1
|
Liu S, Li Y, Quan L, Liu HX, Luo Y, Wang YZ. Enhancing cellulase biosynthesis of Bacillus subtilis Z2 by regulating intracellular NADH level. iScience 2025; 28:112341. [PMID: 40276757 PMCID: PMC12019202 DOI: 10.1016/j.isci.2025.112341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Optimizing cellulase biosynthesis in Bacillus subtilis is crucial for enhancing enzymatic yield in lignocellulosic biomass conversion. However, the regulatory mechanisms linking intracellular NAD(H/+) levels to cellulase production remain elusive. In this study, we systematically screened 13 genes associated with NAD+ biosynthesis and NADH regeneration in B. subtilis Z2. Employing a modular engineering strategy with four distinct modules, we directed metabolic flux to enhance NAD+ biosynthesis and NADH regeneration. Key genes (ycel, nadV, nadM, mdh, and sucB) were identified, and their co-expression in B. subtilis Z2 resulted in a 13.09-fold increase in intracellular NADH levels and a consequential 2.24- and 2.04-fold enhancement in the filter paper-hydrolyzing (FPase [representing total cellulase]) activity and carboxymethylcellulose (CMCase [representing endoglucanase]) activity, respectively. Experimental validations, including antagonist LaCl3 treatment and spcF gene deletion, unequivocally established the calcium signaling pathway's role in regulating cellulase gene overexpression in response to elevated intracellular NAD(H/+) levels.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yi Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Lin Quan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Hai-Xia Liu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, NHC Key Laboratory of Birth Defects and Reproductive Health, Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing 400030, China
| | - Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
2
|
Chu PH, Jenol MA, Phang LY, Ibrahim MF, Purkan P, Hadi S, Abd-Aziz S. Innovative approaches for amino acid production via consolidated bioprocessing of agricultural biomass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:33303-33324. [PMID: 38710845 DOI: 10.1007/s11356-024-33534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
Agricultural plantations in Indonesia and Malaysia yield substantial waste, necessitating proper disposal to address environmental concerns. Yet, these wastes, rich in starch and lignocellulosic content, offer an opportunity for value-added product development, particularly amino acid production. Traditional methods often rely on costly commercial enzymes to convert biomass into fermentable sugars for amino acid production. An alternative, consolidated bioprocessing, enables the direct conversion of agricultural biomass into amino acids using selected microorganisms. This review provides a comprehensive assessment of the potential of agricultural biomass in Indonesia and Malaysia for amino acid production through consolidated bioprocessing. It explores suitable microorganisms and presents a case study on using Bacillus subtilis ATCC 6051 to produce 9.56 mg/mL of amino acids directly from pineapple plant stems. These findings contribute to the advancement of sustainable amino acid production methods using agricultural biomass especially in Indonesia and Malaysia through consolidated bioprocessing, reducing waste and enhancing environmental sustainability.
Collapse
Affiliation(s)
- Pei-Hsia Chu
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Lai-Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Purkan Purkan
- Biochemistry Division, Department of Chemistry, Faculty of Science and Technology, Airlangga University, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Sofijan Hadi
- Biochemistry Division, Department of Chemistry, Faculty of Science and Technology, Airlangga University, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Biochemistry Division, Department of Chemistry, Faculty of Science and Technology, Airlangga University, Jl. Mulyorejo, Surabaya, 60115, Indonesia.
| |
Collapse
|
3
|
Liu S, Quan L, Yang M, Wang D, Wang YZ. Regulation of cellulase production via calcium signaling in Trichoderma reesei under PEG8000 stress. Appl Microbiol Biotechnol 2024; 108:178. [PMID: 38276978 PMCID: PMC10817842 DOI: 10.1007/s00253-023-12901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 01/27/2024]
Abstract
In this study, the effect of polyethylene glycol 8000 (PEG8000) stress on cellulase biosynthesis in Trichoderma reesei CICC2626 via calcium signaling was investigated, and a plausible mechanism by which intracellular Ca2+ regulates the transcription of cellulase genes was proposed. The results indicated that the total cellulase (filter paper-hydrolyzing activity [FPase]), endoglucanase (carboxymethyl cellulase activity [CMCase]), and β-glucosidase activities of the strain were 1.3-, 1.2-, and 1.3-fold higher than those of the control (no PEG8000 addition) at a final concentration of 1.5% (w/v) PEG8000. Moreover, the transcriptional levels of cellulase genes, protein concentrations, and biomass increased. With the synergistic use of commercial cellulase and T. reesei CICC2626 cellulase to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 372.7 mg/g, and the cellulose content (22.7%, 0.32 g) was significantly lower than the initial content (62.5%, 1.88 g). Transcriptome data showed that 12 lignocellulose degradation-related genes were significantly upregulated in the presence of 1.5% PEG8000. Furthermore, the addition of Ca2+ inhibitors and deletion of crz1 (calcineurin-responsive zinc finger 1-encoding gene, which is related to the calcium signaling pathway) demonstrated that calcium signaling plays a dominant role in PEG8000-induced cellulase genes overexpression. These results revealed a link between PEG8000 induction and calcium signaling transduction in T. reesei CICC2626. Moreover, this study also provides a novel inducer for enhanced cellulase production. KEY POINTS: • Cellulase biosynthesis in Trichoderma reesei could be enhanced by PEG8000 • PEG8000 could induce a cytosolic Ca2+ burst in Trichoderma reesei • The activated calcium signaling was involved in cellulase biosynthesis.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lin Quan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Singh R, Singh P, Ahmad I, Alkhathami AG, Rai AK, Mishra PK, Singh RP, Srivastava N. Bionanofabrication of Cupric oxide catalyst from Water hyacinth based carbohydrate and its impact on cellulose deconstructing enzymes production under solid state fermentation. Int J Biol Macromol 2023; 252:126377. [PMID: 37595725 DOI: 10.1016/j.ijbiomac.2023.126377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
One of the most important properties of cellulolytic enzyme is its ability to convert cellulosic polymer into monomeric fermentable sugars which are carbohydrate by nature can efficiently convert into biofuels. However, higher production costs of these enzymes with moderate activity-based stability are the main obstacles to making cellulase-based applications sustainably viable, and this has necessitated rigorous research for the economical availability of this process. Using water hyacinth (WH) waste leaves as the substrate for cellulase production under solid state fermentation (SSF) while treating the fermentation production medium with CuO (cupric oxide oxide) bionanocatalyst have been examined as ways to make fungal cellulase production economically feasible. Herein, a sustainable green synthesis of CuO bionanocatalyst has been performed by using waste leaves of WH. Through XRD, FT-IR, SEM, and TEM analysis, the prepared CuO bionanocatalyst's physicochemical properties have been evaluated. Furthermore, the effect of CuO bionanocatalyst on the temperature stability of raw cellulases was observed, and its half-life stability was found to be up to 9 h at 65 °C. The results presented in the current investigation may have broad scope for mass trials for various industrial applications, such as cellulosic biomass conversion.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Pardeep Singh
- Department of Environmental Science, PGDAV College, University of Delhi, 110007, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - P K Mishra
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India
| | | | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Kolodkin-Gal I, Parsek MR, Patrauchan MA. The roles of calcium signaling and calcium deposition in microbial multicellularity. Trends Microbiol 2023; 31:1225-1237. [PMID: 37429751 PMCID: PMC10772221 DOI: 10.1016/j.tim.2023.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023]
Abstract
Calcium signaling is an essential mediator of signal-controlling gene expression in most developmental systems. In addition, calcium has established extracellular functions as a structural component of biogenic minerals found in complex tissues. In bacteria, the formation of calcium carbonate structures is associated with complex colony morphology. Genes promoting the formation of biogenic minerals are essential for proper biofilm development and protection against antimicrobial solutes and toxins. Here we review recent findings on the role of calcium and calcium signaling as emerging regulators of biofilm formation in beneficial bacteria, as well as essential mediators of biofilm formation and virulence in human pathogens. The presented analysis concludes that the new understanding of calcium signaling may help to improve the performance of beneficial strains for sustainable agriculture, microbiome manipulation, and sustainable construction. Unraveling the roles of calcium may also promote the development of novel therapies against biofilm infections that target calcium uptake, calcium sensors, and calcium carbonate deposition.
Collapse
Affiliation(s)
- Ilana Kolodkin-Gal
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, WA, USA.
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
6
|
Asiri M, Srivastava N, Singh R, Al Ali A, Tripathi SC, Alqahtani A, Saeed M, Srivastava M, Rai AK, Gupta VK. Rice straw derived graphene-silica based nanocomposite and its application in improved co-fermentative microbial enzyme production and functional stability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162765. [PMID: 36906037 DOI: 10.1016/j.scitotenv.2023.162765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Cellulases are the one of the most highly demanded industrial biocatalysts due to their versatile applications, such as in the biorefinery industry. However, relatively poor efficiency and high production costs are included as the key industrial constraints that hinder enzyme production and utilization at economic scale. Furthermore, the production and functional efficiency of the β-glucosidase (BGL) enzyme is usually found to be relatively low among the cellulase cocktail produced. Thus, the current study focuses on fungi-mediated improvement of BGL enzyme in the presence of a rice straw-derived graphene-silica-based nanocomposite (GSNCs), which has been characterized using various techniques to analyze its physicochemical properties. Under optimized conditions of solid-state fermentation (SSF), co-fermentation using co-cultured cellulolytic enzyme has been done, and maximum enzyme production of 42 IU/gds FP, 142 IU/gds BGL, and 103 IU/gds EG have been achieved at a 5 mg concentration of GSNCs. Moreover, at a 2.5 mg concentration of nanocatalyst, the BGL enzyme showed its thermal stability at 60°C and 70 °C by holding its half-life relative activity for 7 h, while the same enzyme demonstrated pH stability at pH 8.0 and 9.0 for the 10 h. This thermoalkali BGL enzyme might be useful for the long-term bioconversion of cellulosic biomass into sugar.
Collapse
Affiliation(s)
- Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India.
| | - Rajeev Singh
- Department of Environmental Science, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, Bisha, Saudi Arabia
| | - Subhash C Tripathi
- Institute of Applied Sciences & Humanities, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Abdulaziz Alqahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
7
|
Saeed M, Mohammad A, Singh P, Lal B, Suliman M, Alshahrani MY, Sharma M. Coconut waste valorization to produce biochar catalyst and its application in cellulose-degrading enzymes production via SSF. Int J Biol Macromol 2023; 240:124382. [PMID: 37030469 DOI: 10.1016/j.ijbiomac.2023.124382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 04/08/2023]
Abstract
Solid waste management and waste valorization are key concerns and challenges around the globe. Solid wastes generated by food industries are found in a diverse variety, are key sources of enormously valuable compounds, and can be effectively transformed into useful products for broad industrial applications. Biomass-based catalysts, industrial enzymes, and biofuels are some of the very prominent and sustainable products that are developed using these solid wastes. The aims of the current study are therefore centered on the multiple valorizations of coconut waste (CWs) to develop biochar as a catalyst and its application in fungal enzyme production in solid-state fermentation (SSF). Biochar as a catalyst using CWs has been prepared via a calcination process lasting 1 h at 500 °C and characterized through X-ray diffraction, Fourier-transformed infrared spectroscopy, and scanning electron microscope techniques. The produced biochar has been implemented for boosting enzyme production through SSF. In addition, studies have been performed on enzyme production with varying time and temperature, and it is found that the maximum 92 IU/gds BGL enzyme could be produced at a 2.5 mg concentration of biochar-catalyst at 40 °C in 72 h.
Collapse
|