1
|
Kaur Dhaliwal H, Sonkar S, Gänzle M, Roopesh MS. Efficacy of oxidative disinfectants, quaternary ammonium compounds and dry heat on the inactivation of Salmonella Enteritidis in different cellular states. Food Microbiol 2025; 128:104713. [PMID: 39952758 DOI: 10.1016/j.fm.2024.104713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 02/17/2025]
Abstract
The investigation of disinfection methods with different antimicrobial mechanisms is of utmost importance in determining inactivation kinetics pertaining to various cellular states of Salmonella. The present study evaluated the effectiveness of different conventional and novel disinfectants against the inactivation of suspended and desiccated Salmonella enterica Enteritidis FUA1946. A comparative study was conducted to evaluate the efficacy of various disinfection methods, including dry heat, membrane-acting benzalkonium chloride (BAC), conventional oxidizing agents such as peracetic acid (PAA) and hydrogen peroxide (H2O2) in the inactivation of S. Enteritidis. Further, the efficacy of novel oxidizers such as plasma-activated water bubbles (PAWB) and plasma-activated hydrogen peroxide water bubbles (PAHP-WB) was evaluated against the suspended and desiccated S. Enteritidis. The results showed that the disinfectant concentration, treatment temperature, and treatment time significantly affected the susceptibility of the S. Enteritidis to disinfection methods. Compared to the surface-dried cells, the S. Enteritidis suspensions displayed a higher lethality to the tested disinfectants. The results revealed a greater resistance of the air-dried and equilibrated S. Enteritidis on the stainless steel to dry heat, BAC, H2O2, and PAWB. The PAA treatment 40 °C displayed high efficacy against the S. Enteritidis on the stainless steel. This emphasizes the need to incorporate effective disinfection programmes to prevent the spread of S. Enteritidis in dry processing environments. Moreover, conducting a comparative analysis of the diverse cellular states of bacteria is crucial in the context of disinfection of the low-aw food processing industry.
Collapse
Affiliation(s)
- Harleen Kaur Dhaliwal
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Shivani Sonkar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - M S Roopesh
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
2
|
Zeng J, Fu R, Ji J, Xing T, Hou D, Li Z, Zhao Z, Li S, Zhang H. Stress responses and Physiological Changes of Salmonella enterica Serovar Enteritidis on Short-Term and Long-Term Benzalkonium Bromide Adaptation. Foodborne Pathog Dis 2025; 22:302-308. [PMID: 38635964 DOI: 10.1089/fpd.2023.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Salmonella enterica is a common foodborne pathogen that poses significant safety risks across the world. And benzalkonium bromide (BK) is widely used as a disinfectant to sterilize the food processing equipment. It has been reported that sub-lethal concentration of disinfectants induced not only the homologous resistance but also cross-resistances. This work analyzed the induced resistances of Salmonella Enteritidis by short-term adaptation (STA) and long-term adaptation (LTA) to BK. We have demonstrated that inefficient sterilization exposes Salmonella Enteritidis to sub-lethal concentrations of BK, and adapts bacteria to a higher minimum inhibitory concentration and minimum bactericidal concentration. In addition, STA, but not LTA, to BK induced heterogeneous resistance to sodium hypochlorite, and cross-resistance to freezing, desiccation, and heating, which may be caused by the membrane composition change of Salmonella Enteritidis. This work could be useful to the optimization of cleaning protocol.
Collapse
Affiliation(s)
- Ji Zeng
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Rong Fu
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Jiahao Ji
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Tong Xing
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Dongping Hou
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zefeng Li
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zepeng Zhao
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Shaoting Li
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Hongmei Zhang
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Bai M, Zhang C, Xu S, Zhang M, Zhang C. Global transcriptional analysis for molecular responses of Alicyclobacillus acidoterrestris spores in drinking water after low- and medium-pressure ultraviolet irradiation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136007. [PMID: 39366042 DOI: 10.1016/j.jhazmat.2024.136007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Ultraviolet (UV) irradiation can effectively disinfect water contaminated with pathogens. However, the biological mechanisms of inactivation by different types of UV irradiation are unknown. The present study investigated the inactivation mechanisms of Alicyclobacillus acidoterrestris spores in water by low-pressure UV (LPUV) and medium-pressure UV (MPUV) using a quasi-collimated beam apparatus. Global transcriptomic data obtained by RNA-seq revealed 291 shared differentially expressed genes (DEGs) that damaged DNA, reduced biofilm formation, and had other reactions. The individual downregulated DEGs (n = 123) mainly related to cell motility, membrane transport, and metabolism were induced by LPUV, and in turn contributed to energy-saving and metabolic activity inhibition, forcing bacteria into a viable but non-culturable (VBNC) state. The individual upregulated DEGs (n = 244) following MPUV treatment were mainly enriched in cell motility, membrane transport, metabolism, DNA replication and repair, and spore germination pathways. This results in high-energy consumption, severe damage to genetic material, and enhanced spore germination accelerated cell death. Additionally, hub genes in the protein-protein interaction network were mainly involved in transcription and translation. These findings contribute to the comprehensive understanding of the inactivation mechanisms of different types of UV irradiation, and will improve applications of UV disinfection in the treatment of water.
Collapse
Affiliation(s)
- Miao Bai
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Chuanfu Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing 100071, China
| | - Shaofeng Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Minglu Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Can Zhang
- Institute of Health Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
4
|
Gurtler JB, Garner CM, Grasso-Kelley EM, Fan X, Jin TZ. Inactivation of Desiccation-Resistant Salmonella on Apple Slices Following Treatment with ε-Polylysine, Sodium Bisulfate, or Peracetic Acid and Subsequent Dehydration. J Food Prot 2024; 87:100297. [PMID: 38734414 DOI: 10.1016/j.jfp.2024.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Salmonella is capable of surviving dehydration within various foods, such as dried fruit. Dried fruit, including apple slices, have been the subject of product recalls due to contamination with Salmonella. A study was conducted to determine the fate of Salmonella on apple slices, following immersion in three antimicrobial solutions (viz., ε-polylysine [epsilon-polylysine or EP], sodium bisulfate [SBS], or peracetic acid [PAA]), and subsequent hot air dehydration. Gala apples were aseptically cored and sliced into 0.4 cm thick rings, bisected, and inoculated with a five-strain composite of desiccation-resistant Salmonella, to a population of 8.28 log CFU/slice. Slices were then immersed for 2 min in various concentrations of antimicrobial solutions, including EP (0.005, 0.02, 0.05, and 0.1%), SBS (0.05, 0.1, 0.2, and 0.3%), PAA (18 or 42 ppm), or varying concentrations of PAA + EP, and then dehydrated at 60°C for 5 h. Salmonella populations in positive control samples (inoculated apple slices washed in sterile water) declined by 2.64 log after drying. In the present study, the inactivation of Salmonella, following EP and SBS treatments, increased with increasing concentrations, with maximum reductions of 3.87 and 6.20 log (with 0.1 and 0.3% of the two compounds, respectively). Based on preliminary studies, EP concentrations greater than 0.1% did not result in lower populations of Salmonella. Pretreatment washes with either 18 or 42 ppm of PAA inactivated Salmonella populations by 4.62 and 5.63 log, respectively, following desiccation. Combining PAA with up to 0.1% EP induced no greater population reductions of Salmonella than washing with PAA alone. The addition of EP to PAA solutions appeared to destabilize PAA concentrations, reducing its biocidal efficacy. These results may provide antimicrobial predrying treatment alternatives to promote the reduction of Salmonella during commercial or consumer hot air drying of apple slices.
Collapse
Affiliation(s)
- Joshua B Gurtler
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038-8551, USA.
| | - Christina M Garner
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038-8551, USA
| | | | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038-8551, USA
| | - Tony Z Jin
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038-8551, USA
| |
Collapse
|
5
|
Liu S, Xue R, Qin W, Yang X, Ye Q, Wu Q. Performance and transcriptome analysis of Salmonella enterica serovar Enteritidis PT 30 under persistent desiccation stress: Cultured by lawn and broth methods. Food Microbiol 2023; 115:104323. [PMID: 37567618 DOI: 10.1016/j.fm.2023.104323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 08/13/2023]
Abstract
Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/β value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.
Collapse
Affiliation(s)
- Shuxiang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Ruimin Xue
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Xiaojuan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
6
|
Davati N, Ghorbani A, Ashrafi-Dehkordi E, P. Karbanowicz T. Gene Networks Analysis of Salmonella Typhimurium Reveals New Insights on Key Genes Involved in Response to Low Water Activity. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3640. [PMID: 38269200 PMCID: PMC10804061 DOI: 10.30498/ijb.2023.387696.3640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/29/2023] [Indexed: 01/26/2024]
Abstract
Background When Salmonella enterica serovar Typhimurium, a foodborne bacterium, is exposed to osmotic stress, cellular adaptations increase virulence severity and cellular survival. Objectives The aim of the gene network analysis of S. Typhimurium was to provide insights into the various interactions between the genes involved in cellular survival under low water activity (aw). Materials and Methods We performed a gene network analysis to identify the gene clusters and hub genes of S. Typhimurium using Cytoscape in three food samples subjected to aw stress after 72 hours. Results The identified hub genes of S. Typhimurium belonged to down-regulated genes and were related to translation, transcription, and ribosome structure in the food samples. The rpsB and Tig were identified as the most important of the hub genes. Enrichment analysis of the hub genes also revealed the importance of translation and cellular protein metabolic processes. Moreover, the biological process associated with organonitrogen metabolism in milk chocolate was identified. According to the KEGG pathway results of gene cluster analysis, cellular responses to stress were associated with RNA polymerase, ribosome, and oxidative phosphorylation. Genes encoding RNA polymerase activity, including rpoA, rpoB, and rpoZ, were also significantly identified in the KEGG pathways. The identified motifs of hub DEGs included EXPREG_00000850, EXPREG_00000b00, EXPREG_000008e0, and EXPREG_00000850. Conclusion Based on the results of the gene network analysis, the identified hub genes may contribute to adaptation to food compositions and be responsible for the development of low water stress tolerance in Salmonella. Among the food samples, the milk chocolate matrix leads to more adaptation pathways for S. Typhimurium survival, as more hub genes were down-regulated and more motifs were detected. The identified motifs were involved in carbohydrate metabolism, carbohydrate transport, electron transfer, and oxygen transfer.
Collapse
Affiliation(s)
- Nafiseh Davati
- Department of Food Science and Technology, College of Food Industry, Bu-Ali Sina University, Hamedan, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran
| | - Elham Ashrafi-Dehkordi
- Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
7
|
Wang Y, Wang X, Wu H, Wang L, Wang H, Lu Z. Characterization of Hsp17, a Novel Small Heat Shock Protein, in Sphingomonas melonis TY under Heat Stress. Microbiol Spectr 2023; 11:e0136023. [PMID: 37436164 PMCID: PMC10434288 DOI: 10.1128/spectrum.01360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/24/2023] [Indexed: 07/13/2023] Open
Abstract
Bacteria are constantly exposed to a variety of environmental stresses. Temperature is considered one of the most important environmental factors affecting microbial growth and survival. As ubiquitous environmental microorganisms, Sphingomonas species play essential roles in the biodegradation of organic contaminants, plant protection, and environmental remediation. Understanding the mechanism by which they respond to heat shock will help further improve cell resistance by applying synthetic biological strategies. Here, we assessed the transcriptomic and proteomic responses of Sphingomonas melonis TY to heat shock and found that stressful conditions caused significant changes in functional genes related to protein synthesis at the transcriptional level. The most notable changes observed were increases in the transcription (1,857-fold) and protein expression (11-fold) of Hsp17, which belongs to the small heat shock protein family, and the function of Hsp17 in heat stress was further investigated in this study. We found that the deletion of hsp17 reduced the capacity of the cells to tolerate high temperatures, whereas the overexpression of hsp17 significantly enhanced the ability of the cells to withstand high temperatures. Moreover, the heterologous expression of hsp17 in Escherichia coli DH5α conferred to the bacterium the ability to resist heat stress. Interestingly, its cells were elongated and formed connected cells following the increase in temperature, while hsp17 overexpression restored their normal morphology under high temperature. In general, these results indicate that the novel small heat shock protein Hsp17 greatly contributes to maintaining cell viability and morphology under stress conditions. IMPORTANCE Temperature is generally considered the most important factor affecting metabolic functions and the survival of microbes. As molecular chaperones, small heat shock proteins can prevent damaged protein aggregation during abiotic stress, especially heat stress. Sphingomonas species are widely distributed in nature, and they can frequently be found in various extreme environments. However, the role of small heat shock proteins in Sphingomonas under high-temperature stress has not been elucidated. This study greatly enhances our understanding of a novel identified protein, Hsp17, in S. melonis TY in terms of its ability to resist heat stress and maintain cell morphology under high temperature, leading to a broader understanding of how microbes adapt to environmental extremes. Furthermore, our study will provide potential heat resistance elements for further enhancing cellular resistance as well as the synthetic biological applications of Sphingomonas.
Collapse
Affiliation(s)
- Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
He S, Fong K, Shi C, Shi X. Proteomic and mutagenic analyses for cross-protective mechanisms on ethanol adaptation to freezing stress in Salmonella Enteritidis. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
da Silva MR, Alves de Almeida F, Coelho AÍM, da Silva FL, Vanetti MCD. Enhancing cell resistance for production of mixed microbiological reference materials with Salmonella and coliforms by freeze-drying. Braz J Microbiol 2022; 53:2107-2119. [PMID: 35962856 PMCID: PMC9679061 DOI: 10.1007/s42770-022-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/29/2022] [Indexed: 01/13/2023] Open
Abstract
The reference material (RM) is a technical requirement for the quality assurance of analytical results and proficiency tests or interlaboratory comparisons. Microbiological RMs are most available in the dehydrated form, mainly by freeze-drying, and maintaining bacterial survival after preparation is a challenge. Thus, obtaining the most resistant cells is essential. Considering that bacteria present cross-response to dehydration after being submitted to an array of stress conditions, this study aimed to evaluate the influence of growth conditions on enterobacteria for the production of mixed microbiological RMs by freeze-drying in skim milk powder. Salmonella enterica serovar Enteritidis, Cronobacter sakazakii, Escherichia coli, and Citrobacter freundii were grown in a minimal medium with 0.5 M NaCl and 0 to 5.0 mM of manganese sulfate (MnSO4) until stationary phase. Salmonella Enteritidis presented an increased resistance to dehydration in the presence of Mn, while C. sakazakii was the most resistant to freeze-drying and further storage for 90 days. Mixed microbiological RMs were produced by freeze-drying and containing Salmonella Enteritidis and coliforms in skim milk powder with 100 mM of trehalose and the Salmonella survival rate was 91.2 to 93.6%. The mixed RM was stable after 30 days at -20 °C, and Salmonella and coliforms were detected by different methods being, the Rambach Agar the best for the bacterial differentiation. The results showed that the culture conditions applied in this study resulted in bacterial cells being more resistant to dehydration, freeze-drying, and stabilization for the production of mixed microbiological RMs more stable and homogeneous.
Collapse
Affiliation(s)
- Maria Roméria da Silva
- Department of Microbiology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Department of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Felipe Alves de Almeida
- Department of Nutrition, Universidade Federal de Juiz de Fora, Governador Valadares, MG, 35032-620, Brazil
| | | | - Fernanda Lopes da Silva
- Department of Food Technology, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | |
Collapse
|
10
|
Lee JI, Kim SS, Kang DH. Stress response of Salmonella Montevideo adapted to red pepper powders at various humidities and resistance to near-infrared heating. Food Res Int 2022; 162:111972. [DOI: 10.1016/j.foodres.2022.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/04/2022]
|
11
|
Li D, He S, Dong R, Cui Y, Shi X. Stress Response Mechanisms of Salmonella Enteritidis to Sodium Hypochlorite at the Proteomic Level. Foods 2022; 11:foods11182912. [PMID: 36141039 PMCID: PMC9498478 DOI: 10.3390/foods11182912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Salmonella Enteritidis (S. Enteritidis) can adapt to sublethal sodium hypochlorite conditions, which subsequently triggers stress resistance mechanisms in this pathogen. Hence, the current work aimed to reveal the underlying stress adaptation mechanisms in S. Enteritidis by phenotypic, proteomic, and physiological analyses. It was found that 130 ppm sodium hypochlorite resulted in a moderate inhibitory effect on bacterial growth and an increased accumulation of intracellular reactive oxygen species. In response to this sublethal treatment, a total of 492 proteins in S. Enteritidis showed significant differential abundance (p < 0.05; fold change >2.0 or <0.5), including 225 more abundant proteins and 267 less abundant proteins, as revealed by the tandem-mass-tags-based quantitative proteomics technology. Functional characterization further revealed that proteins related to flagellar assembly, two-component system, and phosphotransferase system were in less abundance, while those associated with ABC transporters were generally in more abundance. Specifically, the repression of flagellar-assembly-related proteins led to diminished swimming motility, which served as a potential energy conservation strategy. Moreover, altered abundance of lipid-metabolism-related proteins resulted in reduced cell membrane fluidity, which provided a survival advantage to S. Enteritidis. Taken together, these results indicate that S. Enteritidis employs multiple adaptation pathways to cope with sodium hypochlorite stress.
Collapse
|
12
|
Chick M, Lourenco A, Maserati A, Fink RC, Diez-Gonzalez F. Thermal Death Kinetics of Three Representative Salmonella enterica Strains in Toasted Oats Cereal. Microorganisms 2022; 10:1570. [PMID: 36013988 PMCID: PMC9416204 DOI: 10.3390/microorganisms10081570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Several reports have indicated that the thermal tolerance of Salmonella at low-water activity increases significantly, but information on the impact of diverse food matrices is still scarce. The goal of this research was to determine the kinetic parameters (decimal reduction time, D; time required for the first decimal reduction, δ) of thermal resistance of Salmonella in a previously cooked low water activity food. Commercial toasted oats cereal (TOC) was used as the food model, with or without sucrose (25%) addition. TOC samples were inoculated with 108 CFU/mL of a single strain of one of three Salmonella serovars (Agona, Tennessee, Typhimurium). TOC samples were ground and equilibrated to aw values of 0.11, 0.33 and 0.53, respectively. Ground TOC was heated at temperatures between 65 °C and 105 °C and viable counts were determined over time (depending on the temperature for up to 6 h). Death kinetic parameters were determined using linear and Weibull regression models. More than 70% of Weibull's adjusted regression coefficients (Radj2) and only 38% of the linear model's Radj2 had values greater than 0.8. For all serovars, both D and δ values increased consistently at a 0.11 aw compared to 0.33 and 0.53. At 0.33 aw, the δ values for Typhimurium, Tennessee and Agona were 0.55, 1.01 and 2.87, respectively, at 85 °C, but these values increased to 65, 105 and 64 min, respectively, at 0.11 aw. At 100 °C, δ values were 0.9, 5.5 and 2.3 min, respectively, at 0.11 aw. The addition of sucrose resulted in a consistent reduction of eight out of nine δ values determined at 0.11 aw at 85, 95 and 100 °C, but this trend was not consistent at 0.33 and 0.53 aw. The Z values (increase of temperature required to decrease δ-value one log) were determined with modified δ values for a fixed β (a fitting parameter that describes the shape of the curve), and ranged between 8.9 °C and 13.4 °C; they were not influenced by aw, strain or sugar content. These findings indicated that in TOC, high thermal tolerance was consistent among serovars and thermal tolerance was inversely dependent on aw.
Collapse
Affiliation(s)
- Matthew Chick
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55455, USA
| | - Antonio Lourenco
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, P61 C996 Fermoy, Ireland
| | - Alice Maserati
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN 55455, USA
| | - Ryan C. Fink
- Faculty of Computer Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Institute for Comparative Genomics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | |
Collapse
|
13
|
Morasi RM, Rall VLM, Dantas STA, Alonso VPP, Silva NCC. Salmonella spp. in low water activity food: Occurrence, survival mechanisms, and thermoresistance. J Food Sci 2022; 87:2310-2323. [PMID: 35478321 DOI: 10.1111/1750-3841.16152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/17/2023]
Abstract
The occurrence of disease outbreaks involving low-water-activity (aw ) foods has gained increased prominence due in part to the fact that reducing free water in these foods is normally a measure that controls the growth and multiplication of pathogenic microorganisms. Salmonella, one of the main bacteria involved in these outbreaks, represents a major public health problem worldwide and in Brazil, which highlights the importance of good manufacturing and handling practices for food quality. The virulence of this pathogen, associated with its high ability to persist in the environment, makes Salmonella one of the main challenges for the food industry. The objectives of this article are to present the general characteristics, virulence, thermoresistance, control, and relevance of Salmonella in foodborne diseases, and describe the so-called low-water-activity foods and the salmonellosis outbreaks involving them.
Collapse
Affiliation(s)
- Rafaela Martins Morasi
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Stéfani Thais Alves Dantas
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Vanessa Pereira Perez Alonso
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| | - Nathália Cristina Cirone Silva
- Department of Food Sciences And Nutrition, Faculty of Food Engineering, State University of Campinas (UNICAMP), Monteiro Lobato Street, 80, Campinas, São Paulo, Brazil
| |
Collapse
|
14
|
Zhao N, Jiao L, Xu J, Zhang J, Qi Y, Qiu M, Wei X, Fan M. Integrated transcriptomic and proteomic analysis reveals the response mechanisms of Alicyclobacillus acidoterrestris to heat stress. Food Res Int 2022; 151:110859. [PMID: 34980395 DOI: 10.1016/j.foodres.2021.110859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Alicyclobacillus acidoterrestris can survive pasteurization and is implicated in pasteurized fruit juice spoilage. However, the mechanisms underlying heat responses remain largely unknown. Herein, gene transcription changes of A. acidoterrestris under heat stress were detected by transcriptome, and an integrated analysis with proteomic and physiological data was conducted. A total of 911 differentially expressed genes (DEGs) was observed. The majority of DEGs and differentially expressed proteins (DEPs) were exclusively regulated at the mRNA and protein level, respectively, whereas only 59 genes were regulated at both levels and had the same change trends. Comparative analysis of the functions of the specifically or commonly regulated DEGs and DEPs revealed that the heat resistance of A. acidoterrestris was primarily based on modulating peptidoglycan and fatty acid composition to maintain cell envelope integrity. Low energy consumption strategies were established with attenuated glycolysis, decreased ribosome de novo synthesis, and activated ribosome hibernation. Terminal oxidases, cytochrome bd and aa3, in aerobic respiratory chain were upregulated. Meanwhile, the MarR family transcriptional regulator was upregulated, reactive oxygen species (ROS) was discovered, and the concentration of superoxide dismutase (SOD) increased, indicating that the accompanied oxidative stress was induced by high temperature. Additionally, DNA and protein damage repair systems were activated. This study provided a global perspective on the response mechanisms of A. acidoterrestris to heat stress, with implications for better detection and control of its contamination in fruit juice.
Collapse
Affiliation(s)
- Ning Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Junnan Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengzhen Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Microbial contaminants in powdered infant formula: what is the impact of spray-drying on microbial inactivation? Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Alterations in the Transcriptional Landscape Allow Differential Desiccation Tolerance in Clinical Cronobacter sakazakii. Appl Environ Microbiol 2021; 87:e0083021. [PMID: 34644165 DOI: 10.1128/aem.00830-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cronobacter sakazakii is a typical example of a xerotolerant bacterium. It is epidemiologically linked to low-moisture foods like powdered infant formula (PIF) and is associated with high fatality rates among neonates. We characterized the xerotolerance in a clinically isolated strain, Cronobacter sakazakii ATCC™29544T, and compared the desiccation tolerance with that of an environmental strain, C. sakazakii SP291, whose desiccation tolerance was previously characterized. We found that, although the clinical strain was desiccation-tolerant, the level of tolerance was compromised when compared with that of the environmental strain. Transcriptome sequencing (RNA-seq)-based deep transcriptomic characterization identified a unique transcriptional profile in the clinical strain compared with what was already known for the environmental strain. As RNA-seq was also carried out under different TSB growth conditions, genes that were expressed specifically under desiccated conditions were identified and denoted as desiccation responsive genes (DRGs). Interestingly, these DRGs included transcriptomic factors like fnr, ramA, and genes associated with inositol metabolism, a phenotype as yet unreported in C. sakazakii. Further, the clinical strain did not express the proP gene, which was previously reported to be very important for desiccation survival and persistence. Interestingly, analysis of the plasmid genes showed that the iron metabolism in desiccated C. sakazakii ATCC™29544T cells specifically involved the siderophore cronobactin, encoded by the iucABCD genes. Confirmatory studies using quantitative reverse transcription-PCR (qRT-PCR) determined that, though the secondary desiccation response genes were upregulated in C. sakazakii ATCC™29544T, the level of upregulation was lower than that in C. sakazakii SP291. All these factors may collectively contribute to the compromised desiccation tolerance in the clinical strain. IMPORTANCE Cronobacter sakazakii has led to outbreaks in the past, particularly associated with foods that are low in moisture content. This species has adapted to survive in low water conditions and can survive in such environments for long periods. These characteristics have enabled the pathogen to contaminate powder infant formula, a food matrix with which the pathogen has been epidemiologically associated. Even though clinically adapted strains can also be isolated, there is no information on how the clinical strains adapt to low moisture environments. Our research assessed the adaptation of a clinically isolated strain to low moisture survival on sterile stainless steel coupons and compared the survival with that of a highly desiccation-tolerant environmental strain. We found that, even though the clinical strain is desiccation-tolerant, the rate of tolerance was compromised compared with that of the environmental strain. A deeper investigation using RNA-seq identified that the clinical strain used pathways different from that of the environmental strain to adapt to low-moisture conditions. This shows that the adaptation to desiccation conditions, at least for C. sakazakii, is strain-specific and that different strains have used different evolutionary strategies for adaptation.
Collapse
|
17
|
He Y, Lin J, Tang J, Yu Z, Ou Q, Lin J. iTRAQ-based proteomic analysis of differentially expressed proteins in sera of seronegative and seropositive rheumatoid arthritis patients. J Clin Lab Anal 2021; 36:e24133. [PMID: 34812532 PMCID: PMC8761432 DOI: 10.1002/jcla.24133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Objective The diagnosis of seronegative rheumatoid arthritis (SNRA) is often difficult due to the unavailability of reliable laboratory markers. The aim of this study was to identify differentially expressed proteins in sera of SNRA, seropositive RA (SPRA), and healthy donors (HD). Methods A total of 32 seropositive RA patients, 32 SNRA patients, and 35 HD were enrolled in our study. Differentially expressed proteins between 3 groups were identified via isobaric tags for relative and absolute quantitation (iTRAQ)‐based proteomic analysis, and an ELISA test was used for the validation test. Correlation analysis was conducted by GraphPad Prism. Results Using iTRAQ quantitative proteomics, we identified 14 proteins were significantly different between SPRA and SNRA, including 4 upregulated proteins and 10 downregulated proteins. Four differentially expressed proteins were validated by ELISA test, and the results showed that SAA1 protein was significantly higher in SPRA and SNRA patients compared with HD, and PSME1 was elevated in SPRA patients. What's more, SAA1 was increased in the anti‐CCP or RF high‐level group in RA patients, and PSME1 was increased in the RF high‐level group. Alternatively, SAA1 was positively correlated with inflammation indicators in RA patients, while PSME1 showed no correlation with inflammation indicators. Conclusions iTRAQ proteomic approaches revealed variations in serum protein composition among SPRA patients, SNRA patients, and HD and provided new idea for advanced diagnostic methods and precision treatment of RA.
Collapse
Affiliation(s)
- Yujue He
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Junyu Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jifeng Tang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ziqing Yu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jinpiao Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
18
|
Abstract
This project was undertaken to determine the kinetic parameters of thermal inactivation of Listeria monocytogenes on pecans, macadamia nuts, and sunflower seeds subjected to heat treatments simulating industry processes. Five strains were grown in nonselective medium, mixed, and resuspended before inoculating macadamia nuts, pecans, and sunflower seeds (6 to 9 Log CFU/g). Redried inoculated pecans and macadamia nuts were heated in an oven at a temperature range of 90 to 140°C. Unshelled sunflower seeds were heated in sunflower seed oil. The thermal inactivation was determined by measuring viable cell counts using standard microbiological methods. Average count data were fit to the log-linear model, and thermal-death kinetics were calculated. On pecans, the viable Listeria counts were reduced by 3 and 3.5 Log CFU/g after 40 min at 110°C and 8 min at 140°C, respectively. On macadamia nuts, the L. monocytogenes population was reduced by 5 Log CFU/g after 20 min at 120°C. Unshelled sunflower seeds were subjected to heat treatment via a hot-oil bath. On sunflower seeds, >7 Log CFU/g reductions were observed after 15 min at 120°C. The thermal resistance (D value) for inactivation on pecans at 140°C was 3.1 min and on macadamia nuts at 120°C was 4.4 min. The inactivation of L. monocytogenes was influenced by the kind of nut or seed. These results suggest that L. monocytogenes has a relatively high thermal tolerance. The findings from this study will contribute to the assessment of the effectiveness of heat treatment for control of this pathogen on nuts and seeds. IMPORTANCE Listeria monocytogenes is a major concern for the food industry in ready-to-eat (RTE) foods. In recent years, large-scale recalls have occurred with contaminated sunflower seeds and macadamia nuts that triggered product withdrawals. These events stress the importance of understanding Listeria's ability to survive heat treatments in these low-water activity foods. Nuts and seeds are subjected to a variety of thermal treatments typically referred as roasting. To date, no listeriosis outbreak has been linked to nuts and seeds, but the recent recognition that this pathogen can be detected in commercial products stresses the need for research on thermal treatments. The characterization of heat inactivation kinetics at temperatures typically used during roasting processes will be very beneficial for validation studies. This manuscript reports inactivation rates of L. monocytogenes strains inoculated onto macadamia nuts, sunflower seeds, and pecan halves subjected to temperatures between 90 and 140°C.
Collapse
|
19
|
Bourdichon F, Betts R, Dufour C, Fanning S, Farber J, McClure P, Stavropoulou DA, Wemmenhove E, Zwietering MH, Winkler A. Processing environment monitoring in low moisture food production facilities: Are we looking for the right microorganisms? Int J Food Microbiol 2021; 356:109351. [PMID: 34500287 DOI: 10.1016/j.ijfoodmicro.2021.109351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 11/27/2022]
Abstract
Processing environment monitoring is gaining increasing importance in the context of food safety management plans/HACCP programs, since past outbreaks have shown the relevance of the environment as contamination pathway, therefore requiring to ensure the safety of products. However, there are still many open questions and a lack of clarity on how to set up a meaningful program, which would provide early warnings of potential product contamination. Therefore, the current paper aims to summarize and evaluate existing scientific information on outbreaks, relevant pathogens in low moisture foods, and knowledge on indicators, including their contribution to a "clean" environment capable of limiting the spread of pathogens in dry production environments. This paper also outlines the essential elements of a processing environment monitoring program thereby supporting the design and implementation of better programs focusing on the relevant microorganisms. This guidance document is intended to help industry and regulators focus and set up targeted processing environment monitoring programs depending on their purpose, and therefore provide the essential elements needed to improve food safety.
Collapse
Affiliation(s)
- François Bourdichon
- Food Safety, Microbiology, Hygiene, 16 Rue Gaston de Caillavet, 75015 Paris, France; Facoltà di Scienze Agrarie, Alimentarie Ambientali, Università Cattolica del Sacro Cuore, Piacenza-Cremona, Italy.
| | - Roy Betts
- Campden BRI, Chipping Campden, Gloucestershire, United Kingdom
| | - Christophe Dufour
- Mérieux NutriSciences, 25 Boulevard de la Paix, 95891 Cergy Pontoise, France
| | - Séamus Fanning
- UCD - Centre for Food Safety, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Jeffrey Farber
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Peter McClure
- Mondelēz International, Bournville Lane, Birmingham B30 2LU, United Kingdom
| | | | | | - Marcel H Zwietering
- Food Microbiology, Wageningen University, PO Box 17, 6700AA, Wageningen, The Netherlands
| | - Anett Winkler
- Cargill Germany GmbH, Cerestar str. 2, D-47809 Krefeld, Germany
| |
Collapse
|
20
|
Pasteurization mechanism of S. aureus ATCC 25923 in walnut shells using radio frequency energy at lab level. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Jayeola V, McClelland M, Porwollik S, Chu W, Farber J, Kathariou S. Identification of Novel Genes Mediating Survival of Salmonella on Low-Moisture Foods via Transposon Sequencing Analysis. Front Microbiol 2020; 11:726. [PMID: 32499760 PMCID: PMC7242855 DOI: 10.3389/fmicb.2020.00726] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/27/2020] [Indexed: 01/11/2023] Open
Abstract
Salmonella enterica is the leading foodborne pathogen associated with outbreaks involving low-moisture foods (LMFs). However, the genes involved in Salmonella's long-term survival on LMFs remain poorly characterized. In this study, in-shell pistachios were inoculated with Tn5-based mutant libraries of S. Enteritidis P125109, S. Typhimurium 14028s, and S. Newport C4.2 at approximate 108 CFU/g and stored at 25°C. Transposon sequencing analysis (Tn-seq) was then employed to determine the relative abundance of each Tn5 insertion site immediately after inoculation (T0), after drying (T1), and at 120 days (T120). In S. Enteritidis, S. Typhimurium, and S. Newport mutant libraries, the relative abundance of 51, 80, and 101 Tn5 insertion sites, respectively, was significantly lower at T1 compared to T0, while in libraries of S. Enteritidis and S. Typhimurium the relative abundance of 42 and 68 Tn5 insertion sites, respectively, was significantly lower at T120 compared to T1. Tn5 insertion sites with reduced relative abundance in this competition assay were localized in DNA repair, lipopolysaccharide biosynthesis and stringent response genes. Twelve genes among those under strong negative selection in the competition assay were selected for further study. Whole gene deletion mutants in ten of these genes, sspA, barA, uvrB, damX, rfbD, uvrY, lrhA, yifE, rbsR, and ompR, were impaired for individual survival on pistachios. The findings highlight the value of combined mutagenesis and sequencing to identify novel genes important for the survival of Salmonella in low-moisture foods.
Collapse
Affiliation(s)
- Victor Jayeola
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | - Jeffrey Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - Sophia Kathariou
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
22
|
Zhang L, Hou L, Zhang S, Kou X, Li R, Wang S. Mechanism of S. aureus ATCC 25923 in response to heat stress under different water activity and heating rates. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106837] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Palud A, Salem K, Cavin JF, Beney L, Licandro H. Identification and transcriptional profile of Lactobacillus paracasei genes involved in the response to desiccation and rehydration. Food Microbiol 2020; 85:103301. [DOI: 10.1016/j.fm.2019.103301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/10/2019] [Accepted: 08/10/2019] [Indexed: 12/18/2022]
|
24
|
Ethanol Adaptation Strategies in Salmonella enterica Serovar Enteritidis Revealed by Global Proteomic and Mutagenic Analyses. Appl Environ Microbiol 2019; 85:AEM.01107-19. [PMID: 31375481 DOI: 10.1128/aem.01107-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/21/2019] [Indexed: 01/07/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis is able to adapt to sublethal concentrations of ethanol, which subsequently induce tolerance of this pathogen to normally lethal ethanol challenges. This work aims to elucidate the underlying ethanol adaptation mechanisms of S Enteritidis by proteomic and mutagenic analyses. The global proteomic response of S Enteritidis to ethanol adaptation (5% ethanol for 1 h) was determined by isobaric tags for relative and absolute quantification (iTRAQ), and it was found that a total of 138 proteins were differentially expressed in ethanol-adapted cells compared to nonadapted cells. A total of 56 upregulated proteins were principally associated with purine metabolism and as transporters for glycine betaine, phosphate, d-alanine, thiamine, and heme, whereas 82 downregulated proteins were mainly involved in enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence. Moreover, mutagenic analysis further revealed the functions of two highly upregulated proteins belonging to purine metabolism (HiuH, 5-hydroxyisourate hydrolase) and glycine betaine transport (ProX, glycine betaine-binding periplasmic protein) pathways. Deletion of either hiuH or proX resulted in the development of a stronger ethanol tolerance response, suggesting negative regulatory roles in ethanol adaptation. Collectively, this work suggests that S Enteritidis employs multiple strategies to coordinate ethanol adaptation.IMPORTANCE Stress adaptation in foodborne pathogens has been recognized as a food safety concern since it may compromise currently employed microbial intervention strategies. While adaptation to sublethal levels of ethanol is able to induce ethanol tolerance in foodborne pathogens, the molecular mechanism underlying this phenomenon is poorly characterized. Hence, global proteomic analysis and mutagenic analysis were conducted in the current work to understand the strategies employed by Salmonella enterica subsp. enterica serovar Enteritidis to respond to ethanol adaptation. It was revealed that coordinated regulation of multiple pathways involving metabolism, ABC transporters, regulators, enterobactin biosynthesis and uptake, the ribosome, flagellar assembly, and virulence was responsible for the development of ethanol adaptation response in this pathogen. Such knowledge will undoubtedly contribute to the development and implementation of more-effective food safety interventions.
Collapse
|
25
|
Crucello A, Furtado MM, Chaves MDR, Sant'Ana AS. Transcriptome sequencing reveals genes and adaptation pathways in Salmonella Typhimurium inoculated in four low water activity foods. Food Microbiol 2019; 82:426-435. [PMID: 31027802 DOI: 10.1016/j.fm.2019.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 11/25/2022]
Abstract
Salmonella enterica serotypes have been reported as the agent of various outbreaks occurred after the consumption of low water activity (aw) foods. When the pathogen encounters harsh conditions, several regulatory networks are activated through dynamic differential gene expression that lead to cell survival for prolonged periods. In this work, the transcriptome of S. enterica serovar Typhimurium using RNA-Seq, after cells' inoculation in four distinct types of low aw foods (milk chocolate, powdered milk, black pepper, and dried pet food), following storage at 25 °C per 24 and 72 h was studied. The findings of this study suggest that gene regulation is influenced by the food composition mainly in the first 24 h post-inoculum, proceeded by the induction of similar genes shared among all samples. It was possible to evaluate the differences on each type of food matrix regarding the bacteria adaptation, as well as the similarities provoked by low aw. The results reveal genes that may play key roles in response to desiccation in Salmonella, as well as the pathways in which they are involved.
Collapse
Affiliation(s)
- Aline Crucello
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marianna M Furtado
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Monyca D R Chaves
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
26
|
Forghani F, den Bakker M, Liao JY, Payton AS, Futral AN, Diez-Gonzalez F. Salmonella and Enterohemorrhagic Escherichia coli Serogroups O45, O121, O145 in Wheat Flour: Effects of Long-Term Storage and Thermal Treatments. Front Microbiol 2019; 10:323. [PMID: 30853953 PMCID: PMC6395439 DOI: 10.3389/fmicb.2019.00323] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 02/07/2019] [Indexed: 01/09/2023] Open
Abstract
Salmonella and enterohemorrhagic Escherichia coli (EHEC) are of serious concern in wheat flour and its related products but little is known on their survival and thermal death kinetics. This study was undertaken to determine their long-term viability and thermal inactivation kinetics in flour. Inoculation was performed using mixtures of EHEC serogroups O45, O121, O145 and Salmonella followed by storage at room temperature (23°C) or 35°C (for Salmonella). Plate counting on tryptic soy agar (TSA) and enrichment were used to assess long-term survival. For thermal studies, wheat flour samples were heated at 55, 60, 65, and 70°C and cell counts of EHEC and Salmonella were determined by plating. The δ-values were calculated using the Weibull model. At room temperature, EHEC serovars and Salmonella were quantifiable for 84 and 112 days, and were detectable for the duration of the experiment after 168 and 365 days, respectively. The δ-values were 2.0, 5.54, and 9.3 days, for EHEC O121, O45, and O145, respectively, and 9.7 days for Salmonella. However, the only significant difference among all values was the δ-value for Salmonella and serogroup O121 (p ≤ 0.05). At 35°C, Salmonella counts declined to unquantifiable levels after a week and were not detected upon enrichment after 98 days. Heat treatment of inoculated wheat flour at 55, 60, 65, and 70°C resulted in δ-value ranges of 20.0-42.9, 4.9-10.0, 2.4-3.2, and 0.2-1.6 min, respectively, for EHEC. The δ-values for Salmonella at those temperatures were 152.2, 40.8, 17.9, and 17.4 min, respectively. The δ-values obtained for Salmonella at each temperature were significantly longer than for EHEC (p ≤ 0.05). Weibull model was a good fit to describe the thermal death kinetics of Salmonella and EHEC O45, O121 and O145 in wheat flour. HIGHLIGHTS -EHEC and Salmonella can survive for extended periods of time in wheat flour.-Long-term storage inactivation curves of EHEC and Salmonella were similar.-EHEC was more sensitive to heat than Salmonella.-Weibull model was a good fit to describe thermal death kinetics of EHEC and Salmonella.-Flour storage at 35°C may be a feasible method for microbial reduction.
Collapse
Affiliation(s)
- Fereidoun Forghani
- Center for Food Safety, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, United States
| | | | | | | | | | | |
Collapse
|