1
|
McIntosh M, Köchling T, Latz A, Kretz J, Heinen S, Konzer A, Klug G. A major checkpoint for protein expression in Rhodobacter sphaeroides during heat stress response occurs at the level of translation. Environ Microbiol 2021; 23:6483-6502. [PMID: 34668288 DOI: 10.1111/1462-2920.15818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Temperature above the physiological optimum is a stress condition frequently faced by bacteria in their natural environments. Here, we were interested in the correlation between levels of RNA and protein under heat stress. Changes in RNA and protein levels were documented in cultures of Rhodobacter sphaeroides using RNA sequencing, quantitative mass spectrometry, western blot analysis, in vivo [35 S] methionine-labelling and plasmid-borne reporter fusions. Changes in the transcriptome were extensive. Strikingly, the proteome remained unchanged except for very few proteins. Examples include a heat shock protein, a DUF1127 protein of unknown function and sigma factor proteins from leaderless transcripts. Insight from this study indicates that R. sphaeroides responds to heat stress by producing a broad range of transcripts while simultaneously preventing translation from nearly all of them, and that this selective production of protein depends on the untranslated region of the transcript. We conclude that measurements of transcript abundance are insufficient to understand gene regulation. Rather, translation can be an important checkpoint for protein expression under certain environmental conditions. Furthermore, during heat shock, regulation at the level of transcription might represent preparation for survival in an unpredictable environment while regulation at translation ensures production of only a few proteins.
Collapse
Affiliation(s)
- Matthew McIntosh
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Thorsten Köchling
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Anna Latz
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Jonas Kretz
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Sandra Heinen
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gabriele Klug
- Institute of Microbiology und Molecular Biology, IFZ, Justus-Liebig-Universität, 35292, Giessen, Germany
| |
Collapse
|
2
|
Narra HP, Sahni A, Alsing J, Schroeder CLC, Golovko G, Nia AM, Fofanov Y, Khanipov K, Sahni SK. Comparative transcriptomic analysis of Rickettsia conorii during in vitro infection of human and tick host cells. BMC Genomics 2020; 21:665. [PMID: 32977742 PMCID: PMC7519539 DOI: 10.1186/s12864-020-07077-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Pathogenic Rickettsia species belonging to the spotted fever group are arthropod-borne, obligate intracellular bacteria which exhibit preferential tropism for host microvascular endothelium in the mammalian hosts, resulting in disease manifestations attributed primarily to endothelial damage or dysfunction. Although rickettsiae are known to undergo evolution through genomic reduction, the mechanisms by which these pathogens regulate their transcriptome to ensure survival in tick vectors and maintenance by transovarial/transstadial transmission, in contrast to their ability to cause debilitating infections in human hosts remain unknown. In this study, we compare the expression profiles of rickettsial sRNAome/transcriptome and determine the transcriptional start sites (TSSs) of R. conorii transcripts during in vitro infection of human and tick host cells. RESULTS We performed deep sequencing on total RNA from Amblyomma americanum AAE2 cells and human microvascular endothelial cells (HMECs) infected with R. conorii. Strand-specific RNA sequencing of R. conorii transcripts revealed the expression 32 small RNAs (Rc_sR's), which were preferentially expressed above the limit of detection during tick cell infection, and confirmed the expression of Rc_sR61, sR71, and sR74 by quantitative RT-PCR. Intriguingly, a total of 305 and 132 R. conorii coding genes were differentially upregulated (> 2-fold) in AAE2 cells and HMECs, respectively. Further, enrichment for primary transcripts by treatment with Terminator 5'-Phosphate-dependent Exonuclease resulted in the identification of 3903 and 2555 transcription start sites (TSSs), including 214 and 181 primary TSSs in R. conorii during the infection to tick and human host cells, respectively. Seventy-five coding genes exhibited different TSSs depending on the host environment. Finally, we also observed differential expression of 6S RNA during host-pathogen and vector-pathogen interactions in vitro, implicating an important role for this noncoding RNA in the regulation of rickettsial transcriptome depending on the supportive host niche. CONCLUSIONS In sum, the findings of this study authenticate the presence of novel Rc_sR's in R. conorii, reveal the first evidence for differential expression of coding transcripts and utilization of alternate transcriptional start sites depending on the host niche, and implicate a role for 6S RNA in the regulation of coding transcriptome during tripartite host-pathogen-vector interactions.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jessica Alsing
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Casey L C Schroeder
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Anna M Nia
- Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
3
|
Csicsay F, Flores-Ramirez G, Zuñiga-Navarrete F, Bartošová M, Fučíková A, Pajer P, Dresler J, Škultéty Ľ, Quevedo-Diaz M. Proteomic analysis of Rickettsia akari proposes a 44 kDa-OMP as a potential biomarker for Rickettsialpox diagnosis. BMC Microbiol 2020; 20:200. [PMID: 32640994 PMCID: PMC7341715 DOI: 10.1186/s12866-020-01877-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rickettsialpox is a febrile illness caused by the mite-borne pathogen Rickettsia akari. Several cases of this disease are reported worldwide annually. Nevertheless, the relationship between the immunogenicity of R. akari and disease development is still poorly understood. Thus, misdiagnosis is frequent. Our study is aiming to identify immunogenic proteins that may improve disease recognition and enhance subsequent treatment. To achieve this goal, two proteomics methodologies were applied, followed by immunoblot confirmation. Results Three hundred and sixteen unique proteins were identified in the whole-cell extract of R. akari. The most represented protein groups were found to be those involved in translation, post-translational modifications, energy production, and cell wall development. A significant number of proteins belonged to amino acid transport and intracellular trafficking. Also, some proteins affecting the virulence were detected. In silico analysis of membrane enriched proteins revealed 25 putative outer membrane proteins containing beta-barrel structure and 11 proteins having a secretion signal peptide sequence. Using rabbit and human sera, various immunoreactive proteins were identified from which the 44 kDa uncharacterized protein (A8GP63) has demonstrated a unique detection capability. It positively distinguished the sera of patients with Rickettsialpox from other rickettsiae positive human sera. Conclusion Our proteomic analysis certainly contributed to the lack of knowledge of R. akari pathogenesis. The result obtained may also serve as a guideline for a more accurate diagnosis of rickettsial diseases. The identified 44 kDa uncharacterized protein can be certainly used as a unique marker of rickettsialpox or as a target molecule for the development of more effective treatment.
Collapse
Affiliation(s)
- František Csicsay
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Gabriela Flores-Ramirez
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Fernando Zuñiga-Navarrete
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Mária Bartošová
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic
| | - Alena Fučíková
- Department of Biology, Faculty of Science, University of Hradec Kralove, Hradecká 1285, 500 03, Hradec Králové, Czech Republic
| | - Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00, Prague 6, Czech Republic
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, CZ-160 00, Prague 6, Czech Republic
| | - Ľudovít Škultéty
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic. .,Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague 4, Czech Republic.
| | - Marco Quevedo-Diaz
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovak Republic.
| |
Collapse
|
4
|
Evaluation of changes to the Rickettsia rickettsii transcriptome during mammalian infection. PLoS One 2017; 12:e0182290. [PMID: 28832688 PMCID: PMC5568294 DOI: 10.1371/journal.pone.0182290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/14/2017] [Indexed: 12/12/2022] Open
Abstract
The lifecycle of Rickettsia rickettsii includes infection of both mammalian and arthropod hosts, with each environment presenting distinct challenges to survival. As such, these pathogens likely have distinctive transcriptional strategies for infection of each host. Herein, we report the utilization of next generation sequencing (RNAseq) and bioinformatic analysis techniques to examine the global transcriptional profile of R. rickettsii within an infected animal, and to compare that data to transcription in tissue culture. The results demonstrate substantial R. rickettsii transcriptional alteration in vivo, such that the bacteria are considerably altered from cell culture. Identification of significant transcriptional changes and validation of RNAseq by quantitative PCR are described with particular emphasis on known antigens and suspected virulence factors. Together, these results suggest that transcriptional regulation of a distinct cohort of genes may contribute to successful mammalian infection.
Collapse
|
5
|
Robbe-Saule M, Babonneau J, Sismeiro O, Marsollier L, Marion E. An Optimized Method for Extracting Bacterial RNA from Mouse Skin Tissue Colonized by Mycobacterium ulcerans. Front Microbiol 2017; 8:512. [PMID: 28392785 PMCID: PMC5364165 DOI: 10.3389/fmicb.2017.00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial transcriptome analyses during host colonization are essential to decipher the complexity of the relationship between the bacterium and its host. RNA sequencing (RNA-seq) is a promising approach providing valuable information about bacterial adaptation, the host response and, in some cases, mutual tolerance underlying crosstalk, as recently observed in the context of Mycobacterium ulcerans infection. Buruli ulcer is caused by M. ulcerans. This neglected disease is the third most common mycobacterial disease worldwide. Without treatment, M. ulcerans provokes massive skin ulcers. A healing process may be observed in 5% of Buruli ulcer patients several months after the initiation of disease. This spontaneous healing process suggests that some hosts can counteract the development of the lesions caused by M. ulcerans. Deciphering the mechanisms involved in this process should open up new treatment possibilities. To this end, we recently developed the first mouse model for studies of the spontaneous healing process. We have shown that the healing process is based on mutual tolerance between the bacterium and its host. In this context, RNA-seq seems to be the most appropriate method for deciphering bacterial adaptation. However, due to the low bacterial load in host tissues, the isolation of mycobacterial RNA from skin tissue for RNA-seq analysis remains challenging. We developed a method for extracting and purifying mycobacterial RNA whilst minimizing the amount of host RNA in the sample. This approach was based on the extraction of bacterial RNA by a differential lysis method. The challenge in the development of this method was the choice of a lysis system favoring the removal of host RNA without damage to the bacterial cells. We made use of the thick, resistant cell wall of M. ulcerans to achieve this end.
Collapse
Affiliation(s)
- Marie Robbe-Saule
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Jérémie Babonneau
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Innovation and Technological Research, Institut Pasteur Paris, France
| | - Laurent Marsollier
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Estelle Marion
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| |
Collapse
|
6
|
Chapelle E, Alunni B, Malfatti P, Solier L, Pédron J, Kraepiel Y, Van Gijsegem F. A straightforward and reliable method for bacterial in planta transcriptomics: application to the Dickeya dadantii/Arabidopsis thaliana pathosystem. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:352-62. [PMID: 25740271 DOI: 10.1111/tpj.12812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 02/16/2015] [Accepted: 02/23/2015] [Indexed: 05/02/2023]
Abstract
Transcriptome analysis of bacterial pathogens is a powerful approach to identify and study the expression patterns of genes during host infection. However, analysis of the early stages of bacterial virulence at the genome scale is lacking with respect to understanding of plant-pathogen interactions and diseases, especially during foliar infection. This is mainly due to both the low ratio of bacterial cells to plant material at the beginning of infection, and the high contamination by chloroplastic material. Here we describe a reliable and straightforward method for bacterial cell purification from infected leaf tissues, effective even if only a small amount of bacteria is present relative to plant material. The efficiency of this method for transcriptomic analysis was validated by analysing the expression profiles of the phytopathogenic enterobacterium Dickeya dadantii, a soft rot disease-causing agent, during the first hours of infection of the model host plant Arabidopsis thaliana. Transcriptome profiles of epiphytic bacteria and bacteria colonizing host tissues were compared, allowing identification of approximately 100 differentially expressed genes. Requiring no specific equipment, cost-friendly and easily transferable to other pathosystems, this method should be of great interest for many other plant-bacteria interaction studies.
Collapse
Affiliation(s)
- Emilie Chapelle
- Institut National de la Recherche Agronomique, Universite Pierre et Marie Curie/Universite Paris 06, AgroParisTech, UMR217, Interactions Plantes-Pathogènes, F-75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 2014; 8:1265-88. [PMID: 24059918 DOI: 10.2217/fmb.13.102] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human infections with arthropod-borne Rickettsia species remain a major global health issue, causing significant morbidity and mortality. Epidemic typhus due to Rickettsia prowazekii has an established reputation as the 'scourge of armies', and as a major determinant of significant 'historical turning points'. No suitable vaccines for human use are currently available to prevent rickettsial diseases. The unique lifestyle features of rickettsiae include obligate intracellular parasitism, intracytoplasmic niche within the host cell, predilection for infection of microvascular endothelium in mammalian hosts, association with arthropods and the tendency for genomic reduction. The fundamental research in the field of Rickettsiology has witnessed significant recent progress in the areas of pathogen adhesion/invasion and host immune responses, as well as the genomics, proteomics, metabolomics, phylogenetics, motility and molecular manipulation of important rickettsial pathogens. The focus of this review article is to capture a snapshot of the latest developments pertaining to the mechanisms of rickettsial pathogenesis and immunity.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Pathology & Institute for Human Infections & Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
8
|
Alexandre A, Laranjo M, Oliveira S. Global transcriptional response to heat shock of the legume symbiont Mesorhizobium loti MAFF303099 comprises extensive gene downregulation. DNA Res 2013; 21:195-206. [PMID: 24277738 PMCID: PMC3989490 DOI: 10.1093/dnares/dst050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rhizobia, the bacterial legume symbionts able to fix atmospheric nitrogen inside root nodules, have to survive in varied environmental conditions. The aim of this study was to analyse the transcriptional response to heat shock of Mesorhizobium loti MAFF303099, a rhizobium with a large multipartite genome of 7.6 Mb that nodulates the model legume Lotus japonicus. Using microarray analysis, extensive transcriptomic changes were detected in response to heat shock: 30% of the protein-coding genes were differentially expressed (2067 genes in the chromosome, 62 in pMLa and 57 in pMLb). The highest-induced genes are in the same operon and code for two sHSP. Only one of the five groEL genes in MAFF303099 genome was induced by heat shock. Unlike other prokaryotes, the transcriptional response of this Mesorhizobium included the underexpression of an unusually large number of genes (72% of the differentially expressed genes). This extensive downregulation of gene expression may be an important part of the heat shock response, as a way of reducing energetic costs under stress. To our knowledge, this study reports the heat shock response of the largest prokaryote genome analysed so far, representing an important contribution to understand the response of plant-interacting bacteria to challenging environmental conditions.
Collapse
Affiliation(s)
- Ana Alexandre
- 1ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | | | | |
Collapse
|
9
|
Galletti MFBM, Fujita A, Nishiyama Jr MY, Malossi CD, Pinter A, Soares JF, Daffre S, Labruna MB, Fogaça AC. Natural blood feeding and temperature shift modulate the global transcriptional profile of Rickettsia rickettsii infecting its tick vector. PLoS One 2013; 8:e77388. [PMID: 24155949 PMCID: PMC3796454 DOI: 10.1371/journal.pone.0077388] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/04/2013] [Indexed: 11/20/2022] Open
Abstract
Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF), the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS) were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector’s blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.
Collapse
Affiliation(s)
| | - André Fujita
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Y. Nishiyama Jr
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Camila D. Malossi
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano Pinter
- Superintendência de Controle de Endemias (SUCEN), São Paulo, Brazil
| | - João F. Soares
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Sirlei Daffre
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcelo B. Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Andréa C. Fogaça
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Abromaitis S, Nelson CS, Previte D, Yoon KS, Clark JM, DeRisi JL, Koehler JE. Bartonella quintana deploys host and vector temperature-specific transcriptomes. PLoS One 2013; 8:e58773. [PMID: 23554923 PMCID: PMC3595295 DOI: 10.1371/journal.pone.0058773] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/06/2013] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 105 colony-forming units [CFU]/ml) and vector (more than 108 CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector.
Collapse
Affiliation(s)
- Stephanie Abromaitis
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher S. Nelson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Domenic Previte
- Department of Veterinary and Animal Science, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Kyong S. Yoon
- Department of Veterinary and Animal Science, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - J. Marshall Clark
- Department of Veterinary and Animal Science, University of Massachusetts at Amherst, Amherst, Massachusetts, United States of America
| | - Joseph L. DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, United States of America
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jane E. Koehler
- Microbial Pathogenesis and Host Defense Program, University of California San Francisco, San Francisco, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Woodard A, Wood DO. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii. PLoS One 2011; 6:e16537. [PMID: 21298070 PMCID: PMC3027695 DOI: 10.1371/journal.pone.0016537] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 12/21/2010] [Indexed: 11/29/2022] Open
Abstract
Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.
Collapse
Affiliation(s)
- Andrew Woodard
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - David O. Wood
- Department of Microbiology and Immunology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
12
|
Leroy Q, Lebrigand K, Armougom F, Barbry P, Thiéry R, Raoult D. Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria. PLoS One 2010; 5:e15321. [PMID: 21203564 PMCID: PMC3006202 DOI: 10.1371/journal.pone.0015321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022] Open
Abstract
Coxiella burnetii, the causative agent of the zoonotic disease Q
fever, is mainly transmitted to humans through an aerosol route. A spore-like
form allows C. burnetii to resist different environmental
conditions. Because of this, analysis of the survival strategies used by this
bacterium to adapt to new environmental conditions is critical for our
understanding of C. burnetii pathogenicity. Here, we report the
early transcriptional response of C. burnetii under temperature
stresses. Our data show that C. burnetii exhibited minor
changes in gene regulation under short exposure to heat or cold shock. While
small differences were observed, C. burnetii seemed to respond
similarly to cold and heat shock. The expression profiles obtained using
microarrays produced in-house were confirmed by quantitative RT-PCR. Under
temperature stresses, 190 genes were differentially expressed in at least one
condition, with a fold change of up to 4. Globally, the differentially expressed
genes in C. burnetii were associated with bacterial division,
(p)ppGpp synthesis, wall and membrane biogenesis and, especially,
lipopolysaccharide and peptidoglycan synthesis. These findings could be
associated with growth arrest and witnessed transformation of the bacteria to a
spore-like form. Unexpectedly, clusters of neighboring genes were differentially
expressed. These clusters do not belong to operons or genetic networks; they
have no evident associated functions and are not under the control of the same
promoters. We also found undescribed but comparable clusters of regulation in
previously reported transcriptomic analyses of intracellular bacteria, including
Rickettsia sp. and Listeria monocytogenes.
The transcriptomic patterns of C. burnetii observed under
temperature stresses permits the recognition of unpredicted clusters of
regulation for which the trigger mechanism remains unidentified but which may be
the result of a new mechanism of epigenetic regulation.
Collapse
Affiliation(s)
- Quentin Leroy
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Fabrice Armougom
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR
6079 CNRS/UNSA, Sophia Antipolis, France
| | - Richard Thiéry
- Unité de Pathologie des Ruminants, Agence Française de
Sécurité Sanitaire des Aliments (AFSSA) Sophia Antipolis,
France
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales
Emergentes, CNRS-IRD, UMR 6236, Faculté de Médecine,
Université de la Méditerranée, Marseille,
France
- * E-mail:
| |
Collapse
|
13
|
Aikawa C, Maruyama F, Nakagawa I. The dawning era of comprehensive transcriptome analysis in cellular microbiology. Front Microbiol 2010; 1:118. [PMID: 21687718 PMCID: PMC3109594 DOI: 10.3389/fmicb.2010.00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/06/2010] [Indexed: 01/19/2023] Open
Abstract
Bacteria rapidly change their transcriptional patterns during infection in order to adapt to the host environment. To investigate host–bacteria interactions, various strategies including the use of animal infection models, in vitro assay systems and microscopic observations have been used. However, these studies primarily focused on a few specific genes and molecules in bacteria. High-density tiling arrays and massively parallel sequencing analyses are rapidly improving our understanding of the complex host–bacterial interactions through identification and characterization of bacterial transcriptomes. Information resulting from these high-throughput techniques will continue to provide novel information on the complexity, plasticity, and regulation of bacterial transcriptomes as well as their adaptive responses relative to pathogenecity. Here we summarize recent studies using these new technologies and discuss the utility of transcriptome analysis.
Collapse
Affiliation(s)
- Chihiro Aikawa
- Section of Bacterial Pathogenesis, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | | | | |
Collapse
|
14
|
Rickettsia prowazekii uses an sn-glycerol-3-phosphate dehydrogenase and a novel dihydroxyacetone phosphate transport system to supply triose phosphate for phospholipid biosynthesis. J Bacteriol 2010; 192:4281-8. [PMID: 20581209 DOI: 10.1128/jb.00443-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rickettsia prowazekii is an obligate intracellular pathogen that possesses a small genome and a highly refined repertoire of biochemical pathways compared to those of free-living bacteria. Here we describe a novel biochemical pathway that relies on rickettsial transport of host cytosolic dihydroxyacetone phosphate (DHAP) and its subsequent conversion to sn-glycerol-3-phosphate (G3P) for synthesis of phospholipids. This rickettsial pathway compensates for the evolutionary loss of rickettsial glycolysis/gluconeogenesis, the typical endogenous source of G3P. One of the components of this pathway is R. prowazekii open reading frame RP442, which is annotated GpsA, a G3P dehydrogenase (G3PDH). Purified recombinant rickettsial GpsA was shown to specifically catalyze the conversion of DHAP to G3P in vitro. The products of the GpsA assay were monitored spectrophotometrically, and the identity of the reaction product was verified by paper chromatography. In addition, heterologous expression of the R. prowazekii gpsA gene functioned to complement an Escherichia coli gpsA mutant. Furthermore, gpsA mRNA was detected in R. prowazekii purified from hen egg yolk sacs, and G3PDH activity was assayable in R. prowazekii lysed-cell extracts. Together, these data strongly suggested that R. prowazekii encodes and synthesizes a functional GpsA enzyme, yet R. prowazekii is unable to synthesize DHAP as a substrate for the GpsA enzymatic reaction. On the basis of the fact that intracellular organisms often avail themselves of resources in the host cell cytosol via the activity of novel carrier-mediated transport systems, we reasoned that R. prowazekii transports DHAP to supply substrate for GpsA. In support of this hypothesis, we show that purified R. prowazekii transported and incorporated DHAP into phospholipids, thus implicating a role for GpsA in vivo as part of a novel rickettsial G3P acquisition pathway for phospholipid biosynthesis.
Collapse
|
15
|
Cho BA, Cho NH, Min CK, Kim SY, Yang JS, Lee JR, Jung JW, Lee WC, Kim K, Lee MK, Kim S, Kim KP, Seong SY, Choi MS, Kim IS. Global gene expression profile of Orientia tsutsugamushi. Proteomics 2010; 10:1699-1715. [PMID: 20186754 DOI: 10.1002/pmic.200900633] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Accepted: 01/19/2010] [Indexed: 01/16/2023]
Abstract
Orientia tsutsugamushi, an obligate intracellular bacterium, is the causative agent of Scrub typhus. The control mechanisms for bacterial gene expression are largely unknown. Here, the global gene expression of O. tsutsugamushi within eukaryotic cells was examined using a microarray and proteomic approaches for the first time. These approaches identified 643 genes, corresponding to approximately 30% of the genes encoded in the genome. The majority of expressed genes belonged to several functional categories including protein translation, protein processing/secretion, and replication/repair. We also searched the conserved sequence blocks (CSBs) in the O. tsutsugamushi genome which is unique in that up to 40% of its genome consists of dispersed repeated sequences. Although extensive shuffling of genomic sequences was observed between two different strains, 204 CSBs, covering 48% of the genome, were identified. When combining the data of CSBs and global gene expression, the CSBs correlates well with the location of expressed genes, suggesting the functional conservation between gene expression and genomic location. Finally, we compared the gene expression of the bacteria-infected fibroblasts and macrophages using microarray analysis. Some major changes were the downregulation of genes involved in translation, protein processing and secretion, which correlated with the reduction in bacterial translation rates and growth within macrophages.
Collapse
Affiliation(s)
- Bon-A Cho
- Department of Microbiology and Immunology, College of Medicine and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Camarena L, Bruno V, Euskirchen G, Poggio S, Snyder M. Molecular mechanisms of ethanol-induced pathogenesis revealed by RNA-sequencing. PLoS Pathog 2010; 6:e1000834. [PMID: 20368969 PMCID: PMC2848557 DOI: 10.1371/journal.ppat.1000834] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/25/2010] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii is a common pathogen whose recent resistance to drugs has emerged as a major health problem. Ethanol has been found to increase the virulence of A. baumannii in Dictyostelium discoideum and Caenorhabditis elegans models of infection. To better understand the causes of this effect, we examined the transcriptional profile of A. baumannii grown in the presence or absence of ethanol using RNA-Seq. Using the Illumina/Solexa platform, a total of 43,453,960 reads (35 nt) were obtained, of which 3,596,474 mapped uniquely to the genome. Our analysis revealed that ethanol induces the expression of 49 genes that belong to different functional categories. A strong induction was observed for genes encoding metabolic enzymes, indicating that ethanol is efficiently assimilated. In addition, we detected the induction of genes encoding stress proteins, including upsA, hsp90, groEL and lon as well as permeases, efflux pumps and a secreted phospholipase C. In stationary phase, ethanol strongly induced several genes involved with iron assimilation and a high-affinity phosphate transport system, indicating that A. baumannii makes a better use of the iron and phosphate resources in the medium when ethanol is used as a carbon source. To evaluate the role of phospholipase C (Plc1) in virulence, we generated and analyzed a deletion mutant for plc1. This strain exhibits a modest, but reproducible, reduction in the cytotoxic effect caused by A. baumannii on epithelial cells, suggesting that phospholipase C is important for virulence. Overall, our results indicate the power of applying RNA-Seq to identify key modulators of bacterial pathogenesis. We suggest that the effect of ethanol on the virulence of A. baumannii is multifactorial and includes a general stress response and other specific components such as phospholipase C. Acinetobacter baumannii has recently emerged as a frequent opportunistic pathogen. In the presence of ethanol A. baumannii increases its pathogenicity towards Dictyostelium discoideum and Caenorhabditis elegans, and community-acquired infections of A. baumannii are associated with alcoholism. Ethanol negatively affects both epithelial cells and alters the bacterial physiology. To explore the underlying basis for the increased virulence of A. baumannii in the presence of ethanol we examined the transcriptional profile of this bacterium using the novel methodology known as RNA-Seq. We show that ethanol induces the expression of a phospholipase C, which contributes to A. baumannii cytotoxicity. We also show that many proteins related to stress were induced and that ethanol is efficiently assimilated as a carbon source leading to induction in stationary phase of two different Fe uptake systems and a phosphate transport system. Interestingly, a previous study showed that a mutant in the high-affinity phosphate uptake system was avirulent. Our work contributes to the understanding of A. baumannii pathogenesis and provides a powerful approach that can be extended to other pathogenic bacteria.
Collapse
Affiliation(s)
- Laura Camarena
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Universidad Nacional Autónoma de México, Inst. Inv. Biomédicas, México, D.F., México
| | - Vincent Bruno
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ghia Euskirchen
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Stanford Univeristy School of Medicine, Stanford, California, United States of America
| | - Sebastian Poggio
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Michael Snyder
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Stanford Univeristy School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Leroy Q, Raoult D. Review of microarray studies for host-intracellular pathogen interactions. J Microbiol Methods 2010; 81:81-95. [PMID: 20188126 DOI: 10.1016/j.mimet.2010.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/17/2022]
Abstract
Obligate intracellular bacteria are privileged soldiers on the battlefield that represent host-pathogen interactions. Microarrays are a powerful technology that can increase our knowledge about how bacteria respond to and interact with their hosts. This review summarizes the limitations inherent to host-pathogen interaction studies and essential strategies to improve microarray investigations of intracellular bacteria. We have compiled the comparative genomic and gene expression analyses of obligate intracellular bacteria currently available from microarrays. In this review we explore ways in which microarrays can be used to identify polymorphisms in different obligate intracellular bacteria such as Coxiella burnetii, Chlamydia trachomatis, Ehrlichia chaffeensis, Rickettsia prowazekii and Tropheryma whipplei. These microarray studies reveal that, while genomic content is highly conserved in obligate intracellular bacteria, genetic polymorphisms can potentially occur to increase bacterial pathogenesis. Additionally, changes in the gene expression of C. trachomatis throughout its life cycle, as well as changes in the gene expression profile of the pathogens R. prowazekii, Rickettsia rickettsii, Rickettsia typhi, T. whipplei and C. trachomatis following environmental changes, are discussed. Finally, an in vivo model of Rickettsia conorii within the skin is discussed. The gene expression analyses highlight the capacity of obligate intracellular bacteria to adapt to environmental changes and potentially to thwart the host response.
Collapse
Affiliation(s)
- Quentin Leroy
- Université de la Méditerranée, URMITE IRD-CNRS 6236, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | |
Collapse
|
18
|
Abstract
Phylogenomics reveals extreme gene loss in typhus group (TG) rickettsiae relative to the levels for other rickettsial lineages. We report here a curious protease-encoding gene (ppcE) that is conserved only in TG rickettsiae. As a possible determinant of host pathogenicity, ppcE warrants consideration in the development of therapeutics against epidemic and murine typhus.
Collapse
|
19
|
Ellison DW, Clark TR, Sturdevant DE, Virtaneva K, Hackstadt T. Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli. PLoS One 2009; 4:e5612. [PMID: 19440298 PMCID: PMC2680988 DOI: 10.1371/journal.pone.0005612] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 04/24/2009] [Indexed: 11/18/2022] Open
Abstract
Rickettsiae are strict obligate intracellular pathogens that alternate between arthropod and mammalian hosts in a zoonotic cycle. Typically, pathogenic bacteria that cycle between environmental sources and mammalian hosts adapt to the respective environments by coordinately regulating gene expression such that genes essential for survival and virulence are expressed only upon infection of mammals. Temperature is a common environmental signal for upregulation of virulence gene expression although other factors may also play a role. We examined the transcriptional responses of Rickettsia rickettsii, the agent of Rocky Mountain spotted fever, to a variety of environmental signals expected to be encountered during its life cycle. R. rickettsii exposed to differences in growth temperature (25 degrees C vs. 37 degrees C), iron limitation, and host cell species displayed nominal changes in gene expression under any of these conditions with only 0, 5, or 7 genes, respectively, changing more than 3-fold in expression levels. R. rickettsii is not totally devoid of ability to respond to temperature shifts as cold shock (37 degrees C vs. 4 degrees C) induced a change greater than 3-fold in up to 56 genes. Rickettsiae continuously occupy a relatively stable environment which is the cytosol of eukaryotic cells. Because of their obligate intracellular character, rickettsiae are believed to be undergoing reductive evolution to a minimal genome. We propose that their relatively constant environmental niche has led to a minimal requirement for R. rickettsii to respond to environmental changes with a consequent deletion of non-essential transcriptional response regulators. A minimal number of predicted transcriptional regulators in the R. rickettsii genome is consistent with this hypothesis.
Collapse
Affiliation(s)
- Damon W. Ellison
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Tina R. Clark
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Sturdevant
- Genomics Unit, Research Technology Section, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kimmo Virtaneva
- Genomics Unit, Research Technology Section, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Ted Hackstadt
- Laboratory of Intracellular Parasites, Rocky Mountain Laboratories, National Institute of Allergy and Infections Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
20
|
Warnecke F, Hess M. A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 2009; 142:91-5. [PMID: 19480952 DOI: 10.1016/j.jbiotec.2009.03.022] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 03/14/2009] [Accepted: 03/20/2009] [Indexed: 11/18/2022]
Abstract
In this mini-review, advantages and current bottlenecks of metatranscriptomic-sequencing for the discovery of novel enzymes for biotechnological applications will be discussed. Comparison of this innovative approach to traditional metagenomic-sequencing will illustrate that expression profiling has a promising future as a direct and very efficient method for the discovery of novel biocatalysts, even from complex microbial communities.
Collapse
Affiliation(s)
- Falk Warnecke
- DOE Joint Genome Institute, Microbial Ecology Program, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
| | | |
Collapse
|