1
|
Zhao S, Dorau R, Tømmerholt L, Gu L, Tadesse BT, Zhao G, Solem C. Simple & better - Accelerated cheese ripening using a mesophilic starter based on a single strain with superior autolytic properties. Int J Food Microbiol 2023; 407:110398. [PMID: 37714070 DOI: 10.1016/j.ijfoodmicro.2023.110398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 09/17/2023]
Abstract
In the manufacture of rennet-coagulated cheese, autolysis is a rate-limiting step for ripening. Previously, a highly autolytic and thermotolerant Lactococcus lactis strain, RD07, was generated, which in preliminary laboratory cheese trials demonstrated great potential as a cheese ripening accelerant. RD07 is proteinase positive (Prt+) and capable of metabolizing citrate (Cit+). In this study, we obtained two derivatives of RD07: EC8 lacking the citrate plasmid, and EC2 lacking the proteinase plasmid. EC2 and EC8 retained the autolytic properties of RD07, and autolyzed 20 times faster than Flora Danica (FD) and SD96, where the latter is the parent of RD07. The three strains EC2, EC8 and RD07 were used in a ratio of 90:8:2, to create a simple starter termed ERC. ERC was less sensitive to cooking when cultured in milk and autolyzed well after entering the stationary phase upon facing sugar starvation. The ERC starter was benchmarked against FD and SD96 in laboratory cheese trials. The free amino acid content in cheese prepared using the ERC culture was 31 % and 34 % higher than in cheese prepared using FD and SD96, respectively. Overall, the ERC culture resulted in a more rapid release of free amino acids. A large-scale (5000 L) Gouda cheese trial at a Danish dairy demonstrated that the single strain ERC starter was comparable in performance to FD + an adjunct Lactobacillus helveticus culture. Furthermore, a large-scale Danbo cheese trial demonstrated that ERC could reduce the ripening period by 50 % for long-term ripened (25 weeks) cheese, resulting in better cheese.
Collapse
Affiliation(s)
- Shuangqing Zhao
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Robin Dorau
- Novozymes A/S, Biologiens vej 2, DK-2800 Kgs. Lyngby, Denmark
| | | | - Liuyan Gu
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Belay Tilahun Tadesse
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ge Zhao
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Galimberti S, Rocchetti G, Di Rico F, Rossetti C, Fontana A, Lucini L, Callegari ML. Untargeted metabolomics provide new insights into the implication of Lactobacillus helveticus strains isolated from natural whey starter in methylglyoxal-mediated browning. Food Res Int 2023; 174:113644. [PMID: 37986486 DOI: 10.1016/j.foodres.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Hard cheeses may occasionally show a brown discolouration during ripening due to multifactorial phenomena that involve bacteria and give rise to pyrazines arising from methylglyoxal. The present work aimed at developing a novel approach to investigate the role of natural starters in browning. To this object, 11 strains of L. helveticus were incubated in a medium containing 10 % rennet casein dissolved in whey, and then growth was monitored by measuring pH and number of genomes/mL. Browning was assessed through CIELab analysis, methylglyoxal production was determined by targeted mass spectrometry, and untargeted metabolomics was used to extrapolate marker compounds associated with browning discoloration. The medium allowed the growth of all the strains tested and differences in colour were observed, especially for strain A7 (ΔE* value 15.92 ± 0.27). Noteworthy, this strain was also the higher producer of methylglyoxal (2.44 µg/mL). Metabolomics highlighted pyrazines and β-carboline compounds as markers of browning at 42 °C and 16 °C, respectively. Moreover, multivariate statistics pointed out differences in free amino acids and oligopeptides linked to proteolysis, while 1,2-propanediol and S-Lactoylglutathione suggested specific detoxification route in methylglyoxal-producing strains. Our model allowed detecting differences in browning amid strains, paving the way towards the study of individual L. helveticus strains to identify the variables leading to discoloration or to study the interaction between different strains in natural whey starters.
Collapse
Affiliation(s)
- Sofia Galimberti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Di Rico
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Chiara Rossetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Alessandra Fontana
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Bissolati 74, 26100 Cremona, Italy.
| |
Collapse
|
3
|
Ziarno M, Cichońska P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021; 9:2532. [PMID: 34946135 PMCID: PMC8706850 DOI: 10.3390/microorganisms9122532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
Plant beverages are becoming more popular, and fermented cereal- or pseudocereal-based beverages are increasingly used as alternatives for fermented products made from cow milk. This review aimed to describe the basic components of cereal- or pseudocereal-based beverages and determine the feasibility of fermenting them with lactic acid bacteria (LAB) to obtain products with live and active LAB cells and increased dietary value. The technology used for obtaining cereal- or pseudocereal-based milk substitutes primarily involves the extraction of selected plant material, and the obtained beverages differ in their chemical composition and nutritional value (content of proteins, lipids, and carbohydrates, glycemic index, etc.) due to the chemical diversity of the cereal and pseudocereal raw materials and the operations used for their production. Beverages made from cereals or pseudocereals are an excellent matrix for the growth of LAB, and the lactic acid fermentation not only produces desirable changes in the flavor of fermented beverages and the biological availability of nutrients but also contributes to the formation of functional compounds (e.g., B vitamins).
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 02-787 Warsaw, Poland;
| | | |
Collapse
|
4
|
Penland M, Falentin H, Parayre S, Pawtowski A, Maillard MB, Thierry A, Mounier J, Coton M, Deutsch SM. Linking Pélardon artisanal goat cheese microbial communities to aroma compounds during cheese-making and ripening. Int J Food Microbiol 2021; 345:109130. [PMID: 33735781 DOI: 10.1016/j.ijfoodmicro.2021.109130] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/27/2020] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Pélardon is an artisanal French raw goat's milk cheese, produced using natural whey as a backslop. The aim of this study was to identify key microbial players involved in the acidification and aroma production of this Protected Designation of Origin cheese. Microbial diversity of samples, collected from the raw milk to 3-month cheese ripening, was determined by culture-dependent (MALDI-TOF analysis of 2877 isolates) and -independent (ITS2 and 16S metabarcoding) approaches and linked to changes in biochemical profiles (volatile compounds and acids). In parallel, potential dominant autochthonous microorganism reservoirs were also investigated by sampling the cheese-factory environment. Complex and increasing microbial diversity was observed by both approaches during ripening although major discrepancies were observed regarding Lactococcus lactis and Lacticaseibacillus paracasei fate. By correlating microbial shifts to biochemical changes, Lactococcus lactis was identified as the main acidifying bacterium, while L. mesenteroides and Geotrichum candidum were prevalent and associated with amino acids catabolism after the acidification step. The three species were dominant in the whey (backslop). In contrast, L. paracasei, Enterococcus faecalis, Penicillium commune and Scopulariopsis brevicaulis, which dominated during ripening, likely originated from the cheese-making environment. All these four species were positively correlated to major volatile compounds responsible for the goaty and earthy Pélardon cheese aroma. Overall, this work highlighted the power of MALDI-TOF and molecular techniques combined with volatilome analyses to dynamically follow and identify microbial communities during cheese-making and successively identify the key-players involved in aroma production and contributing to the typicity of Pélardon cheese.
Collapse
Affiliation(s)
- Marine Penland
- STLO, INRAE, Institut Agro, 35042 Rennes, France; Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | | | | | - Audrey Pawtowski
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | | | - Anne Thierry
- STLO, INRAE, Institut Agro, 35042 Rennes, France
| | - Jérôme Mounier
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F-29280 Plouzané, France
| | | |
Collapse
|
5
|
Abstract
Microalgae are photosynthetic microorganisms that have generated increasing interest in recent years due to their potential applications. Their biological capacity to grow faster than higher plants and their ability to convert solar energy into biomass and other bioactive molecules, has led to the development of various culture systems in order to produce different high-value products with commercial interest. The industrialization of the microalgae cultivation process requires the introduction of standardized quality parameters. In order to obtain bioactive compounds with high added value at a commercial level, it is necessary to sustainably produce biomass at a large scale. Such a process would imply specific stress conditions, such as variation in temperature, light or pH. These environmental conditions would make it more difficult to maintain the viability of the culture and protect the yield and condition of the target molecules. The physiological and biochemical impact of these stress factors on the microalgae biomass can be potentially measured by the presence and activity of various biochemical indicators called biomarkers. This review presents an overview of the main techniques that exist for assessing the "quality" of microalgae cultures through quantification of cell viability and vitality by monitoring specific markers indicative of the status of the culture.
Collapse
Affiliation(s)
- Bermejo Elisabeth
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Filali Rayen
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Taidi Behnam
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| |
Collapse
|
6
|
Wilkinson MG, LaPointe G. Invited review: Starter lactic acid bacteria survival in cheese: New perspectives on cheese microbiology. J Dairy Sci 2020; 103:10963-10985. [DOI: 10.3168/jds.2020-18960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
|
7
|
Ziarno M, Bryś J, Parzyszek M, Veber A. Effect of Lactic Acid Bacteria on the Lipid Profile of Bean-Based Plant Substitute of Fermented Milk. Microorganisms 2020; 8:microorganisms8091348. [PMID: 32899320 PMCID: PMC7563647 DOI: 10.3390/microorganisms8091348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Biological processes of legumes may change their nutritional value of lipids, but there is no research on the fatty acid profile and their position distribution in fermented beverages obtained from germinated bean seeds. The present study aimed to determine the effect of fermentation by Lactobacillus strains on the fatty acid profile and their positional distribution in triacylglycerols of beverage obtained from germinated bean “Piękny Jaś Karłowy” (Phaseolus vulgaris) fermented by Lactobacillus strains. The population of lactobacilli (the pour plate method), pH, the fatty acid profile (gas chromatograph with a flame ionization detector), and the positional distribution of fatty acids in triacylglycerols (GC-FID) were determined before and after the fermentation of received beverages. The fermentation of beverages did not change the lactobacilli population (over 7 log10 CFU/g), but changed pH (to 4.7–3.7 or 5.8–5.6), fatty acid profile, and the positional distribution of fatty acids were observed. The fermentation process contributed to an increase in the share of palmitic, stearic, and oleic acids in the fatty acid profile compared to that in raw bean seeds. The fermentation processes changed the share of individual acids in positions sn–1 and sn–3 depending on Lactobacillus strain used. Compared to non-fermented beverages, in most fermented beverages, a lower share of palmitic and stearic acids, as well as a higher share of oleic acid in the sn–2 were observed.
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Division of Milk Technology, Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences—SGGW (WULS–SGGW), 02-787 Warsaw, Poland
- Correspondence: ; Tel.: +48-225-937-666
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Science, Warsaw University of Life Sciences—SGGW (WULS–SGGW), 02-787 Warsaw, Poland;
| | - Mateusz Parzyszek
- Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW (WULS–SGGW), 02-787 Warsaw, Poland;
| | - Anna Veber
- Department of Food and Biotechnology, Faculty of Agrotechnological, Federal State Budgetary Educational Institution of Higher Education, Omsk State Agrarian University Named after P. A. Stolypin, Instituskaya Area 2, 644008 Omsk, Russia;
| |
Collapse
|
8
|
Chen S, Gong P, Zhang J, Shan Y, Han X, Zhang L. Quantitative analysis of Lactobacillus delbrueckii subsp. bulgaricus cell division and death using fluorescent dye tracking. J Microbiol Methods 2020; 169:105832. [DOI: 10.1016/j.mimet.2020.105832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/30/2022]
|
9
|
Moser A, Berthoud H, Eugster E, Meile L, Irmler S. Detection and enumeration of Lactobacillus helveticus in dairy products. Int Dairy J 2017. [DOI: 10.1016/j.idairyj.2016.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Al-Saleh AA, Ismail EA, Metwalli AA. Autolysis detection and evaluation of some lactic acid bacteria by renaturing sodium dodecyl sulphate-polyacrylamide gel electrophoresis and polymerase chain reaction assays. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdulrahman A Al-Saleh
- Department of Food Science and Nutrition; King Saud University; P. O. Box 2460 Riyadh 1145 Saudi Arabia
| | - Elsayed A Ismail
- Department of Food Science and Nutrition; King Saud University; P. O. Box 2460 Riyadh 1145 Saudi Arabia
- Faculty of Agriculture; Food Science Department; Benha University; Benha 13518 Egypt
| | - Ali Am Metwalli
- Department of Food Science and Nutrition; King Saud University; P. O. Box 2460 Riyadh 1145 Saudi Arabia
- Dairy Science Department; College of Agriculture; Menia University; Menia 61519 Egypt
| |
Collapse
|
11
|
Santarelli M, Bottari B, Lazzi C, Neviani E, Gatti M. Survey on the community and dynamics of lactic acid bacteria in Grana Padano cheese. Syst Appl Microbiol 2013; 36:593-600. [DOI: 10.1016/j.syapm.2013.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
|
12
|
Mikš-Krajnik M, Babuchowski A, Białobrzewski I. Impact of physiological state of starter culture on ripening and flavour development of Swiss-Dutch-type cheese. INT J DAIRY TECHNOL 2013. [DOI: 10.1111/1471-0307.12079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marta Mikš-Krajnik
- Chair of Industrial and Food Microbiology; Faculty of Food Science; University of Warmia and Mazury; Plac Cieszyński 1; 10-726; Olsztyn; Poland
| | - Andrzej Babuchowski
- Chair of Industrial and Food Microbiology; Faculty of Food Science; University of Warmia and Mazury; Plac Cieszyński 1; 10-726; Olsztyn; Poland
| | - Ireneusz Białobrzewski
- Chair of Systems Engineering; Faculty of Engineering; University of Warmia and Mazury; Heweliusza 14; 10-718; Olsztyn; Poland
| |
Collapse
|
13
|
Jebava I, Plockova M, Lortal S, Valence F. The nine peptidoglycan hydrolases genes in Lactobacillus helveticus are ubiquitous and early transcribed. Int J Food Microbiol 2011; 148:1-7. [PMID: 21571387 DOI: 10.1016/j.ijfoodmicro.2011.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/05/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Peptidoglycan hydrolases (PGHs) are bacterial enzymes that can hydrolyze the peptidoglycan in bacterial cell wall leading to autolysis. By releasing intracellular enzymes, autolysis of Lactobacillus helveticus has important applications in cheese ripening as its extent varied from strain to strain. Nine genes coding PGHs were previously annotated in the genome of the high autolytic strain L. helveticus DPC 4571. This study was conducted to evaluate the clone diversity of the nine PGHs genes within a collection of 24 L. helveticus strains, highly diverse in terms of origin, biotope and autolytic activity. Pulsed field gel electrophoresis was applied to assess the genomic diversity of the 24 strains. The presence or absence of nine PGHs genes was verified for all L. helveticus strains. Nucleotide and deduced amino acid sequence were compared for six relevant strains. Finally, gene expression was monitored by reverse transcription during growth and by zymogram for 12 strains. The nine PGHs genes are ubiquitous and transcripted early during growth. Zymograms were similar in terms of molecular size of the bands, but exhibited strain to strain variations in the number of bands revealing from 2 to 5 lytic bands per strain.
Collapse
Affiliation(s)
- Iva Jebava
- Science et Technologie du Lait et de l'Œuf, CIRM-BIA, Rennes, France
| | | | | | | |
Collapse
|
14
|
Hojo K, Watanabe R, Mori T, Taketomo N. Quantitative measurement of tetrahydromenaquinone-9 in cheese fermented by propionibacteria. J Dairy Sci 2007; 90:4078-83. [PMID: 17699024 DOI: 10.3168/jds.2006-892] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Propionibacteria produce tetrahydromenaquinone-9 [MK-9 (4H)] as a major menaquinone (vitamin K2). This study aimed to determine the MK-9 (4H) concentration in commercial propionibacteria-fermented cheese. The MK-9 (4H) concentration was quantified using an HPLC instrument with a fluorescence detector after postcolumn reduction. Among the various cheese samples, the MK-9 (4H) concentration was highest in Norwegian Jarlsberg cheese, followed by Swiss Emmental cheese. In contrast, the MK-9 (4H) concentrations in Appenzeller or Gruyère cheeses were extremely low or undetected. Likewise, the concentrations in Comte and Raclette cheeses were lower than those in Jarlsberg and Emmental cheeses. In the present study, the MK- 9 (4H) concentration in cheese showed a correlation with the viable propionibacterial cell count and propionate concentration. This implies that the increase in propionibacteria contributed to the generation of MK-9 (4H) in cheese. We presumed, based on these results, that Swiss Emmental and Norwegian Jarlsberg cheeses contain a meaningful amount of vitamin K because of their high MK-9 (4H) concentrations (200 to 650 ng/g).
Collapse
Affiliation(s)
- K Hojo
- Food Science Institute, Meiji Dairies Corporation, 540 Naruda, Odawara, Kanagawa 250-0862, Japan.
| | | | | | | |
Collapse
|
15
|
Trosvik P, Skånseng B, Jakobsen KS, Stenseth NC, Naes T, Rudi K. Multivariate analysis of complex DNA sequence electropherograms for high-throughput quantitative analysis of mixed microbial populations. Appl Environ Microbiol 2007; 73:4975-83. [PMID: 17575003 PMCID: PMC1951012 DOI: 10.1128/aem.00128-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
High-throughput quantification of genetically coherent units (GCUs) is essential for deciphering population dynamics and species interactions within a community of microbes. Current techniques for microbial community analyses are, however, not suitable for this kind of high-throughput application. Here, we demonstrate the use of multivariate statistical analysis of complex DNA sequence electropherograms for the effective and accurate estimation of relative genotype abundance in cell samples from mixed microbial populations. The procedure is no more labor-intensive than standard automated DNA sequencing and provides a very effective means of quantitative data acquisition from experimental microbial communities. We present results with the Campylobacter jejuni strain-specific marker gene gltA, as well as the 16S rRNA gene, which is a universal marker across bacterial assemblages. The statistical models computed for these genes are applied to genetic data from two different experimental settings, namely, a chicken infection model and a multispecies anaerobic fermentation model, demonstrating collection of time series data from model bacterial communities. The method presented here is, however, applicable to any experimental scenario where the interest is quantification of GCUs in genetically heterogeneous DNA samples.
Collapse
Affiliation(s)
- Pål Trosvik
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|