1
|
Hamamoto K, Mizuyama M, Nishijima M, Maeda A, Gibu K, Poliseno A, Iguchi A, Reimer JD. Diversity, composition and potential roles of sedimentary microbial communities in different coastal substrates around subtropical Okinawa Island, Japan. ENVIRONMENTAL MICROBIOME 2024; 19:54. [PMID: 39080706 PMCID: PMC11290285 DOI: 10.1186/s40793-024-00594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Marine benthic prokaryotic communities play crucial roles in material recycling within coastal environments, including coral reefs. Coastal sedimentary microbiomes are particularly important as potential reservoirs of symbiotic, beneficial, and pathogenic bacteria in coral reef environments, and therefore presumably play a core role in local ecosystem functioning. However, there is a lack of studies comparing different environments with multiple sites on the island scale, particularly studies focusing on prokaryotic communities, as previous investigations have focused mainly on a single site or on specific environmental conditions. In our study, we collected coastal sediments from seven sites around Okinawa Island, Japan, including three different benthic types; sandy bottoms, seagrass meadows, and hard substratum with living scleractinian corals. We then used metabarcoding to identify prokaryotic compositions and estimate enzymes encoded by genes to infer their functions. RESULTS The results showed that the three substrata had significantly different prokaryotic compositions. Seagrass meadow sites exhibited significantly higher prokaryotic alpha-diversity compared to sandy bottom sites. ANCOM analysis revealed that multiple bacterial orders were differentially abundant within each substratum. At coral reef sites, putative disease- and thermal stress-related opportunistic bacteria such as Rhodobacterales, Verrucomicrobiales, and Cytophagales were comparatively abundant, while seagrass meadow sites abundantly harbored Desulfobacterales, Steroidobacterales and Chromatiales, which are common bacterial orders in seagrass meadows. According to our gene-coded enzyme analyses the numbers of differentially abundant enzymes were highest in coral reef sites. Notably, superoxide dismutase, an important enzyme for anti-oxidative stress in coral tissue, was abundant at coral sites. Our results provide a list of prokaryotes to look into in each substrate, and further emphasize the importance of considering the microbiome, especially when focusing on environmental conservation. CONCLUSION Our findings prove that prokaryotic metabarcoding is capable of capturing compositional differences and the diversity of microbial communities in three different environments. Furthermore, several taxa were suggested to be differentially more abundant in specific environments, and gene-coded enzymic compositions also showed possible differences in ecological functions. Further study, in combination with field observations and temporal sampling, is key to achieving a better understanding of the interactions between the local microbiome and the surrounding benthic community.
Collapse
Affiliation(s)
- Kohei Hamamoto
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Masaru Mizuyama
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
- Department of Health Informatics, Faculty of Human Health Sciences, Meio University, Nago, Okinawa, 905-8585, Japan
| | - Miyuki Nishijima
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Ayumi Maeda
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, 277-8564, Japan
| | - Kodai Gibu
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan
| | - Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8567, Japan.
| | - James Davis Reimer
- Molecular Invertebrate Systematics and Ecology (MISE) Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
2
|
Wada N, Iguchi A, Urabe Y, Yoshioka Y, Abe N, Takase K, Hayashi S, Kawanabe S, Sato Y, Tang SL, Mano N. Microbial mat compositions and localization patterns explain the virulence of black band disease in corals. NPJ Biofilms Microbiomes 2023; 9:15. [PMID: 37015942 PMCID: PMC10073141 DOI: 10.1038/s41522-023-00381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Black band disease (BBD) in corals is characterized by a distinctive, band-like microbial mat, which spreads across the tissues and often kills infected colonies. The microbial mat is dominated by cyanobacteria but also commonly contains sulfide-oxidizing bacteria (SOB), sulfate-reducing bacteria (SRB), and other microbes. The migration rate in BBD varies across different environmental conditions, including temperature, light, and pH. However, whether variations in the migration rates reflect differences in the microbial consortium within the BBD mat remains unknown. Here, we show that the micro-scale surface structure, bacterial composition, and spatial distribution differed across BBD lesions with different migration rates. The migration rate was positively correlated with the relative abundance of potential SOBs belonging to Arcobacteraceae localized in the middle layer within the mat and negatively correlated with the relative abundance of other potential SOBs belonging to Rhodobacteraceae. Our study highlights the microbial composition in BBD as an important determinant of virulence.
Collapse
Affiliation(s)
- Naohisa Wada
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
- Research Laboratory on Environmentally-conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8567, Japan
| | - Yuta Urabe
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Yuki Yoshioka
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago-City, Okinawa, 905-2192, Japan
| | - Natsumi Abe
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Kazuki Takase
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Shuji Hayashi
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Saeko Kawanabe
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan
| | - Yui Sato
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, No.128, Sec 2, Academia Rd, Nangang, Taipei, 11529, Taiwan.
| | - Nobuhiro Mano
- Department of Marine Science and Resources, College of Bioresource Science, Nihon University, Fujisawa, Kanagawa, 252-0813, Japan.
| |
Collapse
|
3
|
Cryptic Diversity of Black Band Disease Cyanobacteria in Siderastrea siderea Corals Revealed by Chemical Ecology and Comparative Genome-Resolved Metagenomics. Mar Drugs 2023; 21:md21020076. [PMID: 36827117 PMCID: PMC9967302 DOI: 10.3390/md21020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the cyanobacterial species Roseofilum reptotaenium, other filamentous cyanobacterial strains and bacterial heterotrophs are readily detected. Through chemical ecology and metagenomic sequencing, we uncovered cryptic strains of Roseofilum species from Siderastrea siderea corals that differ from those on other corals in the Caribbean and Pacific. Isolation of metabolites from Siderastrea-derived Roseofilum revealed the prevalence of unique forms of looekeyolides, distinct from previously characterized Roseofilum reptotaenium strains. In addition, comparative genomics of Roseofilum strains showed that only Siderastrea-based Roseofilum strains have the genetic capacity to produce lasso peptides, a family of compounds with diverse biological activity. All nine Roseofilum strains examined here shared the genetic capacity to produce looekeyolides and malyngamides, suggesting these compounds support the ecology of this genus. Similar biosynthetic gene clusters are not found in other cyanobacterial genera associated with black band disease, which may suggest that looekeyolides and malyngamides contribute to disease etiology through yet unknown mechanisms.
Collapse
|
4
|
Szitenberg A, Beca-Carretero P, Azcárate-García T, Yergaliyev T, Alexander-Shani R, Winters G. Teasing apart the host-related, nutrient-related and temperature-related effects shaping the phenology and microbiome of the tropical seagrass Halophila stipulacea. ENVIRONMENTAL MICROBIOME 2022; 17:18. [PMID: 35428367 PMCID: PMC9013022 DOI: 10.1186/s40793-022-00412-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 03/24/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Halophila stipulacea seagrass meadows are an ecologically important and threatened component of the ecosystem in the Gulf of Aqaba. Recent studies have demonstrated correlated geographic patterns for leaf epiphytic community composition and leaf morphology, also coinciding with different levels of water turbidity and nutrient concentrations. Based on these observations, workers have suggested an environmental microbial fingerprint, which may reflect various environmental stress factors seagrasses have experienced, and may add a holobiont level of plasticity to seagrasses, assisting their acclimation to changing environments and through range expansion. However, it is difficult to tease apart environmental effects from host-diversity dependent effects, which have covaried in field studies, although this is required in order to establish that differences in microbial community compositions among sites are driven by environmental conditions rather than by features governed by the host. RESULTS In this study we carried out a mesocosm experiment, in which we studied the effects of warming and nutrient stress on the composition of epiphytic bacterial communities and on some phenological traits. We studied H. stipulacea collected from two different meadows in the Gulf of Aqaba, representing differences in the host and the environment alike. We found that the source site from which seagrasses were collected was the major factor governing seagrass phenology, although heat increased shoot mortality and nutrient loading delayed new shoot emergence. Bacterial diversity, however, mostly depended on the environmental conditions. The most prominent pattern was the increase in Rhodobacteraceae under nutrient stress without heat stress, along with an increase in Microtrichaceae. Together, the two taxa have the potential to maintain nitrate reduction followed by an anammox process, which can together buffer the increase in nutrient concentrations across the leaf surface. CONCLUSIONS Our results thus corroborate the existence of environmental microbial fingerprints, which are independent from the host diversity, and support the notion of a holobiont level plasticity, both important to understand and monitor H. stipulacea ecology under the changing climate.
Collapse
Affiliation(s)
- Amir Szitenberg
- Dead Sea and Arava Science Center, Dead Sea Branch, 8693500, Masada, Israel.
- Ben-Gurion University of the Negev, 8858537, Eilat, Israel.
| | - Pedro Beca-Carretero
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359, Bremen, Germany
- Department of Oceanography, Instituto de Investigacións Mariñas (IIM-CSIC), Vigo, Spain
- Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar Y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - Tomás Azcárate-García
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, Fahrenheitstrasse 6, 28359, Bremen, Germany
- Departamento de Biología, Área de Ecología, Facultad de Ciencias del Mar Y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
- Dead Sea and Arava Science Center, Central Arava Branch, 8682500, Sapir, Israel
| | - Timur Yergaliyev
- Dead Sea and Arava Science Center, Dead Sea Branch, 8693500, Masada, Israel
- Hohenheim Center for Livestock Microbiome Research (HoLMiR), Institute of Animal Science, University of Hohenheim, Stuttgart, Germany
| | | | - Gidon Winters
- Ben-Gurion University of the Negev, 8858537, Eilat, Israel
- Dead Sea and Arava Science Center, Central Arava Branch, 8682500, Sapir, Israel
| |
Collapse
|
5
|
Ge R, Liang J, Yu K, Chen B, Yu X, Deng C, Chen J, Xu Y, Qin L. Regulation of the Coral-Associated Bacteria and Symbiodiniaceae in Acropora valida Under Ocean Acidification. Front Microbiol 2022; 12:767174. [PMID: 34975794 PMCID: PMC8718875 DOI: 10.3389/fmicb.2021.767174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Ocean acidification is one of many stressors that coral reef ecosystems are currently contending with. Thus, understanding the response of key symbiotic microbes to ocean acidification is of great significance for understanding the adaptation mechanism and development trend of coral holobionts. Here, high-throughput sequencing technology was employed to investigate the coral-associated bacteria and Symbiodiniaceae of the ecologically important coral Acropora valida exposed to different pH gradients. After 30 days of acclimatization, we set four acidification gradients (pH 8.2, 7.8, 7.4, and 7.2, respectively), and each pH condition was applied for 10 days, with the whole experiment lasting for 70 days. Although the Symbiodiniaceae density decreased significantly, the coral did not appear to be bleached, and the real-time photosynthetic rate did not change significantly, indicating that A. valida has strong tolerance to acidification. Moreover, the Symbiodiniaceae community composition was hardly affected by ocean acidification, with the C1 subclade (Cladocopium goreaui) being dominant among the Symbiodiniaceae dominant types. The relative abundance of the Symbiodiniaceae background types was significantly higher at pH 7.2, indicating that ocean acidification might increase the stability of the community composition by regulating the Symbiodiniaceae rare biosphere. Furthermore, the stable symbiosis between the C1 subclade and coral host may contribute to the stability of the real-time photosynthetic efficiency. Finally, concerning the coral-associated bacteria, the stable symbiosis between Endozoicomonas and coral host is likely to help them adapt to ocean acidification. The significant increase in the relative abundance of Cyanobacteria at pH 7.2 may also compensate for the photosynthesis efficiency of a coral holobiont. In summary, this study suggests that the combined response of key symbiotic microbes helps the whole coral host resist the threats of ocean acidification.
Collapse
Affiliation(s)
- Ruiqi Ge
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jinni Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yongqian Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Liangyun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
6
|
Chapron L, Galand PE, Pruski AM, Peru E, Vétion G, Robin S, Lartaud F. Resilience of cold-water coral holobionts to thermal stress. Proc Biol Sci 2021; 288:20212117. [PMID: 34905712 PMCID: PMC8670956 DOI: 10.1098/rspb.2021.2117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Cold-water corals are threatened by global warming, especially in the Mediterranean Sea where they live close to their upper known thermal limit (i.e. 13°C), yet their response to rising temperatures is not well known. Here, temperature effects on Lophelia pertusa and Madrepora oculata holobionts (i.e. the host and its associated microbiome) were investigated. We found that at warmer seawater temperature (+2°C), L. pertusa showed a modification of its microbiome prior to a change in behaviour, leading to lower energy reserves and skeletal growth, whereas M. oculata was more resilient. At extreme temperature (+4°C), both species quickly lost their specific bacterial signature followed by lower physiological activity prior to death. In addition, our results showing the holobionts' negative response to colder temperatures (-3°C), suggest that Mediterranean corals live close to their thermal optimum. The species-specific response to temperature change highlights that global warming may affect dramatically the main deep-sea reef-builders, which would alter the associated biodiversity and related ecosystem services.
Collapse
Affiliation(s)
- Leila Chapron
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Pierre E. Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Audrey M. Pruski
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Gilles Vétion
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Sarah Robin
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Observatoire Océanologique, 66650, Banyuls/Mer, France
| |
Collapse
|
7
|
Zhang Y, Yang Q, Zhang Y, Ahmad M, Ling J, Dong J, Wang Y. The diversity and metabolic potential of the microbial functional gene associated with Porites pukoensis. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:986-995. [PMID: 33991262 DOI: 10.1007/s10646-021-02419-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Coral reef ecosystems usually distribute in oligotrophic tropical and subtropical marine environments, but they possess great biodiversity and high productivity. It may attribute to its efficient internal nutrient cycle system. However, the knowledge of functional microbial community structure is still limited. In this study, both functional gene array (Geochip 5.0) and nifH Illumina sequencing were used to profile the overall functional genes and diazotrophic communities associated with coral Porites pukoensis. More than 7500 microbial functional genes were detected from archaea, bacteria, and fungi. Most of these genes are related to the transformation of carbon, nitrogen, sulfur, and phosphorus, providing evidence that microbes in the coral holobiont play important roles in the biogeochemical cycle of coral reef ecosystems. Our results indicated a high diversity of diazotrophs associated with corals. The dominant diazotrophic groups were related to phyla Alphaproteobacteria, Deltaproteobacteria, Cyanobacteria, and Gammaproteobacteria. And the dominant diazotrophic communities were divided into four clusters. They were affiliated with nifH sequences from genera Zymomonas, Halorhodospira, Leptolyngbya, Trichormus, and Desulfovibrio, indicating these groups may play a more important role in the nitrogen-fixing process in the coral holobiont. This study revealed functional gene diversity and suggested the roles they played in the biogeochemical cycling of the coral holobiont.
Collapse
Affiliation(s)
- Yanying Zhang
- Ocean School, Yantai University, Yantai, 264005, China.
| | - Qingsong Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Ying Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Manzoor Ahmad
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Juan Ling
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Junde Dong
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
- Key Laboratory of Tropical Marine Biotechnology of Hainan Province and Hainan Sanya Marine Ecosystem National Observation and Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China.
| | - Youshao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
8
|
Louime CJ, Vazquez-Sanchez F, Derilus D, Godoy-Vitorino F. Divergent Microbiota Dynamics along the Coastal Marine Ecosystem of Puerto Rico. MICROBIOLOGY RESEARCH 2020; 11:45-55. [PMID: 39175946 PMCID: PMC11340205 DOI: 10.3390/microbiolres11020009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Understanding the different factors shaping the spatial and temporal distribution of marine microorganisms is fundamental in predicting their responses to future environmental disturbances. There has been, however, little effort to characterize the microbial diversity including the microbiome dynamics among regions in the Caribbean Sea. Toward this end, this study was designed to gain some critical insights into microbial diversity within the coastal marine ecosystem off the coast of Puerto Rico. Using Illumina MiSeq, the V4 region of the 16S rRNA gene was sequenced with the goal of characterizing the microbial diversity representative of different coastal sites around the island of Puerto Rico. This study provided valuable insights in terms of the local bacterial taxonomic abundance, α and β diversity, and the environmental factors shaping microbial community composition and structure. The most dominant phyla across all 11 sampling sites were the Proteobacteria, Bacteroidetes, and Planctomycetes, while the least dominant taxonomic groups were the NKB19, Tenericutes, OP3, Lentisphaerae, and SAR406. The geographical area (Caribbean and Atlantic seas) and salinity gradients were the main drivers shaping the marine microbial community around the island. Despite stable physical and chemical features of the different sites, a highly dynamic microbiome was observed. This highlights Caribbean waters as one of the richest marine sources for a microbial biodiversity hotspot. The data presented here provide a basis for further temporal evaluations aiming at deciphering microbial taxonomic diversity around the island, while determining how microbes adapt to changes in the climate.
Collapse
Affiliation(s)
- Clifford Jaylen Louime
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Frances Vazquez-Sanchez
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| | - Dieunel Derilus
- Department of Environmental Sciences, University of Puerto Rico, San Juan, PR 00931, USA
| | - Filipa Godoy-Vitorino
- Department of Microbiology & Medical Zoology, School of Medicine, University of Puerto Rico, San Juan, PR 00936, USA
| |
Collapse
|
9
|
Vega Thurber R, Mydlarz LD, Brandt M, Harvell D, Weil E, Raymundo L, Willis BL, Langevin S, Tracy AM, Littman R, Kemp KM, Dawkins P, Prager KC, Garren M, Lamb J. Deciphering Coral Disease Dynamics: Integrating Host, Microbiome, and the Changing Environment. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.575927] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diseases of tropical reef organisms is an intensive area of study, but despite significant advances in methodology and the global knowledge base, identifying the proximate causes of disease outbreaks remains difficult. The dynamics of infectious wildlife diseases are known to be influenced by shifting interactions among the host, pathogen, and other members of the microbiome, and a collective body of work clearly demonstrates that this is also the case for the main foundation species on reefs, corals. Yet, among wildlife, outbreaks of coral diseases stand out as being driven largely by a changing environment. These outbreaks contributed not only to significant losses of coral species but also to whole ecosystem regime shifts. Here we suggest that to better decipher the disease dynamics of corals, we must integrate more holistic and modern paradigms that consider multiple and variable interactions among the three major players in epizootics: the host, its associated microbiome, and the environment. In this perspective, we discuss how expanding the pathogen component of the classic host-pathogen-environment disease triad to incorporate shifts in the microbiome leading to dysbiosis provides a better model for understanding coral disease dynamics. We outline and discuss issues arising when evaluating each component of this trio and make suggestions for bridging gaps between them. We further suggest that to best tackle these challenges, researchers must adjust standard paradigms, like the classic one pathogen-one disease model, that, to date, have been ineffectual at uncovering many of the emergent properties of coral reef disease dynamics. Lastly, we make recommendations for ways forward in the fields of marine disease ecology and the future of coral reef conservation and restoration given these observations.
Collapse
|
10
|
Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Sci Rep 2020; 10:19990. [PMID: 33203914 PMCID: PMC7672225 DOI: 10.1038/s41598-020-76792-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals.
Collapse
|
11
|
Untangling filamentous marine cyanobacterial diversity from the coast of South Florida with the description of Vermifilaceae fam. nov. and three new genera: Leptochromothrix gen. nov., Ophiophycus gen. nov., and Vermifilum gen. nov. Mol Phylogenet Evol 2020; 160:107010. [PMID: 33186689 DOI: 10.1016/j.ympev.2020.107010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022]
Abstract
Benthic cyanobacterial mats are an integral component of aquatic communities in tropical marine waters. These mats can develop into massive nuisances at risk of expansion due to climate change. The extent of diversity occurring within these mats, still remains largely unexplored, especially in Florida. To reveal this diversity, coastal environments of South Florida were sampled and subsequently processed for isolation and systematic identification. Three new genera are proposed based on the molecular phylogeny, morphology, and ecology. These new genera are characterized by discoid cells and homocytous, unbranched filaments without sheaths. Individual genus morphological differences include either rounded bent, rounded, or conical rounded apical cells. A unique molecular fingerprint including a base pair insert within the 16S rRNA gene sequence and genetic similarities facilitates the delimitation of a novel family Vermifilaceae. Using the polyphasic approach, our research presents three new genera and four new species of marine cyanobacteria inhabiting coastal ecosystems of South Florida.
Collapse
|
12
|
A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Sci Rep 2020; 10:15893. [PMID: 32985530 PMCID: PMC7522235 DOI: 10.1038/s41598-020-72589-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular characterization of the coral host and the microbial assemblages associated with it (referred to as the coral holobiont) is currently undertaken via marker gene sequencing. This requires bulky instruments and controlled laboratory conditions which are impractical for environmental experiments in remote areas. Recent advances in sequencing technologies now permit rapid sequencing in the field; however, development of specific protocols and pipelines for the effective processing of complex microbial systems are currently lacking. Here, we used a combination of 3 marker genes targeting the coral animal host, its symbiotic alga, and the associated bacterial microbiome to characterize 60 coral colonies collected and processed in situ, during the Tara Pacific expedition. We used Oxford Nanopore Technologies to sequence marker gene amplicons and developed bioinformatics pipelines to analyze nanopore reads on a laptop, obtaining results in less than 24 h. Reef scale network analysis of coral-associated bacteria reveals broadly distributed taxa, as well as host-specific associations. Protocols and tools used in this work may be applicable for rapid coral holobiont surveys, immediate adaptation of sampling strategy in the field, and to make informed and timely decisions in the context of the current challenges affecting coral reefs worldwide.
Collapse
|
13
|
Speare L, Davies SW, Balmonte JP, Baumann J, Castillo KD. Patterns of environmental variability influence coral-associated bacterial and algal communities on the Mesoamerican Barrier Reef. Mol Ecol 2020; 29:2334-2348. [PMID: 32497352 DOI: 10.1111/mec.15497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
A coral's capacity to alter its microbial symbionts may enhance its fitness in the face of climate change. Recent work predicts exposure to high environmental variability may increase coral resilience and adaptability to future climate conditions. However, how this heightened environmental variability impacts coral-associated microbial communities remains largely unexplored. Here, we examined the bacterial and algal symbionts associated with two coral species of the genus Siderastrea with distinct life history strategies from three reef sites on the Belize Mesoamerican Barrier Reef System with low or high environmental variability. Our results reveal bacterial community structure, as well as alpha- and beta-diversity patterns, vary by host species. Differences in bacterial communities between host species were partially explained by high abundance of Deltaproteobacteria and Rhodospirillales and high bacterial diversity in Siderastrea radians. Our findings also suggest Siderastrea spp. have dynamic core bacterial communities that likely drive differences observed in the entire bacterial community, which may play a critical role in rapid acclimatization to environmental change. Unlike the bacterial community, Symbiodiniaceae composition was only distinct between host species at high thermal variability sites, suggesting that different factors shape bacterial versus algal communities within the coral holobiont. Our findings shed light on how domain-specific shifts in dynamic microbiomes may allow for unique methods of enhanced host fitness.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah W Davies
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - John P Balmonte
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Ecology and Genetics - Limnology, Uppsala University, Uppsala, Sweden
| | - Justin Baumann
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karl D Castillo
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
14
|
Rosales SM, Clark AS, Huebner LK, Ruzicka RR, Muller EM. Rhodobacterales and Rhizobiales Are Associated With Stony Coral Tissue Loss Disease and Its Suspected Sources of Transmission. Front Microbiol 2020; 11:681. [PMID: 32425901 PMCID: PMC7212369 DOI: 10.3389/fmicb.2020.00681] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
In 2014, Stony Coral Tissue Loss Disease (SCTLD) was first detected off the coast of Miami, FL, United States, and continues to persist and spread along the Florida Reef Tractr (FRT) and into the Caribbean. SCTLD can have up to a 61% prevalence in reefs and has affected at least 23 species of scleractinian corals. This has contributed to the regional near-extinction of at least one coral species, Dendrogyra cylindrus. Initial studies of SCTLD indicate microbial community shifts and cessation of lesion progression in response to antibiotics on some colonies. However, the etiology and abiotic sources of SCTLD transmission are unknown. To characterize SCTLD microbial signatures, we collected tissue samples from four affected coral species: Stephanocoenia intersepta, Diploria labyrinthiformis, Dichocoenia stokesii, and Meandrina meandrites. Tissue samples were from apparently healthy (AH) corals, and unaffected tissue (DU) and lesion tissue (DL) on diseased corals. Samples were collected in June 2018 from three zones: (1) vulnerable (ahead of the SCTLD disease boundary in the Lower Florida Keys), (2) endemic (post-outbreak in the Upper Florida Keys), and (3) epidemic (SCTLD was active and prevalent in the Middle Florida Keys). From each zone, sediment and water samples were also collected to identify whether they may serve as potential sources of transmission for SCTLD-associated microbes. We used 16S rRNA gene amplicon high-throughput sequencing methods to characterize the microbiomes of the coral, water, and sediment samples. We identified a relatively higher abundance of the bacteria orders Rhodobacterales and Rhizobiales in DL tissue compared to AH and DU tissue. Also, our results showed relatively higher abundances of Rhodobacterales in water from the endemic and epidemic zones compared to the vulnerable zone. Rhodobacterales and Rhizobiales identified at higher relative abundances in DL samples were also detected in sediment samples, but not in water samples. Our data indicate that Rhodobacterales and Rhizobiales may play a role in SCTLD and that sediment may be a source of transmission for Rhodobacterales and Rhizobiales associated with SCTLD lesions.
Collapse
Affiliation(s)
- Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, FL, United States
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, United States
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States
| | - Lindsay K. Huebner
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, United States
| | - Rob R. Ruzicka
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL, United States
| | | |
Collapse
|
15
|
Hartman LM, van Oppen MJH, Blackall LL. Microbiota characterization of Exaiptasia diaphana from the Great Barrier Reef. Anim Microbiome 2020; 2:10. [PMID: 33499977 PMCID: PMC7807684 DOI: 10.1186/s42523-020-00029-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/17/2020] [Indexed: 02/04/2023] Open
Abstract
Background Coral reefs have sustained damage of increasing scale and frequency due to climate change, thereby intensifying the need to elucidate corals’ biological characteristics, including their thermal tolerance and microbial symbioses. The sea anemone, Exaiptasia diaphana, has proven an ideal coral model for many studies due to its close phylogenetic relationship and shared traits, such as symbiosis with algae of the family Symbiodiniaceae. However, established E. diaphana clonal lines are not available in Australia thus limiting the ability of Australian scientists to conduct research with this model. To help address this, the bacterial and Symbiodiniaceae associates of four Great Barrier Reef (GBR)-sourced E. diaphana genotypes established in laboratory aquaria and designated AIMS1–4, and from proxies of wild GBR E. diaphana were identified by metabarcoding of the bacterial 16S rRNA gene and eukaryotic rRNA gene ITS2 region. The relationship between AIMS1–4 and their bacterial associates was investigated, as was bacterial community phenotypic potential. Existing data from two existing anemone clonal lines, CC7 and H2, were included for comparison. Results Overall, 2238 bacterial amplicon sequence variants (ASVs) were observed in the AIMS1–4 bacterial communities, which were dominated by Proteobacteria and Bacteroidetes, together comprising > 90% relative abundance. Although many low abundance bacterial taxa varied between the anemone genotypes, the AIMS1–4 communities did not differ significantly. A significant tank effect was identified, indicating an environmental effect on the microbial communities. Bacterial community richness was lower in all lab-maintained E. diaphana compared to the wild proxies, suggesting a reduction in bacterial diversity and community phenotypic potential due to culturing. Seventeen ASVs were common to every GBR lab-cultured anemone, however five were associated with the Artemia feedstock, making their specific association to E. diaphana uncertain. The dominant Symbiodiniaceae symbiont in all GBR anemones was Breviolum minutum. Conclusion Despite differences in the presence and abundance of low abundance taxa, the bacterial communities of GBR-sourced lab-cultured E. diaphana are generally uniform and comparable to communities reported for other lab-cultured E. diaphana. The data presented here add to the global E. diaphana knowledge base and make an important contribution to the establishment of a GBR-sourced coral model organism.
Collapse
Affiliation(s)
- Leon Michael Hartman
- Swinburne University of Technology, Melbourne, Australia. .,The University of Melbourne, Melbourne, Australia.
| | | | | |
Collapse
|
16
|
Pollock FJ, Lamb JB, van de Water JAJM, Smith HA, Schaffelke B, Willis BL, Bourne DG. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190355. [PMID: 31312497 PMCID: PMC6599770 DOI: 10.1098/rsos.190355] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/08/2019] [Indexed: 05/28/2023]
Abstract
Disease is an emerging threat to coral reef ecosystems worldwide, highlighting the need to understand how environmental conditions interact with coral immune function and associated microbial communities to affect holobiont health. Increased coral disease incidence on reefs adjacent to permanently moored platforms on Australia's Great Barrier Reef provided a unique case study to investigate environment-host-microbe interactions in situ. Here, we evaluate coral-associated bacterial community (16S rRNA amplicon sequencing), immune function (protein-based prophenoloxidase-activating system), and water quality parameters before, during and after a disease event. Over the course of the study, 31% of tagged colonies adjacent to platforms developed signs of white syndrome (WS), while all control colonies on a platform-free reef remained visually healthy. Corals adjacent to platforms experienced significant reductions in coral immune function. Additionally, the corals at platform sites that remained visually healthy throughout the study had reduced bacterial diversity compared to healthy colonies at the platform-free site. Interestingly, prior to the observation of macroscopic disease, corals that would develop WS had reduced bacterial diversity and significantly greater community heterogeneity between colonies compared to healthy corals at the same location. These results suggest that activities associated with offshore marine infrastructure impacts coral immunocompetence and associated bacterial community, which affects the susceptibility of corals to disease.
Collapse
Affiliation(s)
- F. Joseph Pollock
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland, Australia
- Department of Ecology and Evolutionary Biology, Pennsylvania State University, University Park, PA, USA
| | - Joleah B. Lamb
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jeroen A. J. M. van de Water
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland, Australia
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, Monaco, Monaco
| | - Hillary A. Smith
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Britta Schaffelke
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Bette L. Willis
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland, Australia
| | - David G. Bourne
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- AIMS@JCU, Australian Institute of Marine Science and James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
17
|
Hadaidi G, Ziegler M, Shore-Maggio A, Jensen T, Aeby G, Voolstra CR. Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ 2018; 6:e5169. [PMID: 30013839 PMCID: PMC6046197 DOI: 10.7717/peerj.5169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/16/2018] [Indexed: 11/20/2022] Open
Abstract
Black Band Disease (BBD) is a widely distributed and destructive coral disease that has been studied on a global scale, but baseline data on coral diseases is missing from many areas of the Arabian Seas. Here we report on the broad distribution and prevalence of BBD in the Red Sea in addition to documenting a bleaching-associated outbreak of BBD with subsequent microbial community characterization of BBD microbial mats at this reef site in the southern central Red Sea. Coral colonies with BBD were found at roughly a third of our 22 survey sites with an overall prevalence of 0.04%. Nine coral genera were infected including Astreopora, Coelastrea, Dipsastraea, Gardineroseris, Goniopora, Montipora, Pavona, Platygyra, and Psammocora. For a southern central Red Sea outbreak site, overall prevalence was 40 times higher than baseline (1.7%). Differential susceptibility to BBD was apparent among coral genera with Dipsastraea (prevalence 6.1%), having more diseased colonies than was expected based on its abundance within transects. Analysis of the microbial community associated with the BBD mat showed that it is dominated by a consortium of cyanobacteria and heterotrophic bacteria. We detected the three main indicators for BBD (filamentous cyanobacteria, sulfate-reducing bacteria (SRB), and sulfide-oxidizing bacteria (SOB)), with high similarity to BBD-associated microbes found worldwide. More specifically, the microbial consortium of BBD-diseased coral colonies in the Red Sea consisted of Oscillatoria sp. (cyanobacteria), Desulfovibrio sp. (SRB), and Arcobacter sp. (SOB). Given the similarity of associated bacteria worldwide, our data suggest that BBD represents a global coral disease with predictable etiology. Furthermore, we provide a baseline assessment of BBD disease prevalence in the Red Sea, a still understudied region.
Collapse
Affiliation(s)
- Ghaida Hadaidi
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Amanda Shore-Maggio
- Institute of Marine and Environmental Technology (IMET), University of Maryland, Baltimore County, Baltimore, MD, United States of America
| | - Thor Jensen
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Greta Aeby
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, United States of America
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
18
|
Keller-Costa T, Eriksson D, Gonçalves JMS, Gomes NCM, Lago-Lestón A, Costa R. The gorgonian coral Eunicella labiata hosts a distinct prokaryotic consortium amenable to cultivation. FEMS Microbiol Ecol 2018; 93:4563573. [PMID: 29069352 DOI: 10.1093/femsec/fix143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/20/2017] [Indexed: 11/14/2022] Open
Abstract
Microbial communities inhabiting gorgonian corals are believed to benefit their hosts through nutrient provision and chemical defence; yet much remains to be learned about their phylogenetic uniqueness and cultivability. Here, we determined the prokaryotic community structure and distinctiveness in the gorgonian Eunicella labiata by Illumina sequencing of 16S rRNA genes from gorgonian and seawater metagenomic DNA. Furthermore, we used a 'plate-wash' methodology to compare the phylogenetic diversity of the 'total' gorgonian bacteriome and its 'cultivatable' fraction. With 1016 operational taxonomic units (OTUs), prokaryotic richness was higher in seawater than in E. labiata where 603 OTUs were detected, 68 of which were host-specific. Oceanospirillales and Rhodobacterales predominated in the E. labiata communities. One Oceanospirillales OTU, classified as Endozoicomonas, was particularly dominant, and closest relatives comprised exclusively uncultured clones from other gorgonians. We cultivated a remarkable 62% of the bacterial symbionts inhabiting E. labiata: Ruegeria, Sphingorhabdus, Labrenzia, other unclassified Rhodobacteraceae, Vibrio and Shewanella ranked among the 10 most abundant genera in both the cultivation-independent and dependent samples. In conclusion, the E. labiata microbiome is diverse, distinct from seawater and enriched in (gorgonian)-specific bacterial phylotypes. In contrast to current understanding, many dominant E. labiata symbionts can, indeed, be cultivated.
Collapse
Affiliation(s)
- Tina Keller-Costa
- Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Dominic Eriksson
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Jorge M S Gonçalves
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Newton C M Gomes
- Departamento de Biologia (CESAM), Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Asunción Lago-Lestón
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), 22860 Ensenada, Mexico
| | - Rodrigo Costa
- Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
19
|
Destoumieux-Garzón D, Rosa RD, Schmitt P, Barreto C, Vidal-Dupiol J, Mitta G, Gueguen Y, Bachère E. Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0300. [PMID: 27160602 DOI: 10.1098/rstb.2015.0300] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaculture contributes more than one-third of the animal protein from marine sources worldwide. A significant proportion of aquaculture products are derived from marine protostomes that are commonly referred to as 'marine invertebrates'. Among them, penaeid shrimp (Ecdysozosoa, Arthropoda) and bivalve molluscs (Lophotrochozoa, Mollusca) are economically important. Mass rearing of arthropods and molluscs causes problems with pathogens in aquatic ecosystems that are exploited by humans. Remarkably, species of corals (Cnidaria) living in non-exploited ecosystems also suffer from devastating infectious diseases that display intriguing similarities with those affecting farmed animals. Infectious diseases affecting wild and farmed animals that are present in marine environments are predicted to increase in the future. This paper summarizes the role of the main pathogens and their interaction with host immunity, with a specific focus on antimicrobial peptides (AMPs) and pathogen resistance against AMPs. We provide a detailed review of penaeid shrimp AMPs and their role at the interface between the host and its resident/pathogenic microbiota. We also briefly describe the relevance of marine invertebrate AMPs in an applied context.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Rafael Diego Rosa
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile
| | - Cairé Barreto
- Laboratory of Immunology Applied to Aquaculture, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Jeremie Vidal-Dupiol
- Ifremer, UMR 241 EIO, LabexCorail, BP 7004, 98719 Taravao, Tahiti, French Polynesia
| | - Guillaume Mitta
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Yannick Gueguen
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| | - Evelyne Bachère
- CNRS, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Ifremer, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France UPVD, Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France Université de Montpellier, Interactions Hôtes-Pathogènes-Environnements (IHPE, UMR5244), Place Eugène Bataillon, 34090 Montpellier cedex, France
| |
Collapse
|
20
|
Weber L, DeForce E, Apprill A. Optimization of DNA extraction for advancing coral microbiota investigations. MICROBIOME 2017; 5:18. [PMID: 28179023 PMCID: PMC5299696 DOI: 10.1186/s40168-017-0229-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/04/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND DNA-based sequencing approaches are commonly used to identify microorganisms and their genes and document trends in microbial community diversity in environmental samples. However, extraction of microbial DNA from complex environmental samples like corals can be technically challenging, and extraction methods may impart biases on microbial community structure. METHODS We designed a two-phase study in order to propose a comprehensive and efficient method for DNA extraction from microbial cells present in corals and investigate if extraction method influences microbial community composition. During phase I, total DNA was extracted from seven coral species in a replicated experimental design using four different MO BIO Laboratories, Inc., DNA Isolation kits: PowerSoil®, PowerPlant® Pro, PowerBiofilm®, and UltraClean® Tissue & Cells (with three homogenization permutations). Technical performance of the treatments was evaluated using DNA yield and amplification efficiency of small subunit ribosomal RNA (SSU ribosomal RNA (rRNA)) genes. During phase II, potential extraction biases were examined via microbial community analysis of SSU rRNA gene sequences amplified from the most successful DNA extraction treatments. RESULTS In phase I of the study, the PowerSoil® and PowerPlant® Pro extracts contained low DNA concentrations, amplified poorly, and were not investigated further. Extracts from PowerBiofilm® and UltraClean® Tissue and Cells permutations were further investigated in phase II, and analysis of sequences demonstrated that overall microbial community composition was dictated by coral species and not extraction treatment. Finer pairwise comparisons of sequences obtained from Orbicella faveolata, Orbicella annularis, and Acropora humilis corals revealed subtle differences in community composition between the treatments; PowerBiofilm®-associated sequences generally had higher microbial richness and the highest coverage of dominant microbial groups in comparison to the UltraClean® Tissue and Cells treatments, a result likely arising from using a combination of different beads during homogenization. CONCLUSIONS Both the PowerBiofilm® and UltraClean® Tissue and Cells treatments are appropriate for large-scale analyses of coral microbiota. However, studies interested in detecting cryptic microbial members may benefit from using the PowerBiofilm® DNA treatment because of the likely enhanced lysis efficiency of microbial cells attributed to using a variety of beads during homogenization. Consideration of the methodology involved with microbial DNA extraction is particularly important for studies investigating complex host-associated microbiota.
Collapse
Affiliation(s)
- Laura Weber
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institution Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge, MA 02139 USA
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543 USA
| | | | - Amy Apprill
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543 USA
| |
Collapse
|
21
|
Lin CH, Chuang CH, Twan WH, Chiou SF, Wong TY, Liu JK, Kao CY, Kuo J. Seasonal changes in bacterial communities associated with healthy and diseasedPoritescoral in southern Taiwan. Can J Microbiol 2016; 62:1021-1033. [DOI: 10.1139/cjm-2016-0100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the bacterial communities associated with healthy scleractinian coral Porites sp. with those associated with coral infected with pink spot syndrome harvested during summer and winter from waters off the coast of southern Taiwan. Members of the bacterial community associated with the coral were characterized by means of denaturing gradient gel electrophoresis (DGGE) of a short region of the 16S rRNA gene and clone library analysis. Of 5 different areas of the 16S rRNA gene, we demonstrated that the V3 hypervariable region is most suited to represent the coral-associated bacterial community. The DNA sequences of 26 distinct bands extracted from DGGE gels and 269 sequences of the 16S rRNA gene from clone libraries were determined. We found that the communities present in diseased coral were more heterogeneous than the bacterial communities of uninfected coral. In addition, bacterial communities associated with coral harvested in the summer were more diverse than those associated with coral collected in winter, regardless of the health status of the coral. Our study suggested that the compositions of coral-associated bacteria communities are complex, and the population of bacteria varies greatly between seasons and in coral of differing health status.
Collapse
Affiliation(s)
- Chorng-Horng Lin
- Department of Bioresources, DaYeh University, Chang-Hua 51591, Taiwan
| | - Chih-Hsiang Chuang
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
| | - Wen-Hung Twan
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
- Department of Life Sciences, National Taitung University, Taitung 95002, Taiwan
| | - Shu-Fen Chiou
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tit-Yee Wong
- Department of Biology, University of Memphis, Memphis, TN 38152, USA
| | - Jong-Kang Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chyuan-yao Kao
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
| | - Jimmy Kuo
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung 94450, Taiwan
- Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan
| |
Collapse
|
22
|
Séré M, Wilkinson DA, Schleyer MH, Chabanet P, Quod JP, Tortosa P. Characterisation of an atypical manifestation of black band disease on Porites lutea in the Western Indian Ocean. PeerJ 2016; 4:e2073. [PMID: 27441106 PMCID: PMC4941741 DOI: 10.7717/peerj.2073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Recent surveys conducted on Reunion Island coral reefs revealed an atypical manifestation of black band disease on the main framework building coral, Porites lutea. This BBD manifestation (PorBBD) presented a thick lighter-colored band, which preceded the typical BBD lesion. Whilst BBD aetiology has been intensively described worldwide, it remains unclear if corals with apparently similar lesions across coral reefs are affected by the same pathogens. Therefore, a multidisciplinary approach involving field surveys, gross lesion monitoring, histopathology and 454-pyrosequencing was employed to provide the first comprehensive characterization of this particular manifestation. Surveys conducted within two geomorphological zones over two consecutive summers and winters showed spatial and seasonal patterns consistent with those found for typical BBD. Genetic analyses suggested an uncharacteristically high level of Vibrio spp. bacterial infection within PorBBD. However, microscopic analysis revealed high densities of cyanobacteria, penetrating the compromised tissue as well as the presence of basophilic bodies resembling bacterial aggregates in the living tissue, adjacent to the bacterial mat. Additionally, classical BBD-associated cyanobacterial strains, genetically related to Pseudoscillatoria coralii and Roseofilum reptotaenium were identified and isolated and the presence of sulfate-reducers or sulfide-oxidizers such as Desulfovibrio and Arcobacter, previously shown to be associated with anoxic microenvironment within typical BBD was also observed, confirming that PorBBD is a manifestation of classical BBD.
Collapse
Affiliation(s)
- Mathieu Séré
- Agence pour la Recherche et la VAlorisation Marines (ARVAM), Saint-Denis, Réunion, France; Oceanographic Research Institute (ORI), Durban, KwaZulu-Natal, South Africa; UMR ENTROPIE, Labex CORAIL, Research Institute for the Development (IRD), Saint-Denis, Réunion, France
| | - David A Wilkinson
- Unité Mixte de Recherche "Processus Infectieux en Milieu Insulaire Tropical" (UMR PIMIT), Université de La Réunion, Inserm1187, CNRS9192, IRD249, Plateforme de Recherche CYROI , Saint Denis , Réunion , France
| | - Michael H Schleyer
- Oceanographic Research Institute (ORI) , Durban , KwaZulu-Natal , South Africa
| | - Pascale Chabanet
- UMR ENTROPIE, Labex CORAIL, Research Institute for the Development (IRD) , Saint-Denis , Réunion , France
| | - Jean-Pascal Quod
- Agence pour la Recherche et la VAlorisation Marines (ARVAM) , Saint-Denis , Réunion , France
| | - Pablo Tortosa
- Unité Mixte de Recherche "Processus Infectieux en Milieu Insulaire Tropical" (UMR PIMIT), Université de La Réunion, Inserm1187, CNRS9192, IRD249, Plateforme de Recherche CYROI , Saint Denis , Réunion , France
| |
Collapse
|
23
|
Unraveling the Physiological Roles of the Cyanobacterium Geitlerinema sp. BBD and Other Black Band Disease Community Members through Genomic Analysis of a Mixed Culture. PLoS One 2016; 11:e0157953. [PMID: 27336619 PMCID: PMC4918915 DOI: 10.1371/journal.pone.0157953] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/07/2016] [Indexed: 11/19/2022] Open
Abstract
Black band disease (BBD) is a cyanobacterial-dominated polymicrobial mat that propagates on and migrates across coral surfaces, necrotizing coral tissue. Culture-based laboratory studies have investigated cyanobacteria and heterotrophic bacteria isolated from BBD, but the metabolic potential of various BBD microbial community members and interactions between them remain poorly understood. Here we report genomic insights into the physiological and metabolic potential of the BBD-associated cyanobacterium Geitlerinema sp. BBD 1991 and six associated bacteria that were also present in the non-axenic culture. The essentially complete genome of Geitlerinema sp. BBD 1991 contains a sulfide quinone oxidoreductase gene for oxidation of sulfide, suggesting a mechanism for tolerating the sulfidic conditions of BBD mats. Although the operon for biosynthesis of the cyanotoxin microcystin was surprisingly absent, potential relics were identified. Genomic evidence for mixed-acid fermentation indicates a strategy for energy metabolism under the anaerobic conditions present in BBD during darkness. Fermentation products may supply carbon to BBD heterotrophic bacteria. Among the six associated bacteria in the culture, two are closely related to organisms found in culture-independent studies of diseased corals. Their metabolic pathways for carbon and sulfur cycling, energy metabolism, and mechanisms for resisting coral defenses suggest adaptations to the coral surface environment and biogeochemical roles within the BBD mat. Polysulfide reductases were identified in a Flammeovirgaceae genome (Bacteroidetes) and the sox pathway for sulfur oxidation was found in the genome of a Rhodospirillales bacterium (Alphaproteobacteria), revealing mechanisms for sulfur cycling, which influences virulence of BBD. Each genomic bin possessed a pathway for conserving energy from glycerol degradation, reflecting adaptations to the glycerol-rich coral environment. The presence of genes for detoxification of reactive oxygen species and resistance to antibiotics suggest mechanisms for combating coral defense strategies. This study builds upon previous research on BBD and provides new insights into BBD disease etiology.
Collapse
|
24
|
Flood BE, Fliss P, Jones DS, Dick GJ, Jain S, Kaster AK, Winkel M, Mußmann M, Bailey J. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity. Front Microbiol 2016; 7:603. [PMID: 27199933 PMCID: PMC4853749 DOI: 10.3389/fmicb.2016.00603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.
Collapse
Affiliation(s)
- Beverly E Flood
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Palmer Fliss
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of MinnesotaMinneapolis, MN, USA; Biotechnology Institute, University of MinnesotaSt. Paul, MN, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Anne-Kristin Kaster
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ Braunschweig, Germany
| | - Matthias Winkel
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
25
|
Arotsker L, Kramarsky-Winter E, Ben-Dov E, Kushmaro A. Microbial transcriptome profiling of black band disease in a Faviid coral during a seasonal disease peak. DISEASES OF AQUATIC ORGANISMS 2016; 118:77-89. [PMID: 26865237 DOI: 10.3354/dao02952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The etiology of black band disease (BBD), a persistent, globally distributed coral disease characterized by a dark microbial mat, is still unclear. A metatranscriptomics approach was used to unravel the roles of the major mat constituents in the disease process. By comparing the transcriptomes of the mat constituents with those of the surface microbiota of diseased and healthy corals, we showed a shift in bacterial composition and function in BBD-affected corals. mRNA reads of Cyanobacteria, Bacteroidetes and Firmicutes phyla were prominent in the BBD mat. Cyanobacterial adenosylhomocysteinase, involved in cyanotoxin production, was the most transcribed gene in the band consortium. Pathogenic and non-pathogenic forms of Vibrio spp., mainly transcribing the thiamine ABC transporter, were abundant and highly active in both the band and surface tissues. Desulfovibrio desulfuricans was the primary producer of sulfide in the band. Members of the Bacilli class expressed high levels of rhodanese, an enzyme responsible for cyanide and sulfide detoxification. These results offer a first look at the varied functions of the microbiota in the disease mat and surrounding coral surface and enabled us to develop an improved functional model for this disease.
Collapse
Affiliation(s)
- Luba Arotsker
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Be'er-Sheva 8410501, Israel
| | | | | | | |
Collapse
|
26
|
Lee STM, Davy SK, Tang SL, Fan TY, Kench PS. Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiol Ecol 2015; 91:fiv142. [PMID: 26564958 DOI: 10.1093/femsec/fiv142] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2015] [Indexed: 12/29/2022] Open
Abstract
The coral mucus may harbor commensal bacteria that inhibit growth of pathogens. Therefore, there is a need to understand the dynamics of bacterial communities between the coral mucus and tissues. Nubbins of Acropora muricata were subjected to increasing water temperatures of 26°C-33°C, to simultaneously explore the bacterial diversity in coral mucus and tissues by 16S rRNA gene amplicon sequencing. Photochemical efficiency of symbiotic dinoflagellates within the corals declined above 31°C. Both the mucus and tissues of healthy A. muricata were dominated by γ-Proteobacteria, but under thermal stress there was a shift towards bacteria from the Verrucomicrobiaceae and α-Proteobacteria. Members of Cyanobacteria, Flavobacteria and Sphingobacteria also become more prominent at higher temperatures. The relative abundance of Vibrio spp. in the coral mucus increased at 29°C, but at 31°C, there was a drop in the relative abundance of Vibrio spp. in the mucus, with a reciprocal increase in the tissues. On the other hand, during bleaching, the relative abundance of Endozoicomonas spp. decreased in the tissues with a reciprocal increase in the mucus. This is the first systematic experiment that shows the potential for a bacterial community shift between the coral surface mucus and tissues in a thermally stressed coral.
Collapse
Affiliation(s)
- Sonny T M Lee
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington. PO Box 600, Wellington 6140, New Zealand
| | - Sen-Lin Tang
- Microbial Lab, Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tung-Yung Fan
- Science Education Department and Industry Academia Collaboration Center, National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan
| | - Paul S Kench
- School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
27
|
Stevens EWN, Bailey JV, Flood BE, Jones DS, Gilhooly WP, Joye SB, Teske A, Mason OU. Barite encrustation of benthic sulfur-oxidizing bacteria at a marine cold seep. GEOBIOLOGY 2015; 13:588-603. [PMID: 26462132 DOI: 10.1111/gbi.12154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 07/18/2015] [Indexed: 06/05/2023]
Abstract
Crusts and chimneys composed of authigenic barite are found at methane seeps and hydrothermal vents that expel fluids rich in barium. Microbial processes have not previously been associated with barite precipitation in marine cold seep settings. Here, we report on the precipitation of barite on filaments of sulfide-oxidizing bacteria at a brine seep in the Gulf of Mexico. Barite-mineralized bacterial filaments in the interiors of authigenic barite crusts resemble filamentous sulfide-oxidizing bacteria of the genus Beggiatoa. Clone library and iTag amplicon sequencing of the 16S rRNA gene show that the barite crusts that host these filaments also preserve DNA of Candidatus Maribeggiatoa, as well as sulfate-reducing bacteria. Isotopic analyses show that the sulfur and oxygen isotope compositions of barite have lower δ(34)S and δ(18)O values than many other marine barite crusts, which is consistent with barite precipitation in an environment in which sulfide oxidation was occurring. Laboratory experiments employing isolates of sulfide-oxidizing bacteria from Gulf of Mexico seep sediments showed that under low sulfate conditions, such as those encountered in brine fluids, sulfate generated by sulfide-oxidizing bacteria fosters rapid barite precipitation localized on cell biomass, leading to the encrustation of bacteria in a manner reminiscent of our observations of barite-mineralized Beggiatoa in the Gulf of Mexico. The precipitation of barite directly on filaments of sulfide-oxidizing bacteria, and not on other benthic substrates, suggests that sulfide oxidation plays a role in barite formation at certain marine brine seeps where sulfide is oxidized to sulfate in contact with barium-rich fluids, either prior to, or during, the mixing of those fluids with sulfate-containing seawater in the vicinity of the sediment/water interface. As with many other geochemical interfaces that foster mineral precipitation, both biological and abiological processes likely contribute to the precipitation of barite at marine brine seeps such as the one studied here.
Collapse
Affiliation(s)
- E W N Stevens
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - J V Bailey
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - B E Flood
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - D S Jones
- Department of Earth Sciences, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - W P Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - S B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - A Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - O U Mason
- Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
28
|
Meyer JL, Gunasekera SP, Scott RM, Paul VJ, Teplitski M. Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. ISME JOURNAL 2015; 10:1204-16. [PMID: 26495995 DOI: 10.1038/ismej.2015.184] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/26/2015] [Accepted: 09/11/2015] [Indexed: 12/30/2022]
Abstract
Disruption of the microbiome often correlates with the appearance of disease symptoms in metaorganisms such as corals. In Black Band Disease (BBD), a polymicrobial disease consortium dominated by the filamentous cyanobacterium Roseofilum reptotaenium displaces members of the epibiotic microbiome. We examined both normal surface microbiomes and BBD consortia on Caribbean corals and found that the microbiomes of healthy corals were dominated by Gammaproteobacteria, in particular Halomonas spp., and were remarkably stable across spatial and temporal scales. In contrast, the microbial community structure in black band consortia was more variable and more diverse. Nevertheless, deep sequencing revealed that members of the disease consortium were present in every sampled surface microbiome of Montastraea, Orbicella and Pseudodiploria corals, regardless of the health status. Within the BBD consortium, we identified lyngbic acid, a cyanobacterial secondary metabolite. It strongly inhibited quorum sensing (QS) in the Vibrio harveyi QS reporters. The effects of lyngbic acid on the QS reporters depended on the presence of the CAI-1 receptor CqsS. Lyngbic acid inhibited luminescence in native coral Vibrio spp. that also possess the CAI-1-mediated QS. The effects of this naturally occurring QS inhibitor on bacterial regulatory networks potentially contribute to the structuring of the interactions within BBD consortia.
Collapse
Affiliation(s)
- Julie L Meyer
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| | | | - Raymond M Scott
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| | | | - Max Teplitski
- Soil and Water Science Department, Genetics Institute, University of Florida-Institute of Food and Agricultural Sciences, Gainesville, FL, USA.,Smithsonian Marine Station, Ft Pierce, FL, USA
| |
Collapse
|
29
|
Ng JCY, Chan Y, Tun HM, Leung FCC, Shin PKS, Chiu JMY. Pyrosequencing of the bacteria associated with Platygyra carnosus corals with skeletal growth anomalies reveals differences in bacterial community composition in apparently healthy and diseased tissues. Front Microbiol 2015; 6:1142. [PMID: 26539174 PMCID: PMC4611154 DOI: 10.3389/fmicb.2015.01142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/05/2015] [Indexed: 11/13/2022] Open
Abstract
Corals are rapidly declining globally due to coral diseases. Skeletal growth anomalies (SGA) or "coral tumors" are a group of coral diseases that affect coral reefs worldwide, including Hong Kong waters in the Indo-Pacific region. To better understand how bacterial communities may vary in corals with SGA, for the first time, we examined the bacterial composition associated with the apparently healthy and the diseased tissues of SGA-affected Platgyra carnosus using 16S ribosomal rRNA gene pyrosequencing. Taxonomic analysis revealed Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria as the main phyla in both the apparently healthy and the diseased tissues. A significant difference in the bacterial community composition was observed between the two conditions at the OTU level. Diseased tissues were associated with higher abundances of Acidobacteria and Gemmatimonadetes, and a lower abundance of Spirochaetes. Several OTUs belonging to Rhodobacteraceae, Rhizobiales, Gammaproteobacteria, and Cytophaga-Flavobacterium-Bacteroidetes (CFB) were strongly associated with the diseased tissues. These groups of bacteria may contain potential pathogens involved with the development of SGA or opportunistic secondary or tertiary colonizers that proliferated upon the health-compromised coral host. We suggest that these bacterial groups to be further studied based on inoculation experiments and testing of Koch's postulates in efforts to understand the etiology and progression of SGA.
Collapse
Affiliation(s)
- Jenny C Y Ng
- Department of Biology, Hong Kong Baptist University Hong Kong, Hong Kong
| | - Yuki Chan
- Department of Biology, Hong Kong Baptist University Hong Kong, Hong Kong ; Oral Biosciences, Faculty of Dentistry, The University of Hong Kong Hong Kong, Hong Kong ; School of Applied Sciences, Institute for Applied Ecology New Zealand, Auckland University of Technology Auckland, New Zealand
| | - Hein M Tun
- School of Biological Sciences, The University of Hong Kong Hong Kong, Hong Kong ; Department of Animal Science, University of Manitoba Winnipeg, MB, Canada
| | - Frederick C C Leung
- School of Biological Sciences, The University of Hong Kong Hong Kong, Hong Kong
| | - Paul K S Shin
- Department of Biology and Chemistry, City University of Hong Kong Hong Kong, Hong Kong ; State Key Laboratory in Marine Pollution Hong Kong, Hong Kong
| | - Jill M Y Chiu
- Department of Biology, Hong Kong Baptist University Hong Kong, Hong Kong ; State Key Laboratory in Marine Pollution Hong Kong, Hong Kong
| |
Collapse
|
30
|
Har JY, Helbig T, Lim JH, Fernando SC, Reitzel AM, Penn K, Thompson JR. Microbial diversity and activity in the Nematostella vectensis holobiont: insights from 16S rRNA gene sequencing, isolate genomes, and a pilot-scale survey of gene expression. Front Microbiol 2015; 6:818. [PMID: 26388838 PMCID: PMC4557100 DOI: 10.3389/fmicb.2015.00818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/27/2015] [Indexed: 01/08/2023] Open
Abstract
We have characterized the molecular and genomic diversity of the microbiota of the starlet sea anemone Nematostella vectensis, a cnidarian model for comparative developmental and functional biology and a year-round inhabitant of temperate salt marshes. Molecular phylogenetic analysis of 16S rRNA gene clone libraries revealed four ribotypes associated with N. vectensis at multiple locations and times. These associates include two novel ribotypes within the ε-Proteobacterial order Campylobacterales and the Spirochetes, respectively, each sharing <85% identity with cultivated strains, and two γ-Proteobacterial ribotypes sharing >99% 16S rRNA identity with Endozoicomonas elysicola and Pseudomonas oleovorans, respectively. Species-specific PCR revealed that these populations persisted in N. vectensis asexually propagated under laboratory conditions. cDNA indicated expression of the Campylobacterales and Endozoicomonas 16S rRNA in anemones from Sippewissett Marsh, MA. A collection of bacteria from laboratory raised N. vectensis was dominated by isolates from P. oleovorans and Rhizobium radiobacter. Isolates from field-collected anemones revealed an association with Limnobacter and Stappia isolates. Genomic DNA sequencing was carried out on 10 cultured bacterial isolates representing field- and laboratory-associates, i.e., Limnobacter spp., Stappia spp., P. oleovorans and R. radiobacter. Genomes contained multiple genes identified as virulence (host-association) factors while S. stellulata and L. thiooxidans genomes revealed pathways for mixotrophic sulfur oxidation. A pilot metatranscriptome of laboratory-raised N. vectensis was compared to the isolate genomes and indicated expression of ORFs from L. thiooxidans with predicted functions of motility, nutrient scavenging (Fe and P), polyhydroxyalkanoate synthesis for carbon storage, and selective permeability (porins). We hypothesize that such activities may mediate acclimation and persistence of bacteria in a N. vectensis holobiont defined by both internal and external gradients of chemicals and nutrients in a dynamic coastal habitat.
Collapse
Affiliation(s)
- Jia Y Har
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Tim Helbig
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Ju H Lim
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Samodha C Fernando
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte Charlotte, NC, USA
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Cambridge, MA, USA
| |
Collapse
|
31
|
Gignoux-Wolfsohn SA, Vollmer SV. Identification of Candidate Coral Pathogens on White Band Disease-Infected Staghorn Coral. PLoS One 2015; 10:e0134416. [PMID: 26241853 PMCID: PMC4524643 DOI: 10.1371/journal.pone.0134416] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/08/2015] [Indexed: 02/01/2023] Open
Abstract
Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.
Collapse
Affiliation(s)
- Sarah A. Gignoux-Wolfsohn
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
- * E-mail:
| | - Steven V. Vollmer
- Marine Science Center, Northeastern University, Nahant, Massachusetts, United States of America
| |
Collapse
|
32
|
Effects of Host Phylogeny and Habitats on Gut Microbiomes of Oriental River Prawn (Macrobrachium nipponense). PLoS One 2015; 10:e0132860. [PMID: 26168244 PMCID: PMC4500556 DOI: 10.1371/journal.pone.0132860] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 06/18/2015] [Indexed: 01/01/2023] Open
Abstract
The gut microbial community is one of the richest and most complex ecosystems on earth, and the intestinal microbes play an important role in host development and health. Next generation sequencing approaches, which rapidly produce millions of short reads that enable the investigation on a culture independent basis, are now popular for exploring microbial community. Currently, the gut microbiome in fresh water shrimp is unexplored. To explore gut microbiomes of the oriental river prawn (Macrobrachium nipponense) and investigate the effects of host genetics and habitats on the microbial composition, 454 pyrosequencing based on the 16S rRNA gene were performed. We collected six groups of samples, including M. nipponense shrimp from two populations, rivers and lakes, and one sister species (M. asperulum) as an out group. We found that Proteobacteria is the major phylum in oriental river prawn, followed by Firmicutes and Actinobacteria. Compositional analysis showed microbial divergence between the two shrimp species is higher than that between the two populations of one shrimp species collected from river and lake. Hierarchical clustering also showed that host genetics had a greater impact on the divergence of gut microbiome than host habitats. This finding was also congruent with the functional prediction from the metagenomic data implying that the two shrimp species still shared the same type of biological functions, reflecting a similar metabolic profile in their gut environments. In conclusion, this study provides the first investigation of the gut microbiome of fresh water shrimp, and supports the hypothesis of host species-specific signatures of bacterial community composition.
Collapse
|
33
|
Metatranscriptomic analysis of diminutive Thiomargarita-like bacteria ("Candidatus Thiopilula" spp.) from abyssal cold seeps of the Barbados Accretionary Prism. Appl Environ Microbiol 2015; 81:3142-56. [PMID: 25724961 DOI: 10.1128/aem.00039-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
Large sulfur-oxidizing bacteria in the family Beggiatoaceae are important players in the global sulfur cycle. This group contains members of the well-known genera Beggiatoa, Thioploca, and Thiomargarita but also recently identified and relatively unknown candidate taxa, including "Candidatus Thiopilula" spp. and "Ca. Thiophysa" spp. We discovered a population of "Ca. Thiopilula" spp. colonizing cold seeps near Barbados at a ∼4.7-km water depth. The Barbados population consists of spherical cells that are morphologically similar to Thiomargarita spp., with elemental sulfur inclusions and a central vacuole, but have much smaller cell diameters (5 to 40 μm). Metatranscriptomic analysis revealed that when exposed to anoxic sulfidic conditions, Barbados "Ca. Thiopilula" organisms expressed genes for the oxidation of elemental sulfur and the reduction of nitrogenous compounds, consistent with their vacuolated morphology and intracellular sulfur storage capability. Metatranscriptomic analysis further revealed that anaerobic methane-oxidizing and sulfate-reducing organisms were active in the sediment, which likely provided reduced sulfur substrates for "Ca. Thiopilula" and other sulfur-oxidizing microorganisms in the community. The novel observations of "Ca. Thiopilula" and associated organisms reported here expand our knowledge of the globally distributed and ecologically successful Beggiatoaceae group and thus offer insight into the composition and ecology of deep cold seep microbial communities.
Collapse
|
34
|
Ott BM, Rickards A, Gehrke L, Rio RVM. Characterization of shed medicinal leech mucus reveals a diverse microbiota. Front Microbiol 2015; 5:757. [PMID: 25620963 PMCID: PMC4288373 DOI: 10.3389/fmicb.2014.00757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
Microbial transmission through mucosal-mediated mechanisms is widespread throughout the animal kingdom. One example of this occurs with Hirudo verbana, the medicinal leech, where host attraction to shed conspecific mucus facilitates horizontal transmission of a predominant gut symbiont, the Gammaproteobacterium Aeromonas veronii. However, whether this mucus may harbor other bacteria has not been examined. Here, we characterize the microbiota of shed leech mucus through Illumina deep sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Additionally, Restriction Fragment Length Polymorphism (RFLP) typing with subsequent Sanger Sequencing of a 16S rRNA gene clone library provided qualitative confirmation of the microbial composition. Phylogenetic analyses of full-length 16S rRNA sequences were performed to examine microbial taxonomic distribution. Analyses using both technologies indicate the dominance of the Bacteroidetes and Proteobacteria phyla within the mucus microbiota. We determined the presence of other previously described leech symbionts, in addition to a number of putative novel leech-associated bacteria. A second predominant gut symbiont, the Rikenella-like bacteria, was also identified within mucus and exhibited similar population dynamics to A. veronii, suggesting persistence in syntrophy beyond the gut. Interestingly, the most abundant bacterial genus belonged to Pedobacter, which includes members capable of producing heparinase, an enzyme that degrades the anticoagulant, heparin. Additionally, bacteria associated with denitrification and sulfate cycling were observed, indicating an abundance of these anions within mucus, likely originating from the leech excretory system. A diverse microbiota harbored within shed mucus has significant potential implications for the evolution of microbiomes, including opportunities for gene transfer and utility in host capture of a diverse group of symbionts.
Collapse
Affiliation(s)
- Brittany M Ott
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Allen Rickards
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Lauren Gehrke
- Department of Biology, West Virginia University Morgantown, WV, USA
| | - Rita V M Rio
- Department of Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
35
|
Richardson LL, Stanić D, May A, Brownell A, Gantar M, Campagna SR. Ecology and Physiology of the Pathogenic Cyanobacterium Roseofilum reptotaenium. Life (Basel) 2014; 4:968-87. [PMID: 25517133 PMCID: PMC4284477 DOI: 10.3390/life4040968] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
Roseofilum reptotaenium is a gliding, filamentous, phycoerythrin-rich cyanobacterium that has been found only in the horizontally migrating, pathogenic microbial mat, black band disease (BBD) on Caribbean corals. R. reptotaenium dominates the BBD mat in terms of biomass and motility, and the filaments form the mat fabric. This cyanobacterium produces the cyanotoxin microcystin, predominately MC-LR, and can tolerate high levels of sulfide produced by sulfate reducing bacteria (SRB) that are also associated with BBD. Laboratory cultures of R. reptotaenium infect coral fragments, suggesting that the cyanobacterium is the primary pathogen of BBD, but since this species cannot grow axenically and Koch's Postulates cannot be fulfilled, it cannot be proposed as a primary pathogen. However, R. reptotaenium does play several major pathogenic roles in this polymicrobial disease. Here, we provide an overview of the ecology of this coral pathogen and present new information on R. reptotaenium ecophysiology, including roles in the infection process, chemotactic and other motility responses, and the effect of pH on growth and motility. Additionally, we show, using metabolomics, that exposure of the BBD microbial community to the cyanotoxin MC-LR affects community metabolite profiles, in particular those associated with nucleic acid biosynthesis.
Collapse
Affiliation(s)
- Laurie L Richardson
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Dina Stanić
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Amanda May
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| | - Abigael Brownell
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Miroslav Gantar
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
36
|
Comparing bacterial community composition of healthy and dark spot-affected Siderastrea siderea in Florida and the Caribbean. PLoS One 2014; 9:e108767. [PMID: 25289937 PMCID: PMC4188562 DOI: 10.1371/journal.pone.0108767] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/03/2014] [Indexed: 11/30/2022] Open
Abstract
Coral disease is one of the major causes of reef degradation. Dark Spot Syndrome (DSS) was described in the early 1990's as brown or purple amorphous areas of tissue on a coral and has since become one of the most prevalent diseases reported on Caribbean reefs. It has been identified in a number of coral species, but there is debate as to whether it is in fact the same disease in different corals. Further, it is questioned whether these macroscopic signs are in fact diagnostic of an infectious disease at all. The most commonly affected species in the Caribbean is the massive starlet coral Siderastrea siderea. We sampled this species in two locations, Dry Tortugas National Park and Virgin Islands National Park. Tissue biopsies were collected from both healthy colonies and those with dark spot lesions. Microbial-community DNA was extracted from coral samples (mucus, tissue, and skeleton), amplified using bacterial-specific primers, and applied to PhyloChip G3 microarrays to examine the bacterial diversity associated with this coral. Samples were also screened for the presence of a fungal ribotype that has recently been implicated as a causative agent of DSS in another coral species, but the amplifications were unsuccessful. S. siderea samples did not cluster consistently based on health state (i.e., normal versus dark spot). Various bacteria, including Cyanobacteria and Vibrios, were observed to have increased relative abundance in the discolored tissue, but the patterns were not consistent across all DSS samples. Overall, our findings do not support the hypothesis that DSS in S. siderea is linked to a bacterial pathogen or pathogens. This dataset provides the most comprehensive overview to date of the bacterial community associated with the scleractinian coral S. siderea.
Collapse
|
37
|
Zimmer BL, May AL, Bhedi CD, Dearth SP, Prevatte CW, Pratte Z, Campagna SR, Richardson LL. Quorum sensing signal production and microbial interactions in a polymicrobial disease of corals and the coral surface mucopolysaccharide layer. PLoS One 2014; 9:e108541. [PMID: 25268348 PMCID: PMC4182479 DOI: 10.1371/journal.pone.0108541] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/29/2014] [Indexed: 02/01/2023] Open
Abstract
Black band disease (BBD) of corals is a complex polymicrobial disease considered to be a threat to coral reef health, as it can lead to mortality of massive reef-building corals. The BBD community is dominated by gliding, filamentous cyanobacteria with a highly diverse population of heterotrophic bacteria. Microbial interactions such as quorum sensing (QS) and antimicrobial production may be involved in BBD disease pathogenesis. In this study, BBD (whole community) samples, as well as 199 bacterial isolates from BBD, the surface mucopolysaccharide layer (SML) of apparently healthy corals, and SML of apparently healthy areas of BBD-infected corals were screened for the production of acyl homoserine lactones (AHLs) and for autoinducer-2 (AI-2) activity using three bacterial reporter strains. AHLs were detected in all BBD (intact community) samples tested and in cultures of 5.5% of BBD bacterial isolates. Over half of a subset (153) of the isolates were positive for AI-2 activity. AHL-producing isolates were further analyzed using LC-MS/MS to determine AHL chemical structure and the concentration of (S)-4,5-dihydroxy-2,3-pentanedione (DPD), the biosynthetic precursor of AI-2. C6-HSL was the most common AHL variant detected, followed by 3OC4-HSL. In addition to QS assays, 342 growth challenges were conducted among a subset of the isolates, with 27% of isolates eliciting growth inhibition and 2% growth stimulation. 24% of BBD isolates elicited growth inhibition as compared to 26% and 32% of the bacteria from the two SML sources. With one exception, only isolates that exhibited AI-2 activity or produced DPD inhibited growth of test strains. These findings demonstrate for the first time that AHLs are present in an active coral disease. It is possible that AI-2 production among BBD and coral SML bacteria may structure the microbial communities of both a polymicrobial infection and the healthy coral microbiome.
Collapse
Affiliation(s)
- Beth L. Zimmer
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- Atkins North America, Miami, Florida, United States of America
| | - Amanda L. May
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Chinmayee D. Bhedi
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Stephen P. Dearth
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Carson W. Prevatte
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Zoe Pratte
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
| | - Shawn R. Campagna
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Laurie L. Richardson
- Department of Biological Sciences, Florida International University, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
38
|
Kramarsky-Winter E, Arotsker L, Rasoulouniriana D, Siboni N, Loya Y, Kushmaro A. The possible role of cyanobacterial filaments in coral black band disease pathology. MICROBIAL ECOLOGY 2014; 67:177-185. [PMID: 24141943 DOI: 10.1007/s00248-013-0309-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 10/02/2013] [Indexed: 06/02/2023]
Abstract
Black band disease (BBD), characterized by a black mat or line that migrates across a coral colony leaving behind it a bare skeleton, is a persistent disease affecting massive corals worldwide. Previous microscopic and molecular examination of this disease in faviid corals from the Gulf of Eilat revealed a number of possible pathogens with the most prominent being a cyanobacterium identified as Pseudoscillatoria coralii. We examined diseased coral colonies using histopathological and molecular methods in order to further assess the possible role of this cyanobacterium, its mode of entry, and pathological effects on the coral host tissues. Affected areas of colonies with BBD were sampled for examination using both light and transmission electron microscopies. Results showed that this dominant cyanobacterium was found on the coral surface, at the coral-skeletal interface, and invading the polyp tissues and gastrovascular cavity. Although tissues surrounding the invasive cyanobacterial filaments did not show gross morphological alterations, microscopic examination revealed that the coral cells surrounding the lesion were dissociated, necrotic, and highly vacuolated. No amoebocytes were evident in the mesoglea of affected tissues suggesting a possible repression of the coral immune response. Morphological and molecular similarity of the previously isolated BBD-associated cyanobacterium P. coralii to the current samples strengthens the premise that this species is involved in the disease in this coral. These results indicate that the cyanobacteria may play a pivotal role in this disease and that the mode of entry may be via ingestion, penetrating the coral via the gastrodermis, as well as through the skeletal-tissue interface.
Collapse
Affiliation(s)
- Esti Kramarsky-Winter
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | | | | | | | | | | |
Collapse
|
39
|
Kellogg CA, Piceno YM, Tom LM, DeSantis TZ, Gray MA, Zawada DG, Andersen GL. Comparing bacterial community composition between healthy and white plague-like disease states in Orbicella annularis using PhyloChip™ G3 microarrays. PLoS One 2013; 8:e79801. [PMID: 24278181 PMCID: PMC3835879 DOI: 10.1371/journal.pone.0079801] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Coral disease is a global problem. Diseases are typically named or described based on macroscopic changes, but broad signs of coral distress such as tissue loss or discoloration are unlikely to be specific to a particular pathogen. For example, there appear to be multiple diseases that manifest the rapid tissue loss that characterizes 'white plague.' PhyloChip™ G3 microarrays were used to compare the bacterial community composition of both healthy and white plague-like diseased corals. Samples of lobed star coral (Orbicella annularis, formerly of the genus Montastraea[1]) were collected from two geographically distinct areas, Dry Tortugas National Park and Virgin Islands National Park, to determine if there were biogeographic differences between the diseases. In fact, all diseased samples clustered together, however there was no consistent link to Aurantimonas coralicida, which has been described as the causative agent of white plague type II. The microarrays revealed a large amount of bacterial heterogeneity within the healthy corals and less diversity in the diseased corals. Gram-positive bacterial groups (Actinobacteria, Firmicutes) comprised a greater proportion of the operational taxonomic units (OTUs) unique to healthy samples. Diseased samples were enriched in OTUs from the families Corynebacteriaceae, Lachnospiraceae, Rhodobacteraceae, and Streptococcaceae. Much previous coral disease work has used clone libraries, which seem to be methodologically biased toward recovery of Gram-negative bacterial sequences and may therefore have missed the importance of Gram-positive groups. The PhyloChip™data presented here provide a broader characterization of the bacterial community changes that occur within Orbicella annularis during the shift from a healthy to diseased state.
Collapse
Affiliation(s)
- Christina A Kellogg
- United States Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, Florida, United States of America
| | | | | | | | | | | | | |
Collapse
|
40
|
Salman V, Bailey JV, Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuwenhoek 2013; 104:169-86. [PMID: 23793621 DOI: 10.1007/s10482-013-9952-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
The large sulphur bacteria, first discovered in the early nineteenth century, include some of the largest bacteria identified to date. Individual cells are often visible to the unaided eye and can reach 750 μm in diameter. The cells usually feature light-refracting inclusions of elemental sulphur and a large internal aqueous vacuole, which restricts the cytoplasm to the outermost periphery. In some taxa, it has been demonstrated that the vacuole can also serve for the storage of high millimolar concentrations of nitrate. Over the course of the past two centuries, a wide range of morphological variation within the family Beggiatoaceae has been found. However, representatives of this clade are frequently recalcitrant to current standard microbiological techniques, including 16S rRNA gene sequencing and culturing, and a reliable classification of these bacteria is often complicated. Here we present a summary of the efforts made and achievements accomplished in the past years, and give perspectives for investigating the heterogeneity and possible evolutionary developments in this extraordinary group of bacteria.
Collapse
Affiliation(s)
- Verena Salman
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA.
| | | | | |
Collapse
|
41
|
Kimes NE, Johnson WR, Torralba M, Nelson KE, Weil E, Morris PJ. The Montastraea faveolata microbiome: ecological and temporal influences on a Caribbean reef-building coral in decline. Environ Microbiol 2013; 15:2082-94. [PMID: 23750924 DOI: 10.1111/1462-2920.12130] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 02/18/2013] [Indexed: 11/27/2022]
Abstract
Coral-associated microbial communities, including protists, bacteria, archaea and viruses, are important components of the coral holobiont that influence the health of corals and coral reef ecosystems. Evidence suggests that the composition of these microbial communities is affected by numerous parameters; however, little is known about the confluence of these ecological and temporal effects. In this study, we used ribosomal RNA gene sequencing to identify the zooxanthellae, bacteria and archaea associated with healthy and yellow band diseased (YBD) colonies in the Media Luna reef of La Parguera, Puerto Rico, in order to examine the influence of YBD on the Montastraea faveolata microbiome. In addition, we evaluated the influence of season on the differences between healthy and YBD M. faveolata microbiomes by sampling from the same tagged colonies in both March and September of 2007. To the best of our knowledge, this is the first coral microbiome study to examine sequences from the zooxanthellar, bacterial and archaeal communities simultaneously from individual coral samples. Our results confirm differences in the M. faveolata zooxanthellar, bacterial and archaeal communities between healthy and YBD colonies in March; however, the September communities do not exhibit the same differences. Moreover, we provide evidence that the differences in the M. faveolata microbiomes between March and September are more significant than those observed between healthy and YBD. This data suggest that the entire coral microbiome, not just the bacterial community, is a dynamic environment where both disease and season play important roles.
Collapse
Affiliation(s)
- Nikole E Kimes
- Belle W. Baruch Institute for Marine and Coastal Sciences, University of South Carolina, Georgetown, SC 29442, USA
| | | | | | | | | | | |
Collapse
|
42
|
Paramasivam N, Ben-Dov E, Arotsker L, Kramarsky-Winter E, Zvuloni A, Loya Y, Kushmaro A. Bacterial consortium of Millepora dichotoma exhibiting unusual multifocal lesion event in the Gulf of Eilat, Red Sea. MICROBIAL ECOLOGY 2013; 65:50-59. [PMID: 22864854 DOI: 10.1007/s00248-012-0097-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/18/2012] [Indexed: 06/01/2023]
Abstract
Colonies of the hydrocoral Millepora dichotoma along the Gulf of Eilat are exhibiting unusual tissue lesions in the form of white spots. The emergence and rapid establishment of these multifocal tissue lesions was the first of its kind reported in this region. A characterization of this morphological anomaly revealed bleached tissues with a significant presence of bacteria in the tissue lesion area. To ascertain possible differences in microbial biota between the lesion area and non-affected tissues, we characterized the bacterial diversity in the two areas of these hydrocorals. Both culture-independent (molecular) and culture-dependent assays showed a shift in bacterial community structure between the healthy and affected tissues. Several 16S rRNA gene sequences retrieved from the affected tissues matched sequences of bacterial clones belonging to Alphaproteobacteria and Bacteroidetes members previously associated with various diseases in scleractinian corals.
Collapse
Affiliation(s)
- Nithyanand Paramasivam
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva, 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
43
|
Godwin S, Bent E, Borneman J, Pereg L. The role of coral-associated bacterial communities in Australian Subtropical White Syndrome of Turbinaria mesenterina. PLoS One 2012; 7:e44243. [PMID: 22970188 PMCID: PMC3435329 DOI: 10.1371/journal.pone.0044243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/31/2012] [Indexed: 01/21/2023] Open
Abstract
Australian Subtropical White Syndrome (ASWS) is an infectious, temperature dependent disease of the subtropical coral Turbinaria mesenterina involving a hitherto unknown transmissible causative agent. This report describes significant changes in the coral associated bacterial community as the disease progresses from the apparently healthy tissue of ASWS affected coral colonies, to areas of the colony affected by ASWS lesions, to the dead coral skeleton exposed by ASWS. In an effort to better understand the potential roles of bacteria in the formation of disease lesions, the effect of antibacterials on the rate of lesion progression was tested, and both culture based and culture independent techniques were used to investigate the bacterial communities associated with colonies of T. mesenterina. Culture-independent analysis was performed using the Oligonucleotide Fingerprinting of Ribosomal Genes (OFRG) technique, which allowed a library of 8094 cloned bacterial 16S ribosomal genes to be analysed. Interestingly, the bacterial communities associated with both healthy and disease affected corals were very diverse and ASWS associated communities were not characterized by a single dominant organism. Treatment with antibacterials had a significant effect on the rate of progress of disease lesions (p = 0.006), suggesting that bacteria may play direct roles as the causative agents of ASWS. A number of potential aetiological agents of ASWS were identified in both the culture-based and culture-independent studies. In the culture-independent study an Alphaproteobacterium closely related to Roseovarius crassostreae, the apparent aetiological agent of juvenile oyster disease, was found to be significantly associated with disease lesions. In the culture-based study Vibrio harveyi was consistently associated with ASWS affected coral colonies and was not isolated from any healthy colonies. The differing results of the culture based and culture-independent studies highlight the importance of using both approaches in the investigation of microbial communities.
Collapse
Affiliation(s)
- Scott Godwin
- Research Centre for Molecular Biology, School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - Elizabeth Bent
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
- Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - James Borneman
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, California, United States of America
| | - Lily Pereg
- Research Centre for Molecular Biology, School of Science and Technology, University of New England, Armidale, NSW, Australia
- * E-mail:
| |
Collapse
|
44
|
Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E. Changes in coral microbial communities in response to a natural pH gradient. THE ISME JOURNAL 2012; 6:1775-85. [PMID: 22437157 PMCID: PMC3498918 DOI: 10.1038/ismej.2012.19] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/21/2011] [Accepted: 02/10/2012] [Indexed: 01/08/2023]
Abstract
Surface seawater pH is currently 0.1 units lower than pre-industrial values and is projected to decrease by up to 0.4 units by the end of the century. This acidification has the potential to cause significant perturbations to the physiology of ocean organisms, particularly those such as corals that build their skeletons/shells from calcium carbonate. Reduced ocean pH could also have an impact on the coral microbial community, and thus may affect coral physiology and health. Most of the studies to date have examined the impact of ocean acidification on corals and/or associated microbiota under controlled laboratory conditions. Here we report the first study that examines the changes in coral microbial communities in response to a natural pH gradient (mean pH(T) 7.3-8.1) caused by volcanic CO(2) vents off Ischia, Gulf of Naples, Italy. Two Mediterranean coral species, Balanophyllia europaea and Cladocora caespitosa, were examined. The microbial community diversity and the physiological parameters of the endosymbiotic dinoflagellates (Symbiodinium spp.) were monitored. We found that pH did not have a significant impact on the composition of associated microbial communities in both coral species. In contrast to some earlier studies, we found that corals present at the lower pH sites exhibited only minor physiological changes and no microbial pathogens were detected. Together, these results provide new insights into the impact of ocean acidification on the coral holobiont.
Collapse
Affiliation(s)
- Dalit Meron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Riccardo Rodolfo-Metalpa
- Marine Institute, Marine Biology and Ecology Research Centre, University of Plymouth, Plymouth, UK
| | - Ross Cunning
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Andrew C Baker
- Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Interuniversity Institute for Marine Science in Eilat, Eilat, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
45
|
Enrichment and identification of large filamentous sulfur bacteria related to Beggiatoa species from brackishwater ecosystems of Tamil Nadu along the southeast coast of India. Syst Appl Microbiol 2012; 35:396-403. [DOI: 10.1016/j.syapm.2012.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 11/20/2022]
|
46
|
Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS One 2012; 7:e36687. [PMID: 22679480 PMCID: PMC3367994 DOI: 10.1371/journal.pone.0036687] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 04/04/2012] [Indexed: 12/31/2022] Open
Abstract
The health of the coral reefs of the Abrolhos Bank (southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the “paper park” of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens.
Collapse
|
47
|
Multiple self-splicing introns in the 16S rRNA genes of giant sulfur bacteria. Proc Natl Acad Sci U S A 2012; 109:4203-8. [PMID: 22371583 DOI: 10.1073/pnas.1120192109] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the small subunit rRNA serves as a prominent tool for the phylogenetic analysis and classification of Bacteria and Archaea owing to its high degree of conservation and its fundamental function in living organisms. Here we show that the 16S rRNA genes of not-yet-cultivated large sulfur bacteria, among them the largest known bacterium Thiomargarita namibiensis, regularly contain numerous self-splicing introns of variable length. The 16S rRNA genes can thus be enlarged to up to 3.5 kb. Remarkably, introns have never been identified in bacterial 16S rRNA genes before, although they are the most frequently sequenced genes today. This may be caused in part by a bias during the PCR amplification step that discriminates against longer homologs, as we show experimentally. Such length heterogeneity of 16S rRNA genes has so far never been considered when constructing 16S rRNA-based clone libraries, even though an elongation of rRNA genes due to intervening sequences has been reported previously. The detection of elongated 16S rRNA genes has profound implications for common methods in molecular ecology and may cause systematic biases in several techniques. In this study, catalyzed reporter deposition-fluorescence in situ hybridization on both ribosomes and rRNA precursor molecules as well as in vitro splicing experiments were performed and confirmed self-splicing of the introns. Accordingly, the introns do not inhibit the formation of functional ribosomes.
Collapse
|
48
|
Wilson B, Aeby GS, Work TM, Bourne DG. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa. FEMS Microbiol Ecol 2012; 80:509-20. [PMID: 22283330 DOI: 10.1111/j.1574-6941.2012.01319.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 01/03/2012] [Accepted: 01/19/2012] [Indexed: 11/30/2022] Open
Abstract
Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.
Collapse
Affiliation(s)
- Bryan Wilson
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, Townsville MC, Qld, Australia
| | | | | | | |
Collapse
|
49
|
Bruce T, de Castro A, Kruger R, Thompson CC, Thompson FL. Microbial Diversity of Brazilian Biomes. ADVANCES IN MICROBIAL ECOLOGY 2012. [DOI: 10.1007/978-1-4614-2182-5_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
50
|
Miller AW, Richardson LL. Fine structure analysis of black band disease (BBD) infected coral and coral exposed to the BBD toxins microcystin and sulfide. J Invertebr Pathol 2012; 109:27-33. [DOI: 10.1016/j.jip.2011.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|