertilizers and pesticides. It was shown that annually, mycorrhizal fungi and nitrogen-fixing bacteria are responsible for 5 to 80% of all nitrogen, and up to 75% of P plant acquisition. However, while bacteria are the most studied soil microorganisms and most frequently reported in the scientific literature, the role of fungi is relatively understudied, although they are the primary organic matter decomposers and govern soil carbon and other elements, including P-cycling. Many fungi can solubilize insoluble phosphates or facilitate P-acquisition by plants and, therefore, form an important part of the commercial microbial products, with Aspergillus, Penicillium and Trichoderma being the most efficient. In this paper, the role of fungi in P-solubilization and plant nutrition will be presented with a special emphasis on their production and application. Although this topic has been repeatedly reviewed, some recent views questioned the efficacy of the microbial P-solubilizers in soil. Here, we will try to summarize the proven facts but also discuss further lines of research that may clarify our doubts in this field or open new perspectives on using the microbial and particularly fungal P-solubilizing potential in accordance with the principles of the sustainability and circular economy.
Collapse
Affiliation(s)
- Maria Vassileva
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Gilberto de Oliveira Mendes
- Laboratório de Microbiologia e Fitopatologia, Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Monte Carmelo 38500-000, Brazil
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
| | | | - Elena Flor-Peregrin
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - Stefano Mocali
- Council for Agricultural Research and Analysis of the Agricultural Economy, Research Centre for Agriculture and Environment, 50125 Firenze, Italy
| | - Vanessa Martos
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| | - Nikolay Vassilev
- Department of Chemical Engineering, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
- Institute of Biotechnology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
Díaz M, Bach T, González Anta G, Agaras B, Wibberg D, Noguera F, Canciani W, Valverde C. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008 T. FRONTIERS IN PLANT SCIENCE 2022; 13:894985. [PMID: 35968096 PMCID: PMC9369656 DOI: 10.3389/fpls.2022.894985] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudomonas sp. strain 1008 was isolated from the rhizosphere of field grown wheat plants at the tillering stage in an agricultural plot near Pergamino city, Argentina. Based on its in vitro phosphate solubilizing capacity and the production of IAA, strain 1008 was formulated as an inoculant for bacterization of wheat seeds and subjected to multiple field assays within the period 2010-2017. Pseudomonas sp. strain 1008 showed a robust positive impact on the grain yield (+8% on average) across a number of campaigns, soil properties, seed genotypes, and with no significant influence of the simultaneous seed treatment with a fungicide, strongly supporting the use of this biostimulant bacterium as an agricultural input for promoting the yield of wheat. Full genome sequencing revealed that strain 1008 has the capacity to access a number of sources of inorganic and organic phosphorus, to compete for iron scavenging, to produce auxin, 2,3-butanediol and acetoin, and to metabolize GABA. Additionally, the genome of strain 1008 harbors several loci related to rhizosphere competitiveness, but it is devoid of biosynthetic gene clusters for production of typical secondary metabolites of biocontrol representatives of the Pseudomonas genus. Finally, the phylogenomic, phenotypic, and chemotaxonomic comparative analysis of strain 1008 with related taxa strongly suggests that this wheat rhizospheric biostimulant isolate is a representative of a novel species within the genus Pseudomonas, for which the name Pseudomonas pergaminensis sp. nov. (type strain 1008T = DSM 113453T = ATCC TSD-287T) is proposed.
Collapse
Affiliation(s)
- Marisa Díaz
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Teresa Bach
- Rizobacter Argentina S.A., Buenos Aires, Argentina
| | - Gustavo González Anta
- Escuela de Ciencias Agrarias, Exactas y Naturales, Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Departamento de Ciencias Naturales y Exactas, Universidad Nacional de San Antonio de Areco (UNSAdA), Buenos Aires, Argentina
- Indrasa Biotecnología S.A., Córdoba, Argentina
| | - Betina Agaras
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | | | | | - Claudio Valverde
- Laboratorio de Fisiología y Genética de Bacterias Beneficiosas para Plantas, Centro de Bioquímica y Microbiología del Suelo, Universidad Nacional de Quilmes-CONICET, Buenos Aires, Argentina
| |
Collapse
|
25
|
Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One 2022; 17:e0269640. [PMID: 35714148 PMCID: PMC9205524 DOI: 10.1371/journal.pone.0269640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
A plant growth-promoting and antifungal endophytic bacteria designated as Ld-08 isolated from the bulbs of Lilium davidii was identified as Pseudomonas aeruginosa based on phenotypic, microscopic, and 16S rRNA gene sequence analysis. Ld-08 exhibited antifungal effects against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. Ld-08 showed the highest growth inhibition, i.e., 83.82±4.76% against B. dothidea followed by 74.12±3.87%, 67.56±3.35%, and 63.67±3.39% against F. fujikuroi, B. cinerea, and F. oxysporum, respectively. The ethyl acetate fraction of Ld-08 revealed the presence of several bioactive secondary metabolites. Prominent compounds were quinolones; 3,9-dimethoxypterocarpan; cascaroside B; dehydroabietylamine; epiandrosterone; nocodazole; oxolinic acid; pyochelin; rhodotulic acid; 9,12-octadecadienoic acid; di-peptides; tri-peptides; ursodiol, and venlafaxine. The strain Ld-08 showed organic acids, ACC deaminase, phosphate solubilization, IAA, and siderophore. The sterilized bulbs of a Lilium variety, inoculated with Ld-08, were further studied for plant growth-promoting traits. The inoculated plants showed improved growth than the control plants. Importantly, some growth parameters such as plant height, leaf length, bulb weight, and root length were significantly (P ≤0.05) increased in the inoculated plants than in the control un-inoculated plants. Further investigations are required to explore the potential of this strain to be used as a plant growth-promoting and biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Microbiology Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
26
|
Rikame T, Borde M. Whole Genome, Functional Annotation and Comparative Genomics of Plant Growth-Promoting Bacteria Pseudomonas aeruginosa (NG61) with Potential Application in Agro-Industry. Curr Microbiol 2022; 79:169. [PMID: 35460384 DOI: 10.1007/s00284-022-02845-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
A plant growth-promoting Rhizobacteria (PGPR) Pseudomonas aeruginosa (NG61) isolated from rhizosphere of Sunflower plant. The isolate was identified by 16S rRNA gene sequencing (Accession no. MK455763). NG61 showed various plant growth promotion and biocontrol activities like, Phosphate solubilisation, Nitrogen fixation, Ammonia production, IAA production, siderophore production, HCN production. The whole genome sequence of Pseudomonas aeruginosa (NG61) was reported and analysed. The estimated genome size was 6537180 bp with 66.18% of G+C content. The genome encoded 6186 protein-coding genes, 6252 genes were predicted, 66RNA genes. Phylogenetic tree showed that the P. aeruginosa( NG61) was closely related to P.aeruginosa strain DSM 50071. The annotated draft genome has been deposited at the NCBI database under the accession number PRJNA707114 BioProject and BioSample: SAMN18174979. The analysis of genome sequence of P. aeruginosa (NG61) showed various genes encoding plant growth promotion and biocontrol activities.
Collapse
Affiliation(s)
- Tejal Rikame
- Department of Botany, Savitribai Phule Pune University, Pune, MH, 411007, India
| | - Mahesh Borde
- Department of Botany, Savitribai Phule Pune University, Pune, MH, 411007, India.
| |
Collapse
|
27
|
Xu S, Zhao Y, Peng Y, Shi Y, Xie X, Chai A, Li B, Li L. Comparative Genomics Assisted Functional Characterization of Rahnella aceris ZF458 as a Novel Plant Growth Promoting Rhizobacterium. Front Microbiol 2022; 13:850084. [PMID: 35444623 PMCID: PMC9015054 DOI: 10.3389/fmicb.2022.850084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Many Rahnella strains have been widely described as plant growth-promoting rhizobacteria with the potential to benefit plant growth and protect plants from pathogens. R. aceris ZF458 is a beneficial plant bacterium isolated from swamp soil with the potential for biocontrol. Strain ZF458 has shown broad-spectrum antagonistic activities against a variety of plant pathogens and exhibited a dramatic effect on controlling Agrobacterium tumefaciens in sunflowers. The R. aceris ZF458 genome sequence contained a 4,861,340-bp circular chromosome and two plasmids, with an average G + C content of 52.20%. Phylogenetic analysis demonstrated that R. aceris ZF458 was closely related to R. aceris SAP-19. Genome annotation and comparative genomics identified the conservation and specificity of large numbers of genes associated with nitrogen fixation, plant growth hormone production, organic acid biosynthesis and pyrroloquinoline quinone production that specific to benefiting plants in strain ZF458. In addition, numerous conserved genes associated with environmental adaption, including the bacterial secretion system, selenium metabolism, two-component system, flagella biosynthesis, chemotaxis, and acid resistance, were also identified in the ZF458 genome. Overall, this was the first study to systematically analyze the genes linked with plant growth promotion and environmental adaption in R. aceris. The aim of this study was to derive genomic information that would provide an in-depth insight of the mechanisms of plant growth-promoting rhizobacteria, and could be further exploited to improve the application of R. aceris ZF458 in the agriculture field.
Collapse
Affiliation(s)
- Shuai Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yurong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
An Evaluation of Aluminum Tolerant Pseudomonas aeruginosa A7 for In Vivo Suppression of Fusarium Wilt of Chickpea Caused by Fusarium oxysporum f. sp. ciceris and Growth Promotion of Chickpea. Microorganisms 2022; 10:microorganisms10030568. [PMID: 35336143 PMCID: PMC8950562 DOI: 10.3390/microorganisms10030568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 02/05/2023] Open
Abstract
Chickpea wilt, caused by Fusarium oxysporum f. sp. ciceris, is a disease that decreases chickpea productivity and quality and can reduce its yield by as much as 15%. A newly isolated, moss rhizoid-associated Pseudomonas aeruginosa strain A7, demonstrated strong inhibition of Fusarium oxysporum f. sp. ciceris growth. An in vitro antimicrobial assay revealed A7 to suppress the growth of several fungal and bacterial plant pathogens by secreting secondary metabolites and by producing volatile compounds. In an in vivo pot experiment with Fusarium wilt infection in chickpea, the antagonist A7 exhibited a disease reduction by 77 ± 1.5%, and significantly reduced the disease incidence and severity indexes. Furthermore, A7 promoted chickpea growth in terms of root and shoot length and dry biomass during pot assay. The strain exhibited several traits associated with plant growth promotion, extracellular enzymatic production, and stress tolerance. Under aluminum stress conditions, in vitro growth of chickpea plants by A7 resulted in a significant increase in root length and plant biomass production. Additionally, hallmark genes for antibiotics production were identified in A7. The methanol extract of strain A7 demonstrated antimicrobial activity, leading to the identification of various antimicrobial compounds based on retention time and molecular weight. These findings strongly suggest that the strain’s significant biocontrol potential and plant growth enhancement could be a potential environmentally friendly process in agricultural crop production.
Collapse
|
29
|
Jiao W, Liu X, Li Y, Li B, Du Y, Zhang Z, Chen Q, Fu M. Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. MOLECULAR PLANT PATHOLOGY 2022; 23:304-312. [PMID: 34820999 PMCID: PMC8743014 DOI: 10.1111/mpp.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Decay due to fungal infection is a major cause of postharvest losses in fruits. Acidic fungi may enhance their virulence by locally reducing the pH of the host. Several devastating postharvest fungi, such as Penicillium spp., Botrytis cinerea, and Sclerotinia sclerotiorum, can secrete gluconic acid, oxalic acid, or citric acid. Emerging evidence suggests that organic acids secreted by acidic fungi are important virulence factors. In this review, we summarized the research progress on the biosynthesis of organic acids, the role of the pH signalling transcription factor PacC in regulating organic acid, and the action mechanism of the main organic acid secreted via postharvest pathogenic fungi during infection of host tissues. This paper systematically demonstrates the relationships between tissue acidification and postharvest fungal pathogenicity, which will motivate the study of host-pathogen interactions and provide a better understanding of virulence mechanisms of the pathogens so as to design new technical strategies to prevent postharvest diseases.
Collapse
Affiliation(s)
- Wenxiao Jiao
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Xin Liu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Youyuan Li
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Boqiang Li
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Yamin Du
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Zhanquan Zhang
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Qingmin Chen
- College of Food Science and EngineeringShandong Agricultural and Engineering UniversityJinanChina
| | - Maorun Fu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| |
Collapse
|
30
|
Tshewang S, Rengel Z, Siddique KH, Solaiman ZM. Microbial consortium inoculant increases pasture grasses yield in low-phosphorus soil by influencing root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:540-549. [PMID: 34146349 DOI: 10.1002/jsfa.11382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/20/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pasture farming in south-western Australia is challenged by nutrient-poor soils. We assessed the impact of microbial consortium inoculant (MI) and rock mineral fertiliser (MF) on growth, nutrient uptake, root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation in three pasture grasses - tall fescue (Festuca arundinacea L.), veldt grass (Ehrharta calycina Sm.) and tall wheatgrass (Thinopyrum ponticum L.) grown in low-phosphorus (P) sandy soil in a glasshouse for 30 and 60 days after sowing (DAS). RESULTS Veldt grass produced the highest specific root length and smallest average root diameter in both growth periods, and had similar shoot weight, root surface area and fine root length (except at 30 DAS) to tall fescue. Compared with the control, MI alone or combined with MF significantly increased shoot and root biomass (except root biomass at 30 DAS), likely due to the significant increases in root surface area and fine root length. Plants supplied with MI + MF had higher shoot N and P contents than those in the MI and the control treatments at 60 DAS. Malate, citrate and trans-aconitate were the major rhizosphere carboxylates exuded at both 30 and 60 DAS. Malate exudation varied among species and treatments in both growth periods, but citrate exudation was consistently higher in the low-P treatments (control and MI) than the MF and MI + MF treatments. CONCLUSION Microbial consortium inoculant can positively influence pasture production in low-P soil by increasing root surface area and fine root length, whereas exudation of nutrient-mobilising carboxylates (citrate) is dependent more on soil P supply than microbial consortium inoculant. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sangay Tshewang
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
- Department of Agriculture, Agriculture Research and Development Center, Bajo, Bhutan
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Kadambot Hm Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Zakaria M Solaiman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Australia
| |
Collapse
|
31
|
Xu A, Zhang X, Wang T, Xin F, Ma LZ, Zhou J, Dong W, Jiang M. Rugose small colony variant and its hyper-biofilm in Pseudomonas aeruginosa: Adaption, evolution, and biotechnological potential. Biotechnol Adv 2021; 53:107862. [PMID: 34718136 DOI: 10.1016/j.biotechadv.2021.107862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022]
Abstract
One of the hallmarks of the environmental bacterium Pseudomonas aeruginosa is its excellent ecological flexibility, which can thrive in diverse ecological niches. In different ecosystems, P. aeruginosa may use different strategies to survive, such as forming biofilms in crude oil environment, converting to mucoid phenotype in the cystic fibrosis (CF) lung, or becoming persisters when treated with antibiotics. Rugose small colony variants (RSCVs) are the adaptive mutants of P. aeruginosa, which can be frequently isolated from chronic infections. During the past years, there has been a renewed interest in using P. aeruginosa as a model organism to investigate the RSCVs formation, persistence and pathogenesis, as RSCVs represent a hyper-biofilm formation, high adaptability, high-tolerance sub-population in biofilms. This review will briefly summarize recent advances regarding the phenotypic, genetic and host interaction associated with RSCVs, with an emphasis on P. aeruginosa. Meanwhile, some non-pathogenic bacteria such as Pseudomonas fluorescence, Pseudomonas putida and Bacillus subtilis will be also included. Remarkable emphasis is given on intrinsic functions of such hyper-biofilm formation characteristic as well as its potential applications in several biocatalytic transformations including wastewater treatment, microbial fermentation, and plastic degradation. Hopefully, this review will attract the interest of researchers in various fields and shape future research focused not only on evolutionary biology but also on biotechnological applications related to RSCVs.
Collapse
Affiliation(s)
- Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Xiaoxiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Tong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Luyan Z Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
32
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Transcriptomics differentiate two novel bioactive strains of Paenibacillus sp. isolated from the perennial ryegrass seed microbiome. Sci Rep 2021; 11:15545. [PMID: 34330961 PMCID: PMC8324883 DOI: 10.1038/s41598-021-94820-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/16/2021] [Indexed: 01/10/2023] Open
Abstract
Paenibacillus species are Gram-positive bacteria that have been isolated from a diverse array of plant species and soils, with some species exhibiting plant growth-promoting (PGP) activities. Here we report two strains (S02 and S25) of a novel Paenibacillus sp. that were isolated from perennial ryegrass (Lolium perenne) seeds. Comparative genomics analyses showed this novel species was closely related to P. polymyxa. Genomic analyses revealed that strains S02 and S25 possess PGP genes associated with biological nitrogen fixation, phosphate solubilisation and assimilation, as well as auxin production and transportation. Moreover, secondary metabolite gene cluster analyses identified 13 clusters that are shared by both strains and three clusters unique to S25. In vitro assays demonstrated strong bioprotection activity against phytopathogens (Colletotrichum graminicola and Fusarium verticillioides), particularly for strain S02. A transcriptomics analysis evaluating nitrogen fixation activity showed both strains carry an expressed nif operon, but strain S02 was more active than strain S25 in nitrogen-free media. Another transcriptomics analysis evaluating the interaction of strains with F. verticillioides showed strain S02 had increased expression of core genes of secondary metabolite clusters (fusaricidin, paenilan, tridecaptin and polymyxin) when F. verticillioides was present and absent, compared to S25. Such bioactivities make strain S02 a promising candidate to be developed as a combined biofertiliser/bioprotectant.
Collapse
|
34
|
Organic Acid Profiles of Phosphate Solubilizing Bacterial Strains in the Presence of Different Insoluble Phosphatic Sources Under In vitro Buffered Conditions. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of weak organic acids by microorganisms has been attributed as the prime reason for the solubilization of insoluble phosphates under both in vitro and soil conditions. Literature seems to be heavily biased towards gluconic acid production by microbes and its subsequent release into the environment as the key factor responsible for phosphate solubilization. This has found credibility since gluconic acid being a product of the Kreb’s cycle is often detected in large quantities in the culture media, when assayed under in vitro conditions. In the present work, the organic acid profiles of four elite phosphate solubilising isolates were determined in the presence of different insoluble sources of phosphates, under in vitro buffered culture conditions by HPLC (High-Performance Liquid Chromatography). While most previous studies did not use a buffered culture media for elucidating the organic acid profile of phosphate solubilizing bacterial isolates, we used a buffered media for estimation of the organic acid profiles. The results revealed that apart from gluconic acid, malic acid is produced in significant levels by phosphate solubilizing bacterial isolates, and there seems to be a differential pattern of production of these two organic acids by the isolates in the presence of different insoluble phosphate sources.
Collapse
|
35
|
Matuszewska M, Maciąg T, Rajewska M, Wierzbicka A, Jafra S. The carbon source-dependent pattern of antimicrobial activity and gene expression in Pseudomonas donghuensis P482. Sci Rep 2021; 11:10994. [PMID: 34040089 PMCID: PMC8154892 DOI: 10.1038/s41598-021-90488-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound ("cluster 17") and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.
Collapse
Affiliation(s)
- Marta Matuszewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Tomasz Maciąg
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Aldona Wierzbicka
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
36
|
GENOME ANALYSIS OF Pseudomonas brassicacearum S-1 – AN ANTAGONIST OF CROP PATHOGENS. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.02.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The strain Pseudomonas brassicacearum S-1 is the basis of the biopesticide “Ecogreen”, which is used to control pathogens infecting vegetable and green spicy crops in small-scale hydroponics. Aim. The purpose of this work was to sequence and analyze the nucleotide sequence of the genome of strain P. brassicacearum S-1 (GenBank accession number CP045701). Methods. Whole-genome sequencing was performed by both MiSeq (Illuminа) and MinION (Oxford Nanopore). Analysis of the genome sequence was performed with a number of bioinformatics programs. Results. The genome of the P. brassicacearum S-1 strain comprising a single circular 6 577 561-bp chromosome with GC content of 60.8 %. Genome analysis revealed genes that constitute valuable biotechnological potential of the S-1 strain and determine synthesis of a wide range of secondary metabolites. Moreover, mobile genetic elements, prophages and short repetitive sequences were identified in the S-1 genome. Conclusions. Detected genetic determinants, which are responsible for the synthesis of practically valuable compounds, indicate a significant potential of the P. brassicacearum S-1 strain as a biocontrol agent.
Collapse
|
37
|
Raymond NS, Gómez-Muñoz B, van der Bom FJT, Nybroe O, Jensen LS, Müller-Stöver DS, Oberson A, Richardson AE. Phosphate-solubilising microorganisms for improved crop productivity: a critical assessment. THE NEW PHYTOLOGIST 2021; 229:1268-1277. [PMID: 32929739 DOI: 10.1111/nph.16924] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 05/22/2023]
Abstract
Phosphate-solubilising microorganisms (PSM) are often reported to have positive effects on crop productivity through enhanced phosphorus (P) nutrition. Our aim was to evaluate the validity of this concept. Most studies that report 'positive effects' of PSM on plant growth have been conducted under controlled conditions, whereas field experiments more frequently fail to demonstrate a positive response. Many studies have indicated that the mechanisms seen in vitro do not translate into improved crop P nutrition in complex soil-plant systems. Furthermore, associated mechanisms are often not rigorously assessed. We suggest that PSM do not mobilise sufficient P to change the crops' nutritional environment under field conditions. The current concept, in which PSM solubilise P 'for the plant' should thus be revised. Although PSM have the capacity to solubilise P to meet their own needs, it is the turnover of the microbial biomass that subsequently provides P to plants over a longer time. Therefore, the existing concept of PSM function is unlikely to deliver a reliable strategy for increasing crop P nutrition. A further mechanistic understanding is needed to determine how P mobilisation by PSM as a component of the whole soil community can be manipulated to become more effective for plant P nutrition.
Collapse
Affiliation(s)
- Nelly S Raymond
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Beatriz Gómez-Muñoz
- Section for Plant and Soil Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Frederik J T van der Bom
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Lars S Jensen
- Section for Plant and Soil Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Dorette S Müller-Stöver
- Section for Plant and Soil Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Astrid Oberson
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Eschikon 33, Lindau, CH-8315, Switzerland
| | - Alan E Richardson
- CSIRO Agriculture and Food, PO Box 1700, Canberra, ACT, 2601, Australia
| |
Collapse
|
38
|
Snak A, Vendruscolo ECG, dos Santos MF, Fiorini A, Mesa D. Genome sequencing and analysis of plant growth-promoting attributes from Leclercia adecarboxylata. Genet Mol Biol 2021; 44:e20200130. [PMID: 33503198 PMCID: PMC7839631 DOI: 10.1590/1678-4685-gmb-2020-0130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022] Open
Abstract
Plant growth-promoting bacteria are ecological alternatives for fertilization, mainly for gramineous. Since plant x bacteria interaction is genotype and strain dependent, searching for new strains may contribute to the development of new biofertilizers. We aim to characterize plant growth-promoting capacity of Leclercia adecarboxylata strain Palotina, formerly isolated by our group in corn. A single isolated colony was taken and its genome was sequenced using Illumina technology. The whole genome was compared to other Leclercia adecarboxylata strains, and their biological and growth-promoting traits, such as P solubilization and auxin production, were tested. Following that, a 4.8 Mb genome of L. adecarboxylata strain Palotina was assembled and the functional annotation was carried out. This paper is the first to report the genes associated with plant growth promotion demonstrating in vitro indole acid production by this strain. These results project the endophyte as a potential biofertilizer for further commercial exploitation.
Collapse
Affiliation(s)
- Aline Snak
- Universidade Federal do Paraná, Labiogen-Laboratório de Bioquímica e
Genética, Palotina, PR, Brazil
| | | | | | - Adriana Fiorini
- Universidade Federal do Paraná, Labiogen-Laboratório de Bioquímica e
Genética, Palotina, PR, Brazil
- Universidade Federal do Paraná, Departamento de Biociências,
Palotina, PR, Brazil
| | - Dany Mesa
- Universidade Federal do Paraná, Departamento de Bioquímica, Centro
Politécnico, Jardim das Américas, Curitiba, PR, Brazil
| |
Collapse
|
39
|
Lurthy T, Pivato B, Lemanceau P, Mazurier S. Importance of the Rhizosphere Microbiota in Iron Biofortification of Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:744445. [PMID: 34925398 PMCID: PMC8679237 DOI: 10.3389/fpls.2021.744445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/29/2021] [Indexed: 05/13/2023]
Abstract
Increasing the iron content of plant products and iron assimilability represents a major issue for human nutrition and health. This is also a major challenge because iron is not readily available for plants in most cultivated soils despite its abundance in the Earth's crust. Iron biofortification is defined as the enhancement of the iron content in edible parts of plants. This biofortification aims to reach the objectives defined by world organizations for human nutrition and health while being environment friendly. A series of options has been proposed to enhance plant iron uptake and fight against hidden hunger, but they all show limitations. The present review addresses the potential of soil microorganisms to promote plant iron nutrition. Increasing knowledge on the plant microbiota and plant-microbe interactions related to the iron dynamics has highlighted a considerable contribution of microorganisms to plant iron uptake and homeostasis. The present overview of the state of the art sheds light on plant iron uptake and homeostasis, and on the contribution of plant-microorganism (plant-microbe and plant-plant-microbe) interactions to plant nutritition. It highlights the effects of microorganisms on the plant iron status and on the co-occurring mechanisms, and shows how this knowledge may be valued through genetic and agronomic approaches. We propose a change of paradigm based on a more holistic approach gathering plant and microbial traits mediating iron uptake. Then, we present the possible applications in plant breeding, based on plant traits mediating plant-microbe interactions involved in plant iron uptake and physiology.
Collapse
|
40
|
Li JY, Gao TT, Wang Q. Comparative and Functional Analyses of Two Sequenced Paenibacillus polymyxa Genomes Provides Insights Into Their Potential Genes Related to Plant Growth-Promoting Features and Biocontrol Mechanisms. Front Genet 2020; 11:564939. [PMID: 33391337 PMCID: PMC7773762 DOI: 10.3389/fgene.2020.564939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
Many bacteria belonging to Paenibacillus polymyxa are plant growth-promoting rhizobacteria (PGPR) with the potential to promote plant growth and suppress phytopathogens and have been used as biological control agents (BCAs). However, the growth promotion and biocontrol mechanisms of P. polymyxa have not been thoroughly elucidated thus far. In this investigation, the genome sequences of two P. polymyxa strains, ZF129 and ZF197, with broad anti-pathogen activities and potential for growth promotion were comparatively studied. Comparative and functional analyses of the two sequenced P. polymyxa genomes showed that the ZF129 genome consists of one 5,703,931 bp circular chromosome and two 79,020 bp and 37,602 bp plasmids, designated pAP1 and pAP2, respectively. The complete genome sequence of ZF197 consists of one 5,507,169 bp circular chromosome and one 32,065 bp plasmid, designated pAP197. Phylogenetic analysis revealed that ZF129 is highly similar to two P. polymyxa strains, HY96-2 and SQR-21, while ZF197 is highly similar to P. polymyxa strain J. The genes responsible for secondary metabolite synthesis, plant growth-promoting traits, and systemic resistance inducer production were compared between strains ZF129 and ZF197 as well as other P. polymyxa strains. The results indicated that the variation of the corresponding genes or gene clusters between strains ZF129 and ZF197 may lead to different antagonistic activities of their volatiles or cell-free supernatants against Fusarium oxysporum. This work indicates that plant growth promotion by P. polymyxa is largely mediated by phytohormone production, increased nutrient availability and biocontrol mechanisms. This study provides an in-depth understanding of the genome architecture of P. polymyxa, revealing great potential for the application of this bacterium in the fields of agriculture and horticulture as a PGPR.
Collapse
Affiliation(s)
- Jin-Yi Li
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Tan-Tan Gao
- Key Laboratory for Northern Urban Agriculture, Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Qi Wang
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Brito LF, López MG, Straube L, Passaglia LMP, Wendisch VF. Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Front Microbiol 2020; 11:588605. [PMID: 33424789 PMCID: PMC7793946 DOI: 10.3389/fmicb.2020.588605] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the importance of phosphorus (P) in agriculture, crop inoculation with phosphate-solubilizing bacteria is a relevant subject of study. Paenibacillus sonchi genomovar Riograndensis SBR5 is a promising candidate for crop inoculation, as it can fix nitrogen and excrete ammonium at a remarkably high rate. However, its trait of phosphate solubilization (PS) has not yet been studied in detail. Here, differential gene expression and functional analyses were performed to characterize PS in this bacterium. SBR5 was cultivated with two distinct P sources: NaH2PO4 as soluble phosphate source (SPi) and hydroxyapatite as insoluble phosphate source (IPi). Total RNA of SBR5 cultivated in those two conditions was isolated and sequenced, and bacterial growth and product formation were monitored. In the IPi medium, the expression of 68 genes was upregulated, whereas 100 genes were downregulated. Among those, genes involved in carbon metabolism, including those coding for subunits of 2-oxoglutarate dehydrogenase, were identified. Quantitation of organic acids showed that the production of tricarboxylic acid cycle-derived organic acids was reduced in IPi condition, whereas acetate and gluconate were overproduced. Increased concentrations of proline, trehalose, and glycine betaine revealed active osmoprotection during growth in IPi. The cultivation with hydroxyapatite also caused the reduction in the motility of SBR5 cells as a response to Pi depletion at the beginning of its growth. SBR5 was able to solubilize hydroxyapatite, which suggests that this organism is a promising phosphate-solubilizing bacterium. Our findings are the initial step in the elucidation of the PS process in P. sonchi SBR5 and will be a valuable groundwork for further studies of this organism as a plant growth-promoting rhizobacterium.
Collapse
Affiliation(s)
- Luciana F. Brito
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marina Gil López
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Lucas Straube
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
42
|
Ribeiro IDA, Volpiano CG, Vargas LK, Granada CE, Lisboa BB, Passaglia LMP. Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:590774. [PMID: 33362817 PMCID: PMC7759553 DOI: 10.3389/fpls.2020.590774] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/26/2020] [Indexed: 05/19/2023]
Abstract
Rock powders are low-cost potential sources of most of the nutrients required by higher plants for growth and development. However, slow dissolution rates of minerals represent an obstacle to the widespread use of rock powders in agriculture. Rhizosphere processes and biological weathering may further enhance mineral dissolution since the interaction between minerals, plants, and bacteria results in the release of macro- and micronutrients into the soil solution. Plants are important agents in this process acting directly in the mineral dissolution or sustaining a wide diversity of weathering microorganisms in the root environment. Meanwhile, root microorganisms promote mineral dissolution by producing complexing ligands (siderophores and organic acids), affecting the pH (via organic or inorganic acid production), or performing redox reactions. Besides that, a wide variety of rhizosphere bacteria and fungi could also promote plant development directly, synergistically contributing to the weathering activity performed by plants. The inoculation of weathering bacteria in soil or plants, especially combined with the use of crushed rocks, can increase soil fertility and improve crop production. This approach is more sustainable than conventional fertilization practices, which may contribute to reducing climate change linked to agricultural activity. Besides, it could decrease the dependency of developing countries on imported fertilizers, thus improving local development.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Kayser Vargas
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | | - Bruno Brito Lisboa
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | |
Collapse
|
43
|
Palmieri D, Vitale S, Lima G, Di Pietro A, Turrà D. A bacterial endophyte exploits chemotropism of a fungal pathogen for plant colonization. Nat Commun 2020; 11:5264. [PMID: 33067433 PMCID: PMC7567819 DOI: 10.1038/s41467-020-18994-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Soil-inhabiting fungal pathogens use chemical signals released by roots to direct hyphal growth towards the host plant. Whether other soil microorganisms exploit this capacity for their own benefit is currently unknown. Here we show that the endophytic rhizobacterium Rahnella aquatilis locates hyphae of the root-infecting fungal pathogen Fusarium oxysporum through pH-mediated chemotaxis and uses them as highways to efficiently access and colonize plant roots. Secretion of gluconic acid (GlcA) by R. aquatilis in the rhizosphere leads to acidification and counteracts F. oxysporum-induced alkalinisation, a known virulence mechanism, thereby preventing fungal infection. Genetic abrogation or biochemical inhibition of GlcA-mediated acidification abolished biocontrol activity of R. aquatilis and restored fungal infection. These findings reveal a new way by which bacterial endophytes hijack hyphae of a fungal pathogen in the soil to gain preferential access to plant roots, thereby protecting the host from infection.
Collapse
Affiliation(s)
- Davide Palmieri
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Stefania Vitale
- Departamento de Genetica, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain.,Dipartimento di Agraria, Università di Napoli Federico II, Portici, Italy
| | - Giuseppe Lima
- Dipartimento Agricoltura, Ambiente e Alimenti, Università degli Studi del Molise, Campobasso, Italy
| | - Antonio Di Pietro
- Departamento de Genetica, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain.
| | - David Turrà
- Departamento de Genetica, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain. .,Dipartimento di Agraria, Università di Napoli Federico II, Portici, Italy. .,Center for Studies on Bioinspired Agro-enviromental Technology, Università di Napoli Federico II, Portici, Italy.
| |
Collapse
|
44
|
Zhou L, Zhang T, Tang S, Fu X, Yu S. Pan-genome analysis of Paenibacillus polymyxa strains reveals the mechanism of plant growth promotion and biocontrol. Antonie van Leeuwenhoek 2020; 113:1539-1558. [PMID: 32816227 DOI: 10.1007/s10482-020-01461-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Rapid development of gene sequencing technologies has led to an exponential increase in microbial sequencing data. Genome research of a single organism does not capture the changes in the characteristics of genetic information within a species. Pan-genome analysis gives us a broader perspective to study the complete genetic information of a species. Paenibacillus polymyxa is a Gram-positive bacterium and an important plant growth-promoting rhizobacterium with the ability to produce multiple antibiotics, such as fusaricidin, lantibiotic, paenilan, and polymyxin. Our study explores the pan-genome of 14 representative P. polymyxa strains isolated from around the world. Heap's law model and curve fitting confirmed an open pan-genome of P. polymyxa. The phylogenetic and collinearity analyses reflected that the evolutionary classification of P. polymyxa strains are not associated with geographical area and ecological niches. Few genes related to phytohormone synthesis and phosphate solubilization were conserved; however, the nif cluster gene associated with nitrogen fixation exists only in some strains. This finding is indicative of nitrogen fixing ability is not stable in P. polymyxa. Analysis of antibiotic gene clusters in P. polymyxa revealed the presence of these genes in both core and accessory genomes. This observation indicates that the difference in living environment led to loss of ability to synthesize antibiotics in some strains. The current pan-genomic analysis of P. polymyxa will help us understand the mechanisms of biological control and plant growth promotion. It will also promote the use of P. polymyxa in agriculture.
Collapse
Affiliation(s)
- Liangliang Zhou
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Ting Zhang
- College of Bioscience and Engineering, Jiangxi Agricultural university, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Shan Tang
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xueqin Fu
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, Jiangxi, People's Republic of China
| | - Shuijing Yu
- Faculty of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
45
|
Agtuca BJ, Stopka SA, Evans S, Samarah L, Liu Y, Xu D, Stacey MG, Koppenaal DW, Paša-Tolić L, Anderton CR, Vertes A, Stacey G. Metabolomic profiling of wild-type and mutant soybean root nodules using laser-ablation electrospray ionization mass spectrometry reveals altered metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1937-1958. [PMID: 32410239 DOI: 10.1111/tpj.14815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/05/2020] [Accepted: 04/17/2020] [Indexed: 05/18/2023]
Abstract
The establishment of the nitrogen-fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization-mass spectrometry (LAESI-MS) for in situ metabolic profiling of wild-type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl-acyl carrier protein desaturase (sacpd-c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+ ) and ineffective (nifH mutant, fix- ) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd-c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI-MS for high-throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.
Collapse
Affiliation(s)
- Beverly J Agtuca
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sylwia A Stopka
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Sterling Evans
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Laith Samarah
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Yang Liu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Minviluz G Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA, 99354, USA
| | - Akos Vertes
- Department of Chemistry, The George Washington University, Washington, DC, 20052, USA
| | - Gary Stacey
- Divisions of Plant Sciences and Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
46
|
Khan MS, Gao J, Zhang M, Chen X, Moe TS, Du Y, Yang F, Xue J, Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech 2020; 10:305. [PMID: 32612899 PMCID: PMC7313711 DOI: 10.1007/s13205-020-02294-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/07/2020] [Indexed: 02/01/2023] Open
Abstract
In the present study, a new strain of Bacillus stratosphericus LW-03 was isolated from the bulbs of Lilium wardii. The isolated endophytic strain LW-03 exhibited excellent antifungal activity against common plant pathogens, such as Fusarium oxysporum, Botryosphaeria dothidea, Botrytis cinerea, and Fusarium fujikuroi. The growth inhibition percentage of Botryosphaeria dothidea was 74.56 ± 2.35%, which was the highest, followed by Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum were 71.91 ± 2.87%, 69.54 ± 2.73%, and 65.13 ± 1.91%, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several of which were putatively identified as antimicrobial agents, such as 4-hydroxy-2-nonenylquinoline N-oxide, sphingosine ceramides like cer(d18:0/16:0(2OH)), cer(d18:0/16:0), and cer(d18:1/0:0), di-peptides, tri-peptide, cyclopeptides [cyclo(D-Trp-L-Pro)], [cyclo (Pro-Phe)], dehydroabietylamine, oxazepam, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine like compound (PC(0:0/20:4), phosphatidylethanolamine (PE(18:1/0:0)), 3-Hydroxyoctadecanoic acid, 7.alpha.,27-Dihydroxycholesterol, N-Acetyl-d-mannosamine, p-Hydroxyphenyllactic acid, Phytomonic acid, and 2-undecenyl-quinoloin-4 (1H). The LW-03 strain exhibits multiple plant growth-promoting traits, including the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation activity. The beneficial effects of the endophytic strain LW-03 on the growth of two lily varieties were further evaluated under greenhouse conditions. Our results revealed plant growth-promoting activity in inoculated plants relative to non-inoculated control plants. The broad-spectrum antifungal activity and multiple plant growth-promoting properties of Bacillus stratosphericus LW-03 make it an important player in the development of biological fertilizers and sustainable agricultural biological control strategies.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Khyber Pakhtunkhwa, Peshawar, 25000 Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse, 05151 Myanmar
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
47
|
Khan MS, Gao J, Chen X, Zhang M, Yang F, Du Y, Moe TS, Munir I, Xue J, Zhang X. The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects. J Microbiol Biotechnol 2020; 30:668-680. [PMID: 32482932 PMCID: PMC9728359 DOI: 10.4014/jmb.1910.10021] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022]
Abstract
Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Zeicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2- arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle- 9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse 05151, Myanmar
| | - Iqbal Munir
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar 5000 Khyber Pakhtunkhwa, Pakistan
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 00097, P.R. China
| |
Collapse
|
48
|
Eida AA, Bougouffa S, L’Haridon F, Alam I, Weisskopf L, Bajic VB, Saad MM, Hirt H. Genome Insights of the Plant-Growth Promoting Bacterium Cronobacter muytjensii JZ38 With Volatile-Mediated Antagonistic Activity Against Phytophthora infestans. Front Microbiol 2020; 11:369. [PMID: 32218777 PMCID: PMC7078163 DOI: 10.3389/fmicb.2020.00369] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
Salinity stress is a major challenge to agricultural productivity and global food security in light of a dramatic increase of human population and climate change. Plant growth promoting bacteria can be used as an additional solution to traditional crop breeding and genetic engineering. In the present work, the induction of plant salt tolerance by the desert plant endophyte Cronobacter sp. JZ38 was examined on the model plant Arabidopsis thaliana using different inoculation methods. JZ38 promoted plant growth under salinity stress via contact and emission of volatile compounds. Based on the 16S rRNA and whole genome phylogenetic analysis, fatty acid analysis and phenotypic identification, JZ38 was identified as Cronobacter muytjensii and clearly separated and differentiated from the pathogenic C. sakazakii. Full genome sequencing showed that JZ38 is composed of one chromosome and two plasmids. Bioinformatic analysis and bioassays revealed that JZ38 can grow under a range of abiotic stresses. JZ38 interaction with plants is correlated with an extensive set of genes involved in chemotaxis and motility. The presence of genes for plant nutrient acquisition and phytohormone production could explain the ability of JZ38 to colonize plants and sustain plant growth under stress conditions. Gas chromatography-mass spectrometry analysis of volatiles produced by JZ38 revealed the emission of indole and different sulfur volatile compounds that may play a role in contactless plant growth promotion and antagonistic activity against pathogenic microbes. Indeed, JZ38 was able to inhibit the growth of two strains of the phytopathogenic oomycete Phytophthora infestans via volatile emission. Genetic, transcriptomic and metabolomics analyses, combined with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
Collapse
Affiliation(s)
- Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- BioScience Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Intikhab Alam
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Vladimir B. Bajic
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Maged M. Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Ullah H, Yasmin H, Mumtaz S, Jabeen Z, Naz R, Nosheen A, Hassan MN. Multitrait Pseudomonas spp. Isolated from Monocropped Wheat ( Triticum aestivum) Suppress Fusarium Root and Crown Rot. PHYTOPATHOLOGY 2020; 110:582-592. [PMID: 31799901 DOI: 10.1094/phyto-10-19-0383-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium root and crown rot is the most common disease of wheat, especially wheat grown in arid zones where drought is a common issue. The development of environmentally safe approaches to manage diseases of food crops is important for humans. The monocropping system recruits beneficial bacteria that promote plant growth through nutrient solubilization and pathogen suppression. In this study, a field where wheat was monocropped for 5 successive years under rainfed conditions was identified. A total of 29 bacterial isolates were obtained from the rhizosphere, endosphere, and phyllosphere of wheat at its harvesting stage. The Gram-negative bacteria were less prevalent (41%) but the majority (75%) exhibited plant growth-promoting traits. The ability of strains to solubilize nutrients (solubilization index = 2.3 to 4), inhibit pathogenic fungi (25 to 56%), and produce antifungal compounds was highly variable. The rhizobacteria significantly promoted the growth and disease resistance of wheat varieties such as Pirsbak-2015 and Galaxy-2013 by inducing antioxidant enzyme activity (0.2- to 2.1-fold). The bacterial strains were identified as Ochrobactrum spp., Acinetobacter spp., and Pseudomonas mediterranea by 16S rRNA and rpoD sequence analysis. The endophytic bacterium P. mediterranea HU-9 exhibited maximum biocontrol efficacy against wheat root and crown rot diseases with a disease score/disease index from 1.8 to 3.1. The monocropping systems of rainfed agriculture are an ideal source of beneficial bacteria to use as bioinoculants for different crops.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
50
|
Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8650957. [PMID: 32190683 PMCID: PMC7064867 DOI: 10.1155/2020/8650957] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacterium that has immense potential to be used as an environmentally friendly replacement of chemical fertilizers and pesticides. In the present study, Paenibacillus polymyxa SK1 was isolated from bulbs of Lilium lancifolium. The isolated endophytic strain showed antifungal activities against important plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea, and Fusarium fujikuroi. The highest percentage of growth inhibition, i.e., 66.67 ± 2.23%, was observed for SK1 against Botryosphaeria dothidea followed by 61.19 ± 3.12%, 60.71 ± 3.53%, and 55.54 ± 2.89% against Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum, respectively. The metabolite profiling of ethyl acetate fraction was assessed through the UHPLC-LTQ-IT-MS/MS analysis, and putative identification was done with the aid of the GNPS molecular networking workflow. A total of 29 compounds were putatively identified which included dipeptides, tripeptides, cyclopeptides (cyclo-(Leu-Leu), cyclo(Pro-Phe)), 2-heptyl-3-hydroxy 4-quinolone, 6-oxocativic acid, anhydrobrazilic acid, 1-(5-methoxy-1H-indol-3-yl)-2-piperidin-1-ylethane-1,2-dione, octadecenoic acid, pyochelin, 15-hydroxy-5Z,8Z,11Z, 13E-eicosatetraenoic acid, (Z)-7-[(2R,3S)-3-[(2Z,5E)-Undeca-2,5-dienyl]oxiran-2-yl]hept-5-enoic acid, arginylasparagine, cholic acid, sphinganine, elaidic acid, gossypin, L-carnosine, tetrodotoxin, and ursodiol. The high antifungal activity of SK1 might be attributed to the presence of these bioactive compounds. The isolated strain SK1 showed plant growth-promoting traits such as the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, nitrogen fixation, and phosphate solubilization. IAA production was strongly correlated with the application of exogenous tryptophan concentrations in the medium. Furthermore, inoculation of SK1 enhanced plant growth of two Lilium varieties, Tresor and White Heaven, under greenhouse condition. In the light of these findings, the P. polymyxa SK1 may be utilized as a source of plant growth promotion and disease control in sustainable agriculture.
Collapse
|