1
|
El Fels L, Naylo A, Jemo M, Zrikam N, Boularbah A, Ouhdouch Y, Hafidi M. Microbial enzymatic indices for predicting composting quality of recalcitrant lignocellulosic substrates. Front Microbiol 2024; 15:1423728. [PMID: 39588100 PMCID: PMC11586200 DOI: 10.3389/fmicb.2024.1423728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/23/2024] [Indexed: 11/27/2024] Open
Abstract
Three different enzymes alkaline phosphatase, Urease and Dehydrogenase were measured during this study to monitor the organic matter dynamics during semi-industrial composting of mixture A with 1/3 sludge+2/3 palm waste and mixture B with ½ sludge+1/2 palm waste. The phosphatase activity was higher for Mix-A (398.7 µg PNP g-1 h-1) than Mix-B (265.3 µg PNP g-1 h-1), while Mix-B (103.3 µg TPF g-1d-1) exhibited greater dehydrogenase content than Mix-A (72.3 µg TPF g-1 d-1). That could contribute to the dynamic change of microbial activity together with high amounts of carbonaceous substrates incorporated with the lignocellulosic. The gradual increase in the dehydrogenase from the compost Mix-A implies that high lignocellulosic substrate requires gradual buildup of dehydrogenase activity to turn the waste into mature compost. A higher pick of urease with a maximum activity of 151.5 and 122.4 µg NH4-N g-1 h-1 were reported, respectively for Mix-A and B. Temperature and pH could also influence the expression of enzyme activity during composting. The machine learning well predicted the compost quality based on NH3/NO3, C/N ratio, decomposition rate and, humification index (HI). The root mean square error (RMSE) values were 1.98, 1.95, 4.61%, and 4.1 for NH+ 3/NO- 3, C/N ratio, decomposition rate, and HI, respectively. The coefficient of determination between observed and predicted values were 0.87, 0.93, 0.89, and 0.94, for the r NH3/NO3, C/N ratio, decomposition rate, and HI. Urease activity significantly predicted the C/N ratio and HI only. The profile of enzymatic activity is tightly linked to the physico-chemical properties, proportion of lignocellulosic-composted substrates. Enzymatic activity assessment provides a simple and rapid measurement of the biological activity adding understunding of organic matter transformation during sludge-lignocellulosic composting.
Collapse
Affiliation(s)
- Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco
| | - Ahmed Naylo
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
| | - Martin Jemo
- AgroBiosciences Program, College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Ben Guerir, Morocco
| | - Nidal Zrikam
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco
| | - Ali Boularbah
- Laboratoire Bioressources et Sécurité Sanitaire des Aliments, Faculté des Sciences et Techniques, Université Cadi Ayyad, Marrakech, Morocco
- Center of Excellence for Soil and Fertilizer Research in Africa, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Yedir Ouhdouch
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laayoune, Morocco
| | - Mohamed Hafidi
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMAgE), Labelled Research Unit-CNRST N°4, Faculty of Sciences Semlalia, University Cadi Ayyad (UCA), Marrakech, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Sciences, University Mohammed VI Polytechnic (UM6P), Laayoune, Morocco
| |
Collapse
|
2
|
Arioli S, Mangieri N, Zanchetta Y, Russo P, Mora D. Substitution of Asp29 with Asn29 in the metallochaperone UreE of Streptococcus thermophilus DSM 20617 T increases the urease activity and anticipates urea hydrolysis during milk fermentation. Int J Food Microbiol 2024; 416:110684. [PMID: 38513545 DOI: 10.1016/j.ijfoodmicro.2024.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Urease operon is highly conserved within the species Streptococcus thermophilus and urease-negative strains are rare in nature. S. thermophilus MIMO1, isolated from commercial yogurt, was previously characterized as urease-positive Ni-dependent strain. Beside a mutation in ureQ, coding for a nickel ABC transporter permease, the strain MIMO1 showed a mutation in ureE gene which code for a metallochaperone involved in Ni delivery to the urease catalytic site. The single base mutation in ureE determined a substitution of Asp29 with Asn29 in the metallochaperone in a conserved protein region not involved in the catalytic activity. With the aim to investigate the role Asp29vs Asn29 substitution in UreE on the urease activity of S. thermophilus, ureE gene of the reference strain DSM 20617T (ureEDSM20617) was replaced by ureE gene of strain MIMO1 (ureEMIMO1) to obtain the recombinant ES3. In-gel detection of urease activity revealed that the substitution of Asp29 with Asn29 in UreE resulted in a higher stability of the enzyme complexes. Moreover, the recombinant ES3 showed higher level of urease activity compared to the wildtype without any detectable increase in the expression level of ureC gene, thus highlighting the role of UreE not only in Ni assembly but also on the level of urease activity. During the growth in milk, the recombinant ES3 showed an anticipated urease activity compared to the wildtype, and analogous milk fermentation performance. The overall data obtained by comparing urease-positive and urease-negative strains/mutants confirmed that urease activity strongly impacts on the milk fermentation process and specifically on the yield of the homolactic fermentation.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Nicola Mangieri
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Ylenia Zanchetta
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Pasquale Russo
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy.
| |
Collapse
|
3
|
Zou Y, Zhang J, Wang J, Gong X, Jiang T, Yan Y. A self-regulated network for dynamically balancing multiple precursors in complex biosynthetic pathways. Metab Eng 2024; 82:69-78. [PMID: 38316239 PMCID: PMC10947840 DOI: 10.1016/j.ymben.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Microbial synthesis has emerged as a promising and sustainable alternative to traditional chemical synthesis and plant extraction. However, the competition between synthetic pathways and central metabolic pathways for cellular resources may impair final production efficiency. Moreover, when the synthesis of target product requires multiple precursors from the same node, the conflicts of carbon flux have further negative impacts on yields. In this study, a self-regulated network was developed to relieve the competition of precursors in complex synthetic pathways. Using 4-hydroxycoumarin (4-HC) synthetic pathway as a proof of concept, we employed an intermediate as a trigger to dynamically rewire the metabolic flux of pyruvate and control the expression levels of genes in 4-HC synthetic pathway, achieving self-regulation of multiple precursors and enhanced titer. Transcriptomic analysis results additionally demonstrated that the gene transcriptional levels of both pyruvate kinase PykF and synthetic pathway enzyme SdgA dynamically changed according to the intermediate concentrations. Overall, our work established a self-regulated network to dynamically balance the metabolic flux of two precursors in 4-HC biosynthesis, providing insight into balancing biosynthetic pathways where multiple precursors compete and interfere with each other.
Collapse
Affiliation(s)
- Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Yang S, Bai M, Kwok LY, Zhong Z, Sun Z. The intricate symbiotic relationship between lactic acid bacterial starters in the milk fermentation ecosystem. Crit Rev Food Sci Nutr 2023; 65:728-745. [PMID: 37983125 DOI: 10.1080/10408398.2023.2280706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Fermentation is one of the most effective methods of food preservation. Since ancient times, food has been fermented using lactic acid bacteria (LAB). Fermented milk is a very intricate fermentation ecosystem, and the microbial metabolism of fermented milk largely determines its metabolic properties. The two most frequently used dairy starter strains are Streptococcus thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). To enhance both the culture growth rate and the flavor and quality of the fermented milk, it has long been customary to combine S. thermophilus and L. bulgaricus in milk fermentation due to their mutually beneficial and symbiotic relationship. On the one hand, the symbiotic relationship is reflected by the nutrient co-dependence of the two microbes at the metabolic level. On the other hand, more complex interaction mechanisms, such as quorum sensing between cells, are involved. This review summarizes the application of LAB in fermented dairy products and discusses the symbiotic mechanisms and interactions of milk LAB starter strains from the perspective of nutrient supply and intra- and interspecific quorum sensing. This review provides updated information and knowledge on microbial interactions in a fermented milk ecosystem.
Collapse
Affiliation(s)
- Shujuan Yang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Mei Bai
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| |
Collapse
|
5
|
Ulmer A, Veit S, Erdemann F, Freund A, Loesch M, Teleki A, Zeidan AA, Takors R. A Two-Compartment Fermentation System to Quantify Strain-Specific Interactions in Microbial Co-Cultures. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010103. [PMID: 36671675 PMCID: PMC9854596 DOI: 10.3390/bioengineering10010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/14/2023]
Abstract
To fulfil the growing interest in investigating microbial interactions in co-cultures, a novel two-compartment bioreactor system was developed, characterised, and implemented. The system allowed for the exchange of amino acids and peptides via a polyethersulfone membrane that retained biomass. Further system characterisation revealed a Bodenstein number of 18, which hints at backmixing. Together with other physical settings, the existence of unwanted inner-compartment substrate gradients could be ruled out. Furthermore, the study of Damkoehler numbers indicated that a proper metabolite supply between compartments was enabled. Implementing the two-compartment system (2cs) for growing Streptococcus thermophilus and Lactobacillus delbrueckii subs. bulgaricus, which are microorganisms commonly used in yogurt starter cultures, revealed only a small variance between the one-compartment and two-compartment approaches. The 2cs enabled the quantification of the strain-specific production and consumption rates of amino acids in an interacting S. thermophilus-L. bulgaricus co-culture. Therefore, comparisons between mono- and co-culture performance could be achieved. Both species produce and release amino acids. Only alanine was produced de novo from glucose through potential transaminase activity by L. bulgaricus and consumed by S. thermophilus. Arginine availability in peptides was limited to S. thermophilus' growth, indicating active biosynthesis and dependency on the proteolytic activity of L. bulgaricus. The application of the 2cs not only opens the door for the quantification of exchange fluxes between microbes but also enables continuous production modes, for example, for targeted evolution studies.
Collapse
Affiliation(s)
- Andreas Ulmer
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Veit
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Florian Erdemann
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Freund
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Maren Loesch
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ahmad A. Zeidan
- Systems Biology, R&D Discovery, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|
6
|
In Streptococcus thermophilus, Ammonia from Urea Hydrolysis Paradoxically Boosts Acidification and Reveals a New Regulatory Mechanism of Glycolysis. Microbiol Spectr 2022; 10:e0276021. [PMID: 35467410 PMCID: PMC9241937 DOI: 10.1128/spectrum.02760-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus thermophilus is widely used in the dairy industry for the manufacturing of fermented milk and cheeses and probiotic formulations. S. thermophilus evolved from closely phylogenetically related pathogenic streptococci through loss-of-function events counterbalanced by the acquisition of relevant traits, such as lactose and urea utilization for the adaptation to the milk environment. In the context of regressive evolution, the urease gene cluster accounts for 0.9% of the total coding sequence belonging to known functional categories. The fate of ammonia and carbon dioxide derived by urea hydrolysis in several biosynthetic pathways have been depicted, and the positive effect of urease activity on S. thermophilus growth fitness and lactic acid fermentation in milk has been already addressed by several authors. However, the mechanistic effect of urea hydrolysis on the energetic metabolisms of S. thermophilus is still unclear. This study aimed to assess the effect of urease activity on the growth and energy metabolism of Streptococcus thermophilus in milk. In milk, 13C-urea was completely hydrolyzed in the first 150 min of S. thermophilus growth, and urea hydrolysis was accompanied by an increase in cell density and a reduction in the generation time. By using energetically discharged cells with gene transcription and translation blocked, we showed that in the presence of fermentable carbon sources, urease activity, specifically the production of ammonia, could dramatically boost glycolysis and, in cascade, homolactic fermentation. Furthermore, we showed that ammonia, specifically ammonium ions, were potent effectors of phosphofructokinase, a key glycolytic enzyme. IMPORTANCE Finding that ammonia-generating enzymes, such as urease, and exogenous ammonia act on phosphofructokinase activity shed new light on the regulatory mechanisms that govern glycolysis. Phosphofructokinase is the key enzyme known to exert a regulatory role on glycolytic flux and, therefore, ammonia as an effector of phosphofructokinase acts, in cascade, modulating the glycolytic pathway. Apart from S. thermophilus, due to the high conservation of glycolytic enzymes in all branches of the tree of life and being aware of the role of ammonia as an effector of phosphofructokinase, we propose to reevaluate the physiological role of the ammonia production pathways in all organisms whose energy metabolism is supported by glycolysis.
Collapse
|
7
|
Zhao J, Wu L, Li W, Wang Y, Zheng H, Sun T, Zhang H, Xi R, Liu W, Sun Z. Genomics landscape of 185 Streptococcus thermophilus and identification of fermentation biomarkers. Food Res Int 2021; 150:110711. [PMID: 34865746 DOI: 10.1016/j.foodres.2021.110711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
Streptococcus (S.) thermophilus, an indispensable dairy starter, has been used in autochthonous as well as industrial milk fermentation. However, the genetic architecture underlying S. thermophilus traits and phenotypes is largely unknown. Here, we sequenced 185 S. thermophilus strains, isolated from natural fermented dairy products of China and Mongolia and used comparative genomic and genome wide association study to provide novel point for genetic architecture underlying its traits and phenotypes. Genome analysis of S. thermophilus showed association of phylogeny with environmental and phenotypic features and revealed clades with high acid production potential or with substantial genome decay. A few S. thermophilus isolated from areas with high chloramphenicol emissions had a chloramphenicol-resistant gene CatB8. Most importantly, we defined a growth score and identified a missense mutation G1118698T located at the gene AcnA that were both predictive of acidification capability of S. thermophilus. Our findings provide novel insight in S. thermophilus genetic traits, antibiotic resistant and predictive of acidification capability which both may had huge help in culture starter screening.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Linjie Wu
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huijuan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
8
|
Schimmel P, Kleinjans L, Bongers RS, Knol J, Belzer C. Breast milk urea as a nitrogen source for urease positive Bifidobacterium infantis. FEMS Microbiol Ecol 2021; 97:fiab019. [PMID: 33538807 PMCID: PMC7947585 DOI: 10.1093/femsec/fiab019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Human milk stimulates a health-promoting gut microbiome in infants. However, it is unclear how the microbiota salvages and processes its required nitrogen from breast milk. Human milk nitrogen sources such as urea could contribute to the composition of this early life microbiome. Urea is abundant in human milk, representing a large part of the non-protein nitrogen (NPN). We found that B. longum subsp. infantis (ATCC17930) can use urea as a main source of nitrogen for growth in synthetic medium and enzyme activity was induced by the presence of urea in the medium. We furthermore confirmed the expression of both urease protein subunits and accessory proteins of B. longum subsp. infantis through proteomics. To the same end, metagenome data were mined for urease-related genes. It was found that the breastfed infant's microbiome possessed more urease-related genes than formula fed infants (51.4:22.1; 2.3-fold increase). Bifidobacteria provided a total of 106 of urease subunit alpha alignments, found only in breastfed infants. These experiments show how an important gut commensal that colonizes the infant intestine can metabolize urea. The results presented herein further indicate how dietary nitrogen can determine bacterial metabolism in the neonate gut and shape the overall microbiome.
Collapse
Affiliation(s)
- Patrick Schimmel
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
| | - Lennart Kleinjans
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
| | - Roger S Bongers
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands
| | - Jan Knol
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584CT Utrecht, the Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, Helix Building, 6708 WE, Wageningen, the Netherlands
| |
Collapse
|
9
|
Multi-omics Approach Reveals How Yeast Extract Peptides Shape Streptococcus thermophilus Metabolism. Appl Environ Microbiol 2020; 86:AEM.01446-20. [PMID: 32769193 DOI: 10.1128/aem.01446-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
Peptides present in growth media are essential for nitrogen nutrition and optimal growth of lactic acid bacteria. In addition, according to their amino acid composition, they can also directly or indirectly play regulatory roles and influence global metabolism. This is especially relevant during the propagation phase to produce high cell counts of active lactic acid bacteria used as starters in the dairy industry. In the present work, we aimed at investigating how the respective compositions of two different yeast extracts, with a specific focus on peptide content, influenced Streptococcus thermophilus metabolism during growth under pH-controlled conditions. In addition to free amino acid quantification, we used a multi-omics approach (peptidomics, proteomics, and transcriptomics) to identify peptides initially present in the two culture media and to follow S. thermophilus gene expression and bacterial protein production during growth. The free amino acid and peptide compositions of the two yeast extracts differed qualitatively and quantitatively. Nevertheless, the two yeast extracts sustained similar levels of growth of S. thermophilus and led to equivalent final biomasses. However, transcriptomics and proteomics showed differential gene expression and protein production in several S. thermophilus metabolic pathways, especially amino acid, citrate, urease, purine, and pyrimidine metabolisms. The probable role of the regulator CodY is discussed in this context. Moreover, we observed significant differences in the production of regulators and of a quorum sensing regulatory system. The possible roles of yeast extract peptides on the modulation of the quorum sensing system expression are evaluated.IMPORTANCE Improving the performance and industrial robustness of bacteria used in fermentations and food industry remains a challenge. We showed here that two Streptococcus thermophilus fermentations, performed with the same strain in media that differ only by their yeast extract compositions and, more especially, their peptide contents, led to similar growth kinetics and final biomasses, but several genes and proteins were differentially expressed/produced. In other words, subtle variations in peptide composition of the growth medium can finely tune the metabolism status of the starter. Our work, therefore, suggests that acting on growth medium components and especially on their peptide content, we could modulate bacterial metabolism and produce bacteria differently programmed for further purposes. This might have applications for preparing active starter cultures.
Collapse
|
10
|
Qiao Y, Liu G, Lv X, Fan X, Zhang Y, Meng L, Ai M, Feng Z. Metabolic Pathway Profiling in Intracellular and Extracellular Environments of Streptococcus thermophilus During pH-Controlled Batch Fermentations. Front Microbiol 2020; 10:3144. [PMID: 32038577 PMCID: PMC6990133 DOI: 10.3389/fmicb.2019.03144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/29/2019] [Indexed: 12/31/2022] Open
Abstract
Elucidating the metabolite profiles during the growth of Streptococcus thermophilus is beneficial for understanding its growth characteristics. The changes in the intracellular and extracellular concentrations of carbohydrates, nucleotides, amino sugars, nucleoside sugars, fatty acids, and amino acids, as well as their metabolites over time, were investigated by metabolomics technology. Most metabolites of nucleotides were highly accumulated in the intracellular environment after the mid-exponential phase. Increases in the intracellular unsaturated fatty acids and N-acetyl-glucosamine and N-acetyl-muramoate recycling provided potential evidence that cell envelope remodeling occurred after the mid-exponential phase. At the later fermentation stages, potentially functional metabolite produced by glycine was highly accumulated in the intracellular environment. Additionally, potential toxic metabolites produced by phenylalanine and tyrosine could not be excreted into the extracellular environment in a timely basis. The accumulation of large amounts of these metabolites might be the primary cause of the overconsumption of amino acids and influence the growth of S. thermophilus.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xuepeng Lv
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xuejing Fan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Li Meng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhi Ai
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
11
|
Alexandraki V, Kazou M, Blom J, Pot B, Papadimitriou K, Tsakalidou E. Comparative Genomics of Streptococcus thermophilus Support Important Traits Concerning the Evolution, Biology and Technological Properties of the Species. Front Microbiol 2019; 10:2916. [PMID: 31956321 PMCID: PMC6951406 DOI: 10.3389/fmicb.2019.02916] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Streptococcus thermophilus is a major starter for the dairy industry with great economic importance. In this study we analyzed 23 fully sequenced genomes of S. thermophilus to highlight novel aspects of the evolution, biology and technological properties of this species. Pan/core genome analysis revealed that the species has an important number of conserved genes and that the pan genome is probably going to be closed soon. According to whole genome phylogeny and average nucleotide identity (ANI) analysis, most S. thermophilus strains were grouped in two major clusters (i.e., clusters A and B). More specifically, cluster A includes strains with chromosomes above 1.83 Mbp, while cluster B includes chromosomes below this threshold. This observation suggests that strains belonging to the two clusters may be differentiated by gene gain or gene loss events. Furthermore, certain strains of cluster A could be further subdivided in subgroups, i.e., subgroup I (ASCC 1275, DGCC 7710, KLDS SM, MN-BM-A02, and ND07), II (MN-BM-A01 and MN-ZLW-002), III (LMD-9 and SMQ-301), and IV (APC151 and ND03). In cluster B certain strains formed one distinct subgroup, i.e., subgroup I (CNRZ1066, CS8, EPS, and S9). Clusters and subgroups observed for S. thermophilus indicate the existence of lineages within the species, an observation which was further supported to a variable degree by the distribution and/or the architecture of several genomic traits. These would include exopolysaccharide (EPS) gene clusters, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs)-CRISPR associated (Cas) systems, as well as restriction-modification (R-M) systems and genomic islands (GIs). Of note, the histidine biosynthetic cluster was found present in all cluster A strains (plus strain NCTC12958T) but was absent from all strains in cluster B. Other loci related to lactose/galactose catabolism and urea metabolism, aminopeptidases, the majority of amino acid and peptide transporters, as well as amino acid biosynthetic pathways were found to be conserved in all strains suggesting their central role for the species. Our study highlights the necessity of sequencing and analyzing more S. thermophilus complete genomes to further elucidate important aspects of strain diversity within this starter culture that may be related to its application in the dairy industry.
Collapse
Affiliation(s)
- Voula Alexandraki
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Maria Kazou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Bruno Pot
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel, Brussels, Belgium
| | - Konstantinos Papadimitriou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Effie Tsakalidou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
12
|
Mora D, Filardi R, Arioli S, Boeren S, Aalvink S, de Vos WM. Development of omics-based protocols for the microbiological characterization of multi-strain formulations marketed as probiotics: the case of VSL#3. Microb Biotechnol 2019; 12:1371-1386. [PMID: 31402586 PMCID: PMC6801179 DOI: 10.1111/1751-7915.13476] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/17/2022] Open
Abstract
The growing commercial interest in multi-strain formulations marketed as probiotics has not been accompanied by an equal increase in the evaluation of quality levels of these biotechnological products. The multi-strain product VSL#3 was used as a model to setup a microbiological characterization that could be extended to other formulations with high complexity. Shotgun metagenomics by deep Illumina sequencing was applied to DNA isolated from the commercial VSL#3 product to confirm strains identity safety and composition. Single-cell analysis was used to evaluate the cell viability, and β-galactosidase and urease activity have been used as marker to monitor the reproducibility of the production process. Similarly, these lots were characterized in detail by a metaproteomics approach for which a robust protein extraction protocol was combined with advanced mass spectrometry. The results identified over 1600 protein groups belonging to all strains present in the VSL#3 formulation. Of interest, only 3.2 % proteins showed significant differences mainly related to small variations in strain abundance. The protocols developed in this study addressed several quality criteria that are relevant for marketed multi-strain products and these represent the first efforts to define the quality of complex probiotic formulations such as VSL#3.
Collapse
Affiliation(s)
- Diego Mora
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Rossella Filardi
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS)University of MilanMilanItaly
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen UniversityWageningenThe Netherlands
| | - Steven Aalvink
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
| | - Willem M. de Vos
- Laboratory of MicrobiologyWageningen UniversityWageningenThe Netherlands
- Human Microbiome Research Program Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
13
|
Yamauchi R, Maguin E, Horiuchi H, Hosokawa M, Sasaki Y. The critical role of urease in yogurt fermentation with various combinations of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. J Dairy Sci 2018; 102:1033-1043. [PMID: 30594386 DOI: 10.3168/jds.2018-15192] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022]
Abstract
The protocooperation between Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus relies on metabolite exchanges that accelerate acidification during yogurt fermentation. Conflicting results have been obtained in terms of the effect of the Strep. thermophilus urease and the NH3 and CO2 that it generates on the rate of acidification in yogurt fermentation. It is difficult to perform a systematic study of the effects of urease on protocooperation because it is necessary to distinguish among the direct, indirect, and strain-specific effects resulting from the combination of the strains of both species. To evaluate the direct effects of urease on protocooperation, we generated 3 urease-deficient mutants (ΔureC) of fast- and slow-acidifying Strep. thermophilus strains and observed the effects of NH3 or CO2 supplementation on acidification by the ΔureC strains. Further, we examined 5 combinations of 3 urease-deficient ΔureC strains with 2 CO2-responsive or CO2-unresponsive strains of L. bulgaricus. Urease deficiency induced a shortage of ammonia nitrogen and CO2 for the fast- and slow-acidifying Strep. thermophilus and for the CO2-responsive L. bulgaricus, respectively. Notably, the shortage of ammonia nitrogen had more severe effects than that of CO2 on yogurt fermentation, even if coculture with L. bulgaricus masked the effect of urease deficiency. Our work established (1) that urease deficiency inhibits the fermentative acceleration of protocooperation regardless of the Strep. thermophilus and L. bulgaricus strain combinations, and (2) that urease is an essential factor for effective yogurt acidification.
Collapse
Affiliation(s)
- R Yamauchi
- Graduate School of Agriculture, University of Meiji, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
| | - E Maguin
- INRA UMR1319 Micalis Allée de Vilvert Bat. 440, R-1, Pce 420, 78352 Jouy-en-Josas Cedex, Ile de France, France
| | - H Horiuchi
- Food Development Laboratories, R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan
| | - M Hosokawa
- Chuo University of Junior and High School, 3-22-1 Nukuikitamachi, Koganei, Tokyo, 184-8575, Japan
| | - Y Sasaki
- Graduate School of Agriculture, University of Meiji, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
14
|
Arioli S, Eraclio G, Della Scala G, Neri E, Colombo S, Scaloni A, Fortina MG, Mora D. Role of Temperate Bacteriophage ϕ20617 on Streptococcus thermophilus DSM 20617 T Autolysis and Biology. Front Microbiol 2018; 9:2719. [PMID: 30473689 PMCID: PMC6237837 DOI: 10.3389/fmicb.2018.02719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
Streptococcus thermophilus DSM 20167T showed autolytic behavior when cultured in lactose- and sucrose-limited conditions. The amount of cell lysis induced was inversely related to the energetic status of the cells, as demonstrated by exposing cells to membrane-uncoupling and glycolysis inhibitors. Genome sequence analysis of strain DSM 20617T revealed the presence of a pac-type temperate bacteriophage, designated Φ20617, whose genomic organization and structure resemble those of temperate streptococcal bacteriophages. The prophage integrated at the 3'-end of the gene encoding the glycolytic enzyme enolase (eno), between eno and the lipoteichoic acid synthase-encoding gene ltaS, affecting their transcription. Comparative experiments conducted on the wild-type strain and a phage-cured derivative strain revealed that the cell-wall integrity of the lysogenic strain was compromised even in the absence of detectable cell lysis. More importantly, adhesion to solid surfaces and heat resistance were significantly higher in the lysogenic strain than in the phage-cured derivative. The characterization of the phenotype of a lysogenic S. thermophilus and its phage-cured derivative is relevant to understanding the ecological constraints that drive the stable association between a temperate phage and its bacterial host.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Giovanni Eraclio
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Giulia Della Scala
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Eros Neri
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy.,Sacco Srl, Cadorago, Italy
| | - Stefano Colombo
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Maria Grazia Fortina
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Diego Mora
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Giaretta S, Treu L, Vendramin V, da Silva Duarte V, Tarrah A, Campanaro S, Corich V, Giacomini A. Comparative Transcriptomic Analysis of Streptococcus thermophilus TH1436 and TH1477 Showing Different Capability in the Use of Galactose. Front Microbiol 2018; 9:1765. [PMID: 30131781 PMCID: PMC6090898 DOI: 10.3389/fmicb.2018.01765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/16/2018] [Indexed: 12/03/2022] Open
Abstract
Streptococcus thermophilus is a species widely used in the dairy industry for its capability to rapidly ferment lactose and lower the pH. The capability to use galactose produced from lactose hydrolysis is strain dependent and most of commercial S. thermophilus strains are galactose-negative (Gal−), although galactose-positive (Gal+) would be more technologically advantageous because this feature could provide additional metabolic products and prevent galactose accumulation in foods. In this study, a next generation sequencing transcriptome approach was used to compare for the first time a Gal+ and a Gal− strain to characterize their whole metabolism and shed light on their different properties, metabolic performance and gene regulation. Transcriptome analysis revealed that all genes of the gal operon were expressed very differently in Gal+ and in the Gal− strains. The expression of several genes involved in mixed acid fermentation, PTS sugars transporter and stress response were found enhanced in Gal+. Conversely, genes related to amino acids, proteins metabolism and CRISPR associated proteins were under-expressed. In addition, the strains showed a diverse series of predicted genes controlled by the transcriptional factor catabolite control protein A (CcpA). Overall, transcriptomic analysis suggests that the Gal+ strain underwent a metabolic remodeling to cope with the changed environmental conditions.
Collapse
Affiliation(s)
- Sabrina Giaretta
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | - Laura Treu
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy.,Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Veronica Vendramin
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | | | - Armin Tarrah
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | | | - Viviana Corich
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animal and Environment, University of Padova, Padova, Italy
| |
Collapse
|
16
|
Sensor-regulator and RNAi based bifunctional dynamic control network for engineered microbial synthesis. Nat Commun 2018; 9:3043. [PMID: 30072730 PMCID: PMC6072776 DOI: 10.1038/s41467-018-05466-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022] Open
Abstract
Writing artificial logic and dynamic function into complex cellular background to achieve desired phenotypes or improved outputs calls for the development of new genetic tools as well as their innovative use. In this study, we present a sensor-regulator and RNAi-based bifunctional dynamic control network that can provide simultaneous upregulation and downregulation of cellular metabolism for engineered biosynthesis. The promoter-regulator-mediated upregulation function and its transduced downregulation function through RNAi are systematically verified and characterized. We apply this dynamic control network to regulate the phosphoenolpyruvate metabolic node in Escherichia coli and achieve autonomous distribution of carbon flux between its native metabolism and the engineered muconic acid biosynthetic pathway. This allows muconic acid biosynthesis to reach 1.8 g L−1. This study also suggests the circumstances where dynamic control approaches are likely to take effects. Engineering dynamic control can improve microbial production of target chemicals. Here, the authors design a sensor-regulator and RNAi based bifunctional dynamic control network that can simultaneously and independently turn up and down cellular metabolism for engineered muconic acid production in E. coli.
Collapse
|
17
|
Jin H, Mo L, Pan L, Hou Q, Li C, Darima I, Yu J. Using PacBio sequencing to investigate the bacterial microbiota of traditional Buryatian cottage cheese and comparison with Italian and Kazakhstan artisanal cheeses. J Dairy Sci 2018; 101:6885-6896. [PMID: 29753477 DOI: 10.3168/jds.2018-14403] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 04/04/2018] [Indexed: 12/26/2022]
Abstract
Traditional fermented dairy foods including cottage cheese have been major components of the Buryatia diet for centuries. Buryatian cheeses have maintained not only their unique taste and flavor but also their rich natural lactic acid bacteria (LAB) content. However, relatively few studies have described their microbial communities or explored their potential to serve as LAB resources. In this study, the bacterial microbiota community of 7 traditional artisan cheeses produced by local Buryatian families was investigated using single-molecule, real-time sequencing. In addition, we compared the bacterial microbiota of the Buryatian cheese samples with data sets of cheeses from Kazakhstan and Italy. Furthermore, we isolated and preserved several LAB samples from Buryatian cheese. A total of 62 LAB strains (belonging to 6 genera and 14 species or subspecies) were isolated from 7 samples of Buryatian cheese. Full-length 16S rRNA sequencing of the microbiota revealed 145 species of 82 bacterial genera, belonging to 7 phyla. The most dominant species was Lactococcus lactis (43.89%). Data sets of cheeses from Italy and Kazakhstan were retrieved from public databases. Principal component analysis and multivariate ANOVA showed marked differences in the structure of the microbiota communities in the cheese data sets from the 3 regions. Linear discriminant analyses of the effect size identified 48 discriminant bacterial clades among the 3 groups, which might have contributed to the observed structural differences. Our results indicate that the bacterial communities of traditional artisan cheeses vary depending on geographic origin. In addition, we isolated novel and valuable LAB resources for the improvement of cottage cheese production.
Collapse
Affiliation(s)
- Hao Jin
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Lanxin Mo
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Lin Pan
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Qaingchaun Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Chuanjuan Li
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Iaptueva Darima
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot 010018, P.R. China.
| |
Collapse
|
18
|
Marcial G, Villena J, Faller G, Hensel A, de Valdéz GF. Exopolysaccharide-producing Streptococcus thermophilus CRL1190 reduces the inflammatory response caused by Helicobacter pylori. Benef Microbes 2017; 8:451-461. [PMID: 28504579 DOI: 10.3920/bm2016.0186] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work evaluated the ability of the probiotic Streptococcus thermophilus CRL1190 strain and its exopolysaccharides to adhere to gastric mucosa. Probiotic bacteria attachment to the human stomach epithelium was confirmed in human stomach tissue samples and the gastric epithelial cell line AGS. In addition, it was demonstrated that S. thermophilus CRL1190 strain reduced Helicobacter pylori adhesion and attenuated inflammatory response in AGS cells. This is the first demonstration of the capacity of S. thermophilus CRL1190 to adhere to the stomach gastric mucosa, and improve protection against H. pylori through the reduction of its adhesion and the modulation of the inflammatory response. Therefore, S. thermophilus CRL1190 fermented milk is a good candidate for further in vivo studying of the protective effect of functional food against H. pylori infection and gastric inflammatory damage.
Collapse
Affiliation(s)
- G Marcial
- 1 Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000 San Miguel de Tucumán, Argentina.,2 University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, 48149 Münster, Germany
| | - J Villena
- 1 Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000 San Miguel de Tucumán, Argentina
| | - G Faller
- 3 St. Vincentius Hospital, Institute for Pathology, Südendstraβe 37, 76137 Karlsruhe, Germany
| | - A Hensel
- 2 University of Münster, Institute for Pharmaceutical Biology and Phytochemistry, Corrensstrasse 48, 48149 Münster, Germany
| | - G Font de Valdéz
- 1 Centro de Referencia para Lactobacilos (CERELA)-CONICET, Chacabuco 145, 4000 San Miguel de Tucumán, Argentina
| |
Collapse
|
19
|
Brasca M, Hogenboom JA, Morandi S, Rosi V, D'Incecco P, Silvetti T, Pellegrino L. Proteolytic Activity and Production of γ-Aminobutyric Acid by Streptococcus thermophilus Cultivated in Microfiltered Pasteurized Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8604-8614. [PMID: 27787997 DOI: 10.1021/acs.jafc.6b03403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A set of 191 strains of Streptococcus thermophilus were preliminarily screened for the presence of the genes codifying for cell envelope-associated proteinase (prtS) and for glutamate decarboxylase (gadB) responsible for γ-aminobutyric acid (GABA) production. The growth and proteolytic activity of the gadB-positive strains (9 presenting the prtS gene and 11 lacking it) were studied in microfiltered pasteurized milk. Degradation of both caseins (capillary electrophoresis) and soluble nitrogen fractions (HPLC) and changes in the profile of free amino acids (FAAs; ion-exchange chromatography) were evaluated at inoculation and after 6 and 24 h of incubation at 41 °C. None of the strains was capable of hydrolyzing caseins and β-lactoglobulin, and only two hydrolyzed part of α-lactalbumin, these proteins being present in their native states in pasteurized milk. Contrarily, most strains were able to hydrolyze peptones and peptides. For initial growth, most strains relied on the FAAs present in milk, whereas, after 6 h, prtS+ strains released variable amounts of FAA. One prtS+ strain expressed a PrtS- phenotype, and two prtS- strains showed a rather intense proteolytic activity. Only five strains (all prtS+) produced GABA, in variable quantities (up to 100 mg/L) and at different rates, depending on the acidification strength. Addition of glutamate did not induce production of GABA in nonproducing strains that, however, unexpectedly were shown to adopt the degradation of arginine into citrulline and ornithine as an alternative acid resistance system and likely as a source of ATP.
Collapse
Affiliation(s)
- Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy , Milan, Italy
| | - Johannes A Hogenboom
- Department of Food, Environmental and Nutritional Sciences, University of Milan , Milan, Italy
| | - Stefano Morandi
- Institute of Sciences of Food Production, National Research Council of Italy , Milan, Italy
| | - Veronica Rosi
- Department of Food, Environmental and Nutritional Sciences, University of Milan , Milan, Italy
| | - Paolo D'Incecco
- Department of Food, Environmental and Nutritional Sciences, University of Milan , Milan, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council of Italy , Milan, Italy
| | - Luisa Pellegrino
- Department of Food, Environmental and Nutritional Sciences, University of Milan , Milan, Italy
| |
Collapse
|
20
|
Willenborg J, Goethe R. Metabolic traits of pathogenic streptococci. FEBS Lett 2016; 590:3905-3919. [PMID: 27442496 DOI: 10.1002/1873-3468.12317] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/12/2016] [Accepted: 07/18/2016] [Indexed: 12/13/2022]
Abstract
Invasive and noninvasive diseases caused by facultative pathogenic streptococci depend on their equipment with virulence factors and on their ability to sense and adapt to changing nutrients in different host environments. The knowledge of the principal metabolic mechanisms which allow these bacteria to recognize and utilize nutrients in host habitats is a prerequisite for our understanding of streptococcal pathogenicity and the development of novel control strategies. This review aims to summarize and compare the central carbohydrate metabolic and amino acid biosynthetic pathways of a selected group of streptococcal species, all belonging to the naso-oropharyngeal microbiome in humans and/or animals. We also discuss the urgent need of comprehensive metabolomics approaches for a better understanding of the streptococcal metabolism during host-pathogen interaction.
Collapse
Affiliation(s)
- Jörg Willenborg
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
21
|
|
22
|
Nguyen HT, Truong DH, Kouhoundé S, Ly S, Razafindralambo H, Delvigne F. Biochemical Engineering Approaches for Increasing Viability and Functionality of Probiotic Bacteria. Int J Mol Sci 2016; 17:E867. [PMID: 27271598 PMCID: PMC4926401 DOI: 10.3390/ijms17060867] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 01/02/2023] Open
Abstract
The literature presents a growing body of evidence demonstrating the positive effect of probiotics on health. Probiotic consumption levels are rising quickly in the world despite the fluctuation of their viability and functionality. Technological methods aiming at improving probiotic characteristics are thus highly wanted. However, microbial metabolic engineering toolbox is not available for this kind of application. On the other hand, basic microbiology teaches us that bacteria are able to exhibit adaptation to external stresses. It is known that adequately applied sub-lethal stress, i.e., controlled in amplitude and frequency at a given stage of the culture, is able to enhance microbial robustness. This property could be potentially used to improve the viability of probiotic bacteria, but some technical challenges still need to be overcome before any industrial implementation. This review paper investigates the different technical tools that can be used in order to define the proper condition for improving viability of probiotic bacteria and their implementation at the industrial scale. Based on the example of Bifidobacterium bifidum, potentialities for simultaneously improving viability, but also functionality of probiotics will be described.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Natural Products and Industrial Biochemistry Research Group (NPIB), Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Dieu-Hien Truong
- Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho, Tan Phong Ward, District 7, 700000 Ho Chi Minh City, Vietnam.
| | - Sonagnon Kouhoundé
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Sokny Ly
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Hary Razafindralambo
- Food technology and Formulation, Agro-Biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | - Frank Delvigne
- Microbial Processes and Interactions (MiPI), Agro-biochem Department, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium.
| |
Collapse
|
23
|
Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.01.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Uriot O, Galia W, Awussi AA, Perrin C, Denis S, Chalancon S, Lorson E, Poirson C, Junjua M, Le Roux Y, Alric M, Dary A, Blanquet-Diot S, Roussel Y. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food Microbiol 2016; 53:18-29. [DOI: 10.1016/j.fm.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 02/28/2015] [Accepted: 05/21/2015] [Indexed: 01/21/2023]
|
25
|
Streptococcus thermophilus urease activity boosts Lactobacillus delbrueckii subsp. bulgaricus homolactic fermentation. Int J Food Microbiol 2016; 247:55-64. [PMID: 26826763 DOI: 10.1016/j.ijfoodmicro.2016.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 12/29/2015] [Accepted: 01/10/2016] [Indexed: 02/08/2023]
Abstract
The proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in the yogurt consortium enhances the growth rate and size of each population. In contrast, the independent growth of the two species in milk leads to a slower growth rate and a smaller population size. In this study, we report the first evidence that the urease activity of S. thermophilus increases the intracellular pH of L. delbrueckii in the absence of carbon source. However, in milk, in the presence of lactose the alkalizing effect of urea-derived ammonia was not detectable. Nevertheless, based on glucose consumption and lactic acid production at different pHin, L. delbrueckii showed an optimum of glycolysis and homolactic fermentation at alkaline pH values. In milk, we observed that ammonia provided by urea hydrolysis boosted lactic acid production in S. thermophilus and in L. delbrueckii when the species were grown alone or in combination. Therefore, we propose that urease activity acts as an altruistic cooperative trait, which is costly for urease-positive individuals but provides a local benefit because other individuals can take advantage of urease-dependent ammonia release.
Collapse
|
26
|
Prosdocimi EM, Mapelli F, Gonella E, Borin S, Crotti E. Microbial ecology-based methods to characterize the bacterial communities of non-model insects. J Microbiol Methods 2015; 119:110-25. [PMID: 26476138 DOI: 10.1016/j.mimet.2015.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 12/30/2022]
Abstract
Among the animals of the Kingdom Animalia, insects are unparalleled for their widespread diffusion, diversity and number of occupied ecological niches. In recent years they have raised researcher interest not only because of their importance as human and agricultural pests, disease vectors and as useful breeding species (e.g. honeybee and silkworm), but also because of their suitability as animal models. It is now fully recognized that microorganisms form symbiotic relationships with insects, influencing their survival, fitness, development, mating habits and the immune system and other aspects of the biology and ecology of the insect host. Thus, any research aimed at deepening the knowledge of any given insect species (perhaps species of applied interest or species emerging as novel pests or vectors) must consider the characterization of the associated microbiome. The present review critically examines the microbiology and molecular ecology techniques that can be applied to the taxonomical and functional analysis of the microbiome of non-model insects. Our goal is to provide an overview of current approaches and methods addressing the ecology and functions of microorganisms and microbiomes associated with insects. Our focus is on operational details, aiming to provide a concise guide to currently available advanced techniques, in an effort to extend insect microbiome research beyond simple descriptions of microbial communities.
Collapse
Affiliation(s)
- Erica M Prosdocimi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy.
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
27
|
Ricciardi A, Ianniello R, Parente E, Zotta T. Modified chemically defined medium for enhanced respiratory growth ofLactobacillus caseiandLactobacillus plantarumgroups. J Appl Microbiol 2015; 119:776-85. [DOI: 10.1111/jam.12894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 06/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - R.G. Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - E. Parente
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| | - T. Zotta
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| |
Collapse
|
28
|
Koirala R, Taverniti V, Balzaretti S, Ricci G, Fortina MG, Guglielmetti S. Melting curve analysis of a groEL PCR fragment for the rapid genotyping of strains belonging to the Lactobacillus casei group of species. Microbiol Res 2015; 173:50-8. [PMID: 25801971 DOI: 10.1016/j.micres.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/13/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Lactobacillus casei group (Lcs) consists of three phylogenetically closely related species (L. casei, L. paracasei, and L. rhamnosus), which are widely used in the dairy and probiotic industrial sectors. Strategies to easily and rapidly characterize Lcs are therefore of interest. To this aim, we developed a method according to a technique known as high resolution melting analysis (HRMa), which was applied to a 150 bp groEL gene fragment. The analysis was performed on 53 Lcs strains and 29 strains representatives of species that are commonly present in dairy and probiotic products and can be most probably co-isolated with Lcs strains. DNA amplification was obtained only from Lcs strains, demonstrating the specificity of the groEL primers designed in this study. The HRMa clustered Lcs strains in three groups that exactly corresponded to the species of the L. casei group. A following HRMa separated the 39 L. paracasei strains in two well distinct intraspecific groups, indicating the possible existence of at least two distinct genotypes inside the species. Nonetheless, the phenotypic characterization demonstrated that the genotypes do not correspond to the two L. paracasei subspecies, namely paracasei and tolerans. In conclusion, the melting curve analysis developed in this study is demonstrably a simple, labor-saving, and rapid strategy obtain the genotyping of a bacterial isolate and simultaneously potentially confirm its affiliation to the L. casei group of species. The application of this method to a larger collection of strains may validate the possibility to use the proposed HRMa protocol for the taxonomic discrimination of L. casei group of species. In general, this study suggests that HRMa can be a suitable technique for the genetic typization of Lactobacillus strains.
Collapse
Affiliation(s)
- Ranjan Koirala
- Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal; Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Silvia Balzaretti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Giovanni Ricci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Maria Grazia Fortina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy.
| |
Collapse
|
29
|
Affiliation(s)
- Diego Mora
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Stefania Arioli
- Department of Food Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| |
Collapse
|
30
|
Arioli S, Guglielmetti S, Amalfitano S, Viti C, Marchi E, Decorosi F, Giovannetti L, Mora D. Characterization of tetA-like gene encoding for a major facilitator superfamily efflux pump in Streptococcus thermophilus. FEMS Microbiol Lett 2014; 355:61-70. [PMID: 24766488 DOI: 10.1111/1574-6968.12449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/07/2014] [Accepted: 04/22/2014] [Indexed: 11/26/2022] Open
Abstract
Efflux pumps are membrane proteins involved in the active extrusion of a wide range of structurally dissimilar substrates from cells. A multidrug efflux pump named TetA belonging to the major facilitator superfamily (MFS) of transporters was identified in the Streptococcus thermophilus DSM 20617(T) genome. The tetA-like gene was found in the genomes of a number of S. thermophilus strains sequenced to date and in Streptococcus macedonicus ACA-DC 198, suggesting a possible horizontal gene transfer event between these two Streptococcus species, which are both adapted to the milk environment. Flow cytometry (single-cell) analysis revealed bistable TetA activity in the S. thermophilus population, and tetA-like gene over-expression resulted in a reduced susceptibility to ethidium bromide, tetracycline, and other toxic compounds even when the efflux pump was over-expressed in a strain naturally lacking tetA-like gene.
Collapse
Affiliation(s)
- Stefania Arioli
- Department of Food Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Stuknyte M, De Noni I, Guglielmetti S, Minuzzo M, Mora D. Potential immunomodulatory activity of bovine casein hydrolysates produced after digestion with proteinases of lactic acid bacteria. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2011.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Goh YJ, Goin C, O'Flaherty S, Altermann E, Hutkins R. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Microb Cell Fact 2011; 10 Suppl 1:S22. [PMID: 21995282 PMCID: PMC3231929 DOI: 10.1186/1475-2859-10-s1-s22] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background Streptococcus thermophilus represents the only species among the streptococci that has “Generally Regarded As Safe” status and that plays an economically important role in the fermentation of yogurt and cheeses. We conducted comparative genome analysis of S. thermophilus LMD-9 to identify unique gene features as well as features that contribute to its adaptation to the dairy environment. In addition, we investigated the transcriptome response of LMD-9 during growth in milk in the presence of Lactobacillus delbrueckii ssp. bulgaricus, a companion culture in yogurt fermentation, and during lytic bacteriophage infection. Results The S. thermophilus LMD-9 genome is comprised of a 1.8 Mbp circular chromosome (39.1% GC; 1,834 predicted open reading frames) and two small cryptic plasmids. Genome comparison with the previously sequenced LMG 18311 and CNRZ1066 strains revealed 114 kb of LMD-9 specific chromosomal region, including genes that encode for histidine biosynthetic pathway, a cell surface proteinase, various host defense mechanisms and a phage remnant. Interestingly, also unique to LMD-9 are genes encoding for a putative mucus-binding protein, a peptide transporter, and exopolysaccharide biosynthetic proteins that have close orthologs in human intestinal microorganisms. LMD-9 harbors a large number of pseudogenes (13% of ORFeome), indicating that like LMG 18311 and CNRZ1066, LMD-9 has also undergone major reductive evolution, with the loss of carbohydrate metabolic genes and virulence genes found in their streptococcal counterparts. Functional genome distribution analysis of ORFeomes among streptococci showed that all three S. thermophilus strains formed a distinct functional cluster, further establishing their specialized adaptation to the nutrient-rich milk niche. An upregulation of CRISPR1 expression in LMD-9 during lytic bacteriophage DT1 infection suggests its protective role against phage invasion. When co-cultured with L. bulgaricus, LMD-9 overexpressed genes involved in amino acid transport and metabolism as well as DNA replication. Conclusions The genome of S. thermophilus LMD-9 is shaped by its domestication in the dairy environment, with gene features that conferred rapid growth in milk, stress response mechanisms and host defense systems that are relevant to its industrial applications. The presence of a unique exopolysaccharide gene cluster and cell surface protein orthologs commonly associated with probiotic functionality revealed potential probiotic applications of LMD-9.
Collapse
Affiliation(s)
- Yong Jun Goh
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | | | | | | | | |
Collapse
|
33
|
Arioli S, Ragg E, Scaglioni L, Fessas D, Signorelli M, Karp M, Daffonchio D, De Noni I, Mulas L, Oggioni M, Guglielmetti S, Mora D. Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms. PLoS One 2010; 5:e15520. [PMID: 21152088 PMCID: PMC2994868 DOI: 10.1371/journal.pone.0015520] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 10/06/2010] [Indexed: 11/25/2022] Open
Abstract
An understanding of the integrated relationships among the principal cellular functions that govern the bioenergetic reactions of an organism is necessary to determine how cells remain viable and optimise their fitness in the environment. Urease is a complex enzyme that catalyzes the hydrolysis of urea to ammonia and carbonic acid. While the induction of urease activity by several microorganisms has been predominantly considered a stress-response that is initiated to generate a nitrogen source in response to a low environmental pH, here we demonstrate a new role of urease in the optimisation of cellular bioenergetics. We show that urea hydrolysis increases the catabolic efficiency of Streptococcus thermophilus, a lactic acid bacterium that is widely used in the industrial manufacture of dairy products. By modulating the intracellular pH and thereby increasing the activity of β-galactosidase, glycolytic enzymes and lactate dehydrogenase, urease increases the overall change in enthalpy generated by the bioenergetic reactions. A cooperative altruistic behaviour of urease-positive microorganisms on the urease-negative microorganisms within the same environment was also observed. The physiological role of a single enzymatic activity demonstrates a novel and unexpected view of the non-transcriptional regulatory mechanisms that govern the bioenergetics of a bacterial cell, highlighting a new role for cytosol-alkalizing biochemical pathways in acidogenic microorganisms.
Collapse
Affiliation(s)
- Stefania Arioli
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Enzio Ragg
- Dipartimento di Scienze Molecolari Agroalimentari, Università degli Studi di Milano, Milan, Italy
| | - Leonardo Scaglioni
- Dipartimento di Scienze Molecolari Agroalimentari, Università degli Studi di Milano, Milan, Italy
| | - Dimitrios Fessas
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Marco Signorelli
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Matti Karp
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Daniele Daffonchio
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Ivano De Noni
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Laura Mulas
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento Biologia Molecolare, Università di Siena, Siena, Italy
| | - Marco Oggioni
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento Biologia Molecolare, Università di Siena, Siena, Italy
| | - Simone Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
| | - Diego Mora
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milan, Italy
- * E-mail:
| |
Collapse
|
34
|
Guglielmetti S, Taverniti V, Minuzzo M, Arioli S, Zanoni I, Stuknyte M, Granucci F, Karp M, Mora D. A dairy bacterium displays in vitro probiotic properties for the pharyngeal mucosa by antagonizing group A streptococci and modulating the immune response. Infect Immun 2010; 78:4734-43. [PMID: 20732995 PMCID: PMC2976356 DOI: 10.1128/iai.00559-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/25/2010] [Accepted: 08/13/2010] [Indexed: 01/04/2023] Open
Abstract
The probiotic approach represents an alternative strategy in the prevention and treatment of infectious diseases, not only at the intestinal level but also at other sites of the body where the microbiota plays a role in the maintenance of physiological homeostasis. In this context, we evaluated in vitro the potential abilities of probiotic and dairy bacteria in controlling Streptococcus pyogenes infections at the pharyngeal level. Initially, we analyzed bacterial adhesion to FaDu hypopharyngeal carcinoma cells and the ability to antagonize S. pyogenes on FaDu cell layers and HaCat keratinocytes. Due to its promising adhesive and antagonistic features, we studied the dairy strain Lactobacillus helveticus MIMLh5, also through in vitro immunological experiments. First, we performed quantification of several cytokines and measurement of NF-κB activation in FaDu cells. MIMLh5 efficiently reduced the induction of interleukin-6 (IL-6), IL-8, and tumor necrosis factor alpha (TNF-α), in a dose-dependent manner. After stimulation of cells with IL-1β, active NF-κB was still markedly lowered. Nevertheless, we observed an increased secretion of IL-6, gamma interferon (IFN-γ), and granulocyte-macrophage colony-stimulating factor (GM-CSF) under these conditions. These effects were associated with the ability of MIMLh5 to enhance the expression of the heat shock protein coding gene hsp70. In addition, MIMLh5 increased the GM-CSF/G-CSF ratio. This is compatible with a switch of the immune response toward a TH1 pathway, as supported by our observation that MIMLh5, once in contact with bone marrow-derived dendritic cells, triggered the secretion of TNF-α and IL-2. In conclusion, we propose MIMLh5 as a potential probiotic bacterium for the human pharynx, with promising antagonistic and immunomodulatory properties.
Collapse
Affiliation(s)
- Simone Guglielmetti
- Dipartimento di Scienze e Tecnologie Alimentari, Università degli Studi di Milano, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Asanuma N, Kanada K, Arai Y, Yoshizawa K, Ichikawa T, Hino T. Molecular characterization and significance of phosphoenolpyruvate carboxykinase in a ruminal bacterium, Streptococcus bovis. J GEN APPL MICROBIOL 2010; 56:121-7. [PMID: 20513959 DOI: 10.2323/jgam.56.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To gain knowledge about the significance of phosphoenolpyruvate (PEP) carboxykinase (PCK) in Streptococcus bovis, the sequence of the gene encoding PCK (pck) was determined. Transcriptional analysis indicated that the pck is transcribed in a monocistronic fashion. The level of pck-mRNA was higher when cells were grown on lactose than on glucose, suggesting that PCK synthesis increases when the growth rate is low. The pck-mRNA level was higher in a mutant lacking ccpA, which encodes the catabolite control protein A (CcpA), than in the parent strain, suggesting that pck transcription is suppressed by CcpA. S. bovis PCK showed oxaloacetate (OAA)-decarboxylating activity, but no PEP-carboxylating activity (reverse reaction). In S. bovis, OAA was speculated to be produced from PEP via pyruvate. Disruption of pck in S. bovis resulted in decreased growth rate and cell yield. When a pck-disrupted mutant was grown in a medium lacking amino acids, the lag phase was longer and the cell yield was lower than the case of the parent strain. These results suggest that pck is involved in the initiation of growth, including the induction of amino acid synthesis and energy metabolism.
Collapse
Affiliation(s)
- Narito Asanuma
- Department of Life Science, College of Agriculture, Meiji University, Tama-ku, Kawasaki, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Iyer R, Tomar S, Uma Maheswari T, Singh R. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.10.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Arioli S, Roncada P, Salzano AM, Deriu F, Corona S, Guglielmetti S, Bonizzi L, Scaloni A, Mora D. The relevance of carbon dioxide metabolism in Streptococcus thermophilus. MICROBIOLOGY-SGM 2009; 155:1953-1965. [PMID: 19372152 DOI: 10.1099/mic.0.024737-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus thermophilus is a major component of dairy starter cultures used for the manufacture of yoghurt and cheese. In this study, the CO(2) metabolism of S. thermophilus DSM 20617(T), grown in either a N(2) atmosphere or an enriched CO(2) atmosphere, was analysed using both genetic and proteomic approaches. Growth experiments performed in a chemically defined medium revealed that CO(2) depletion resulted in bacterial arginine, aspartate and uracil auxotrophy. Moreover, CO(2) depletion governed a significant change in cell morphology, and a high reduction in biomass production. A comparative proteomic analysis revealed that cells of S. thermophilus showed a different degree of energy status depending on the CO(2) availability. In agreement with proteomic data, cells grown under N(2) showed a significantly higher milk acidification rate compared with those grown in an enriched CO(2) atmosphere. Experiments carried out on S. thermophilus wild-type and its derivative mutant, which was inactivated in the phosphoenolpyruvate carboxylase and carbamoyl-phosphate synthase activities responsible for fixing CO(2) to organic molecules, suggested that the anaplerotic reactions governed by these enzymes have a central role in bacterial metabolism. Our results reveal the capnophilic nature of this micro-organism, underlining the essential role of CO(2) in S. thermophilus physiology, and suggesting potential applications in dairy fermentation processes.
Collapse
Affiliation(s)
| | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro Spallanzani, sezione di Proteomica, Facoltà di Medicina Veterinaria, Milan, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Francesca Deriu
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| | | | | | - Luigi Bonizzi
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Diego Mora
- Department of Food Science and Microbiology, Milan, Italy
| |
Collapse
|
38
|
Arioli S, Monnet C, Guglielmetti S, Mora D. Carbamoylphosphate synthetase activity is essential for the optimal growth of Streptococcus thermophilus in milk. J Appl Microbiol 2009; 107:348-54. [PMID: 19302299 DOI: 10.1111/j.1365-2672.2009.04213.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM The aim of the study was to study the role of carbon dioxide metabolism in Streptococcus thermophilus through investigation of the phenotype of a carbamoylphosphate synthetase-negative mutant. METHODS AND RESULTS The effect of carbon dioxide on the nutritional requirements of Strep. thermophilus DSM20617(T) and its derivative, carbamoylphosphate synthetase-negative mutant A17(DeltacarB), was investigated by cultivating the strain in a chemically defined medium under diverse gas compositions and in milk. The results obtained revealed that CO(2) depletion or carB gene inactivation determined the auxotrophy of Strep. thermophilus for l-arginine and uracil. In addition, the parent strain grew faster than the mutant, even when milk was supplemented with uracil or arginine. CONCLUSIONS Milk growth experiments underlined that carbamoylphosphate synthetase activity was essential for the optimal growth of Strep. thermophilus in milk. SIGNIFICANCE AND IMPACT OF THE STUDY The study of the carbon dioxide metabolism in Strep. thermophilus revealed new insights with regard to the metabolism of this species, which could be useful for the optimization of dairy fermentation processes.
Collapse
Affiliation(s)
- S Arioli
- Department of Food Science and Microbiology, University of Milan, Milan, Italy.
| | | | | | | |
Collapse
|
39
|
Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E. Physiology ofStreptococcus thermophilusduring the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 2008; 8:4273-86. [DOI: 10.1002/pmic.200700489] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Sieuwerts S, de Bok FAM, Hugenholtz J, van Hylckama Vlieg JET. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 2008; 74:4997-5007. [PMID: 18567682 PMCID: PMC2519258 DOI: 10.1128/aem.00113-08] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sander Sieuwerts
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | | | | | | |
Collapse
|