1
|
Neudek K, Kunz T, Barth H, Schmidt H. Excess A-subunits of Shiga toxin 2a are produced in enterohemorrhagic Escherichia coli. Sci Rep 2025; 15:16712. [PMID: 40368985 PMCID: PMC12078605 DOI: 10.1038/s41598-025-01342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Shiga toxins (Stx) produced by Shiga toxin-producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) are ribosome-inactivating AB5 proteins that consist of one enzymatic active A-subunit (StxA) and a pentamer of non-covalently linked B-subunits (StxB). The description of Stx as an AB5 protein and the observation that A-subunits without their corresponding B-subunits also intoxicate eukaryotic cells, led to the question whether A- and B-subunits are produced in the bacteria in a 1:5 ratio or whether the A-subunit of the clinically most prominent subtype Stx2a is transcribed in excess revealing free A-subunits released in the bacterial environment. The aim of this study was therefore, to investigate the genetic and protein-based background for this observation in six Stx2a-encoding STEC and EHEC wildtype strains. For this purpose, transcriptional analysis of the Stx2a subunit genes, stxA2a and stxB2a, was performed by quantitative real-time PCR in one foodborne O113:H21 STEC isolate (strain TS18/08) and five HUS-associated EHEC strains with the serotypes O157:H7/H- (HUSEC003, HUSEC004), O103:H- (HUSEC008), O26:H11 (HUSEC018), and O104:H4 (LB226692). Contrary to the hypothesis that the A- and B-subunit genes are expressed in a ratio of 1:5 comparable to the holotoxin structure or in a ratio of 1:1 based on the operon structure, the results showed that stxA2a was expressed 1.90 ± 0.55-times stronger than the gene encoding the B-subunit, possibly indicating the presence of free A-subunits. In addition, strain-specific differences regarding the mRNA fold-changes of the A-subunit gene were observed. By use of native polyacrylamide gel electrophoresis and subsequent Western blot analysis, those single A-subunits were indeed detected in the culture supernatants of all six strains. To investigate whether the transcription ratios between A- and B-subunits observed are in a similar range as the amount of subunit proteins present after translation, a quantitative ELISA specific for StxA2a and StxB2a was established. Quantification of the subunits on protein level by use of ELISA revealed that the subunit ratio of StxA2a:StxB2a is 1.10 ± 0.20 for the strains HUSEC003, HUSEC004 and HUSEC008, but 4.63 ± 0.31 for the strains TS18/08, LB226692, and HUSEC018. The results of this study demonstrated that on both, the transcriptional and the translational level, the established 1:5 subunit ratio is not present in all investigated strains. In addition, the ratios observed after translation indicate that in some strains StxA2a subunits are even produced in higher amounts than B-subunits.
Collapse
Affiliation(s)
- Katrin Neudek
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Theresa Kunz
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany.
| |
Collapse
|
2
|
Gędas A, Schmidt H, Weiss A. Identification and evaluation of Escherichia coli strain ATCC 8739 as a surrogate for thermal inactivation of enterohemorrhagic Escherichia coli in fruit nectars: Impact of applied techniques on the decimal reduction time. Food Microbiol 2024; 122:104544. [PMID: 38839230 DOI: 10.1016/j.fm.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024]
Abstract
The objective of this study was to identify a suitable surrogate for E. coli O157:H7 strain 19685/91 and O113:H21 strain TS18/08, by assessing their thermal resistance at temperatures of 60 °C, 65 °C, and 72 °C in strawberry nectar. The influence of the matrix and the research methodology on the decimal reduction time (D-value) was investigated. Thermal kinetics and safety assessment demonstrated that E. coli ATCC 8739 is a suitable surrogate. The study demonstrated that the presence of fruit particles in the nectar increased thermal resistance of the tested strains. Variations in D-values were observed depending on the research method employed, with D-values in glass capillaries were up to 6.6 times lower compared to larger sample volumes. Encapsulation of E. coli ATCC 8739 exhibited high efficiency of 90.25 ± 0.26% and maintained stable viable counts after 26 days of storage in strawberry nectar at 4 °C. There were no significant differences in thermal resistance between surrogates directly inoculated into strawberry nectar and those encapsulated in alginate beads. Additionally, the encapsulated strains did not migrate outside the beads. Therefore, encapsulated E. coli ATCC 8739 in alginate beads can be effectively utilized in industrial settings to validate thermal treatments as a reliable and safe method.
Collapse
Affiliation(s)
- Astrid Gędas
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany; Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599, Stuttgart, Germany
| | - Agnes Weiss
- Food Microbiology, Hamburg School of Food Science, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| |
Collapse
|
3
|
Sallam KI, Abd-Elrazik Y, Raslan MT, Imre K, Morar A, Herman V, Zaher HA. Cefotaxime-, Ciprofloxacin-, and Extensively Drug-Resistant Escherichia coli O157:H7 and O55:H7 in Camel Meat. Foods 2023; 12:foods12071443. [PMID: 37048264 PMCID: PMC10094314 DOI: 10.3390/foods12071443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
The present study aimed to explore for the first time the occurrence and the antimicrobial resistance profiles of E. coli O157:H7 and O55:H7 isolates in camel meat in Egypt. Among the 110 camel meat samples examined using standardized microbiological techniques, 10 (9.1%) and 32 (29.1%) were positive for E. coli O157:H7 and E. coli O55:H7, respectively. In total, 24 isolates were verified as E. coli O157:H7, while 102 isolates were confirmed serologically as E. coli O55:H7. Multiplex PCR revealed the existence of eaeA, stx1, stx2, and EHEC-hlyA among E. coli O157:H7 and O55:H7 isolates (n = 126) at various percentages. According to their resistance against 14 antibiotics, 16.7% and 83.3% of O157:H7 isolates and 8.6% and 76.5% of O55:H7 isolates were classified into extensively drug-resistant and multi-drug-resistant, respectively, whereas 29.4% and 22.2% of E. coli isolates were resistant to cefotaxime and ciprofloxacin, respectively. The study results emphasize that camel meat may be a vehicle for multi- and extensively drug-resistant E. coli O157:H7 and O55:H7 strains, indicating a potential threat to public health. Further studies based on the molecular evidence of the antimicrobial resistance genes and enrolling a larger number of samples are recommended for a better understanding of the antimicrobial resistance phenomenon of camel-meat-originating pathogenic E. coli strains.
Collapse
|
4
|
Whole genome sequence-based characterisation of Shiga toxin-producing Escherichia coli isolated from game meat originating from several European countries. Sci Rep 2023; 13:3247. [PMID: 36828872 PMCID: PMC9957979 DOI: 10.1038/s41598-023-30333-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Game meat is becoming increasingly popular but may be contaminated with pathogenic bacteria such as Shiga toxin-producing Escherichia coli (STEC). STEC cause gastrointestinal illnesses including diarrhoea, haemorrhagic colitis (HC), and the haemolytic uremic syndrome (HUS). The aim of this study was to assess the occurrence of STEC in 92 meat samples from chamois (n = 2), red deer (n = 27), roe deer (n = 38), and wild boar (n = 25), from Switzerland and other European countries. After enrichment, Shiga-toxin encoding genes (stx) were detected by PCR in 78 (84%) of the samples and STEC were isolated from 23 (25%) of the same samples. Nine different serotypes and eight different sequence types (STs) were found, with O146:H28 ST738 (n = 10) and O110:H31 ST812 (n = 5) predominating. None of the STEC belonged to the so-called top-five serogroups O26, O103, O111, O145, and O157. Subtyping of stx identified stx1c (n = 9), stx2a (n = 1), stx2b (n = 19), stx2e (n = 2), and stx2g (n = 1). Additional virulence factors (VFs) comprised ehx (n = 12), iha (n = 21), sta1 (n = 1), and subAB (n = 19). None of the isolates contained the eae gene. Twenty-one STEC contained VFs associated with extra-intestinal pathogenic E. coli (ExPEC). Overall, the pathogenic potential of STEC in game meat is moderate, though the isolation of one STEC strain carrying stx2a, and of STEC/ExPEC hybrids suggests a role of game meat as a potential source of STEC infections in humans. Therefore, detailed knowledge of the safe handling and preparation of game meat is needed to prevent foodborne infections.
Collapse
|
5
|
Soni A, Bremer P, Brightwell G. A Comprehensive Review of Variability in the Thermal Resistance (D-Values) of Food-Borne Pathogens-A Challenge for Thermal Validation Trials. Foods 2022; 11:4117. [PMID: 36553859 PMCID: PMC9777713 DOI: 10.3390/foods11244117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The thermal processing of food relies heavily on determining the right time and temperature regime required to inactivate bacterial contaminants to an acceptable limit. To design a thermal processing regime with an accurate time and temperature combination, the D-values of targeted microorganisms are either referred to or estimated. The D-value is the time required at a given temperature to reduce the bacterial population by 90%. The D-value can vary depending on various factors such as the food matrix, the bacterial strain, and the conditions it has previously been exposed to; the intrinsic properties of the food (moisture, water activity, fat content, and pH); the method used to expose the microorganism to the thermal treatment either at the laboratory or commercial scale; the approach used to estimate the number of survivors; and the statistical model used for the analysis of the data. This review focused on Bacillus cereus, Cronobacter sakazakii, Escherichia coli, Listeria monocytogenes, and Clostridium perfringens owing to their pathogenicity and the availability of publications on their thermal resistance. The literature indicates a significant variation in D-values reported for the same strain, and it is concluded that when designing thermal processing regimes, the impact of multiple factors on the D-values of a specific microorganism needs to be considered. Further, owing to the complexity of the interactions involved, the effectiveness of regimes derived laboratory data must be confirmed within industrial food processing settings.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Palmerston North 4414, New Zealand
| | - Phil Bremer
- Department of Food Science, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North 4474, New Zealand
| | - Gale Brightwell
- Food System Integrity, Smart Foods and Bioproducts, AgResearch Ltd., Palmerston North 4414, New Zealand
- New Zealand Food Safety Science and Research Centre, Palmerston North 4474, New Zealand
| |
Collapse
|
6
|
Novel Aspects of the SubA Subunit of the Subtilase Cytotoxin. Toxins (Basel) 2022; 14:toxins14020156. [PMID: 35202183 PMCID: PMC8876466 DOI: 10.3390/toxins14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
The subtilase cytotoxin (SubAB) belongs to the family of AB5 toxins and is produced together with Shiga toxin (Stx) by certain Stx-producing E. coli strains (STEC). For most AB-type toxins, it is assumed that cytotoxic effects can only be induced by a complete holotoxin complex consisting of SubA and SubB. However, it has been shown for SubAB that the enzymatically active subunit SubA, without its transport and binding domain SubB, induces cell death in different eukaryotic cell lines. Interestingly, the molecular structure of SubA resembles that of the SubAB complex. SubA alone is capable of binding to cells and then being taken up autonomously. Once inside the host cell, SubA is transported, similar to the SubAB holotoxin, via a retrograde transport into the endoplasmatic reticulum (ER). In the ER, it exhibits its enzymatic activity by cleaving the chaperone BiP/GRP78 and thereby triggering cell death. Therefore, the existence of toxic single SubA subunits that have not found a B-pentamer for holotoxin assembly might improve the pathogenic potential of subtilase-producing strains. Moreover, from a pharmacological aspect, SubA might be an interesting molecule for the targeted transport of therapeutic molecules into the ER, in order to investigate and specifically modulate processes in the context of ER stress-associated diseases. Since recent studies on bacterial AB5 toxins contributed mainly to the understanding of the biology of AB-type holotoxins, this mini-review specifically focus on that recently observed single A-effect of the subtilase cytotoxin and addresses whether a fundamental shift of the traditional AB5 paradigm might be required.
Collapse
|
7
|
Ahmed AS, Diab HM, Alkahtani MA, Alshehri MA, Saber H, Badr H, Dandrawy MK, El-Mansi AA, Shati AA, Ahmed AE. Molecular epidemiology of virulent E. coli among rural small scale dairy herds and shops: Efficacy of selected marine algal extracts and disinfectants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:72-94. [PMID: 32053006 DOI: 10.1080/09603123.2020.1727422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Virulent pathotypes of E. coli seriously affect the livestock regarding the misuse of antibiotics. All 180 samples collected from cow's environment and dairy shops in Qena, Egypt were serologically and molecularly positive for coliforms. Enteropathogenic E. coli (EPEC), Shiga toxin-producing E. coli (STEC), Enteroinvasive E. coli (EIEC) and Enterotoxigenic E. coli (ETEC) pathotypes were isolated from water and milk-related samples. STEC serogroups O26, O55, O111, O113, O145 were also recovered. The non-O157 STEC serotypes were recovered from human diarrheagenic patients contacting cattle or consuming contaminated water/milk products. BlaCTX-M and blaTEM genes were detected in 25.5% and 100%, respectively. Disinfectants and algal extracts, identified by GC-MS, were evaluated in vitro for antibacterial activities. TH4+® disinfectant and methanol extract of Turbinaria decurrens reduced E. coli at 13 log10 at 1.5% and 3 mg/ml concentrations, respectively. Ag-NPs/T. decurrens showed 8-9 log10 reduction at concentration of 1.6 × 105 NPs/ml. Examined water sources, milk and milk products were potential reservoirs for virulent antibiotic-resistant E.coli which may impose animal and public health threats.Abbreviations: APEC: Avian pathogenic E. coli; blaCTX-M: β-lactamase inhibitors-Cefotaximase gene; blaTEM: β-lactamase inhibitors-Temoneira gene; CFU: Colony-forming unit; DAEC: Diffusely adherent E. coli; DEC: Diarrheagenic Escherichia coli; DEMSO: Dimethyl sulfoxide; eaeA: Intimin or E. coli attaching gene; EAEC: Enteroaggregative E. coli; EHEC: Enterohemorrhagic E. coli; EIEC: Enteroinvasive E. coli; EOSQC: Egyptian Organization for Standardization and Quality Control; EPEC: Enteropathogenic E. coli; ETEC: Enterotoxigenic E. coli; ExPEC: Extra-intestinal pathogenic E. coli; GC-MS: Gas chromatography-mass spectrometry technique; hly: Hemolysin gene; STEC: Shiga like producing E. coli; stx1: Shiga-toxin 1 gene; ESBLs: Extended-spectrum beta-lactamases.
Collapse
Affiliation(s)
- Ahmed S Ahmed
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Hassan M Diab
- Department of Animal and Poultry Health and Environment, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Mohammed A Alkahtani
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Hani Saber
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Heba Badr
- Bacteriology Unit, Reference Laboratory for Quality Control of Poultry Production, Animal Health Research Institute, El-Dokki- Giza, Egypt
| | - Mohamed K Dandrawy
- Department of Food Hygiene and Control (Milk Hygiene), Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Ahmed A El-Mansi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ali A Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
8
|
Heinisch L, Krause M, Roth A, Barth H, Schmidt H. Cytotoxic Effects of Recombinant StxA2-His in the Absence of Its Corresponding B-Subunit. Toxins (Basel) 2021; 13:toxins13050307. [PMID: 33925951 PMCID: PMC8145687 DOI: 10.3390/toxins13050307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/16/2022] Open
Abstract
AB5 protein toxins are produced by certain bacterial pathogens and are composed of an enzymatically active A-subunit and a B-subunit pentamer, the latter being responsible for cell receptor recognition, cellular uptake, and transport of the A-subunit into the cytosol of eukaryotic target cells. Two members of the AB5 toxin family were described in Shiga toxin-producing Escherichia coli (STEC), namely Shiga toxin (Stx) and subtilase cytotoxin (SubAB). The functional paradigm of AB toxins includes the B-subunit being mandatory for the uptake of the toxin into its target cells. Recent studies have shown that this paradigm cannot be maintained for SubAB, since SubA alone was demonstrated to intoxicate human epithelial cells in vitro. In the current study, we raised the hypothesis that this may also be true for the A-subunit of the most clinically relevant Stx-variant, Stx2a. After separate expression and purification, the recombinant Stx2a subunits StxA2a-His and StxB2a-His were applied either alone or in combination in a 1:5 molar ratio to Vero B4, HeLa, and HCT-116 cells. For all cell lines, a cytotoxic effect of StxA2a-His alone was detected. Competition experiments with Stx and SubAB subunits in combination revealed that the intoxication of StxA2a-His was reduced by addition of SubB1-His. This study showed that the enzymatic subunit StxA2a alone was active on different cells and might therefore play a yet unknown role in STEC disease development.
Collapse
Affiliation(s)
- Laura Heinisch
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Astrid Roth
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany;
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (L.H.); (M.K.); (A.R.)
- Correspondence: ; Tel.: +49-711-459-22305
| |
Collapse
|
9
|
Tsutsuki H, Ogura K, Moss J, Yahiro K. Host response to the subtilase cytotoxin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli. Microbiol Immunol 2020; 64:657-665. [PMID: 32902863 DOI: 10.1111/1348-0421.12841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/05/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Abstract
Shiga-toxigenic Escherichia coli (STEC) is a major bacterium responsible for disease resulting from foodborne infection, including bloody diarrhea and hemolytic uremic syndrome. STEC produces important virulence factors such as Shiga toxin (Stx) 1 and/or 2. In the STEC family, some locus of enterocyte effacement-negative STEC produce two different types of cytotoxins, namely, Stx2 and subtilase cytotoxin (SubAB). The Stx2 and SubAB cytotoxins are structurally similar and composed of one A subunit and pentamer of B subunits. The catalytically active A subunit of SubAB is a subtilase-like serine protease and specifically cleaves an endoplasmic reticulum (ER) chaperone 78-kDa glucose-regulated protein (GRP78/BiP), a monomeric ATPase that is crucial in protein folding and quality control. The B subunit binds to cell surface receptors. SubAB recognizes sialic carbohydrate-modified cell surface proteins as a receptor. After translocation into cells, SubAB is delivered to the ER, where it cleaves GRP78/BiP. SubAB-catalyzed BiP cleavage induces ER stress, which causes various cell events including inhibition of protein synthesis, suppression of nuclear factor-kappa B activation, apoptotic cell death, and stress granules formation. In this review, we describe SubAB, the SubAB receptor, and the mechanism of cell response to the toxin.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kinnosuke Yahiro
- Department of Molecular Infectiology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Krause M, Sessler K, Kaziales A, Grahl R, Noettger S, Barth H, Schmidt H. Variants of Escherichia coli Subtilase Cytotoxin Subunits Show Differences in Complex Formation In Vitro. Toxins (Basel) 2019; 11:toxins11120703. [PMID: 31816894 PMCID: PMC6950094 DOI: 10.3390/toxins11120703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
The subtilase cytotoxin (SubAB) of Shiga toxin-producing Escherichia coli (STEC) is a member of the AB5 toxin family. In the current study, we analyzed the formation of active homo- and hetero-complexes of SubAB variants in vitro to characterize the mode of assembly of the subunits. Recombinant SubA1-His, SubB1-His, SubA2-2-His, and SubB2-2-His subunits, and His-tag-free SubA2-2 were separately expressed, purified, and biochemically characterized by circular dichroism (CD) spectroscopy, size-exclusion chromatography (SEC), and analytical ultracentrifugation (aUC). To confirm their biological activity, cytotoxicity assays were performed with HeLa cells. The formation of AB5 complexes was investigated with aUC and isothermal titration calorimetry (ITC). Binding of SubAB2-2-His to HeLa cells was characterized with flow cytometry (FACS). Cytotoxicity experiments revealed that the analyzed recombinant subtilase subunits were biochemically functional and capable of intoxicating HeLa cells. Inhibition of cytotoxicity by Brefeldin A demonstrated that the cleavage is specific. All His-tagged subunits, as well as the non-tagged SubA2-2 subunit, showed the expected secondary structural compositions and oligomerization. Whereas SubAB1-His complexes could be reconstituted in solution, and revealed a Kd value of 3.9 ± 0.8 μmol/L in the lower micromolar range, only transient interactions were observed for the subunits of SubAB2-2-His in solution, which did not result in any binding constant when analyzed with ITC. Additional studies on the binding characteristics of SubAB2-2-His on HeLa cells revealed that the formation of transient complexes improved binding to the target cells. Conclusively, we hypothesize that SubAB variants exhibit different characteristics in their binding behavior to their target cells.
Collapse
Affiliation(s)
- Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (M.K.); (R.G.)
| | - Katharina Sessler
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (K.S.); (S.N.); (H.B.)
| | - Anna Kaziales
- Center for Integrated Protein Science Munich, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany;
| | - Richard Grahl
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (M.K.); (R.G.)
| | - Sabrina Noettger
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (K.S.); (S.N.); (H.B.)
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany; (K.S.); (S.N.); (H.B.)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany; (M.K.); (R.G.)
- Correspondence: ; Tel.: +49-711-459-22305
| |
Collapse
|
11
|
Hussien H, Elbehiry A, Saad M, Hadad G, Moussa I, Dawoud T, Mubarak A, Marzouk E. Molecular characterization of Escherichia coli isolated from cheese and biocontrol of Shiga toxigenic E. coli with essential oils. Ital J Food Saf 2019; 8:8291. [PMID: 31632932 PMCID: PMC6784595 DOI: 10.4081/ijfs.2019.8291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
The current research was carried out to study the incidence of Escherichia coli (E. coli) in Egyptian cheese (Kariesh and Ras) and molecular characterization of certain E. coli virulence genes (stx1, stx2, eaeA, hlyA and fimH) using multiplex PCR technique. Biocontrol of E. coli with essential oils (clove and thyme oil) was also studied. A total of 150 random samples of Kariesh and Ras cheese (75 each) were collected from various areas in Governorate of Menoufia. According to our results, the frequency of E. coli isolated from Kariesh and Ras cheese was 16% and 5.3%, respectively. Serological identification classified the E. coli strains into two groups, enterohemorrhagic E. coli (EHEC) serogroup (O26: H11, O91: H21, O111: H2 and O103: H2). While the enterotoxigenic E. coli (ETEC) serogroup were detected as O125: H21 which is the most prevalent strain. O171: H2, O86 and O119: H6 belonging to enteropathogenic E. coli (EPEC). The most prevalent gene detected in E. coli strains was stx1 (87.5%) followed by stx2 (86%), fimH (75%), hlyA (50%) and eaeA (25%) genes. Concerning the antimicrobial activity with essential oils, thyme oil (1%) is considered as the bactericidal effect against E. coli (ATCC35150) with improved the sensory evaluation than clove oil (1%). In conclusion, Kariesh and Ras cheese are extremely tainted with pathogenic E. coli strains, which represent a strong hazard on the human health.
Collapse
Affiliation(s)
- Heba Hussien
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Ayman Elbehiry
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Egypt.,Department of Public Health, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| | - Marwa Saad
- Food Control Department, Faculty of Veterinary Medicine, Shebin Al-Kom, Menofia University, Egypt
| | - Ghada Hadad
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Ihab Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Turki Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ayman Mubarak
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Eman Marzouk
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
12
|
Transcription of the Subtilase Cytotoxin Gene subAB 1 in Shiga Toxin-Producing Escherichia coli Is Dependent on hfq and hns. Appl Environ Microbiol 2019; 85:AEM.01281-19. [PMID: 31375495 DOI: 10.1128/aem.01281-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/30/2019] [Indexed: 01/06/2023] Open
Abstract
Certain foodborne Shiga toxin-producing Escherichia coli (STEC) strains carry genes encoding the subtilase cytotoxin (SubAB). Although the mode of action of SubAB is under intensive investigation, information about the regulation of subAB gene expression is currently not available. In this study, we investigated the regulation of the chromosomal subAB 1 gene in laboratory E. coli strain DH5α and STEC O113:H21 strain TS18/08 using a luciferase reporter gene assay. Special emphasis was given to the role of the global regulatory protein genes hfq and hns in subAB 1 promoter activity. Subsequently, quantitative real-time PCR was performed to analyze the expression of Shiga toxin 2a (Stx2a), SubAB1, and cytolethal distending toxin V (Cdt-V) genes in STEC strain TS18/08 and its isogenic hfq and hns deletion mutants. The deletion of hfq led to a significant increase of up to 2-fold in subAB 1 expression, especially in the late growth phase, in both strains. However, deletion of hns showed different effects on the promoter activity during the early and late exponential growth phases in both strains. Furthermore, upregulation of stx 2a and cdt-V was demonstrated in hfq and hns deletion mutants in TS18/08. These data showed that the expression of subAB 1, stx 2a, and cdt-V is integrated in the regulatory network of global regulators Hfq and H-NS in Escherichia coli IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of foodborne diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The pathogenicity of those strains can be attributed to, among other factors, the production of toxins. Recently, the subtilase cytotoxin was detected in locus of enterocyte effacement (LEE)-negative STEC, and it was confirmed that it contributes to the cytotoxicity of those STEC strains. Although the mode of action of SubAB1 is under intensive investigation, the regulation of gene expression is currently not known. The global regulatory proteins H-NS and Hfq have impact on many cellular processes and have been described to regulate virulence factors as well. Here, we investigate the role of hns and hfq in expression of subAB 1 as well as stx 2a and cdt-V in an E. coli laboratory strain as well as in wild-type STEC strain TS18/08.
Collapse
|
13
|
Sai CB, Srinivasan N, Zachariah JK, Dananjeyan B. Experimentation on artificial inoculation studies for persistence of shiga-like toxin-producing Escherichia coli (E. coli O157) in agricultural soils and vegetables using real-time PCR. J Food Biochem 2019; 43:e13035. [PMID: 31495947 DOI: 10.1111/jfbc.13035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Diarrheagenic Escherichia coli O157 is an important reason for largest food borne inflectional outbreaks. E. coli O157 invades into the food chain through contaminated irrigation water and soil causing infectious diseases to humans. In our previous study, we have evaluated the persistence of E. coli O157 through plate count methods. However, conventional cultural procedures are less sensitive to discriminate the pathogenic strain and are time consuming. Therefore, in the present study we have enumerated the persistence of E. coli O157 in soil and vegetables using specific shiga toxin genes (stx1, stx2) through quantitative PCR. Initially, we have standardized a simple Sephadex-based DNA extraction protocol that could detect 2-3 cells/25g of vegetables. Further, quantitative PCR analysis showed a 103 fold difference in the enumeration of persistence as compared to simple plating techniques. Thus, qPCR-based persistence study can be used for rapid and accurate detection techniques for analyzing E. coli O157 contamination. PRACTICAL APPLICATIONS: Our experiment on E. coli O157 expression could be used as a scale for further studies on E. coli O157 pollution in the cropped soils, additionally the DNA extraction protocol experimented by us could be used in all sensitive quantitative assays, as it could detect the expression in lowest cell loads. However, our methodology is a more reliable and sensitive assay compared to normal cultural methods. Our experiment provides a strong evidence of persistence of E. coli O157 prevailing up to half or full cropping season.
Collapse
Affiliation(s)
- Cayalvizhi B Sai
- Crop Improvement Division, National Rice Research Institute, Cuttack, Odisha
| | - Naganandini Srinivasan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - John Kennady Zachariah
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Balachandar Dananjeyan
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
14
|
Genetics, Toxicity, and Distribution of Enterohemorrhagic Escherichia coli Hemolysin. Toxins (Basel) 2019; 11:toxins11090502. [PMID: 31470552 PMCID: PMC6784236 DOI: 10.3390/toxins11090502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/26/2022] Open
Abstract
The ability to produce enterohemolysin is regarded as a potential virulence factor for enterohemorrhagic Escherichia coli (EHEC) and is frequently associated with severe human diseases such as hemorrhagic colitis (HC) and the hemolytic uremic syndrome (HUS). The responsible toxin, which has also been termed EHEC-hemolysin (EHEC-Hly, syn. Ehx), belongs to the Repeats in Toxin (RTX)-family of pore-forming cytolysins and is characterized by the formation of incomplete turbid lysis zones on blood agar plates containing defibrinated sheep erythrocytes. Besides the expression of Shiga toxins (Stx) and the locus of enterocyte effacement (LEE), EHEC-Hly is a commonly used marker for the detection of potential pathogenic E. coli strains, although its exact role in pathogenesis is not completely understood. Based on the current knowledge of EHEC-Hly, this review describes the influence of various regulator proteins, explains the different mechanisms leading to damage of target cells, discusses the diagnostic role, and gives an insight of the prevalence and genetic evolution of the toxin.
Collapse
|
15
|
Eißenberger K, Moench D, Drissner D, Weiss A, Schmidt H. Adherence factors of enterohemorrhagic Escherichia coli O157:H7 strain Sakai influence its uptake into the roots of Valerianella locusta grown in soil. Food Microbiol 2018; 76:245-256. [PMID: 30166148 DOI: 10.1016/j.fm.2018.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/27/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Increasing numbers of outbreaks caused by enterohemorrhagic Escherichia coli (EHEC) are associated with the consumption of contaminated fresh produce. The contamination of the plants may occur directly on the field via irrigation water, surface water, manure or fecal contamination. Suggesting a low infectious dose of 10 to 102 cells, internalization of EHEC into plant tissue presents a serious public health threat. Therefore, the ability of EHEC O157:H7 strain Sakai to adhere to and internalize into root tissues of the lamb's lettuce Valerianella locusta was investigated under the environmental conditions of a greenhouse. Moreover, the influence of the two adherence and colonization associated genes hcpA and iha was surveyed regarding their role for attachment and invasion. Upon soil contamination, the number of root-internalized cells of EHEC O157:H7 strain Sakai exceeded 102 cfu/g roots. Deletion of one or both of the adherence factor genes did not alter the overall attachment of EHEC O157:H7 strain Sakai to the roots, but significantly reduced the numbers of internalized bacteria by a factor of between 10 and 30, indicating their importance for invasion of EHEC O157:H7 strain Sakai into plant roots. This study identified intrinsic bacterial factors that play a crucial role during the internalization of EHEC O157:H7 strain Sakai into the roots of Valerianella locusta grown under the growth conditions in a greenhouse.
Collapse
Affiliation(s)
- Kristina Eißenberger
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Germany
| | - Doris Moench
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Germany
| | - David Drissner
- Microbiology of Plant Foods, Agroscope, Waedenswil, Switzerland; Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - Agnes Weiss
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Germany
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, University of Hohenheim, Germany.
| |
Collapse
|
16
|
Saile N, Schuh E, Semmler T, Eichhorn I, Wieler LH, Bauwens A, Schmidt H. Determination of virulence and fitness genes associated with the pheU, pheV and selC integration sites of LEE-negative food-borne Shiga toxin-producing Escherichia coli strains. Gut Pathog 2018; 10:43. [PMID: 30337962 PMCID: PMC6174562 DOI: 10.1186/s13099-018-0271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023] Open
Abstract
Background In the current study, nine foodborne “Locus of Enterocyte Effacement” (LEE)-negative Shiga toxin-producing Escherichia coli (STEC) strains were selected for whole genome sequencing and analysis for yet unknown genetic elements within the already known LEE integration sites selC, pheU and pheV. Foreign DNA ranging in size from 3.4 to 57 kbp was detected and further analyzed. Five STEC strains contained an insertion of foreign DNA adjacent to the selC tRNA gene and five and seven strains contained foreign DNA adjacent to the pheU and pheV tRNA genes, respectively. We characterized the foreign DNA insertion associated with selC (STEC O91:H21 strain 17584/1), pheU (STEC O8:H4 strain RF1a and O55:Hnt strain K30) and pheV (STEC O91:H21 strain 17584/1 and O113:H21 strain TS18/08) as examples. Results In total, 293 open reading frames partially encoding putative virulence factors such as TonB-dependent receptors, DNA helicases, a hemolysin activator protein precursor, antigen 43, anti-restriction protein KlcA, ShiA, and phosphoethanolamine transferases were detected. A virulence type IV toxin-antitoxin system was detected in three strains. Additionally, the ato system was found in one strain. In strain 17584/1 we were able to define a new genomic island which we designated GIselC17584/1. The island contained integrases and mobile elements in addition to genes for increased fitness and those playing a putative role in pathogenicity. Conclusion The data presented highlight the important role of the three tRNAs selC, pheU, and pheV for the genomic flexibility of E. coli. Electronic supplementary material The online version of this article (10.1186/s13099-018-0271-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadja Saile
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Elisabeth Schuh
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.,2Department Biological Safety, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | | | - Inga Eichhorn
- 4Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | | | - Andreas Bauwens
- 5Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Herbert Schmidt
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| |
Collapse
|
17
|
Krause M, Barth H, Schmidt H. Toxins of Locus of Enterocyte Effacement-Negative Shiga Toxin-Producing Escherichia coli. Toxins (Basel) 2018; 10:toxins10060241. [PMID: 29903982 PMCID: PMC6024878 DOI: 10.3390/toxins10060241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Studies on Shiga toxin-producing Escherichia coli (STEC) typically examine and classify the virulence gene profiles based on genomic analyses. Among the screened strains, a subgroup of STEC which lacks the locus of enterocyte effacement (LEE) has frequently been identified. This raises the question about the level of pathogenicity of such strains. This review focuses on the advantages and disadvantages of the standard screening procedures in virulence profiling and summarizes the current knowledge concerning the function and regulation of toxins encoded by LEE-negative STEC. Although LEE-negative STEC usually come across as food isolates, which rarely cause infections in humans, some serotypes have been implicated in human diseases. In particular, the LEE-negative E. coli O104:H7 German outbreak strain from 2011 and the Australian O113:H21 strain isolated from a HUS patient attracted attention. Moreover, the LEE-negative STEC O113:H21 strain TS18/08 that was isolated from minced meat is remarkable in that it not only encodes multiple toxins, but in fact expresses three different toxins simultaneously. Their characterization contributes to understanding the virulence of the LEE-negative STEC.
Collapse
Affiliation(s)
- Maike Krause
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
18
|
Hamed OM, Sabry MA, Hassanain NA, Hamza E, Hegazi AG, Salman MB. Occurrence of virulent and antibiotic-resistant Shiga toxin-producing Escherichia coli in some food products and human stool in Egypt. Vet World 2017; 10:1233-1240. [PMID: 29184370 PMCID: PMC5682269 DOI: 10.14202/vetworld.2017.1233-1240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022] Open
Abstract
AIM Shiga toxin-producing Escherichia coli (STEC) represent a severe public health issue worldwide, causing life-threatening diseases in the human gastrointestinal tract. This study aimed to determine the occurrence of virulent and antibiotic-resistant STEC in retail meat and milk products and human stool samples and to characterize the genes encoding for virulence and antibiotic resistance among the identified STEC isolates. MATERIALS AND METHODS A total of 260 food samples were randomly collected from retail markets in different localities of El Giza Governorate, Egypt. 50 stool specimens were obtained from children that had diarrhea at Embaba Fever Hospital. All collected samples were initially subjected to bacteriological examination and serotyping, and then subsequently, the isolates were exposed to polymerase chain reaction application and sequencing for the identification of the virulence-related genes. Finally, the virulent STEC isolates were tested for antibiotic susceptibility. RESULTS Serotyping of the 76 biochemically identified isolates showed that 18 were STEC with a predominance of non-O157 (16) while 2 O157:K-serotype was detected only in one food and one human isolate. Molecular identification of the virulence genes illustrated that the minced meat showed the highest prevalence of STEC (8%) as compared to the other food products. In the humans, the O157 was the only serotype that expresses the Shiga toxin-associated gene (eaeA). Antibiotic susceptibility test displayed that 13 of the 17 food and human isolates (76.47%) were resistant to cephalothin (KF30). 9 of the 13 cephalothin-resistant isolates harbor the β lactamase (blaTEM )-resistant gene. All isolates were sensitive to chloramphenicol, ciprofloxacin, amikacin, and gentamicin. DNA sequencing and phylogenetic analysis of the stx2-positive minced meat isolate revealed a high genetic relatedness with beef minced meat from the USA and Australia. CONCLUSION This study showed the predominance of non-O157 among the identified isolates. Minced meat showed the highest prevalence of STEC as compared to the other food products, and this work illustrates the necessity to consider the food products as a potential source of the non-O157 STEC serotypes. DNA sequencing and phylogenetic analysis revealed a high genetic relatedness with beef minced meat from the USA and Australia. This highlights the high probability of worldwide spread of such serotypes, signifying the importance of the one world concept.
Collapse
Affiliation(s)
- Osman Mohamed Hamed
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha Ahmed Sabry
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Nawal A. Hassanain
- Department of Zoonotic Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Eman Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ahmed G. Hegazi
- Department of Zoonotic Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| | - Marwa Badawy Salman
- Department of Zoonotic Diseases, Veterinary Research Division, National Research Centre, Giza, Egypt
| |
Collapse
|
19
|
Ranjbar R, Sheikhshahrokh A, Jonaidi Jafari N. Shiga (vero) toxin producingEscherichia coliin various types of food stuffs; virulence factors, O-serogroups and antimicrobial resistance properties. J Food Saf 2016. [DOI: 10.1111/jfs.12312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences; Tehran Iran
| | | | | |
Collapse
|
20
|
Baranzoni GM, Fratamico PM, Gangiredla J, Patel I, Bagi LK, Delannoy S, Fach P, Boccia F, Anastasio A, Pepe T. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Front Microbiol 2016; 7:574. [PMID: 27148249 PMCID: PMC4838603 DOI: 10.3389/fmicb.2016.00574] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.
Collapse
Affiliation(s)
- Gian Marco Baranzoni
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Pina M Fratamico
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Isha Patel
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Lori K Bagi
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Sabine Delannoy
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Patrick Fach
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Federica Boccia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| |
Collapse
|
21
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in the intestine of ruminant species of wild and domestic animals. Excretion of STEC with animal feces results in a broad contamination of food and the environment. Humans get infected with STEC through ingestion of contaminated food, by contact with the environment, and from STEC-excreting animals and humans. STEC strains can behave as human pathogens, and some of them, called enterohemorrhagic E. coli (EHEC), may cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Because of the diversity of STEC types, detection strategies for STEC and EHEC are based on the identification of Shiga toxins or the underlying genes. Cultural enrichment of STEC from test samples is needed for identification, and different protocols were developed for this purpose. Multiplex real-time PCR protocols (ISO/CEN TS13136 and USDA/FSIS MLG5B.01) have been developed to specifically identify EHEC by targeting the LEE (locus of enterocyte effacement)-encoded eae gene and genes for EHEC-associated O groups. The employment of more genetic markers (nle and CRISPR) is a future challenge for better identification of EHEC from any kinds of samples. The isolation of STEC or EHEC from a sample is required for confirmation, and different cultivation protocols and media for this purpose have been developed. Most STEC strains present in food, animals, and the environment are eae negative, but some of these strains can cause HC and HUS in humans as well. Phenotypic assays and molecular tools for typing EHEC and STEC strains are used to detect and characterize human pathogenic strains among members of the STEC group.
Collapse
|
22
|
Mir RA, Weppelmann TA, Elzo M, Ahn S, Driver JD, Jeong KC. Colonization of Beef Cattle by Shiga Toxin-Producing Escherichia coli during the First Year of Life: A Cohort Study. PLoS One 2016; 11:e0148518. [PMID: 26849041 PMCID: PMC4743843 DOI: 10.1371/journal.pone.0148518] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Each year Shiga toxin-producing Escherichia coli (STEC) are responsible for 2.8 million acute illnesses around the world and > 250,000 cases in the US. Lowering the prevalence of this pathogen in animal reservoirs has the potential to reduce STEC outbreaks in humans by controlling its entrance into the food chain. However, factors that modulate the colonization and persistence of STEC in beef cattle remain largely unidentified. This study evaluated if animal physiological factors such as age, breed, sex, and weight gain influenced the shedding of STEC in beef cattle. A cohort of beef calves (n = 260) from a multi-breed beef calf population was sampled every three months after birth to measure prevalence and concentration of STEC during the first year of life. Metagenomic analysis was also used to understand the association between the STEC colonization and the composition of gut microflora. This study identified that beef calves were more likely to shed STEC during the first 6 months and that STEC shedding decreased as the animal matured. Animal breed group, sex of the calf, and average weight gain were not significantly associated with STEC colonization. The metagenomic analysis revealed for the first time that STEC colonization was correlated with a lower diversity of gut microflora, which increases as the cattle matured. Given these findings, intervention strategies that segregate younger animals, more likely to be colonized by STEC from older animals that are ready to be harvested, could be investigated as a method to reduce zoonotic transmission of STEC from cattle to humans.
Collapse
Affiliation(s)
- Raies A. Mir
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Thomas A. Weppelmann
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States of America
| | - Mauricio Elzo
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Soohyoun Ahn
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - J. Danny Driver
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - KwangCheol Casey Jeong
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hauser E, Bruederle M, Reich C, Bruckbauer A, Funk J, Schmidt H. Subtilase contributes to the cytotoxicity of a Shiga toxin-producing Escherichia coli strain encoding three different toxins. Int J Food Microbiol 2015; 217:156-61. [PMID: 26523884 DOI: 10.1016/j.ijfoodmicro.2015.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 11/24/2022]
Abstract
Food-borne Shiga toxin-producing Escherichia coli (STEC) O113:H21 strain TS18/08, that has previously been isolated from mixed minced meat, harbors the Shiga toxin (Stx) encoding allele stx2a, the plasmid-located subtilase cytotoxin encoding allele subAB1 and the cytolethal distending toxin type V encoding gene cdt-V. In the current study, it could be shown that each of these toxin genes was transcribed with different transcription levels at different time points by RT real time PCR under laboratory batch conditions in LB-broth. The transcription maximum for cdt-V and subAB1 was observed after 3h while stx2a transcription was highest after 6h of incubation. During this time the mean relationship of the amount of stx2a:subAB1:cdt-V transcripts was 1:26:100. Furthermore, isogenic stx2a and cdt-V chromosomal deletion mutants were constructed to measure the contribution of SubAB1 to the overall cytotoxicity of this strain. In this context, a further copy of stx2 was detected in this strain and was also deleted. Comparing the cytotoxicity of supernatants of the resulting mutant strains TS18/08-3 (Δstx2-1Δstx2-2Δcdt-V) and TS18/08-4 (Δstx2-1Δstx2-2Δcdt-VΔsubAB1) on Vero cells demonstrated a contribution of SubAB1 to the overall cytotoxic effect while the 4-fold isogenic deletion mutant did not show any cytotoxic effect and that was comparable to the non-toxic laboratory E. coli strain C600. The cytotoxic effect could be restored by complementation with the recombinant low copy plasmid pWSK29 harboring subAB1 under the control of its own promoter. In addition, the cytotoxicity of wild type strain TS18/08 to Vero cells was in the same range as the EHEC O157:H7 strain EDL933. Therefore, food-borne STEC O113:H21 strain TS18/08 can be considered as a putative human pathogen.
Collapse
Affiliation(s)
- Elisabeth Hauser
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Matthias Bruederle
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Carolin Reich
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Annette Bruckbauer
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Joschua Funk
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, Department of Food Microbiology and Hygiene, Garbenstrasse 28, University of Hohenheim, 70599 Stuttgart, Germany.
| |
Collapse
|
24
|
Livezey KW, Groschel B, Becker MM. Use of the ecf1 gene to detect Shiga toxin-producing Escherichia coli in beef samples. J Food Prot 2015; 78:675-84. [PMID: 25836391 DOI: 10.4315/0362-028x.jfp-14-417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Escherichia coli O157:H7 and six serovars (O26, O103, O121, O111, O145, and O45) are frequently implicated in severe clinical illness worldwide. Standard testing methods using stx, eae, and O serogroup-specific gene sequences for detecting the top six non-O157 STEC bear the disadvantage that these genes may reside, independently, in different nonpathogenic organisms, leading to false-positive results. The ecf operon has previously been identified in the large enterohemolysin-encoding plasmid of eae-positive Shiga toxin-producing E. coli (STEC). Here, we explored the utility of the ecf operon as a single marker to detect eae-positive STEC from pure broth and primary meat enrichments. Analysis of 501 E. coli isolates demonstrated a strong correlation (99.6%) between the presence of the ecf1 gene and the combined presence of stx, eae, and ehxA genes. Two large studies were carried out to determine the utility of an ecf1 detection assay to detect non-O157 STEC strains in enriched meat samples in comparison to the results using the U. S. Department of Agriculture Food Safety and Inspection Service (FSIS) method that detects stx and eae genes. In ground beef samples (n = 1,065), the top six non-O157 STEC were detected in 4.0% of samples by an ecf1 detection assay and in 5.0% of samples by the stx- and eae-based method. In contrast, in beef samples composed largely of trim (n = 1,097), the top six non-O157 STEC were detected at 1.1% by both methods. Estimation of false-positive rates among the top six non-O157 STEC revealed a lower rate using the ecf1 detection method (0.5%) than using the eae and stx screening method (1.1%). Additionally, the ecf1 detection assay detected STEC strains associated with severe illness that are not included in the FSIS regulatory definition of adulterant STEC.
Collapse
Affiliation(s)
- Kristin W Livezey
- Roka Bioscience, Inc., 10398 Pacific Center Court, San Diego, California 92121, USA
| | - Bettina Groschel
- Roka Bioscience, Inc., 10398 Pacific Center Court, San Diego, California 92121, USA
| | - Michael M Becker
- Roka Bioscience, Inc., 10398 Pacific Center Court, San Diego, California 92121, USA.
| |
Collapse
|
25
|
Cytotoxic and apoptotic effects of recombinant subtilase cytotoxin variants of shiga toxin-producing Escherichia coli. Infect Immun 2015; 83:2338-49. [PMID: 25824835 DOI: 10.1128/iai.00231-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/20/2015] [Indexed: 12/24/2022] Open
Abstract
In this study, the cytotoxicity of the recently described subtilase variant SubAB2-2 of Shiga toxin-producing Escherichia coli was determined and compared to the plasmid-encoded SubAB1 and the chromosome-encoded SubAB2-1 variant. The genes for the respective enzymatic active (A) subunits and binding (B) subunits of the subtilase toxins were amplified and cloned. The recombinant toxin subunits were expressed and purified. Their cytotoxicity on Vero cells was measured for the single A and B subunits, as well as for mixtures of both, to analyze whether hybrids with toxic activity can be identified. The results demonstrated that all three SubAB variants are toxic for Vero cells. However, the values for the 50% cytotoxic dose (CD50) differ for the individual variants. Highest cytotoxicity was shown for SubAB1. Moreover, hybrids of subunits from different subtilase toxins can be obtained which cause substantial cytotoxicity to Vero cells after mixing the A and B subunits prior to application to the cells, which is characteristic for binary toxins. Furthermore, higher concentrations of the enzymatic subunit SubA1 exhibited cytotoxic effects in the absence of the respective B1 subunit. A more detailed investigation in the human HeLa cell line revealed that SubA1 alone induced apoptosis, while the B1 subunit alone did not induce cell death.
Collapse
|
26
|
Hoang Minh S, Kimura E, Hoang Minh D, Honjoh KI, Miyamoto T. Virulence characteristics of Shiga toxin-producingEscherichia colifrom raw meats and clinical samples. Microbiol Immunol 2015; 59:114-22. [DOI: 10.1111/1348-0421.12235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Son Hoang Minh
- Laboratory of Food Hygienic Chemistry; Department of Bioscience and Biotechnology, Faculty of Agriculture; Kyushu University. 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| | - Etsuko Kimura
- Laboratory of Food Hygienic Chemistry; Department of Bioscience and Biotechnology, Faculty of Agriculture; Kyushu University. 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| | - Duc Hoang Minh
- Laboratory of Food Hygienic Chemistry; Department of Bioscience and Biotechnology, Faculty of Agriculture; Kyushu University. 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| | - Ken-ichi Honjoh
- Laboratory of Food Hygienic Chemistry; Department of Bioscience and Biotechnology, Faculty of Agriculture; Kyushu University. 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| | - Takahisa Miyamoto
- Laboratory of Food Hygienic Chemistry; Department of Bioscience and Biotechnology, Faculty of Agriculture; Kyushu University. 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581 Japan
| |
Collapse
|
27
|
Diverse virulence gene content of Shiga toxin-producing Escherichia coli from finishing swine. Appl Environ Microbiol 2014; 80:6395-402. [PMID: 25107960 DOI: 10.1128/aem.01761-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections are a critical public health concern because they can cause severe clinical outcomes, such as hemolytic uremic syndrome, in humans. Determining the presence or absence of virulence genes is essential in assessing the potential pathogenicity of STEC strains. Currently, there is limited information about the virulence genes carried by swine STEC strains; therefore, this study was conducted to examine the presence and absence of 69 virulence genes in STEC strains recovered previously from finishing swine in a longitudinal study. A subset of STEC strains was analyzed by pulsed-field gel electrophoresis (PFGE) to examine their genetic relatedness. Swine STEC strains (n = 150) were analyzed by the use of a high-throughput real-time PCR array system, which included 69 virulence gene targets. Three major pathotypes consisted of 16 different combinations of virulence gene profiles, and serotypes were determined in the swine STEC strains. The majority of the swine STEC strains (n = 120) belonged to serotype O59:H21 and carried the same virulence gene profile, which consisted of 9 virulence genes: stx2e, iha, ecs1763, lpfAO113, estIa (STa), ehaA, paa, terE, and ureD. The eae, nleF, and nleH1-2 genes were detected in one swine STEC strain (O49:H21). Other genes encoding adhesins, including iha, were identified (n = 149). The PFGE results demonstrated that swine STEC strains from pigs raised in the same finishing barn were closely related. Our results revealed diverse virulence gene contents among the members of the swine STEC population and enhance understanding of the dynamics of transmission of STEC strains among pigs housed in the same barn.
Collapse
|
28
|
Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence. Int J Med Microbiol 2014; 304:521-9. [DOI: 10.1016/j.ijmm.2014.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 11/19/2022] Open
|
29
|
Miko A, Rivas M, Bentancor A, Delannoy S, Fach P, Beutin L. Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany. Front Cell Infect Microbiol 2014; 4:78. [PMID: 24987616 PMCID: PMC4060028 DOI: 10.3389/fcimb.2014.00078] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
More than 400 serotypes of Shiga toxin-producing Escherichia coli (STEC) have been implicated in outbreaks and sporadic human diseases. In recent years STEC strains belonging to serogroup O178 have been commonly isolated from cattle and food of bovine origin in South America and Europe. In order to explore the significance of these STEC strains as potential human pathogens, 74 German and Argentinean E. coli O178 strains from animals, food and humans were characterized phenotypically and investigated for their serotypes, stx-genotypes and 43 virulence-associated markers by a real-time PCR-microarray. The majority (n = 66) of the O178 strains belonged to serotype O178:H19. The remaining strains divided into O178:H7 (n = 6), O178:H10 (n = 1), and O178:H16 (n = 1). STEC O178:H19 strains were mainly isolated from cattle and food of bovine origin, but one strain was from a patient with hemolytic uremic syndrome (HUS). Genotyping of the STEC O178:H19 strains by pulsed-field gel electrophoresis revealed two major clusters of genetically highly related strains which differ in their stx-genotypes and non-Stx putative virulence traits, including adhesins, toxins, and serine-proteases. Cluster A-strains including the HUS-strain (n = 35) carried genes associated with severe disease in humans (stx2a, stx2d, ehxA, saa, subAB1, lpfAO113 , terE combined with stx1a, espP, iha). Cluster B-strains (n = 26) showed a limited repertoire of virulence genes (stx2c, pagC, lpfAO113 , espP, iha). Among O178:H7 strains isolated from deer meat and patients with uncomplicated disease a new STEC variant was detected that is associated with the genotype stx1c/stx2b/ehxA/subAB2/espI/[terE]/espP/iha. None of the STEC O178 strains was positive for locus of enterocyte effacement (LEE)- and nle-genes. Results indicate that STEC O178:H19 strains belong to the growing group of LEE-negative STEC that should be considered with respect to their potential to cause diseases in humans.
Collapse
Affiliation(s)
- Angelika Miko
- Division of Microbial Toxins, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR)Berlin, Germany
| | - Marta Rivas
- Servicio Fisiopatogenia, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”Buenos Aires, Argentina
| | - Adriana Bentancor
- Cátedra de Microbiología, Facultad de Ciencias Veterinarias, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Sabine Delannoy
- Food Safety Laboratory, French Agency for Food, Environmental and Occupational Health (Anses)Maisons-Alfort, France
| | - Patrick Fach
- Food Safety Laboratory, French Agency for Food, Environmental and Occupational Health (Anses)Maisons-Alfort, France
| | - Lothar Beutin
- Division of Microbial Toxins, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR)Berlin, Germany
| |
Collapse
|
30
|
Mohammed MA, Sallam KI, Eldaly EAZ, Ahdy AM, Tamura T. Occurrence, serotypes and virulence genes of non-O157 Shiga toxin-producing Escherichia coli in fresh beef, ground beef, and beef burger. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Top-down proteomic identification of Shiga toxin 2 subtypes from Shiga toxin-producing Escherichia coli by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. Appl Environ Microbiol 2014; 80:2928-40. [PMID: 24584253 DOI: 10.1128/aem.04058-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have analyzed 26 Shiga toxin-producing Escherichia coli (STEC) strains for Shiga toxin 2 (Stx2) production using matrix-assisted laser desorption ionization (MALDI)-tandem time of flight (TOF-TOF) tandem mass spectrometry (MS/MS) and top-down proteomic analysis. STEC strains were induced to overexpress Stx2 by overnight culturing on solid agar supplemented with either ciprofloxacin or mitomycin C. Harvested cells were lysed by bead beating, and unfractionated bacterial cell lysates were ionized by MALDI. The A2 fragment of the A subunit and the mature B subunit of Stx2 were analyzed by MS/MS. Sequence-specific fragment ions were used to identify amino acid subtypes of Stx2 using top-down proteomic analysis using software developed in-house at the U.S. Department of Agriculture (USDA). Stx2 subtypes (a, c, d, f, and g) were identified on the basis of the mass of the A2 fragment and the B subunit as well as from their sequence-specific fragment ions by MS/MS (postsource decay). Top-down proteomic identification was in agreement with DNA sequencing of the full Stx2 operon (stx2) for all strains. Top-down results were also compared to a bioassay using a Vero-d2EGFP cell line. Our results suggest that top-down proteomic identification is a rapid, highly specific technique for distinguishing Stx2 subtypes.
Collapse
|
32
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that are an important public health concern. STEC infection is associated with severe clinical diseases in human beings, including hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS), which can lead to kidney failure and death. Cattle are the most important STEC reservoir. However, a number of STEC outbreaks and HUS cases have been attributed to pork products. In swine, STEC strains are known to be associated with edema disease. Nevertheless, the relationship between STEC of swine origin and human illness has yet to be determined. This review critically summarizes epidemiologic and biological studies of swine STEC. Several epidemiologic studies conducted in multiple regions of the world have demonstrated that domestic swine can carry and shed STEC. Moreover, animal studies have demonstrated that swine are susceptible to STEC O157:H7 infection and can shed the bacterium for 2 months. A limited number of molecular epidemiologic studies, however, have provided conflicting evidence regarding the relationship between swine STEC and human illness. The role that swine play in STEC transmission to people and the contribution to human disease frequency requires further evaluation.
Collapse
|
33
|
Abstract
In the United States, it is estimated that non-O157 Shiga toxin-producing Escherichia coli (STEC) cause more illnesses than STEC O157:H7, and the majority of cases of non-O157 STEC infections are due to serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 STEC. The diseases caused by non-O157 STEC are generally milder than those induced by O157 STEC; nonetheless, non-O157 STEC strains have also been associated with serious illnesses such as hemorrhagic colitis and hemolytic uremic syndrome, as well as death. Ruminants, particularly cattle, are reservoirs for both O157 and non-O157 STEC, which are transmitted to humans by person-to-person or animal contact and by ingestion of food or water contaminated with animal feces. Improved strategies to control STEC colonization and shedding in cattle and contamination of meat and produce are needed. In general, non-O157 STEC respond to stresses such as acid, heat, and other stresses induced during food preparation similar to O157 STEC. Similar to O157:H7, the top six non-O157 STEC are classified as adulterants in beef by the USDA Food Safety and Inspection Service, and regulatory testing for these pathogens began in June 2012. Due to the genetic and phenotypic variability of non-O157 STEC strains, the development of accurate and reliable methods for detection and isolation of these pathogens has been challenging. Since the non-O157 STEC are responsible for a large portion of STEC-related illnesses, more extensive studies on their physiology, genetics, pathogenicity, and evolution are needed in order to develop more effective control strategies.
Collapse
Affiliation(s)
- James L Smith
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Pina M Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA.
| | - Nereus W Gunther
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
34
|
Gianluca B, Anna M, Roberta M, Domenico M, Simonetta G. C, Francesca P, Catherine M. B, Geraldine D, Mazzette R. Detection of genes encoding for virulence and adherence factors in Escherichia coli isolated in slaughtered Sarda breed sheep. Vet Microbiol 2014; 168:234-9. [DOI: 10.1016/j.vetmic.2013.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/24/2013] [Accepted: 10/31/2013] [Indexed: 01/19/2023]
|
35
|
Maluta RP, Fairbrother JM, Stella AE, Rigobelo EC, Martinez R, de Ávila FA. Potentially pathogenic Escherichia coli in healthy, pasture-raised sheep on farms and at the abattoir in Brazil. Vet Microbiol 2013; 169:89-95. [PMID: 24438985 DOI: 10.1016/j.vetmic.2013.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 12/05/2013] [Accepted: 12/13/2013] [Indexed: 11/29/2022]
Abstract
Sheep harbor pathogenic Escherichia coli, which may cause severe disease in humans. In this study, the prevalence of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC) was examined in sheep feces and carcasses on three farms and at an abattoir in Brazil. The isolates were further characterized for the presence of markers recently associated with disease in humans, to investigate their possible origin and role as food-borne pathogens. At the abattoir, 99 carcass samples yielded two STEC and 10 EPEC isolates while 101 fecal samples yielded five EPEC and eight STEC isolates. On the other hand, on the farms, 202 samples yielded 44 STEC and eight EPEC isolates. The 77 isolates were typed by PFGE. Isolates with the same PFGE pattern and also those that were not restricted with XbaI were termed as "clones" (n=49). The isolates of any one clone mostly originated from the same sampling site. In addition, seven isolates encoded for novel Stx2 variants and five for Stx2e, the subtype related to porcine edema disease, which was for the first time isolated from sheep feces and carcasses. Also, three stx2-only isolates harbored genes of predicted Stx2 variants that were formed by A and B subunits of different types including Stx2a and Stx2d. The EPEC isolates were heterogeneous, 21 (91.3%) of them possessing efa1, ehxA, lpfAO113 or paa genes associated with diarrhea in humans. Thus, using markers recently associated with disease, we have demonstrated that E. coli similar to those pathogenic for humans are present in the sheep intestinal microflora, particularly at the abattoir, underlining the potential for food-borne transmission.
Collapse
Affiliation(s)
- Renato Pariz Maluta
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| | - John Morris Fairbrother
- OIE Reference Laboratory for Escherichia coli (EcL), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC, Canada.
| | - Ariel Eurides Stella
- Departamento de Medicina Veterinária, Universidade Federal de Goiás, Jataí, GO, Brazil
| | - Everlon Cid Rigobelo
- Unidade Diferenciada de Dracena, Universidade Estadual Paulista, Dracena, SP, Brazil
| | - Roberto Martinez
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Antonio de Ávila
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP, Brazil
| |
Collapse
|
36
|
Molecular analysis of subtilase cytotoxin genes of food-borne Shiga toxin-producing Escherichia coli reveals a new allelic subAB variant. BMC Microbiol 2013; 13:230. [PMID: 24128013 PMCID: PMC3852854 DOI: 10.1186/1471-2180-13-230] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/10/2013] [Indexed: 12/11/2022] Open
Abstract
Background The open reading frames of subAB genes and their flanking regions of 18 food-borne Shiga toxin-producing E. coli (STEC) strains were analyzed. Results All but one subAB open reading frames (ORF) were complete in all STEC strains. The subAB1 genes of nine STEC strains were located on large plasmids. The subAB2 allele (here designated subAB2-1), which was recently described by others to be present in the Subtilase-Encoding PAI (SE-PAI) was found in 6 STEC strains. A new chromosomal subAB2 variant, designated subAB2-2 was detected in 6 strains and was linked to a chromosomal gene hypothetically encoding an outer membrane efflux protein (OEP). Three STEC strains contained both subAB2 variants. DNA analysis indicated sequence conservation in the plasmid-located alleles and sequence heterogeneity among the chromosomal subAB2 genes. Conclusions The results of this study have shown that 18 subAB-PCR positive STEC strains contain complete subAB open reading frames. Furthermore, the new allelic variant subAB2-2 was described, which can occur in addition to subAB2-1 on a new chromosomal locus.
Collapse
|
37
|
Comparison of net growth of Shiga toxin-producing Escherichia coli strains of serogroups O26, O103, and O157 in ground meat at different temperatures. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Mohammadi P, Abiri R, Rezaei M, Salmanzadeh-Ahrabi S. Isolation of Shiga toxin-producing Escherichia coli from raw milk in Kermanshah, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2013; 5:233-8. [PMID: 24475329 PMCID: PMC3895560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Infectious diarrhoeal diseases are great problem throughout the world and are responsible for considerable morbidity and mortality. Shiga toxin-producing Escherichia coli (STEC) is a major cause of gastroenteritis that may be complicated by hemorrhagic colitis (HC) or the hemolytic uremic syndrome (HUS), which is the main cause of acute renal failure in children. Food-borne outbreaks associated with Shiga toxin-producing Escherichia coli have been well documented worldwide. The aim of this study was to investigate the prevalence of Shiga toxin-producing Escherichia coli (STEC) strains in raw milk samples. MATERIALS AND METHODS Raw milk samples collected from various cow farms in Kermanshah, Iran during June - September 2009 were investigated for STEC using PCR targeting stx1 and stx2 and then eaeA. RESULTS Of 206 samples, 36 (17.47%) were contaminated with STEC. STEC isolates harbored 56.41% and 43.59% stx 2 and stx 1 gene respectively. In antibiotic resistance test, all strains were sensitive to ceftazidime, cefepime, gentamicin, imipenem and ciprofloxacin. 23.08% of isolates were resistat to tetracycline, and 38.5% of them showed intermediate sensitvity to cephalothin. CONCLUSIONS The high presence of STEC in raw milk confirms the important role of raw milk as putative vehicle of infection to human. Moreover, this study suggests that the development of antibiotic resistant STEC must be a major concern in Iran and more studies are needed to identify the prevalence of STEC in other food samples.
Collapse
Affiliation(s)
- Pantea Mohammadi
- Medical biology Research Center, University of Medical Sciences, Kermanshah, Iran
| | - Ramin Abiri
- Department of Microbiology, Faculty of Medicine, University of Medical Sciences, Kermanshah, Iran
| | - Mansour Rezaei
- Department of Statistics and Epidemiology, Faculty of Health, University of Medical Sciences, Kermanshah, Iran
| | | |
Collapse
|
39
|
Prevalences of Shiga toxin subtypes and selected other virulence factors among Shiga-toxigenic Escherichia coli strains isolated from fresh produce. Appl Environ Microbiol 2013; 79:6917-23. [PMID: 23995936 DOI: 10.1128/aem.02455-13] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) strains were isolated from a variety of fresh produce, but mostly from spinach, with an estimated prevalence rate of 0.5%. A panel of 132 produce STEC strains were characterized for the presence of virulence and putative virulence factor genes and for Shiga toxin subtypes. About 9% of the isolates were found to have the eae gene, which encodes the intimin binding protein, and most of these belonged to known pathogenic STEC serotypes, such as O157:H7 and O26:H11, or to serotypes that reportedly have caused human illness. Among the eae-negative strains, there were three O113:H21 strains and one O91:H21 strain, which historically have been implicated in illness and therefore may be of concern as well. The ehxA gene, which encodes enterohemolysin, was found in ∼60% of the isolates, and the saa and subAB genes, which encode STEC agglutinating adhesin and subtilase cytotoxin, respectively, were found in ∼30% of the isolates. However, the precise roles of these three putative virulence factors in STEC pathogenesis have not yet been fully established. The stx1a and stx2a subtypes were present in 22% and 56%, respectively, of the strains overall and were the most common subtypes among produce STEC strains. The stx2d subtype was the second most common subtype (28% overall), followed by stx2c (7.5%), and only 2 to 3% of the produce STEC strains had the stx2e and stx2g subtypes. Almost half of the produce STEC strains had only partial serotypes or were untyped, and most of those that were identified belonged to unremarkable serotypes. Considering the uncertainties of some of these Stx subtypes and putative virulence factors in causing human illness, it is difficult to determine the health risk of many of these produce STEC strains.
Collapse
|
40
|
Phylogenetic and molecular analysis of food-borne shiga toxin-producing Escherichia coli. Appl Environ Microbiol 2013; 79:2731-40. [PMID: 23417002 DOI: 10.1128/aem.03552-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Seventy-five food-associated Shiga toxin-producing Escherichia coli (STEC) strains were analyzed by molecular and phylogenetic methods to describe their pathogenic potential. The presence of the locus of proteolysis activity (LPA), the chromosomal pathogenicity island (PAI) PAI ICL3, and the autotransporter-encoding gene sabA was examined by PCR. Furthermore, the occupation of the chromosomal integration sites of the locus of enterocyte effacement (LEE), selC, pheU, and pheV, as well as the Stx phage integration sites yehV, yecE, wrbA, z2577, and ssrA, was analyzed. Moreover, the antibiotic resistance phenotypes of all STEC strains were determined. Multilocus sequence typing (MLST) was performed, and sequence types (STs) and sequence type complexes (STCs) were compared with those of 42 hemolytic-uremic syndrome (HUS)-associated enterohemorrhagic E. coli (HUSEC) strains. Besides 59 STs and 4 STCs, three larger clusters were defined in this strain collection. Clusters A and C consist mostly of highly pathogenic eae-positive HUSEC strains and some related food-borne STEC strains. A member of a new O26 HUS-associated clone and the 2011 outbreak strain E. coli O104:H4 were found in cluster A. Cluster B comprises only eae-negative food-borne STEC strains as well as mainly eae-negative HUSEC strains. Although food-borne strains of cluster B were not clearly associated with disease, serotypes of important pathogens, such as O91:H21 and O113:H21, were in this cluster and closely related to the food-borne strains. Clonal analysis demonstrated eight closely related genetic groups of food-borne STEC and HUSEC strains that shared the same ST and were similar in their virulence gene composition. These groups should be considered with respect to their potential for human infection.
Collapse
|
41
|
Weiss A, Brockmeyer J. Prevalence, biogenesis, and functionality of the serine protease autotransporter EspP. Toxins (Basel) 2012; 5:25-48. [PMID: 23274272 PMCID: PMC3564066 DOI: 10.3390/toxins5010025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022] Open
Abstract
Enterohemorrhagic E. coli (EHEC) causes severe diseases in humans worldwide. One of its virulence factors is EspP, which belongs to the serine protease autotransporters of Enterobacteriaceae (SPATE) family. In this review we recapitulate the current data on prevalence, biogenesis, structural properties and functionality. EspP has been used to investigate mechanistic details of autotransport, and recent studies indicate that this transport mechanism is not autonomous but rather dependent on additional factors. Currently, five subtypes have been identified (EspPα-EspPε), with EspPα being associated with highly virulent EHEC serotypes and isolates from patients with severe disease. EspPα has been shown to degrade major proteins of the complement cascade, namely C3 and C5 and probably interferes with hemostasis by cleavage of coagulation factor V. Furthermore, EspPα is believed to contribute to biofilm formation perhaps by polymerization to rope-like structures. Together with the proteolytic activity, EspPα might ameliorate host colonization and interfere with host response.
Collapse
Affiliation(s)
- André Weiss
- Institute of Food Chemistry, Corrensstraße 45, Münster 48149, Germany.
| | | |
Collapse
|
42
|
Steyert SR, Sahl JW, Fraser CM, Teel LD, Scheutz F, Rasko DA. Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli. Front Cell Infect Microbiol 2012; 2:133. [PMID: 23162798 PMCID: PMC3491183 DOI: 10.3389/fcimb.2012.00133] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/11/2012] [Indexed: 01/01/2023] Open
Abstract
Infection by Escherichia coli and Shigella species are among the leading causes of death due to diarrheal disease in the world. Shiga toxin-producing E. coli (STEC) that do not encode the locus of enterocyte effacement (LEE-negative STEC) often possess Shiga toxin gene variants and have been isolated from humans and a variety of animal sources. In this study, we compare the genomes of nine LEE-negative STEC harboring various stx alleles with four complete reference LEE-positive STEC isolates. Compared to a representative collection of prototype E. coli and Shigella isolates representing each of the pathotypes, the whole genome phylogeny demonstrated that these isolates are diverse. Whole genome comparative analysis of the 13 genomes revealed that in addition to the absence of the LEE pathogenicity island, phage-encoded genes including non-LEE encoded effectors, were absent from all nine LEE-negative STEC genomes. Several plasmid-encoded virulence factors reportedly identified in LEE-negative STEC isolates were identified in only a subset of the nine LEE-negative isolates further confirming the diversity of this group. In combination with whole genome analysis, we characterized the lambdoid phages harboring the various stx alleles and determined their genomic insertion sites. Although the integrase gene sequence corresponded with genomic location, it was not correlated with stx variant, further highlighting the mosaic nature of these phages. The transcription of these phages in different genomic backgrounds was examined. Expression of the Shiga toxin genes, stx(1) and/or stx(2), as well as the Q genes, were examined with quantitative reverse transcriptase polymerase chain reaction assays. A wide range of basal and induced toxin induction was observed. Overall, this is a first significant foray into the genome space of this unexplored group of emerging and divergent pathogens.
Collapse
Affiliation(s)
- Susan R Steyert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute for Genome Sciences Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
43
|
Volponi G, Rooks DJ, Smith DL, Picozzi C, Allison HE, Vigentini I, Foschino R, McCarthy AJ. Short communication: Characterization of Shiga toxin 2-carrying bacteriophages induced from Shiga-toxigenic Escherichia coli isolated from Italian dairy products. J Dairy Sci 2012; 95:6949-56. [PMID: 22999287 DOI: 10.3168/jds.2012-5831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 08/09/2012] [Indexed: 11/19/2022]
Abstract
Forty samples of raw milk cheese and 25 samples of raw milk itself were subjected to enrichment culture for Shiga-toxigenic Escherichia coli (STEC), and a single Shiga toxin 2- (Stx(2)) positive strain was obtained from one of the cheese samples. Thus, aged cheeses in which the curd is subsequently heat treated (48°C) cannot be presumed to be STEC free. Infective Stx(2) bacteriophages were induced from 3 STEC strains isolated elsewhere from raw milk and 1 STEC strain from aged cheese sourced in Italy. Data on E. coli host range, morphology, genome size, and genetic variation determined by restriction fragment length polymorphism and multi-locus genotyping are presented. Although all 4 bacteriophages were found to be short-tailed Podoviridae, they exhibited considerable variation in both genome size and content. This extended to the Stx(2) genes themselves, whose sequences contained several point mutations, but these did not translate to amino acid substitutions.
Collapse
Affiliation(s)
- G Volponi
- Dipartmento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Prevalence of Shiga toxin-producing Escherichia coli in food products of animal origin as determined by molecular methods. Int J Food Microbiol 2012; 154:37-43. [DOI: 10.1016/j.ijfoodmicro.2011.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/03/2011] [Accepted: 12/07/2011] [Indexed: 11/23/2022]
|
45
|
Martínez-Castillo A, Allué-Guardia A, Dahbi G, Blanco J, Creuzburg K, Schmidt H, Muniesa M. Type III effector genes and other virulence factors of Shiga toxin-encoding Escherichia coli isolated from wastewater. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:147-155. [PMID: 23757242 DOI: 10.1111/j.1758-2229.2011.00317.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenic Shiga toxin-producing Escherichia coli (STEC) strains share the genes encoding Shiga toxins (stx) and many other virulence factors. The classification and evolutionary studies of pathogenic E. coli based on their virulence genes have been conducted with E. coli isolated from human and animal infections or outbreaks. In this study, we used 103 STEC strains isolated from faecally polluted water environments to analyse 23 virulence genes (stx1 , cdt, hlyA, saa, eae, three type III effector genes encoded within the locus of enterocyte effacement (LEE) and 15 non-LEE-encoded type III effector genes). Despite the presence of several stx2 variants, our isolates demonstrated low prevalence of the virulence genes (only 46.6% of the strains were positive for virulence determinants). Among these, the largest repertoire was found in a few O157:H7 isolates (most from cattle wastewater and one from sewage), while other serotypes showed fewer virulence determinants. The occurrence of most virulence genes seemed to be independent from one another. This was clear for hlyA (the most prevalent), cdt and cif (the least prevalent). Other effector genes, could be found or not in combination with others, suggesting that they can be mobilized independently. Our data suggest that E. coli strains can evolve separately by independently acquiring mobile genetic elements.
Collapse
Affiliation(s)
- Alexandre Martínez-Castillo
- Department of Microbiology, University of Barcelona, Diagonal 643, Annex, Floor 0, 08028 Barcelona, Spain. Laboratorio de Referencia de E. coli (LREC), Department of Microbiology and Parasitology, Faculty of Veterinary Science, University of Santiago de Compostela, 27002 Lugo, Spain. Institute of Food Science and Biotechnology, Department of Food Microbiology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Weiss A, Schmidt H, Stöber H. Mechanisms of enterohemorrhagic Escherichia coli spread along the food-chain and precautionary measures. J Verbrauch Lebensm 2011. [DOI: 10.1007/s00003-011-0736-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
47
|
Slanec T, Schmidt H. Specific expression of adherence-related genes in Escherichia coli O157:H7 strain EDL933 after heat treatment in ground beef. J Food Prot 2011; 74:1434-40. [PMID: 21902911 DOI: 10.4315/0362-028x.jfp-11-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the expression of particular stress- and virulence-associated genes of Escherichia coli O157:H7 strain EDL933 in ground beef was investigated using real-time PCR. Specific gene expression in the food matrix was found in combination with heat treatment. In contrast to a treatment at 37°C, treatment at 48°C for 10 min resulted in increased expression of the genes eae, hcpA, iha, lpfA, and toxB. Adherence to human intestinal HT-29 cells was enhanced in bacterial cells inoculated and heat treated in ground beef. The expression of gadE, which encodes a main regulator of the glutamate system of the acid response, was reduced under these conditions. However, expression of rpoS and recA, which are involved in the establishment of stress responses, and Shiga toxin genes was not significantly different under the same conditions.
Collapse
Affiliation(s)
- T Slanec
- Department of Food Microbiology, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
48
|
Fagerquist CK, Sultan O. Induction and identification of disulfide-intact and disulfide-reduced β-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS and top-down proteomics. Analyst 2011; 136:1739-46. [PMID: 21336382 DOI: 10.1039/c0an00909a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The disulfide-intact and disulfide-reduced β-subunit of Shiga toxin 2 (β-Stx2) from Escherichia coli O157:H7 (strain EDL933) has been identified by matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomic analysis using software developed in-house. E. coli O157:H7 was induced to express Stx2 by culturing on solid agar media supplemented with 10-50 ng mL(-1) of ciprofloxacin (CP). Bacterial cell lysates at each CP concentration were analyzed by MALDI-TOF-MS. A prominent ion at mass-to-charge (m/z) ~7820 was observed for the CP concentration range: 10-50 ng mL(-1), reaching a maximum signal intensity at 20 ng mL(-1). Complex MS/MS data were obtained of the ion at m/z ~7820 by post-source decay resulting in top-down proteomic identification as the mature, signal peptide-removed, disulfide-intact β-Stx2. Eight fragment ion triplets (each spaced Δm/z ~33 apart) were also observed resulting from backbone cleavage between the two cysteine residues (that form the intra-molecular disulfide bond) and symmetric and asymmetric cleavage of the disulfide bond. The middle fragment ion of each triplet, from symmetric disulfide bond cleavage, was matched to an in silico fragment ion formed from cleavage of the backbone at a site adjacent to an aspartic acid or glutamic acid residue. The flanking fragment ions of each triplet, from asymmetric disulfide bond cleavage, were not matched because their corresponding in silico fragment ions are not represented in the database. Easier to interpret MS/MS data were obtained for the disulfide-reduced β-Stx2 which resulted in an improved top-down identification.
Collapse
Affiliation(s)
- Clifton K Fagerquist
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA.
| | | |
Collapse
|
49
|
Top-down proteomic identification of furin-cleaved α-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOF-TOF-MS/MS. J Biomed Biotechnol 2011; 2010:123460. [PMID: 21331368 PMCID: PMC3038467 DOI: 10.1155/2010/123460] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 12/17/2010] [Indexed: 01/12/2023] Open
Abstract
A method has been developed to identify the α-subunit of Shiga toxin 2 (α-Stx2) from Escherichia coli O157:H7 using matrix-assisted laser desorption/ionization time-of-flight-time-of-flight tandem mass spectrometry (MALDI-TOF-TOF-MS/MS) and top-down proteomics using web-based software developed in-house. Expression of Stx2 was induced by culturing E. coli O157:H7 on solid agar supplemented with an antibiotic that elicits the bacterial SOS-response. Bacterial cell lysates were incubated in the presence of furin, a human enzyme, that cleaves α-Stx2 into A1 (~28 kDa) and A2 (~5 kDa) protein fragments. A subsequent disulfide reduction step unlinked A1 from A2. MALDI-TOF-MS of the furin-digested/disulfide-reduced sample showed a peak at mass-to-charge (m/z) 5286 that corresponded to the A2 fragment. No peak was observed that corresponded to the A1 fragment although its presence was confirmed by bottom-up proteomics. The peak at m/z 5286 was definitively identified by MALDI-TOF-TOF-MS/MS and top-down proteomics as the A2 fragment of α-Stx2.
Collapse
|
50
|
Functional and phylogenetic analysis of ureD in Shiga toxin-producing Escherichia coli. J Bacteriol 2010; 193:875-86. [PMID: 21148732 DOI: 10.1128/jb.00922-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that can cause severe health complications and utilizes a much lower infectious dose than other E. coli pathotypes. Despite having an intact ure locus, ureDABCEFG, the majority of EHEC strains are phenotypically urease negative under tested conditions. Urease activity potentially assists with survival fitness by enhancing acid tolerance during passage through the stomach or by aiding with colonization in either human or animal reservoirs. Previously, in the EHEC O157:H7 Sakai strain, a point mutation in ureD, encoding a urease chaperone protein, was identified, resulting in a substitution of an amber stop codon for glutamine. This single nucleotide polymorphism (SNP) is observed in the majority of EHEC O157:H7 isolates and correlates with a negative urease phenotype in vitro. We demonstrate that the lack of urease activity in vitro is not solely due to the amber codon in ureD. Our analysis has identified two additional SNPs in ureD affecting amino acid positions 38 and 205, in both cases determining whether the encoded amino acid is leucine or proline. Phylogenetic analysis based on Ure protein sequences from a variety of urease-encoding bacteria demonstrates that the proline at position 38 is highly conserved among Gram-negative bacteria. Experiments reveal that the L38P substitution enhances urease enzyme activity; however, the L205P substitution does not. Multilocus sequence typing analysis for a variety of Shiga toxin-producing E. coli isolates combined with the ureD sequence reveals that except for a subset of the O157:H7 strains, neither the in vitro urease-positive phenotype nor the ureD sequence is phylogenetically restricted.
Collapse
|