1
|
Choi J, Park S, Chang Y. Development and application of a bacteriophage cocktail for Shigella flexneri biofilm inhibition on the stainless steel surface. Food Microbiol 2025; 125:104641. [PMID: 39448151 DOI: 10.1016/j.fm.2024.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 10/26/2024]
Abstract
Food contamination and biofilm formation by Shigella in food processing facilities are major causes of acute gastrointestinal infection and mortality in humans. Bacteriophages (phages) are promising alternatives to antibiotics in controlling plankton and biofilms in food matrices. This study isolated two novel phages, S2_01 and S2_02, with lytic activity against various Shigella spp. From sewage samples. Transmission electron microscopy revealed that phages S2_01 and S2_02 belonged to the Caudovirales order. On characterizing their lytic ability, phage S2_01 initially exhibited relatively weak antibacterial activity, while phage S2_02 initially displayed rapid antibacterial activity after phage application. A combination of these phages in a 1:9 ratio was selected, as it has been suggested to elicit the most rapid and sustained lysis ability for up to 24 h. It demonstrated lytic activity against various foodborne pathogens, including six Shigella spp. The phage cocktail exhibited biofilm inhibition and disruption abilities of approximately 79.29% and 42.55%, respectively, after 24 h in a 96-well microplate. In addition, inhibition (up to 23.42%) and disruption (up to 19.89%) abilities were also observed on stainless steel surfaces, and plankton growth was also significantly suppressed. Therefore, the phage cocktail formulated in this study displays great potential as a biological control agent in improving food safety against biofilms and plankton.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Siyeon Park
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Yoonjee Chang
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
2
|
Chuksina TA, Fatkulin AA, Sorokina NP, Smykov IT, Kuraeva EV, Masagnaya ES, Smagina KA, Shkurnikov MY. Genome Characterization of Two Novel Lactococcus lactis Phages vL_296 and vL_20A. Acta Naturae 2024; 16:102-109. [PMID: 39555173 PMCID: PMC11569839 DOI: 10.32607/actanaturae.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/15/2024] [Indexed: 11/19/2024] Open
Abstract
Fermented dairy products are produced using starter cultures. They ferment milk to create products with a certain texture, aroma, and taste. However, the lactic acid bacteria used in this production are prone to bacteriophage infection. We examined the genomes of two newly discovered bacteriophage species that were isolated from cheese whey during the cheesemaking process. We have determined the species and the lytic spectrum of these bacteriophages. Phages vL_20A and vL_296 were isolated using lactococcal indicator cultures. They have unique lytic spectra: of the 21 possible identified host bacteria, only four are shared amongst them. The vL_20A and vL_296 genomes comprise linear double-stranded DNA lengths with 21,909 and 22,667 nucleotide pairs, respectively. Lactococcus phage bIL67 (ANI 93.3 and 92.6, respectively) is the closest to the phages vL_20A and vL_296. The analysis of the CRISPR spacers in the genomes of starter cultures did not reveal any phage-specific vL_20A or vL_296 among them. This study highlights the biodiversity of L. lactis phages, their widespread presence in dairy products, and their virulence. However, the virulence of phages is balanced by the presence of a significant number of bacterial strains with different sensitivities to phages in the starter cultures due to the bacterial immune system.
Collapse
Affiliation(s)
- T. A. Chuksina
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| | - A. A. Fatkulin
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| | - N. P. Sorokina
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - I. T. Smykov
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - E. V. Kuraeva
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - E. S. Masagnaya
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - K. A. Smagina
- V.M. Gorbatov Federal Research Center for Food Systems, Moscow, 109316 Russian Federation
| | - M. Yu. Shkurnikov
- Department of Biology and Biotechnology, HSE University, Moscow, 101000 Russian Federation
| |
Collapse
|
3
|
Whole genome sequence analysis of bacteriophage P1 that infects the Lactobacillus plantarum. Virus Genes 2022; 58:570-583. [DOI: 10.1007/s11262-022-01929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
|
4
|
Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production. Appl Microbiol Biotechnol 2021; 105:8575-8592. [PMID: 34694447 DOI: 10.1007/s00253-021-11509-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
The widespread existence of bacteriophage has been of great interest to the biological research community and ongoing investigations continue to explore their diversity and role. They have also attracted attention and in-depth research in connection to fermented food processing, in particular from the dairy and wine industries. Bacteriophage, mostly oenophage, may in fact be a 'double edged sword' for winemakers: whilst they have been implicated as a causal agent of difficulties with malolactic fermentation (although not proven), they are also beginning to be considered as alternatives to using sulphur dioxide to prevent wine spoilage. Investigation and characterisation of oenophage of Oenococcus oeni, the main species used in winemaking, are still limited compared to lactococcal bacteriophage of Lactococcus lactis and Lactiplantibacillus plantarum (formally Lactobacillus plantarum), the drivers of most fermented dairy products. Interestingly, these strains are also being used or considered for use in winemaking. In this review, the genetic diversity and life cycle of phage, together with the debate on the consequent impact of phage predation in wine, and potential control strategies are discussed. KEY POINTS: • Bacteriophage detected in wine are diverse. • Many lysogenic bacteriophage are found in wine bacteria. • Phage impact on winemaking can depend on the stage of the winemaking process. • Bacteriophage as potential antimicrobial agents against spoilage organisms.
Collapse
|
5
|
Comprehensive Scanning of Prophages in Lactobacillus: Distribution, Diversity, Antibiotic Resistance Genes, and Linkages with CRISPR-Cas Systems. mSystems 2021; 6:e0121120. [PMID: 34060909 PMCID: PMC8269257 DOI: 10.1128/msystems.01211-20] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prophage integration, release, and dissemination exert various effects on host bacteria. In the genus Lactobacillus, they may cause bacteriophage contamination during fermentation and even regulate bacterial populations in the gut. However, little is known about their distribution, genetic architecture, and relationships with their hosts. Here, we conducted prophage prediction analysis on 1,472 genomes from 16 different Lactobacillus species and found prophage fragments in almost all lactobacilli (99.8%), with 1,459 predicted intact prophages identified in 64.1% of the strains. We present an uneven prophage distribution among Lactobacillus species; multihabitat species retained more prophages in their genomes than restricted-habitat species. Characterization of the genome features, average nucleotide identity, and landscape visualization presented a high genome diversity of Lactobacillus prophages. We detected antibiotic resistance genes in more than 10% of Lactobacillus prophages and validated that the occurrence of resistance genes conferred by prophage integration was possibly associated with phenotypic resistance in Lactobacillus plantarum. Furthermore, our broad and comprehensive examination of the distribution of CRISPR-Cas systems across the genomes predicted type I and type III systems as potential antagonistic elements of Lactobacillus prophage. IMPORTANCE Lactobacilli are inherent microorganisms in the human gut and are widely used in the food processing industries due to their probiotic properties. Prophages were reportedly hidden in numerous Lactobacillus genomes and can potentially contaminate entire batches of fermentation or modulate the intestinal microecology once they are released. Therefore, a comprehensive scanning of prophages in Lactobacillus is essential for the safety evaluation and application development of probiotic candidates. We show that prophages are widely distributed among lactobacilli; however, intact prophages are more common in multihabitat species and display wide variations in genome feature, integration site, and genomic organization. Our data of the prophage-mediated antibiotic resistance genes (ARGs) and the resistance phenotype of lactobacilli provide evidence for deciphering the putative role of prophages as vectors of the ARGs. Furthermore, understanding the association between prophages and CRISPR-Cas systems is crucial to appreciate the coevolution of phages and Lactobacillus.
Collapse
|
6
|
Guan Y, Cui Y, Qu X, Jing K. Safety and robustness aspects analysis of Lactobacillus delbrueckii ssp. bulgaricus LDB-C1 based on the genome analysis and biological tests. Arch Microbiol 2021; 203:3955-3964. [PMID: 34021387 DOI: 10.1007/s00203-021-02383-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/21/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022]
Abstract
Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a microaerophylic anaerobe, which is widely used in the production of yogurt, cheese, and other fermented dairy products. L. bulgaricus and its partner Streptococcus thermophilus were used as starter cultures of yogurt in the world for thousands of years. In our previous study, L. bulgaricus LDB-C1 was obtained from traditional fermented milk, and possessed some characteristics like high exopolysaccharide yield and good fermentation performance. The analysis of its CRISPR-Cas system, antibiotic resistance, virulence factors, and mobile elements, was performed to reveal the stability of the strain LDB-C1. It was found that LDB-C1 contains a plenty of spacers in the CRISPR region, indicating it might have better performance against the infection of phages and plasmids. Furthermore, the acquired or transmittable antibiotic resistance/virulence factor genes were absent in the tested L. bulgaricus strain LDB-C1.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| | - Yanhua Cui
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, 150010, People's Republic of China
| | - Kai Jing
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150090, People's Republic of China
| |
Collapse
|
7
|
Sunthornthummas S, Doi K, Fujino Y, Rangsiruji A, Sarawaneeyaruk S, Insian K, Pringsulaka O. Genomic characterisation of Lacticaseibacillus paracasei phage ΦT25 and preliminary analysis of its derived endolysin. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Kwak W, Han YH, Seol D, Kim H, Ahn H, Jeong M, Kang J, Kim H, Kim TH. Complete Genome of Lactobacillus iners KY Using Flongle Provides Insight Into the Genetic Background of Optimal Adaption to Vaginal Econiche. Front Microbiol 2020; 11:1048. [PMID: 32528446 PMCID: PMC7264367 DOI: 10.3389/fmicb.2020.01048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 12/02/2022] Open
Abstract
Despite the importance of Lactobacillus iners and its unique characteristics for the study of vaginal adaption, its genome and genomic researches for identifying molecular backgrounds of these specific phenotypes are still limited. In this study, the first complete genome of L. iners was constructed using a cost-effective long-read sequencing platform, Flongle from Oxford Nanopore, and comparative genome analysis was conducted using a total of 1,046 strain genomes from 10 vaginal Lactobacillus species. Single-molecule sequencing using Flongle effectively resolved the limitation of the 2nd generation sequencing technologies in dealing with genomic regions of high GC contents, and comparative genome analysis identified three potential core genes (INY, ZnuA, and hsdR) of L. iners which was related to its specific adaption to the vaginal environment. In addition, we performed comparative prophage analysis for 1,046 strain genomes to further identify the species specificity. The number of prophages in L. iners genomes was significantly smaller than other vaginal Lactobacillus species, and one of the specific genes (hsdR) was suggested as the means for defense against bacteriophage. The first complete genome of L. iners and the three specific genes identified in this study will provide useful resources to further expand our knowledge of L. iners and its specific adaption to the vaginal econiche.
Collapse
Affiliation(s)
| | - Young-Hyun Han
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyeonju Ahn
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea.,Department of Pharmacology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Heebal Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Tae Hyun Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea.,Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| |
Collapse
|
9
|
Pei Z, Sadiq FA, Han X, Zhao J, Zhang H, Ross RP, Lu W, Chen W. Identification, characterization, and phylogenetic analysis of eight new inducible prophages in Lactobacillus. Virus Res 2020; 286:198003. [PMID: 32450182 DOI: 10.1016/j.virusres.2020.198003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Lysogenic bacterial strains abound in the Lactobacillus genus and contain dormant prophages inserted within their genomes. To evaluate the prophage-induction potential of the Lactobacillus strains of six species, 142 randomly selected strains from these species were induced with Mitomycin C. Eight newly-induced phages were identified and found to be diverse in morphology. Among the six species assessed, Lactobacillus plantarum and Lactobacillus rhamnosus strains were generally insensitive to induction. The genomic characterizations of eight phages were performed via whole genome sequencing and protein prediction. Meanwhile, genome comparison of the induced phages and predicted prophages demonstrated that the prediction software PHASTER can accurately locate major prophage regions in Lactobacillus. A phylogenetic tree of the Lactobacillus phage population was constructed to obtain further insights into the clustering of individuals, two major groups were found, one of which consisted mostly of L. plantarum virulent phages, the other was represented by Lactobacillus casei/paracasei temperate phages. Finally, it was confirmed via genomic collinear analysis, which seven of the eight Lactobacillus temperate phages were newly discovered, and two Lactobacillus brevis temperate phages belonged to a novel lineage.
Collapse
Affiliation(s)
- Zhangming Pei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Faizan Ahmed Sadiq
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiao Han
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China; International Joint Research Center for Probiotics & Gut Health, Jiangnan University, Wuxi, Jiangsu, China; Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
10
|
Feyereisen M, Mahony J, Lugli GA, Ventura M, Neve H, Franz CMAP, Noben JP, O'Sullivan T, Sinderen DV. Isolation and Characterization of Lactobacillus brevis Phages. Viruses 2019; 11:v11050393. [PMID: 31035495 PMCID: PMC6563214 DOI: 10.3390/v11050393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/22/2022] Open
Abstract
Lactobacillus brevis has been widely used in industry for fermentation purposes. However, it is also associated with the spoilage of foods and beverages, in particular, beer. There is an increasing demand for natural food preservation methods, and in this context, bacteriophages possess the potential to control such spoilage bacteria. Just a few studies on phages infecting Lactobacillus brevis have been performed to date and in the present study, we report the isolation and characterization of five virulent phages capable of infecting Lb. brevis strains. The analysis reveals a high diversity among the isolates, with members belonging to both, the Myoviridae and Siphoviridae families. One isolate, designated phage 3-521, possesses a genome of 140.8 kb, thus representing the largest Lb. brevis phage genome sequenced to date. While the isolated phages do not propagate on Lb. brevis beer-spoiling strains, phages showed activity against these strains, impairing the growth of some Lb. brevis strains. The results highlight the potential of bacteriophage-based treatments as an effective approach to prevent bacterial spoilage of beer.
Collapse
Affiliation(s)
- Marine Feyereisen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
| | - Jennifer Mahony
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124, Parma, Italy.
| | - Horst Neve
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Charles M A P Franz
- Department Microbiology and Biotechnology, Federal Research Centre of Nutrition and Food, Max Rubner-Institut, 24103, Kiel, Germany.
| | - Jean-Paul Noben
- Department Physiology Biochemistry and Immunology, Biomedical Research Institute, Hasselt University, B-3590 Diepenbeek, Belgium.
| | - Tadhg O'Sullivan
- HEINEKEN Global Innovation and Research, Heineken Supply Chain B.V, 2382 Zoeterwoude, The Netherlands.
| | - Douwe van Sinderen
- School of Microbiology, University College of Cork, T12 YT20 Cork, Ireland.
- APC Microbiome Ireland, University College of Cork, T12 YT20 Cork, Ireland.
| |
Collapse
|
11
|
Scaltriti E, Carminati D, Cortimiglia C, Ramoni R, Sørensen KI, Giraffa G, Zago M. Survey on the CRISPR arrays in Lactobacillus helveticus genomes. Lett Appl Microbiol 2019; 68:394-402. [PMID: 30762876 DOI: 10.1111/lam.13128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 02/05/2023]
Abstract
Lactobacillus helveticus is a homofermentative thermophilic lactic acid bacteria that is mainly used in the manufacture of Swiss type and long-ripened Italian hard cheeses. In this study, the presence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) were analysed in 25 L. helveticus genomes and identified in 23 of these genomes. A total of 40 CRISPR loci were identified and classified into five main families based on CRISPR repeats: Ldbu1, Lsal1, Lhel1, Lhel2 and a new repeat family named Lhel3. Spacers had a size between 30 and 40 bp whereas repeats have an average size of 30 bp, with three longer repeats. The analysis displayed the presence of conserved spacers in 23 of the 40 CRISPR loci. A geographical distribution of L. helveticus isolates with similar CRISPR spacer array profiles were not observed. Based on the presence of the signature protein Cas3, all CRISPR loci belonged to Type I. This analysis demonstrated a great CRISPR array variability within L. helveticus, which could be a useful tool for genotypic strain differentiation. A next step will be to understand the possible role of CRISPR/Cas system for the resistance of L. helveticus to phage infection. SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus helveticus, a lactic acid bacteria species widely used as starter culture in the dairy industry has recently also gained importance as health-promoting culture in probiotic and nutraceutical food products. The CRISPR/Cas system, a well-known molecular mechanism that provides adaptive immunity against exogenous genetic elements such as bacteriophages and plasmids in bacteria, was recently found in this species. In this study, we investigated the presence and genetic heterogeneity of CRISPR loci in 25 L. helveticus genomes. The results presented here represent an important step on the way to manage phage resistance, plasmid uptake and genome editing in this species.
Collapse
Affiliation(s)
- E Scaltriti
- Risk Analysis and Genomic Epidemiology Unit, IZSLER, Parma, Italy
| | - D Carminati
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| | - C Cortimiglia
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - R Ramoni
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - G Giraffa
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| | - M Zago
- CREA Research Centre for Animal Production and Aquaculture (CREA-ZA), Lodi, Italy
| |
Collapse
|
12
|
Singh P, Chung HJ, Lee IA, D'Souza R, Kim HJ, Hong ST. Elucidation of the anti-hyperammonemic mechanism of Lactobacillus amylovorus JBD401 by comparative genomic analysis. BMC Genomics 2018; 19:292. [PMID: 29695242 PMCID: PMC5918772 DOI: 10.1186/s12864-018-4672-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background Recent experimental evidence showed that lactobacilli could be used as potential therapeutic agents for hyperammonemia. However, lack of understanding on how lactobacilli reduce blood ammonia levels limits application of lactobacilli to treat hyperammonemia. Results We report the finished and annotated genome sequence of L. amylovorus JBD401 (GenBank accession no. CP012389). L. amylovorus JBD401 reducing blood ammonia levels dramatically was identified by high-throughput screening of several thousand probiotic strains both within and across Lactobacillus species in vitro. Administration of L. amylovorus JBD401 to hyperammonemia-induced mice reduced the blood ammonia levels of the mice to the normal range. Genome sequencing showed that L. amylovorus JBD401 had a circular chromosome of 1,946,267 bp with an average GC content of 38.13%. Comparative analysis of the L. amylovorus JBD401 genome with L. acidophilus and L. amylovorus strains showed that L. amylovorus JBD401 possessed genes for ammonia assimilation into various amino acids and polyamines Interestingly, the genome of L. amylovorus JBD401 contained unusually large number of various pseudogenes suggesting an active stage of evolution. Conclusions L. amylovorus JBD401 has genes for assimilation of free ammonia into various amino acids and polyamines which results in removal of free ammonia in intestinal lumen to reduce the blood ammonia levels in the host. This work explains the mechanism of how probiotics reduce blood ammonia levels. Electronic supplementary material The online version of this article (10.1186/s12864-018-4672-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parul Singh
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea
| | - Hea-Jong Chung
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea
| | - In-Ah Lee
- Present address: Department of Chemistry, Gunsan National University, Gunsan, Chonbuk, 51450, South Korea
| | - Roshan D'Souza
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea
| | - Hyeon-Jin Kim
- JINIS BDRD institute, JINIS Biopharmaceuticals Co., 913 Gwahak-Ro, Bongdong, Wanju, Chonbuk, 55321, South Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea.
| |
Collapse
|
13
|
Isolation and characterization of the first phage infecting ecologically important marine bacteria Erythrobacter. Virol J 2017; 14:104. [PMID: 28592325 PMCID: PMC5463345 DOI: 10.1186/s12985-017-0773-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/01/2017] [Indexed: 11/24/2022] Open
Abstract
Background Erythrobacter comprises a widespread and ecologically significant genus of marine bacteria. However, no phage infecting Erythrobacter spp. has been reported to date. This study describes the isolation and characterization of phage vB_EliS-R6L from Erythrobacter. Methods Standard virus enrichment and double-layer agar methods were used to isolate and characterize the phage. Morphology was observed by transmission electron microscopy, and a one-step growth curve assay was performed. The phage genome was sequenced using the Illumina Miseq platform and annotated using standard bioinformatics tools. Phylogenetic analyses were performed based on the deduced amino acid sequences of terminase, endolysin, portal protein, and major capsid protein, and genome recruitment analysis was conducted using Jiulong River Estuary Virome, Pacific Ocean Virome and Global Ocean Survey databases. Results A novel phage, vB_EliS-R6L, from coastal waters of Xiamen, China, was isolated and found to infect the marine bacterium Erythrobacter litoralis DSM 8509. Morphological observation and genome analysis revealed that phage vB_EliS-R6L is a siphovirus with a 65.7-kb genome that encodes 108 putative gene products. The phage exhibits growth at a wide range of temperature and pH conditions. Genes encoding five methylase-related proteins were found in the genome, and recognition site predictions suggested its resistance to restriction-modification host systems. Genomic comparisons and phylogenetic analyses indicate that phage vB_EliS-R6L is distinct from other known phages. Metagenomic recruitment analysis revealed that vB_EliS-R6L-like phages are widespread in marine environments, with likely distribution in coastal waters. Conclusions Isolation of the first Erythrobacter phage (vB_EliS-R6L) will contribute to our understanding of host-phage interactions, the ecology of marine Erythrobacter and viral metagenome annotation efforts.
Collapse
|
14
|
Guo T, Zhang C, Xin Y, Xin M, Kong J. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus. J Ind Microbiol Biotechnol 2016; 43:681-9. [PMID: 26831651 DOI: 10.1007/s10295-016-1739-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/12/2016] [Indexed: 11/28/2022]
Abstract
Prophage vB_LdeS-phiJB (phiJB) was induced by mitomycin C and UV radiation from the Lactobacillus delbrueckii subsp. bulgaricus SDMCC050201 isolated from a Chinese yoghurt sample. It has an isometric head and a non-contractile tail with 36,969 bp linear double-stranded DNA genome, which is classified into the group a of Lb. delbrueckii phages. The genome of phiJB is highly modular with functionally related genes clustered together. Unexpectedly, there is no similarity of its DNA replication module to any phages that have been reported, while it consists of open-reading frames homologous to the proteins of Lactobacillus strains. Comparative genomic analysis indicated that its late gene clusters, integration/lysogeny modules and DNA replication module derived from different evolutionary ancestors and integrated into a chimera. Our results revealed a novel chimeric phage of commercial Lb. delbrueckii and will broaden the knowledge of phage diversity in the dairy industry.
Collapse
Affiliation(s)
- Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Chenchen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Yongping Xin
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Min Xin
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, 27 Shanda Nanlu, Jinan, 250100, People's Republic of China.
| |
Collapse
|
15
|
Zhang X, Lan Y, Jiao W, Li Y, Tang L, Jiang Y, Cui W, Qiao X. Isolation and Characterization of a Novel Virulent Phage of Lactobacillus casei ATCC 393. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:333-341. [PMID: 26123178 DOI: 10.1007/s12560-015-9206-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
A new virulent phage (Lcb) of Lactobacillus casei ATCC 393 was isolated from Chinese sauerkraut. It was specific to L. casei ATCC 393. Electron micrograph revealed that it had an icosahedral head (60.2 ± 0.8 nm in diameter) and a long tail (251 ± 2.6 nm). It belonged to the Siphoviridae family. The genome of phage Lcb was estimated to be approximately 40 kb and did not contain cohesive ends. One-step growth kinetics of its lytic development revealed latent and burst periods of 75 and 45 min, respectively, with a burst size of 16 PFU per infected cell. The phage was able to survive in a pH range between 4 and 11. However, a treatment of 70 °C for 30 min and 75% ethanol or isopropanol for 20 min was observed to inactivate phage Lcb thoroughly. The presence of both Ca(2+) and Mg(2+) showed a little influence on phage adsorption, but they were indispensable to gain complete lysis and improve plaque formation. The adsorption kinetics were similar on viable or nonviable cells, and high adsorption rates maintained between 10 and 37 °C. The highest adsorption rate was at 30 °C. This study increased the knowledge on phages of L. casei. The characterization of phage Lcb is helpful to establish a basis for adopting effective strategies to control phage attack in industry.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yu Lan
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wenchao Jiao
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yijing Li
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Lijie Tang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Yanping Jiang
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Wen Cui
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
| | - Xinyuan Qiao
- Department of Preventive Veterinary, College of Veterinary, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China.
| |
Collapse
|
16
|
Genomic Diversity of Phages Infecting Probiotic Strains of Lactobacillus paracasei. Appl Environ Microbiol 2015; 82:95-105. [PMID: 26475105 DOI: 10.1128/aem.02723-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/11/2015] [Indexed: 01/21/2023] Open
Abstract
Strains of the Lactobacillus casei group have been extensively studied because some are used as probiotics in foods. Conversely, their phages have received much less attention. We analyzed the complete genome sequences of five L. paracasei temperate phages: CL1, CL2, iLp84, iLp1308, and iA2. Only phage iA2 could not replicate in an indicator strain. The genome lengths ranged from 34,155 bp (iA2) to 39,474 bp (CL1). Phages iA2 and iLp1308 (34,176 bp) possess the smallest genomes reported, thus far, for phages of the L. casei group. The GC contents of the five phage genomes ranged from 44.8 to 45.6%. As observed with many other phages, their genomes were organized as follows: genes coding for DNA packaging, morphogenesis, lysis, lysogeny, and replication. Phages CL1, CL2, and iLp1308 are highly related to each other. Phage iLp84 was also related to these three phages, but the similarities were limited to gene products involved in DNA packaging and structural proteins. Genomic fragments of phages CL1, CL2, iLp1308, and iLp84 were found in several genomes of L. casei strains. Prophage iA2 is unrelated to these four phages, but almost all of its genome was found in at least four L. casei strains. Overall, these phages are distinct from previously characterized Lactobacillus phages. Our results highlight the diversity of L. casei phages and indicate frequent DNA exchanges between phages and their hosts.
Collapse
|
17
|
Biodiversity ofLactobacillus helveticusbacteriophages isolated from cheese whey starters. J DAIRY RES 2015; 82:242-7. [DOI: 10.1017/s0022029915000151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Twenty-oneLactobacillus helveticusbacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity ofLb. helveticusphages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role ofLb. helveticusphages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.
Collapse
|
18
|
Abstract
The genus Lelliottia was recently created from the group of environmental gammaproteobacteria previously included in the genus Enterobacter. Here, we report the complete genome sequence of phD2B, the first (according to our current knowledge) known phage that infects bacterium from the taxon.
Collapse
|
19
|
Merrill BD, Grose JH, Breakwell DP, Burnett SH. Characterization of Paenibacillus larvae bacteriophages and their genomic relationships to firmicute bacteriophages. BMC Genomics 2014; 15:745. [PMID: 25174730 PMCID: PMC4168068 DOI: 10.1186/1471-2164-15-745] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 08/26/2014] [Indexed: 01/10/2023] Open
Abstract
Background Paenibacillus larvae is a Firmicute bacterium that causes American Foulbrood, a lethal disease in honeybees and is a major source of global agricultural losses. Although P. larvae phages were isolated prior to 2013, no full genome sequences of P. larvae bacteriophages were published or analyzed. This report includes an in-depth analysis of the structure, genomes, and relatedness of P. larvae myoviruses Abouo, Davis, Emery, Jimmer1, Jimmer2, and siphovirus phiIBB_Pl23 to each other and to other known phages. Results P. larvae phages Abouo, Davies, Emery, Jimmer1, and Jimmer2 are myoviruses with ~50 kbp genomes. The six P. larvae phages form three distinct groups by dotplot analysis. An annotated linear genome map of these six phages displays important identifiable genes and demonstrates the relationship between phages. Sixty phage assembly or structural protein genes and 133 regulatory or other non-structural protein genes were identifiable among the six P. larvae phages. Jimmer1, Jimmer2, and Davies formed stable lysogens resistant to superinfection by genetically similar phages. The correlation between tape measure protein gene length and phage tail length allowed identification of co-isolated phages Emery and Abouo in electron micrographs. A Phamerator database was assembled with the P. larvae phage genomes and 107 genomes of Firmicute-infecting phages, including 71 Bacillus phages. Phamerator identified conserved domains in 1,501 of 6,181 phamilies (only 24.3%) encoded by genes in the database and revealed that P. larvae phage genomes shared at least one phamily with 72 of the 107 other phages. The phamily relationship of large terminase proteins was used to indicate putative DNA packaging strategies. Analyses from CoreGenes, Phamerator, and electron micrograph measurements indicated Jimmer1, Jimmer2, Abouo and Davies were related to phages phiC2, EJ-1, KC5a, and AQ113, which are small-genome myoviruses that infect Streptococcus, Lactobacillus, and Clostridium, respectively. Conclusions This paper represents the first comparison of phage genomes in the Paenibacillus genus and the first organization of P. larvae phages based on sequence and structure. This analysis provides an important contribution to the field of bacteriophage genomics by serving as a foundation on which to build an understanding of the natural predators of P. larvae. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-745) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Sandra H Burnett
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
20
|
Mahony J, van Sinderen D. Current taxonomy of phages infecting lactic acid bacteria. Front Microbiol 2014; 5:7. [PMID: 24478767 PMCID: PMC3900856 DOI: 10.3389/fmicb.2014.00007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 01/07/2014] [Indexed: 01/29/2023] Open
Abstract
Phages infecting lactic acid bacteria have been the focus of significant research attention over the past three decades. Through the isolation and characterization of hundreds of phage isolates, it has been possible to classify phages of the dairy starter and adjunct bacteria Lactococus lactis, Streptococcus thermophilus, Leuconostoc spp., and Lactobacillus spp. Among these, phages of L. lactis have been most thoroughly scrutinized and serve as an excellent model system to address issues that arise when attempting taxonomic classification of phages infecting other LAB species. Here, we present an overview of the current taxonomy of phages infecting LAB genera of industrial significance, the methods employed in these taxonomic efforts and how these may be employed for the taxonomy of phages of currently underrepresented and emerging phage species.
Collapse
Affiliation(s)
- Jennifer Mahony
- Department of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork Cork, Ireland ; Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork Cork, Ireland
| |
Collapse
|