1
|
Upadhyay S, Kumar A, Srivastava M, Srivastava A, Dwivedi A, Singh RK, Srivastava SK. Recent advancements of smartphone-based sensing technology for diagnosis, food safety analysis, and environmental monitoring. Talanta 2024; 275:126080. [PMID: 38615454 DOI: 10.1016/j.talanta.2024.126080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/16/2024]
Abstract
The emergence of computationally powerful smartphones, relatively affordable high-resolution camera, drones, and robotic sensors have ushered in a new age of advanced sensible monitoring tools. The present review article investigates the burgeoning smartphone-based sensing paradigms, including surface plasmon resonance (SPR) biosensors, electrochemical biosensors, colorimetric biosensors, and other innovations for modern healthcare. Despite the significant advancements, there are still scarcity of commercially available smart biosensors and hence need to accelerate the rates of technology transfer, application, and user acceptability. The application/necessity of smartphone-based biosensors for Point of Care (POC) testing, such as prognosis, self-diagnosis, monitoring, and treatment selection, have brought remarkable innovations which eventually eliminate sample transportation, sample processing time, and result in rapid findings. Additionally, it articulates recent advances in various smartphone-based multiplexed bio sensors as affordable and portable sensing platforms for point-of-care devices, together with statistics for point-of-care health monitoring and their prospective commercial viability.
Collapse
Affiliation(s)
- Satyam Upadhyay
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anil Kumar
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Monika Srivastava
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Amit Srivastava
- Department of Physics TDPG College, VBS Purvanchal University, Jaunpur, 222001, India
| | - Arpita Dwivedi
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajesh Kumar Singh
- School of Physical and Material Sciences, Central University of Himachal Pradesh, Dharamshala, Kangra, 176215, India
| | - S K Srivastava
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Renault T, Faury N, Morga B. Propidium monoazide PCR, a method to determine OsHV-1 undamaged capsids and to estimate virus Lethal Dose 50. Virus Res 2024; 340:199307. [PMID: 38160910 PMCID: PMC10800765 DOI: 10.1016/j.virusres.2023.199307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Ostreid herpes virus 1 (OsHV-1) has been classified within the Malacoherpesviridae family from the Herpesvirales order. OsHV-1 is the etiological agent of a contagious viral disease of Pacific oysters, C. gigas, affecting also other bivalve species. Mortality rates reported associated with the viral infection vary considerably between sites and countries and depend on the age of affected stocks. A variant called μVar has been reported since 2008 in Europe and other variants in Australia and in New Zealand last decade. These variants are considered as the main causative agents of mass mortality events affecting C. gigas. Presently there is no established cell line that allows for the detection of infectious OsHV-1. In this context, a technique of propidium monoazide (PMA) PCR was developed in order to quantify "undamaged" capsids. This methodology is of interest to explore the virus infectivity. Being able to quantify viral particles getting an undamaged capsid (not only an amount of viral DNA) in tissue homogenates prepared from infected oysters or in seawater samples can assist in the definition of a Lethal Dose (LD) 50 and gain information in the experiments conducted to reproduce the viral infection. The main objectives of the present study were (i) the development/optimization of a PMA PCR technique for OsHV-1 detection using the best quantity of PMA and verifying its effectiveness through heat treatment, (ii) the definition of the percentage of undamaged capsids in four different tissue homogenates prepared from infected Pacific oysters and (iii) the approach of a LD50 during experimental viral infection assays on the basis of a number of undamaged capsids. Although the developped PMA PCR technique was unable to determine OsHV-1 infectivity in viral supensions, it could greatly improve interpretation of virus positive results obtained by qPCR. This technique is not intended to replace the quantification of viral DNA by qPCR, but it does make it possible to give a form of biological meaning to the detection of this DNA.
Collapse
Affiliation(s)
- Tristan Renault
- Département Ressources Biologiques et Environnement, Ifremer, Nantes, France.
| | - Nicole Faury
- ASIM, Adaptation Santé des Invertébrés, Ifremer, La Tremblade, France
| | - Benjamin Morga
- ASIM, Adaptation Santé des Invertébrés, Ifremer, La Tremblade, France
| |
Collapse
|
3
|
Li Y, Wang Z, Qing J, Hu D, Vo HT, Thi KT, Wang X, Li X. Application of propidium monoazide quantitative PCR to discriminate of infectious African swine fever viruses. Front Microbiol 2024; 14:1290302. [PMID: 38268706 PMCID: PMC10805820 DOI: 10.3389/fmicb.2023.1290302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Introduction The detection of African swine fever virus (ASFV) is commonly performed using quantitative real-time PCR (qPCR), a widely used virological method known for its high sensitivity and specificity. However, qPCR has a limitation in distinguishing between infectious and inactivated virus, which can lead to an overestimation of viral targets. Methods To provide insights into ASFV infectivity, we evaluated the suitability of PMAxx, an improved version of propidium monoazide (PMA), as a means to differentiate between infectious and non-infectious ASFV. Pre-treatment with 50 μM PMAxx for 15 min significantly reduced the qPCR signal of ASFV in the live vaccine. Additionally, thermal treatment at 85°C for 5 min effectively inactivated the live ASFV in the vaccine. Based on a standard curve, the sensitivity of the PMAxx-qPCR assay was estimated to be approximately 10 copies/μL. Furthermore, we observed a strong agreement between the results obtained from PMAxx-qPCR and pig challenge experiments. Moreover, we utilized the PMAxx-qPCR assay to investigate the persistence of ASFV, revealing a close relationship between viral persistence and factors such as temperature and type of piggery materials. Conclusion The findings of this study suggest that pre-treating viruses with PMAxx prior to qPCR is a reliable method for distinguishing between infectious and non-infectious ASFV. Thus, integrating of PMAxx-qPCR into routine diagnostic protocols holds potential for improving the interpretation of positive ASFV results obtained through qPCR.
Collapse
Affiliation(s)
- Yang Li
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., (Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology), Dezhou, China
| | - Zewei Wang
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., (Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology), Dezhou, China
| | - Jie Qing
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., (Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology), Dezhou, China
| | - Dajun Hu
- New Hope Binh Phuoc livestock Co., Ltd., Huyen Hon Quan, Vietnam
| | - Hong Trang Vo
- New Hope Binh Phuoc livestock Co., Ltd., Huyen Hon Quan, Vietnam
| | - Kim Thanh Thi
- New Hope Binh Phuoc livestock Co., Ltd., Huyen Hon Quan, Vietnam
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Yangling, China
| | - Xiaowen Li
- Xiajin New Hope Liuhe Agriculture and Animal Husbandry Co., Ltd., (Shandong Engineering Laboratory of Pig and Poultry Healthy Breeding and Disease Diagnosis Technology), Dezhou, China
- New Hope Binh Phuoc livestock Co., Ltd., Huyen Hon Quan, Vietnam
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Yangling, China
| |
Collapse
|
4
|
Cryptosporidiosis: From Prevention to Treatment, a Narrative Review. Microorganisms 2022; 10:microorganisms10122456. [PMID: 36557709 PMCID: PMC9782356 DOI: 10.3390/microorganisms10122456] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Cryptosporidiosis is a water- and food-borne zoonotic disease caused by the protozoon parasite of the genus Cryptosporidium. C. hominis and C. parvum are the main two species causing infections in humans and animals. The disease can be transmitted by the fecal-oral route as well as the respiratory route. The infective stage (sporulated oocysts) is resistant to different disinfectants including chlorine. Currently, no effective therapeutic drugs or vaccines are available to treat and control Cryptosporidium infection. To prevent cryptosporidiosis in humans and animals, we need to understand better how the disease is spread and transmitted, and how to interrupt its transmission cycle. This review focuses on understanding cryptosporidiosis, including its infective stage, pathogenesis, life cycle, genomics, epidemiology, previous outbreaks, source of the infection, transmission dynamics, host spectrum, risk factors and high-risk groups, the disease in animals and humans, diagnosis, treatment and control, and the prospect of an effective anti-Cryptosporidium vaccine. It also focuses on the role of the One Health approach in managing cryptosporidiosis at the animal-human-environmental interface. The summarized data in this review will help to tackle future Cryptosporidium infections in humans and animals and reduce the disease occurrence.
Collapse
|
5
|
Liang G, Long Y, Li Q, Yang L, Huang Y, Yu D, Song W, Zhou M, Xu G, Huang C, Tang X. Propidium Monoazide Combined With RT-qPCR Detects Infectivity of Porcine Epidemic Diarrhea Virus. Front Vet Sci 2022; 9:931392. [PMID: 35909686 PMCID: PMC9334817 DOI: 10.3389/fvets.2022.931392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) allows sensitive detection of viral particles and viruses in epidemic samples but it cannot discriminate noninfectious viruses from infectious ones. Propidium monoazide (PMA) coupled with quantitative polymerase chain reaction (qPCR) was assessed to detect infectious viruses. Currently, there is no established test method to detect the infection of the porcine epidemic diarrhea virus (PEDV). In this study, propidium monoazide coupled with qPCR detects infectivity of PEDV. We optimized the method from the selection of primers, the working concentration of PMA, and the inactivation method using heat or ultraviolet (UV). The viruses which were treated with PMA before qPCR were inactivated using heat or UV. However, the addition of PMA alone did not affect the detection of live viruses, which indicates that a viral capsid break may be essential for PMA to bind to the genome. A repetition of the method on naked PEDV RNA suggests that it can be used to detect potentially infectious PEDV. The results indicated that an optimal plan of PMA could be extremely useful for evaluating infectious and noninfectious viruses.
Collapse
|
6
|
Sammarro Silva KJ, Sabogal-Paz LP. Analytical challenges and perspectives of assessing viability of Giardia muris cysts and Cryptosporidium parvum oocysts by live/dead simultaneous staining. ENVIRONMENTAL TECHNOLOGY 2022; 43:60-69. [PMID: 32463712 DOI: 10.1080/09593330.2020.1775712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
Giardia and Cryptosporidium are pathogenic protozoa often present in the environment in their infective form(cysts and oocysts). These parasites are very resistant to disinfection, which makes them important target organisms in environmental quality monitoring and sanitation. Viability assessment provides an interpretation of cell inactivation, and it can be evaluated by membrane integrity as well as enzyme activity, using different staining methods. These are straightforward and adequate to laboratories that lack infrastructure for molecular-based technologies or animal infectivity tests. This study investigated simultaneous staining by a commercial live/dead kit, in order to assess viability of Cryptosporidium parvum oocysts and Giardia muris cysts, comparing it to propidium iodide (PI) incorporation, a common stain applied in viability estimation. Results suggested that, although the central hypothesis of one-panel visualization (α = 0.05) was met, simultaneous staining impaired (oo)cyst detection by immunofluorescence assay (IFA), which was found to be essential to enumeration, as the live/dead test led to poor (oo)cyst labelling or a 10-fold lower recovery when carried out concomitantly to IFA. As for the viability assessment itself, although red dye uptake occurred as expected by dead or weakened organisms, neither live G. muris cysts or C. parvum oocysts present any green fluorescence by esterase metabolism. This may have been caused by low enzyme activity in the infective form and/or wall thickness of these parasites. The results do not exclude the possibility of simultaneous fluorescence staining for protozoa, but it is a starting point for a broader analysis, that may consider, for instance, different incubation conditions.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
7
|
A Model System for Sensitive Detection of Viable E. coli Bacteria Combining Direct Viability PCR and a Novel Microarray-Based Detection Approach. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We established an innovative approach that included direct, viability, and nested PCR for rapid and reliable identification of the fecal indicator organism Escherichia coli (E. coli). Direct PCR enabled successful amplification of the target uidA gene, omitting a prior DNA isolation or purification step. Furthermore, we applied viability PCR (v-PCR) to ensure the detection of only relevant viable bacterial cells. The principle involves the binding of propidium monoazide (PMA), a selective nucleic acid intercalating dye, to accessible DNA of heat killed bacteria cells and, consequently, allows viable and heat killed E. coli cells to be discriminated. To ensure high sensitivity, direct v-PCR was followed by a nested PCR step. The resulting amplicons were analyzed by a rapid 30 min microarray-based DNA hybridization assay for species-specific DNA detection of E. coli. A positive signal was indicated by enzymatically generated silver nanoparticle deposits, which served as robust endpoint signals allowing an immediate visual readout. The presented novel protocol allows the detection of 1 × 101 viable E. coli cells per PCR run.
Collapse
|
8
|
Luka GS, Nowak E, Toyata QR, Tasnim N, Najjaran H, Hoorfar M. Portable on-chip colorimetric biosensing platform integrated with a smartphone for label/PCR-free detection of Cryptosporidium RNA. Sci Rep 2021; 11:23192. [PMID: 34853388 PMCID: PMC8636559 DOI: 10.1038/s41598-021-02580-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Cryptosporidium, a protozoan pathogen, is a leading threat to public health and the economy. Herein, we report the development of a portable, colorimetric biosensing platform for the sensitive, selective and label/PCR-free detection of Cryptosporidium RNA using oligonucleotides modified gold nanoparticles (AuNPs). A pair of specific thiolated oligonucleotides, complementary to adjacent sequences on Cryptosporidium RNA, were attached to AuNPs. The need for expensive laboratory-based equipment was eliminated by performing the colorimetric assay on a micro-fabricated chip in a 3D-printed holder assembly. A smartphone camera was used to capture an image of the color change for quantitative analysis. The detection was based on the aggregation of the gold nanoparticles due to the hybridization between the complementary Cryptosporidium RNA and the oligonucleotides immobilized on the AuNPs surface. In the complementary RNA's presence, a distinctive color change of the AuNPs (from red to blue) was observed by the naked eye. However, in the presence of non-complementary RNA, no color change was observed. The sensing platform showed wide linear responses between 5 and 100 µM with a low detection limit of 5 µM of Cryptosporidium RNA. Additionally, the sensor developed here can provide information about different Cryptosporidium species present in water resources. This cost-effective, easy-to-use, portable and smartphone integrated on-chip colorimetric biosensor has great potential to be used for real-time and portable POC pathogen monitoring and molecular diagnostics.
Collapse
Affiliation(s)
- George S Luka
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Ephraim Nowak
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Quin Robert Toyata
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Nishat Tasnim
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Homayoun Najjaran
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mina Hoorfar
- School of Engineering, Faculty of Applied Science, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
9
|
Kim JY, Jeon EB, Song MG, Ha KS, Jeong SH, Jung YJ, Park SY. Combination of ultrasonic waves and dielectric barrier discharge plasma for the viable reduction in human norovirus while retaining the quality of raw sea squirt. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ji Yoon Kim
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| | - Eun Bi Jeon
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| | - Min Gyu Song
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| | - Kwang Soo Ha
- Southeast Sea Fisheries Research Institute National Institute of Fisheries Science Tongyeong Republic of Korea
| | - Sang Hyeon Jeong
- Southeast Sea Fisheries Research Institute National Institute of Fisheries Science Tongyeong Republic of Korea
| | - Yeoun Joong Jung
- Food Safety and Processing Research Division National Institute of Fisheries Science Busan Republic of Korea
| | - Shin Young Park
- Institute of Marine Industry Gyeongsang National University Tongyeong Republic of Korea
- Department of Seafood Science Gyeongsang National University Tongyeong Republic of Korea
| |
Collapse
|
10
|
Kim M, Shapiro K, Rajal VB, Packham A, Aguilar B, Rueda L, Wuertz S. Quantification of viable protozoan parasites on leafy greens using molecular methods. Food Microbiol 2021; 99:103816. [PMID: 34119101 DOI: 10.1016/j.fm.2021.103816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 12/01/2022]
Abstract
Protozoan contamination in produce is of growing importance due to their capacity to cause illnesses in consumers of fresh leafy greens. Viability assays are essential to accurately estimate health risk caused by viable parasites that contaminate food. We evaluated the efficacy of reverse transcription quantitative PCR (RT-qPCR), propidium monoazide coupled with (q)PCR, and viability staining using propidium iodide through systematic laboratory spiking experiments for selective detection of viable Cryptosporidium parvum, Giardia enterica, and Toxoplasma gondii. In the presence of only viable protozoa, the RT-qPCR assays could accurately detect two to nine (oo)cysts/g spinach (in 10 g processed). When different proportions of viable and inactivated parasite were spiked, mRNA concentrations correlated with increasing proportions of viable (oo)cysts, although low levels of false-positive mRNA signals were detectable in the presence of high amounts of inactivated protozoa. Our study demonstrated that among the methods tested, RT-qPCR performed more effectively to discriminate viable from inactivated C. parvum, G. enterica and T. gondii on spinach. This application of viability methods on leafy greens can be adopted by the produce industry and regulatory agencies charged with protection of human public health to screen leafy greens for the presence of viable protozoan pathogen contamination.
Collapse
Affiliation(s)
- Minji Kim
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA; Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Karen Shapiro
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Verónica B Rajal
- Facultad de Ingeniería and Instituto de Investigaciones para la Industria Química (INIQUI), CONICET - Universidad Nacional de Salta (UNSa), Av. Bolivia 5150, Salta, 4400, Argentina; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore (NTU), 60 Nanyang Drive, 637551, Singapore
| | - Andrea Packham
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Beatriz Aguilar
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Lezlie Rueda
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Stefan Wuertz
- Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore (NTU), 60 Nanyang Drive, 637551, Singapore; School of Civil and Environmental Engineering, NTU, 50 Nanyang Avenue, 649798, Singapore.
| |
Collapse
|
11
|
Modified PMA-qPCR Method for Rapid Quantification of Viable Lactobacillus spp. in Fermented Dairy Products. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02022-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Sammarro Silva KJ, Sabogal-Paz LP. Cryptosporidium spp. and Giardia spp. (oo)cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays. WATER RESEARCH 2021; 189:116590. [PMID: 33166919 DOI: 10.1016/j.watres.2020.116590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Cysts and (oo)cysts are the infective forms of parasitic protozoa, as Giardia and Cryptosporidium, which are widespread and associated to worldwide waterborne diseases outbreaks. These microorganisms pose a challenge to public health, as they are resistant to conventional disinfection methods, which make them important parameters when evaluating inactivation efficiency. However, when (oo)cysts are targets, it is challenging to infer inactivation efficacy, as it may require infectivity tests that are not often an option for laboratory routine analysis. In this scene, (oo)cyst viability based on induced excystation, membrane integrity and enzyme activity evaluated by dye inclusion and/or exclusion, as well as fluorescence reduction consist on microscopy-based techniques that may be options to estimate inactivation in the environmental context. This scoping review presents applications, advantages and limitations of these methodologies for viability assessment, in order to shed light on the (oo)cyst viability topic and provide insight strategies for choosing protocols in the environmental and sanitation field, in laboratory applications and novel research.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
13
|
Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S. Water and microbial monitoring technologies towards the near future space exploration. WATER RESEARCH 2020; 177:115787. [PMID: 32315899 DOI: 10.1016/j.watres.2020.115787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy.
| | - Caterina Levantesi
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| | - Diego Copetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Fabrizio Stefani
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Ilaria Locantore
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Vincenzo Guarnieri
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Cesare Lobascio
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Emmanouil Detsis
- European Science Foundation, 1 quai Lezay Marnésia, BP 90015, 67080, Strasbourg Cedex, France
| | - Simona Rossetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| |
Collapse
|
14
|
Methods to assess the effect of meat processing on viability of Toxoplasma gondii: towards replacement of mouse bioassay by in vitro testing. Int J Parasitol 2020; 50:357-369. [DOI: 10.1016/j.ijpara.2020.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
|
15
|
Nisar MA, Ross KE, Brown MH, Bentham R, Whiley H. Legionella pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens 2020; 9:pathogens9040286. [PMID: 32326561 PMCID: PMC7238060 DOI: 10.3390/pathogens9040286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is an opportunistic waterborne pathogen of public health concern. It is the causative agent of Legionnaires’ disease (LD) and Pontiac fever and is ubiquitous in manufactured water systems, where protozoan hosts and complex microbial communities provide protection from disinfection procedures. This review collates the literature describing interactions between L. pneumophila and protozoan hosts in hospital and municipal potable water distribution systems. The effectiveness of currently available water disinfection protocols to control L. pneumophila and its protozoan hosts is explored. The studies identified in this systematic literature review demonstrated the failure of common disinfection procedures to achieve long term elimination of L. pneumophila and protozoan hosts from potable water. It has been demonstrated that protozoan hosts facilitate the intracellular replication and packaging of viable L. pneumophila in infectious vesicles; whereas, cyst-forming protozoans provide protection from prolonged environmental stress. Disinfection procedures and protozoan hosts also facilitate biogenesis of viable but non-culturable (VBNC) L. pneumophila which have been shown to be highly resistant to many water disinfection protocols. In conclusion, a better understanding of L. pneumophila-protozoan interactions and the structure of complex microbial biofilms is required for the improved management of L. pneumophila and the prevention of LD.
Collapse
|
16
|
Wang H, Turechek WW. Detection of Viable Xanthomonas fragariae Cells in Strawberry Using Propidium Monoazide and Long-Amplicon Quantitative PCR. PLANT DISEASE 2020; 104:1105-1112. [PMID: 32040389 DOI: 10.1094/pdis-10-19-2248-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xanthomonas fragariae causes angular leaf spot in strawberry. The pathogen's association with its host tissue is thought to be a condition for its survival. Consequently, transmission of the pathogen to field production sites occurs almost exclusively through the movement of contaminated planting stock. The aim of this study was to develop a propidium monoazide (PMA)-quantitative PCR (qPCR) protocol for specific detection of viable X. fragariae cells. The qPCR procedure was developed for two different primer pairs: one producing a long amplicon (863 bp) and the other a short amplicon (61 bp). Both pairs were tested on mixtures of viable and heat-killed bacteria cells, bacteria-spiked strawberry petiole samples, and petioles collected from symptomatic, inoculated plants. The results showed that long-amplicon PMA-qPCR enabled specific and sensitive detection of X. fragariae with a detection limit of 103 CFU/ml, and it significantly improved PMA efficiency in differentiating viable from dead bacterial cells relative to short-amplicon PMA-qPCR. Based on the delta threshold cycle (Ct) values (i.e., the difference in Ct values between PMA-treated and nontreated samples), the long-amplicon PMA-qPCR was able to suppress the detection of dead X. fragariae cells 1.9- to 3.1-fold across all petiole samples tested. The quantification results from PMA-qPCR for mixtures of viable and dead cells were highly correlated with the predicted bacterial concentrations in a linear relationship (R2 = 0.981). This assay can be useful for identifying inoculum sources in the strawberry production cycle, which may lead to improved disease management strategies.
Collapse
Affiliation(s)
- Hehe Wang
- Department of Agricultural and Environmental Sciences, Clemson University, Blackville, SC
| | - William W Turechek
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Fort Pierce, FL
| |
Collapse
|
17
|
Jeon EB, Choi MS, Kim JY, Ha KS, Kwon JY, Jeong SH, Lee HJ, Jung YJ, Ha JH, Park SY. Characterizing the effects of thermal treatment on human norovirus GII.4 viability using propidium monoazide combined with RT-qPCR and quality assessments in mussels. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Deshmukh R, Bhand S, Roy U. A novel method for rapid and sensitive detection of viable Escherichia coli cells using UV-induced PMA-coupled quantitative PCR. Braz J Microbiol 2019; 51:773-778. [PMID: 31654340 DOI: 10.1007/s42770-019-00161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
We report a specific and sensitive method to improve the coupling of propidium monoazide (PMA) with DNA derived from killed cells of Escherichia coli using UV light of 365 nm. UV light of three different intensities mainly 2.4 × 103, 4.8 × 103, and 7.2 × 103 μJ/cm2 was applied to E. coli cells each for 1, 3, and 5 min. PMA was found to be successfully cross-linked with the DNA from killed cells of E. coli at 4.8 × 103 μJ/cm2 in 3 min leading to the complete inhibition of PCR amplification of DNA derived from PMA-treated heat-killed cells. In spiked phosphate-buffered saline and potable water samples, the difference of the Cq values between PMA-treated viable cells and PMA-untreated viable cells ranged from -0.17 to 0.2, demonstrating that UV-induced PMA activation had a negligible effect on viable cells. In contrast, the difference of the Cq values between PMA-treated heat-killed cells and PMA-untreated heat-killed cells ranged from 8.9 to 9.99, indicating the ability of PMA to inhibit PCR amplification of DNA derived from killed cells to an equivalent as low as 100 CFU. In conclusion, this UV-coupled PMA-qPCR assay provided a rapid and sensitive methodology to selectively detect viable E. coli cells in spiked water samples within 4 h.
Collapse
Affiliation(s)
- Rehan Deshmukh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India
| | - Sunil Bhand
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Goa Campus, NH17B Bypass, Goa, 403726, India.
| |
Collapse
|
19
|
Rousseau A, Villena I, Dumètre A, Escotte-Binet S, Favennec L, Dubey JP, Aubert D, La Carbona S. Evaluation of propidium monoazide–based qPCR to detect viable oocysts of Toxoplasma gondii. Parasitol Res 2019; 118:999-1010. [DOI: 10.1007/s00436-019-06220-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 01/03/2023]
|
20
|
Nakada LYK, Franco RMB, Fiuza VRDS, Santos LUD, Branco N, Guimarães JR. Pre-ozonation of source water: Assessment of efficacy against Giardia duodenalis cysts and effects on natural organic matter. CHEMOSPHERE 2019; 214:764-770. [PMID: 30296764 DOI: 10.1016/j.chemosphere.2018.09.164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/04/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
The protozoan Giardia duodenalis is one of the parasites of primary concern in drinking water treatment plants, due to its resistance to chlorination. Another matter of concern regarding chlorination of drinking water is the formation of disinfection by-products in the presence of precursors such as natural organic matter (NOM). In this study, the effects of ozonation (5 mg L-1) on G. duodenalis cysts in raw surface water from a drinking water treatment plant were evaluated, and the presence and alteration of NOM were assessed, as an indicative of the potential to prevent total organic halogen (TOX) formation during post-chlorination. Following ozone treatment, the presence of damaged cysts was observed by direct immunofluorescence assay (IFA) and confirmed by the molecular approach propidium monoazide-polymerase chain reaction (PMA-PCR). Using an animal model, analysis of the intestinal tissues revealed that 80% of the animals inoculated with ozonated water were positive for trophozoites. This study shows that analysis of intestinal fragments is imperative to accurately assess animal infection following inoculation of treated cysts. More importantly, considering the low infective dose of Giardia cysts in susceptible hosts, an ozone dosage usually applied in drinking water treatment plants did not completely inactivate G. duodenalis cysts in surface water. Nonetheless, the results suggest that competitive reactions with NOM have occurred, and the applied ozone dosage has proven useful to remove NOM reactivity, and thus prevent halogenated DBP formation during post-chlorination.
Collapse
Affiliation(s)
- Liane Yuri Kondo Nakada
- University of Campinas - School of Civil Engineering, Architecture and Urban Design, Department of Sanitation and Environment, Avenida Albert Einstein, 951 - Cidade Universitária, 13083852, Campinas, SP, Brazil.
| | - Regina Maura Bueno Franco
- University of Campinas, Institute of Biology, Department of Animal Biology. Rua Monteiro Lobato, 255, 13083862, Campinas, SP, Brazil
| | - Vagner Ricardo da Silva Fiuza
- University of Campinas - School of Civil Engineering, Architecture and Urban Design, Department of Sanitation and Environment, Avenida Albert Einstein, 951 - Cidade Universitária, 13083852, Campinas, SP, Brazil; Federal University of Mato Grosso do Sul, Institute of Biosciences, Fundação Universidade Federal de Mato Grosso do Sul, Universitário, 79070900, Campo Grande, MS, Brazil
| | - Luciana Urbano Dos Santos
- University of Campinas - School of Civil Engineering, Architecture and Urban Design, Department of Sanitation and Environment, Avenida Albert Einstein, 951 - Cidade Universitária, 13083852, Campinas, SP, Brazil; Padre Anchieta University Centre, Rua Bom Jesus de Pirapora - até, 848/849, Vila Vianelo, 13207270, Jundiaí, SP, Brazil
| | - Nilson Branco
- University of Campinas, Institute of Biology, Department of Animal Biology. Rua Monteiro Lobato, 255, 13083862, Campinas, SP, Brazil
| | - José Roberto Guimarães
- University of Campinas - School of Civil Engineering, Architecture and Urban Design, Department of Sanitation and Environment, Avenida Albert Einstein, 951 - Cidade Universitária, 13083852, Campinas, SP, Brazil.
| |
Collapse
|
21
|
Hamilton KA, Waso M, Reyneke B, Saeidi N, Levine A, Lalancette C, Besner MC, Khan W, Ahmed W. Cryptosporidium and Giardia in Wastewater and Surface Water Environments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1006-1023. [PMID: 30272766 DOI: 10.2134/jeq2018.04.0132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
and spp. are significant contributors to the global waterborne disease burden. Waterways used as sources of drinking water and for recreational activity can become contaminated through the introduction of fecal materials derived from humans and animals. Multiple studies have reported the occurence or concentrations of these pathogens in the environment. However, this information has not been comprehensively reviewed. Quantitative microbial risk assessment (QMRA) for and can be beneficial, but it often relies on the concentrations in environmental sources reported from the literature. A thorough literature review was conducted to develop an inventory of reported and concentrations in wastewater and surface water available in the literature. This information can be used to develop QMRA inputs. and (oo)cyst concentrations in untreated wastewater were up to 60,000 oocysts L and 100,000 cysts L, respectively. The maximum reported concentrations for and in surface water were 8400 oocysts L and 1000 cysts L, respectively. A summary of the factors for interpretation of concentration information including common quantification methods, survival and persistence, biofilm interactions, genotyping, and treatment removal is provided in this review. This information can help in identifying assumptions implicit in various QMRA parameters, thus providing the context and rationale to guide model formulation and application. Additionally, it can provide valuable information for water quality practitioners striving to meet the recreational water quality or treatment criteria. The goal is for the information provided in the current review to aid in developing source water protection and monitoring strategies that will minimize public health risks.
Collapse
|
22
|
Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184:15-28. [PMID: 29395034 DOI: 10.1016/j.actatropica.2018.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/18/2023]
Abstract
The detection and characterization of genotypes and sub genotypes of Cryptosporidium and Giardia is essential for their enumeration, surveillance, prevention, and control. Different diagnostic methods are available for the analysis of Cryptosporidium and Giardia including conventional phenotypic tools that face major limitations in the specific diagnosis of these protozoan parasites. The substantial advancement in the development of genetic signature based molecular tools for the quantification, diagnosis and genetic variation analysis has increased the understanding of the epidemiology and preventive measures of related infections. The conventional methods such as microscopy, antibody and enzyme based approaches, offer better detection results when combined with advanced molecular methods. Gene based approaches increase the precision of identification, for example, many signatures detected in environmental matrices represent species/genotype that are not infectious to humans. This review summarizes the available methods and the advantages and limitations of advance detection techniques like nucleic acid-based approaches for the detection of viable oocysts and cysts of Cryptosporidium and Giardia along with the conventional and widely accepted detection techniques like microscopy, antibody and enzyme based ones. This technical article also encourages the wide application of molecular methods in genetic characterization of distinct species of Cryptosporidium and Giardia, to adopt necessary preventive measures with reliable identification and mapping the source of contamination.
Collapse
Affiliation(s)
- Folasade Esther Adeyemo
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Gulshan Singh
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| |
Collapse
|
23
|
Vande Burgt NH, Auer A, Zintl A. Comparison of in vitro viability methods for Cryptosporidium oocysts. Exp Parasitol 2018. [DOI: 10.1016/j.exppara.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
25
|
Bankier C, Cheong Y, Mahalingam S, Edirisinghe M, Ren G, Cloutman-Green E, Ciric L. A comparison of methods to assess the antimicrobial activity of nanoparticle combinations on bacterial cells. PLoS One 2018; 13:e0192093. [PMID: 29390022 PMCID: PMC5794139 DOI: 10.1371/journal.pone.0192093] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/16/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacterial cell quantification after exposure to antimicrobial compounds varies widely throughout industry and healthcare. Numerous methods are employed to quantify these antimicrobial effects. With increasing demand for new preventative methods for disease control, we aimed to compare and assess common analytical methods used to determine antimicrobial effects of novel nanoparticle combinations on two different pathogens. METHODS Plate counts of total viable cells, flow cytometry (LIVE/DEAD BacLight viability assay) and qPCR (viability qPCR) were used to assess the antimicrobial activity of engineered nanoparticle combinations (NPCs) on Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria at different concentrations (0.05, 0.10 and 0.25 w/v%). Results were analysed using linear models to assess the effectiveness of different treatments. RESULTS Strong antimicrobial effects of the three NPCs (AMNP0-2) on both pathogens could be quantified using the plate count method and flow cytometry. The plate count method showed a high log reduction (>8-log) for bacteria exposed to high NPC concentrations. We found similar antimicrobial results using the flow cytometry live/dead assay. Viability qPCR analysis of antimicrobial activity could not be quantified due to interference of NPCs with qPCR amplification. CONCLUSION Flow cytometry was determined to be the best method to measure antimicrobial activity of the novel NPCs due to high-throughput, rapid and quantifiable results.
Collapse
Affiliation(s)
- Claire Bankier
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
| | - Yuen Cheong
- School of Engineering and Technology, University of Hertfordshire, Hatfield, United Kingdom
| | | | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Guogang Ren
- School of Engineering and Technology, University of Hertfordshire, Hatfield, United Kingdom
| | - Elaine Cloutman-Green
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
- Department of Microbiology, Virology, and Infection Prevention Control, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, United Kingdom
| |
Collapse
|
26
|
Blachowicz A, Mayer T, Bashir M, Pieber TR, De León P, Venkateswaran K. Human presence impacts fungal diversity of inflated lunar/Mars analog habitat. MICROBIOME 2017; 5:62. [PMID: 28693587 PMCID: PMC5504618 DOI: 10.1186/s40168-017-0280-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND An inflatable lunar/Mars analog habitat (ILMAH), simulated closed system isolated by HEPA filtration, mimics International Space Station (ISS) conditions and future human habitation on other planets except for the exchange of air between outdoor and indoor environments. The ILMAH was primarily commissioned to measure physiological, psychological, and immunological characteristics of human inhabiting in isolation, but it was also available for other studies such as examining its microbiological aspects. Characterizing and understanding possible changes and succession of fungal species is of high importance since fungi are not only hazardous to inhabitants but also deteriorate the habitats. Observing the mycobiome changes in the presence of human will enable developing appropriate countermeasures with reference to crew health in a future closed habitat. RESULTS Succession of fungi was characterized utilizing both traditional and state-of-the-art molecular techniques during the 30-day human occupation of the ILMAH. Surface samples were collected at various time points and locations to observe both the total and viable fungal populations of common environmental and opportunistic pathogenic species. To estimate the cultivable fungal population, potato dextrose agar plate counts method was utilized. The internal transcribed spacer region-based iTag Illumina sequencing was employed to measure the community structure and fluctuation of the mycobiome over time in various locations. Treatment of samples with propidium monoazide (PMA; a DNA intercalating dye for selective detection of viable microbial populations) had a significant effect on the microbial diversity compared to non-PMA-treated samples. Statistical analysis confirmed that viable fungal community structure changed (increase in diversity and decrease in fungal burden) over the occupation time. Samples collected at day 20 showed distinct fungal profiles from samples collected at any other time point (before or after). Viable fungal families like Davidiellaceae, Teratosphaeriaceae, Pleosporales, and Pleosporaceae were shown to increase during the occupation time. CONCLUSIONS The results of this study revealed that the overall fungal diversity in the closed habitat changed during human presence; therefore, it is crucial to properly maintain a closed habitat to preserve it from deteriorating and keep it safe for its inhabitants. Differences in community profiles were observed when statistically treated, especially of the mycobiome of samples collected at day 20. On a genus level Epiccocum, Alternaria, Pleosporales, Davidiella, and Cryptococcus showed increased abundance over the occupation time.
Collapse
Affiliation(s)
- A Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - T Mayer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA
| | - M Bashir
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - T R Pieber
- Division of Endocrinology and Metabolism, Medical University Graz, Graz, Austria
| | - P De León
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - K Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., M/S 89-2, Pasadena, CA, 91109, USA.
| |
Collapse
|
27
|
Zeng D, Chen Z, Jiang Y, Xue F, Li B. Advances and Challenges in Viability Detection of Foodborne Pathogens. Front Microbiol 2016; 7:1833. [PMID: 27920757 PMCID: PMC5118415 DOI: 10.3389/fmicb.2016.01833] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 11/13/2022] Open
Abstract
Foodborne outbreaks are a serious public health and food safety concern worldwide. There is a great demand for rapid, sensitive, specific, and accurate methods to detect microbial pathogens in foods. Conventional methods based on cultivation of pathogens have been the gold standard protocols; however, they take up to a week to complete. Molecular assays such as polymerase chain reaction (PCR), sequencing, microarray technologies have been widely used in detection of foodborne pathogens. Among molecular assays, PCR technology [conventional and real-time PCR (qPCR)] is most commonly used in the foodborne pathogen detection because of its high sensitivity and specificity. However, a major drawback of PCR is its inability to differentiate the DNA from dead and viable cells, and this is a critical factor for the food industry, regulatory agencies and the consumer. To remedy this shortcoming, researchers have used biological dyes such as ethidium monoazide and propidium monoazide (PMA) to pretreat samples before DNA extraction to intercalate the DNA of dead cells in food samples, and then proceed with regular DNA preparation and qPCR. By combining PMA treatment with qPCR (PMA-qPCR), scientists have applied this technology to detect viable cells of various bacterial pathogens in foods. The incorporation of PMA into PCR-based assays for viability detection of pathogens in foods has increased significantly in the last decade. On the other hand, some downsides with this approach have been noted, particularly to achieve complete suppression of signal of DNA from the dead cells present in some particular food matrix. Nowadays, there is a tendency of more and more researchers adapting this approach for viability detection; and a few commercial kits based on PMA are available in the market. As time goes on, more scientists apply this approach to a broader range of pathogen detections, this viability approach (PMA or other chemicals such as platinum compound) may eventually become a common methodology for the rapid, sensitive, and accurate detection of foodborne pathogens. In this review, we summarize the development in the field including progress and challenges and give our perspective in this area.
Collapse
Affiliation(s)
- Dexin Zeng
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Zi Chen
- College of Veterinary Medicine, Nanjing Agricultural UniversityNanjing, China; Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China
| | - Yuan Jiang
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine BureauNanjing, China; Shanghai Entry-Exit Inspection and Quarantine BureauShanghai, China
| | - Feng Xue
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Baoguang Li
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Laurel MD, USA
| |
Collapse
|
28
|
Ahmad F, Stedtfeld RD, Waseem H, Williams MR, Cupples AM, Tiedje JM, Hashsham SA. Most probable number - loop mediated isothermal amplification (MPN-LAMP) for quantifying waterborne pathogens in <25min. J Microbiol Methods 2016; 132:27-33. [PMID: 27856278 DOI: 10.1016/j.mimet.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/12/2016] [Accepted: 11/12/2016] [Indexed: 01/20/2023]
Abstract
We are reporting a most probable number approach integrated to loop mediated isothermal technique (MPN-LAMP) focusing on Gram-negative Escherichia coli and Gram-positive Enterococcus faecalis bacterial cells without nucleic acids extraction. LAMP assays for uidA from E. coli and gelE from E. faecalis were successfully performed directly on cells up to single digit concentration using a commercial real time PCR instrument. Threshold time values of LAMP assays of bacterial cells, heat treated bacterial cells (95°C for 5min), and their purified genomic DNA templates were similar, implying that amplification could be achieved directly from bacterial cells at 63°C. Viability of bacterial cells was confirmed by using propidium monoazide in a LAMP assay with E. faecalis. To check its functionality on a microfluidic platform, MPN-LAMP assays targeting <10CFU of bacteria were also translated onto polymeric microchips and monitored by a low-cost fluorescence imaging system. The overall system provided signal-to-noise (SNR) ratios up to 800, analytical sensitivity of <10CFU, and time to positivity of about 20min. MPN-LAMP assays were performed for cell concentrations in the range of 105CFU to <10CFU. MPN values from LAMP assays confirmed that the amplifications were from <10CFU. The method described here, applicable directly on cells at 63°C, eliminates the requirement of complex nucleic acids extraction steps, facilitating the development of sensitive, rapid, low-cost, and field-deployable systems. This rapid MPN-LAMP approach has the potential to replace conventional MPN method for waterborne pathogens.
Collapse
Affiliation(s)
- Farhan Ahmad
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Hassan Waseem
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Maggie R Williams
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - James M Tiedje
- The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA; The Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Gyawali P, Ahmed W, Sidhu JPS, Nery SV, Clements AC, Traub R, McCarthy JS, Llewellyn S, Jagals P, Toze S. Quantitative detection of viable helminth ova from raw wastewater, human feces, and environmental soil samples using novel PMA-qPCR methods. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18639-18648. [PMID: 27306209 DOI: 10.1007/s11356-016-7039-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/05/2016] [Indexed: 06/06/2023]
Abstract
In this study, we have evaluated the efficacy of propidium monoazide quantitative polymerase chain reaction (PMA-qPCR) to differentiate between viable and non-viable Ancylostoma caninum ova. The newly developed method was validated using raw wastewater seeded with known numbers of A. caninum ova. Results of this study confirmed that PMA-qPCR has resulted in average of 88 % reduction (P < 0.05) in gene copy numbers for 50 % viable +50 % non-viable when compared with 100 % viable ova. A reduction of 100 % in gene copies was observed for 100 % non-viable ova when compared with 100 % viable ova. Similar reductions (79-80 %) in gene copies were observed for A. caninum ova-seeded raw wastewater samples (n = 18) collected from wastewater treatment plants (WWTPs) A and B. The newly developed PMA-qPCR method was applied to determine the viable ova of different helminths (A. caninum, A. duodenale, Necator americanus and Ascaris lumbricoides) in raw wastewater, human fecal and soil samples. None of the unseeded wastewater samples were positive for the above-mentioned helminths. N. americanus and A. lumbricoides ova were found in unseeded human fecal and soil samples. For the unseeded human fecal samples (1 g), an average gene copy concentration obtained from qPCR and PMA-qPCR was found to be similar (6.8 × 10(5) ± 6.4 × 10(5) and 6.3 × 10(5) ± 4.7 × 10(5)) indicating the presence of viable N. americanus ova. Among the 24 unseeded soil samples tested, only one was positive for A. lumbricoides. The mean gene copy concentration in the positively identified soil sample was 1.0 × 10(5) ± 1.5 × 10(4) (determined by qPCR) compared to 4.9 × 10(4) ± 3.7 × 10(3) (determined by PMA-qPCR). The newly developed PMA-qPCR methods were able to detect viable helminth ova from wastewater and soil samples and could be adapted for health risk assessment.
Collapse
Affiliation(s)
- P Gyawali
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia.
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia.
| | - W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia
| | - J P S Sidhu
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | - S V Nery
- Research School of Population Health, College of Medicine, Biology and Environment, The Australian National University, Linnaeus Way, ACT, 2601, Australia
| | - A C Clements
- Research School of Population Health, College of Medicine, Biology and Environment, The Australian National University, Linnaeus Way, ACT, 2601, Australia
| | - R Traub
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - J S McCarthy
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - S Llewellyn
- Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - P Jagals
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| | - S Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, GPO Box 2583, Brisbane, QLD, 4102, Australia
- School of Public Health, The University of Queensland, Herston, QLD, 4006, Australia
| |
Collapse
|
30
|
Deshmukh RA, Joshi K, Bhand S, Roy U. Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiologyopen 2016; 5:901-922. [PMID: 27397728 PMCID: PMC5221461 DOI: 10.1002/mbo3.383] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 12/17/2022] Open
Abstract
Waterborne diseases have emerged as global health problems and their rapid and sensitive detection in environmental water samples is of great importance. Bacterial identification and enumeration in water samples is significant as it helps to maintain safe drinking water for public consumption. Culture‐based methods are laborious, time‐consuming, and yield false‐positive results, whereas viable but nonculturable (VBNCs) microorganisms cannot be recovered. Hence, numerous methods have been developed for rapid detection and quantification of waterborne pathogenic bacteria in water. These rapid methods can be classified into nucleic acid‐based, immunology‐based, and biosensor‐based detection methods. This review summarizes the principle and current state of rapid methods for the monitoring and detection of waterborne bacterial pathogens. Rapid methods outlined are polymerase chain reaction (PCR), digital droplet PCR, real‐time PCR, multiplex PCR, DNA microarray, Next‐generation sequencing (pyrosequencing, Illumina technology and genomics), and fluorescence in situ hybridization that are categorized as nucleic acid‐based methods. Enzyme‐linked immunosorbent assay (ELISA) and immunofluorescence are classified into immunology‐based methods. Optical, electrochemical, and mass‐based biosensors are grouped into biosensor‐based methods. Overall, these methods are sensitive, specific, time‐effective, and important in prevention and diagnosis of waterborne bacterial diseases.
Collapse
Affiliation(s)
- Rehan A Deshmukh
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| | - Kopal Joshi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| | - Sunil Bhand
- Biosensor Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K. Birla Goa Campus, NH17B Bypass, Zuarinagar, Goa, 403726, India
| |
Collapse
|
31
|
Mayer T, Blachowicz A, Probst AJ, Vaishampayan P, Checinska A, Swarmer T, de Leon P, Venkateswaran K. Microbial succession in an inflated lunar/Mars analog habitat during a 30-day human occupation. MICROBIOME 2016; 4:22. [PMID: 27250991 PMCID: PMC4890489 DOI: 10.1186/s40168-016-0167-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/18/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND For potential future human missions to the Moon or Mars and sustained presence in the International Space Station, a safe enclosed habitat environment for astronauts is required. Potential microbial contamination of closed habitats presents a risk for crewmembers due to reduced human immune response during long-term confinement. To make future habitat designs safer for crewmembers, lessons learned from characterizing analogous habitats is very critical. One of the key issues is that how human presence influences the accumulation of microorganisms in the closed habitat. RESULTS Molecular technologies, along with traditional microbiological methods, were utilized to catalog microbial succession during a 30-day human occupation of a simulated inflatable lunar/Mars habitat. Surface samples were collected at different time points to capture the complete spectrum of viable and potential opportunistic pathogenic bacterial population. Traditional cultivation, propidium monoazide (PMA)-quantitative polymerase chain reaction (qPCR), and adenosine triphosphate (ATP) assays were employed to estimate the cultivable, viable, and metabolically active microbial population, respectively. Next-generation sequencing was used to elucidate the microbial dynamics and community profiles at different locations of the habitat during varying time points. Statistical analyses confirm that occupation time has a strong influence on bacterial community profiles. The Day 0 samples (before human occupation) have a very different microbial diversity compared to the later three time points. Members of Proteobacteria (esp. Oxalobacteraceae and Caulobacteraceae) and Firmicutes (esp. Bacillaceae) were most abundant before human occupation (Day 0), while other members of Firmicutes (Clostridiales) and Actinobacteria (esp. Corynebacteriaceae) were abundant during the 30-day occupation. Treatment of samples with PMA (a DNA-intercalating dye for selective detection of viable microbial population) had a significant effect on the microbial diversity compared to non-PMA-treated samples. CONCLUSIONS Statistical analyses revealed a significant difference in community structure of samples over time, particularly of the bacteriomes existing before human occupation of the habitat (Day 0 sampling) and after occupation (Day 13, Day 20, and Day 30 samplings). Actinobacteria (mainly Corynebacteriaceae) and Firmicutes (mainly Clostridiales Incertae Sedis XI and Staphylococcaceae) were shown to increase over the occupation time period. The results of this study revealed a strong relationship between human presence and succession of microbial diversity in a closed habitat. Consequently, it is necessary to develop methods and tools for effective maintenance of a closed system to enable safe human habitation in enclosed environments on Earth and beyond.
Collapse
Affiliation(s)
- Teresa Mayer
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Adriana Blachowicz
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Alexander J Probst
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Aleksandra Checinska
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Tiffany Swarmer
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Pablo de Leon
- Department of Space Studies, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
32
|
Ma J, Feng Y, Hu Y, Villegas EN, Xiao L. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents. JOURNAL OF WATER AND HEALTH 2016; 14:411-23. [PMID: 27280607 PMCID: PMC5788172 DOI: 10.2166/wh.2016.192] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, the fecal coliform count is the only microbial indicator, raising concerns about the potential for pathogen transmission through WWTP effluent reuse. In this study, we collected 50 effluent samples (30 L/sample) from three municipal WWTPs in Shanghai, China, and analyzed for Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi by microscopy and/or polymerase chain reaction (PCR). Moreover, propidium monoazide (PMA)-PCR was used to assess the viability of oocysts/cysts. The microscopy and PCR-positive rates for Cryptosporidium spp. were 62% and 40%, respectively. The occurrence rates of G. duodenalis were 96% by microscopy and 92-100% by PCR analysis of three genetic loci. Furthermore, E. bieneusi was detected in 70% (35/50) of samples by PCR. Altogether, 10 Cryptosporidium species or genotypes, two G. duodenalis genotypes, and 11 E. bieneusi genotypes were found, most of which were human-pathogenic. The chlorine dioxide disinfection employed in WWTP1 and WWTP3 failed to inactivate the residual pathogens; 93% of the samples from WWTP1 and 83% from WWTP3 did not meet the national standard on fecal coliform levels. Thus, urban WWTP effluents often contain residual waterborne human pathogens.
Collapse
Affiliation(s)
- Jiawen Ma
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Yaoyu Feng
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Yue Hu
- State Key Laboratory of Bioreactor Engineering, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Eric N Villegas
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
33
|
Cancino-Faure B, Fisa R, Alcover MM, Jimenez-Marco T, Riera C. Detection and Quantification of Viable and Nonviable Trypanosoma cruzi Parasites by a Propidium Monoazide Real-Time Polymerase Chain Reaction Assay. Am J Trop Med Hyg 2016; 94:1282-9. [PMID: 27139452 PMCID: PMC4889745 DOI: 10.4269/ajtmh.15-0693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/07/2016] [Indexed: 01/06/2023] Open
Abstract
Molecular techniques based on real-time polymerase chain reaction (qPCR) allow the detection and quantification of DNA but are unable to distinguish between signals from dead or live cells. Because of the lack of simple techniques to differentiate between viable and nonviable cells, the aim of this study was to optimize and evaluate a straightforward test based on propidium monoazide (PMA) dye action combined with a qPCR assay (PMA-qPCR) for the selective quantification of viable/nonviable epimastigotes of Trypanosoma cruzi PMA has the ability to penetrate the plasma membrane of dead cells and covalently cross-link to the DNA during exposure to bright visible light, thereby inhibiting PCR amplification. Different concentrations of PMA (50-200 μM) and epimastigotes of the Maracay strain of T. cruzi (1 × 10(5)-10 parasites/mL) were assayed; viable and nonviable parasites were tested and quantified by qPCR with a TaqMan probe specific for T. cruzi. In the PMA-qPCR assay optimized at 100 μM PMA, a significant qPCR signal reduction was observed in the nonviable versus viable epimastigotes treated with PMA, with a mean signal reduction of 2.5 logarithm units and a percentage of signal reduction > 98%, in all concentrations of parasites assayed. This signal reduction was also observed when PMA-qPCR was applied to a mixture of live/dead parasites, which allowed the detection of live cells, except when the concentration of live parasites was low (10 parasites/mL). The PMA-qPCR developed allows differentiation between viable and nonviable epimastigotes of T. cruzi and could thus be a potential method of parasite viability assessment and quantification.
Collapse
Affiliation(s)
- Beatriz Cancino-Faure
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Fundació Banc de Sang i Teixits de les Illes Balears, Mallorca, Balearic Islands, Spain; IUNICS Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Spain
| | - Roser Fisa
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Fundació Banc de Sang i Teixits de les Illes Balears, Mallorca, Balearic Islands, Spain; IUNICS Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Spain
| | - M Magdalena Alcover
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Fundació Banc de Sang i Teixits de les Illes Balears, Mallorca, Balearic Islands, Spain; IUNICS Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Spain
| | - Teresa Jimenez-Marco
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Fundació Banc de Sang i Teixits de les Illes Balears, Mallorca, Balearic Islands, Spain; IUNICS Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Spain
| | - Cristina Riera
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain; Fundació Banc de Sang i Teixits de les Illes Balears, Mallorca, Balearic Islands, Spain; IUNICS Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Spain
| |
Collapse
|
34
|
Leifels M, Jurzik L, Wilhelm M, Hamza IA. Use of ethidium monoazide and propidium monoazide to determine viral infectivity upon inactivation by heat, UV- exposure and chlorine. Int J Hyg Environ Health 2015; 218:686-93. [DOI: 10.1016/j.ijheh.2015.02.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 02/08/2015] [Accepted: 02/09/2015] [Indexed: 01/06/2023]
|
35
|
Habtewold T, Groom Z, Duchateau L, Christophides GK. Detection of viable plasmodium ookinetes in the midguts of anopheles coluzzi using PMA-qrtPCR. Parasit Vectors 2015; 8:455. [PMID: 26373633 PMCID: PMC4572643 DOI: 10.1186/s13071-015-1087-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/11/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mosquito infection with malaria parasites depends on complex interactions between the mosquito immune response, the parasite developmental program and the midgut microbiota. Simultaneous monitoring of the parasite and bacterial dynamics is important when studying these interactions. PCR based methods of genomic DNA (gDNA) have been widely used, but their inability to discriminate between live and dead cells compromises their application. The alternative method of quantification of mRNA mainly reports on cell activity rather than density. METHOD Quantitative real-time (qrt) PCR in combination with Propidium Monoazide (PMA) treatment (PMA-qrtPCR) has been previously used for selectively enumerating viable microbial cells. PMA penetrates damaged cell membranes and intercalates in the DNA inhibiting its PCR amplification. Here, we tested the potential of PMA-qrtPCR to discriminate between and quantify live and dead Plasmodium berghei malarial parasites and commensal bacteria in the midgut of Anopheles coluzzii Coetzee & Wilkerson 2013 (formerly An. gambiae M-form). RESULTS By combining microscopic observations with reverse transcriptase PCR (RT-PCR) we reveal that, in addition to gDNA, mRNA from dead parasites also persists inside the mosquito midgut, therefore its quantification cannot accurately reflect live-only parasites at the time of monitoring. In contrast, pre-treating the samples with PMA selectively inhibited qrtPCR amplification of parasite gDNA, with about 15 cycles (Ct-value) difference between PMA-treated and control samples. The limit of detection corresponds to 10 Plasmodium ookinetes. Finally, we show that the PMA-qrtPCR method can be used to quantify bacteria that are present in the mosquito midgut. CONCLUSION The PMA-qrtPCR is a suitable method for quantification of viable parasites and bacteria in the midgut of Anopheles mosquitoes. The method will be valuable when studying the molecular interactions between the mosquito, the malaria parasite and midgut microbiota.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK.
- Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium.
| | - Zoe Groom
- Department of Life Sciences, Imperial College London, London, UK
- Costello Medical Consulting, Cambridge, UK
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium
| | | |
Collapse
|
36
|
Karim MR, Fout GS, Johnson CH, White KM, Parshionikar SU. Propidium monoazide reverse transcriptase PCR and RT-qPCR for detecting infectious enterovirus and norovirus. J Virol Methods 2015; 219:51-61. [DOI: 10.1016/j.jviromet.2015.02.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 01/09/2015] [Accepted: 02/11/2015] [Indexed: 02/02/2023]
|
37
|
Jjemba PK, Johnson W, Bukhari Z, LeChevallier MW. Occurrence and Control of Legionella in Recycled Water Systems. Pathogens 2015; 4:470-502. [PMID: 26140674 PMCID: PMC4584268 DOI: 10.3390/pathogens4030470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila is on the United States Environmental Protection Agency (USEPA) Candidate Contaminant list (CCL) as an important pathogen. It is commonly encountered in recycled water and is typically associated with amoeba, notably Naegleria fowleri (also on the CCL) and Acanthamoeba sp. No legionellosis outbreak has been linked to recycled water and it is important for the industry to proactively keep things that way. A review was conducted examine the occurrence of Legionella and its protozoa symbionts in recycled water with the aim of developing a risk management strategy. The review considered the intricate ecological relationships between Legionella and protozoa, methods for detecting both symbionts, and the efficacy of various disinfectants.
Collapse
Affiliation(s)
- Patrick K Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - Zia Bukhari
- American Water, 1025 Laurel Oak Road, Voorhees, NJ 08043, USA.
| | | |
Collapse
|
38
|
Santos SRD, Branco N, Franco RMB, Paterniani JES, Katsumata M, Barlow PW, de Mello Gallep C. Fluorescence decay of dyed protozoa: differences between stressed and non-stressed cysts. LUMINESCENCE 2015; 30:1139-47. [DOI: 10.1002/bio.2872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/27/2014] [Accepted: 01/05/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Samuel Ricardo dos Santos
- School of Technology; University of Campinas/Limeira; SP Brazil
- School of Agricultural Engineering; University of Campinas/Campinas; SP Brazil
| | - Nilson Branco
- Biology Institute; University of Campinas/Campinas; SP Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Effective concentration and detection of cryptosporidium, giardia, and the microsporidia from environmental matrices. J Pathog 2014; 2014:408204. [PMID: 25295196 PMCID: PMC4176641 DOI: 10.1155/2014/408204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidium spp., Giardia spp., and members of Microsporidia are enteropathogenic parasites of humans and animals, producing asymptomatic to severe intestinal infections. To circumvent various impediments associated with current detection methods, we tested a method providing multistage purification and separation in a single, confined step. Standard real-time PCR was used as a detection method. Samples spiked with C. parvum and G. intestinalis were split for comparison to standard Method 1623. Results were equivalent to immunomagnetic procedures for Cryptosporidium, and Giardia. Overall percent recovery for Cryptosporidium with Method 1623 averaged 26.89% (std 21.44%; min = 0%; max = 73%) and was similar but less variable for qPCR method at an estimated average of 27.67 (std 17.65%; min = 5%; max = 63%). For Giardia, Method 1623 had an overall average recovery of 27.11% (std 17.98%; min = 1%; max = 58%), while multistage purification and qPCR had an estimated lower overall recovery at 18.58% (std 13.95%; min = 0%; max = 35%). Microsporidia were also readily detected with an estimated recovery of 46.81% overall (std 17.66%; min = 18%; max = 70%) for E. intestinalis and 38.90% (std 14.36%; min = 13%; max = 62%) for E. bieneusi.
Collapse
|
40
|
Abstract
Nucleic acid-based analytical methods, ranging from species-targeted PCRs to metagenomics, have greatly expanded our understanding of microbiological diversity in natural samples. However, these methods provide only limited information on the activities and physiological states of microorganisms in samples. Even the most fundamental physiological state, viability, cannot be assessed cross-sectionally by standard DNA-targeted methods such as PCR. New PCR-based strategies, collectively called molecular viability analyses, have been developed that differentiate nucleic acids associated with viable cells from those associated with inactivated cells. In order to maximize the utility of these methods and to correctly interpret results, it is necessary to consider the physiological diversity of life and death in the microbial world. This article reviews molecular viability analysis in that context and discusses future opportunities for these strategies in genetic, metagenomic, and single-cell microbiology.
Collapse
|
41
|
Quantification of viable Giardia cysts and Cryptosporidium oocysts in wastewater using propidium monoazide quantitative real-time PCR. Parasitol Res 2014; 113:2671-8. [DOI: 10.1007/s00436-014-3922-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/14/2014] [Indexed: 10/25/2022]
|
42
|
Kim YJ, Lee SM, Park BK, Kim SS, Yi J, Kim HH, Lee EY, Chang CL. Evaluation of propidium monoazide real-time PCR for early detection of viable Mycobacterium tuberculosis in clinical respiratory specimens. Ann Lab Med 2014; 34:203-9. [PMID: 24790907 PMCID: PMC3999318 DOI: 10.3343/alm.2014.34.3.203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/17/2013] [Accepted: 02/14/2014] [Indexed: 12/02/2022] Open
Abstract
Background Conventional acid-fast bacilli (AFB) staining cannot differentiate viable from dead cells. Propidium monoazide (PMA) is a photoreactive DNA-binding dye that inhibits PCR amplification by DNA modification. We evaluated whether PMA real-time PCR is suitable for the early detection of viable Mycobacterium tuberculosis (MTB) in clinical respiratory specimens. Methods A total of 15 diluted suspensions from 5 clinical MTB isolates were quadruplicated and subjected to PMA treatment and/or heat inactivation. Eighty-three AFB-positive sputum samples were also tested to compare the ΔCT values (CT value in PMA-treated sputum samples-CT value in non-PMA-treated sputum samples) between culture-positive and culture-negative specimens. Real-time PCR was performed using Anyplex MTB/NTM Real-Time Detection (Seegene, Korea), and the CT value changes after PMA treatment were compared between culture-positive and culture-negative groups. Results In MTB suspensions, the increase in the CT value after PMA treatment was significant in dead cells (P=0.0001) but not in live cells (P=0.1070). In 14 culture-negative sputum samples, the median ΔCT value was 5.3 (95% confidence interval [CI], 4.1-8.2; P<0.0001), whereas that in 69 culture-positive sputum samples was 1.1 (95% CI, 0.7-2.0). In the ROC curve analysis, the cutoff ΔCT value for maximum sensitivity (89.9%) and specificity (85.7%) for differentiating dead from live cells was 3.4. Conclusions PMA real-time PCR is a useful approach for differentiating dead from live bacilli in AFB smear-positive sputum samples.
Collapse
Affiliation(s)
- Young Jin Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Sun Min Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Byung Kyu Park
- Department of Physical Medicine & Rehabilitation, Korea University College of Medicine, Seoul, Korea
| | - Sung Soo Kim
- Department of Social Studies of Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Jongyoun Yi
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Hyung Hoi Kim
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Eun Yup Lee
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, Korea
| | - Chulhun Ludgerus Chang
- Department of Laboratory Medicine, Pusan National University School of Medicine, Yangsan, Korea. ; Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Korea
| |
Collapse
|
43
|
Comparative analysis and limitations of ethidium monoazide and propidium monoazide treatments for the differentiation of viable and nonviable campylobacter cells. Appl Environ Microbiol 2014; 80:2186-92. [PMID: 24487529 DOI: 10.1128/aem.03962-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lack of differentiation between viable and nonviable bacterial cells limits the implementation of PCR-based methods for routine diagnostic approaches. Recently, the combination of a quantitative real-time PCR (qPCR) and ethidium monoazide (EMA) or propidium monoazide (PMA) pretreatment has been described to circumvent this disadvantage. In regard to the suitability of this approach for Campylobacter spp., conflicting results have been reported. Thus, we compared the suitabilities of EMA and PMA in various concentrations for a Campylobacter viability qPCR method. The presence of either intercalating dye, EMA or PMA, leads to concentration-dependent shifts toward higher threshold cycle (CT) values, especially after EMA treatment. However, regression analysis resulted in high correlation coefficient (R(2)) values of 0.99 (EMA) and 0.98 (PMA) between Campylobacter counts determined by qPCR and culture-based enumeration. EMA (10 μg/ml) and PMA (51.10 μg/ml) removed DNA selectively from nonviable cells in mixed samples at viable/nonviable ratios of up to 1:1,000. The optimized EMA protocol was successfully applied to 16 Campylobacter jejuni and Campylobacter coli field isolates from poultry and indicated the applicability for field isolates as well. EMA-qPCR and culture-based enumeration of Campylobacter spiked chicken leg quarters resulted in comparable bacterial cell counts. The correlation coefficient between the two analytical methods was 0.95. Nevertheless, larger amounts of nonviable cells (>10(4)) resulted in an incomplete qPCR signal reduction, representing a serious methodological limitation, but double staining with EMA considerably improved the signal inhibition. Hence, the proposed Campylobacter viability EMA-qPCR provides a promising rapid method for diagnostic applications, but further research is needed to circumvent the limitation.
Collapse
|
44
|
Agulló-Barceló M, Moss J, Green J, Gillespie S, Codony F, Lucena F, Nocker A. Quantification of relative proportions of intact cells in microbiological samples using the example of Cryptosporidium parvum
oocysts. Lett Appl Microbiol 2013; 58:70-8. [DOI: 10.1111/lam.12157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Affiliation(s)
- M. Agulló-Barceló
- Department of Microbiology; Faculty of Biology; Universitat de Barcelona; Barcelona Spain
| | - J.A. Moss
- Center for Environmental Diagnostics and Bioremediation; University of West Florida; Pensacola FL USA
| | - J. Green
- Scottish Water; Juniper House; Heriot Watt Research Park; Edinburgh UK
| | - S. Gillespie
- Scottish Water; Juniper House; Heriot Watt Research Park; Edinburgh UK
| | - F. Codony
- Laboratori de Microbiologia Sanitària i Mediambiental (MSM-Lab); Universitat Politècnica de Catalunya; Terrassa Barcelona Spain
| | - F. Lucena
- Department of Microbiology; Faculty of Biology; Universitat de Barcelona; Barcelona Spain
| | - A. Nocker
- Cranfield Water Science Institute; Cranfield University; Cranfield Bedfordshire UK
| |
Collapse
|
45
|
Chang CW, Lu LW, Kuo CL, Hung NT. Density of environmental Acanthamoeba and their responses to superheating disinfection. Parasitol Res 2013; 112:3687-96. [PMID: 23933810 DOI: 10.1007/s00436-013-3556-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Exposure to viable Acanthamoeba may cause fatal encephalitis and blinding keratitis in humans. Quantification of environmental Acanthamoeba by a reliable analytical assay is essential to assess the risk of human exposure and efficacy of control measures (e.g., superheating). Two DNA binding dyes (ethidium monoazide (EMA) and propidium monoazide) coupled with real-time quantitative PCR (qPCR) were tested for the ability in selectively quantifying viable Acanthamoeba castellanii. This newly developed qPCR assay was applied to determine the density of environmental Acanthamoeba and disinfection efficacy of superheating. Results showed qPCR with 2.3 μg/mL EMA performed optimal with a great linearity (R (2) = 0.98) and a wide range of detection (5-1.5 × 10(5) cells). EMA-qPCR analyses on water samples collected from cooling towers, eyewash stations, irrigated farmlands, and various wastewater treatment stages further showed viable Acanthamoeba density from nondetectable level to 6.3 × 10(5) cells/L. Superheating A. castellanii at 75-95 °C for 20 min revealed significant reductions in both EMA-qPCR and qPCR detectable Acanthamoeba target sequences with an adverse association between heating temperature and qPCR-determined DNA quantity (r = -0.76 to -0.93, p < 0.0001). Moreover, A. castellanii trophozoites were more sensitive to superheat stress than the cells being encysted for 6 and 13 d (p < 0.05). This is the first study to quantify environmental Acanthamoeba and characterize their responses to superheating by EMA-qPCR. The quantitative data provided in this study facilitate to understand better the relative risk for human exposed to viable Acanthamoeba and the efficacy of superheating against Acanthamoeba.
Collapse
Affiliation(s)
- Ching-Wen Chang
- Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, 100, Taiwan, Republic of China,
| | | | | | | |
Collapse
|
46
|
Mohapatra BR, La Duc MT. Detecting the dormant: a review of recent advances in molecular techniques for assessing the viability of bacterial endospores. Appl Microbiol Biotechnol 2013; 97:7963-75. [PMID: 23912118 DOI: 10.1007/s00253-013-5115-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
Abstract
Due to their contribution to gastrointestinal and pulmonary disease, their ability to produce various deadly exotoxins, and their resistance to extreme temperature, pressure, radiation, and common chemical disinfecting agents, bacterial endospores of the Firmicutes phylum are a major concern for public and environmental health. In addition, the hardy and dormant nature of endospores renders them a particularly significant threat to the integrity of robotic extraterrestrial life-detection investigations. To prevent the contamination of critical surfaces with seemingly ubiquitous bacterial endospores, clean rooms maintained at exceedingly stringent cleanliness levels (i.e., fewer than 100,000 airborne particles per ft(3)) are used for surgical procedures, pharmaceutical processing and packaging, and fabrication and assembly of medical devices and spacecraft components. However, numerous spore-forming bacterial species have been reported to withstand typical clean room bioreduction strategies (e.g., UV lights, maintained humidity, paucity of available nutrients), which highlights the need for rapid and reliable molecular methods for detecting, enumerating, and monitoring the incidence of viable endospores. Robust means of evaluating and tracking spore burden not only provide much needed information pertaining to endospore ecophysiology in different environmental niches but also empower decontamination and bioreduction strategies aimed at sustaining the reliability and integrity of clean room environments. An overview of recent molecular advances in detecting and enumerating viable endospores, as well as the expanding phylogenetic diversity of pathogenic and clean room-associated spore-forming bacteria, ensues.
Collapse
Affiliation(s)
- Bidyut R Mohapatra
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA.
| | | |
Collapse
|
47
|
Staggs SE, Beckman EM, Keely SP, Mackwan R, Ware MW, Moyer AP, Ferretti JA, Sayed A, Xiao L, Villegas EN. The Applicability of TaqMan-Based Quantitative Real-Time PCR Assays for Detecting and Enumerating Cryptosporidium spp. Oocysts in the Environment. PLoS One 2013; 8:e66562. [PMID: 23805235 PMCID: PMC3689768 DOI: 10.1371/journal.pone.0066562] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/08/2013] [Indexed: 11/18/2022] Open
Abstract
Quantitative real-time polymerase chain reaction (qPCR) assays to detect Cryptosporidium oocysts in clinical samples are increasingly being used to diagnose human cryptosporidiosis, but a parallel approach for detecting and identifying Cryptosporidium oocyst contamination in surface water sources has yet to be established for current drinking water quality monitoring practices. It has been proposed that Cryptosporidium qPCR-based assays could be used as viable alternatives to current microscopic-based detection methods to quantify levels of oocysts in drinking water sources; however, data on specificity, analytical sensitivity, and the ability to accurately quantify low levels of oocysts are limited. The purpose of this study was to provide a comprehensive evaluation of TaqMan-based qPCR assays, which were developed for either clinical or environmental investigations, for detecting Cryptosporidium oocyst contamination in water. Ten different qPCR assays, six previously published and four developed in this study were analyzed for specificity and analytical sensitivity. Specificity varied between all ten assays, and in one particular assay, which targeted the Cryptosporidium 18S rRNA gene, successfully detected all Cryptosporidium spp. tested, but also cross-amplified T. gondii, fungi, algae, and dinoflagellates. When evaluating the analytical sensitivity of these qPCR assays, results showed that eight of the assays could reliably detect ten flow-sorted oocysts in reagent water or environmental matrix. This study revealed that while a qPCR-based detection assay can be useful for detecting and differentiating different Cryptosporidium species in environmental samples, it cannot accurately measure low levels of oocysts that are typically found in drinking water sources.
Collapse
Affiliation(s)
- Sarah E. Staggs
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, United States of America
| | - Erin M. Beckman
- Dynamac Corporation, Cincinnati, Ohio, United States of America
| | - Scott P. Keely
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, United States of America
| | - Reena Mackwan
- Dynamac Corporation, Cincinnati, Ohio, United States of America
| | - Michael W. Ware
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, United States of America
| | - Alan P. Moyer
- Department of Biological Sciences, McMicken School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - James A. Ferretti
- Region 2, US Environmental Protection Agency, Edison, New Jersey, United States of America
| | - Abu Sayed
- Dynamac Corporation, Cincinnati, Ohio, United States of America
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Eric N. Villegas
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio, United States of America
- Department of Biological Sciences, McMicken School of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
48
|
Cattani F, Ferreira C, Oliveira S. The detection of viable vegetative cells of Bacillus sporothermodurans using propidium monoazide with semi-nested PCR. Food Microbiol 2013; 34:196-201. [DOI: 10.1016/j.fm.2012.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 11/12/2012] [Accepted: 12/26/2012] [Indexed: 11/26/2022]
|
49
|
Inactivation of exogenous endoparasite stages by chemical disinfectants: current state and perspectives. Parasitol Res 2013; 112:917-32. [PMID: 23392903 DOI: 10.1007/s00436-013-3324-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 01/25/2013] [Indexed: 10/27/2022]
Abstract
Chemical disinfection is common practice and inevitable to achieve sufficient control over parasites particularly in intensive animal housing systems. To identify suitable chemicals, reliable data on antiparasitic efficacy of disinfectants are required. This review summarizes recently published experience with procedures applied to evaluate the viability of a variety of endoparasites following physical or chemical stress. It is concluded that laboratory models used to assess antiparasitic efficacy of e.g. commercial disinfectants should consider the most resistant stages of both helminths and protozoa, i.e. ascarid eggs and coccidia oocysts. To ensure reproducibility and transparency, standardized protocols are pivotal. Such protocols are established on a national level (e.g. DVG guidelines in Germany); however, internationally accepted certification procedures are currently lacking.
Collapse
|
50
|
Brinkman NE, Francisco R, Nichols TL, Robinson D, Schaefer FW, Schaudies RP, Villegas EN. Detection of multiple waterborne pathogens using microsequencing arrays. J Appl Microbiol 2012; 114:564-73. [PMID: 23167710 DOI: 10.1111/jam.12073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 10/10/2012] [Accepted: 10/31/2012] [Indexed: 11/25/2022]
Abstract
AIMS A microarray was developed to simultaneously detect Cryptosporidium parvum, Cryptosporidium hominis, Enterococcus faecium, Bacillus anthracis and Francisella tularensis in water. METHODS AND RESULTS A DNA microarray was designed to contain probes that specifically detected C. parvum, C. hominis, Ent. faecium, B. anthracis and F. tularensis. The microarray was then evaluated with samples containing target and nontarget DNA from near-neighbour micro-organisms, and tap water spiked with multiple organisms. Results demonstrated that the microarray consistently detected Ent. faecium, B. anthracis, F. tularensis and C. parvum when present in samples. Cryptosporidium hominis was only consistently detected through the use of shared probes between C. hominis and C. parvum. CONCLUSIONS This study successfully developed and tested a microarray-based assay that can specifically detect faecal indicator bacteria and human pathogens in tap water. SIGNIFICANCE AND IMPACT OF THE STUDY The use of indicator organisms has become a practical solution for monitoring for water quality. However, they do not always correlate well with the presence of many microbial pathogens, thus necessitating direct monitoring for most pathogens. This microarray can be used to simultaneously detect multiple organisms in a single sample. More importantly, it can provide occurrence information that may be used in assessing potential exposure risks to waterborne pathogens.
Collapse
Affiliation(s)
- N E Brinkman
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|