1
|
Wang C, Li P, Cong W, Zhang L, Zhou M, Hou Y. A Novel Point Mutation M460I in Histidine Kinase FgOs1 Confers High Resistance to Fludioxonil in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25522-25532. [PMID: 39496401 DOI: 10.1021/acs.jafc.4c06858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, severely impacts global wheat production, reducing both the yield and quality. In China, fludioxonil, a phenylpyrrole fungicide, is used for managing FHB. This study assessed fludioxonil activity against 120 F. graminearum strains collected from Hubei, Zhejiang, and Jiangsu in 2024, revealing an average EC50 value of 0.0273 ± 0.0062 μg/mL. We obtained two resistant mutants through chemical taming and discovered a novel point mutation of FgOs1-M460I. Site-directed mutagenesis confirmed that the FgOs1-M460I mutation greatly reduced fludioxonil sensitivity, with an EC50 value greater than 100 μg/mL. These mutants also displayed reduced sexual and asexual reproduction and lower virulence and accumulated less glycerol under fludioxonil and osmotic stress compared to sensitive strain. The resistant mutants showed no cross-resistance with carbendazim, tebuconazole, phenamacril, pyraclostrobin, or pydiflumetofen. Thus, we conclude that the FgOs1-M460I substitution regulates fludioxonil resistance and plays a role in asexual reproduction, sexual reproduction, and pathogenicity.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengfei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiwei Cong
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingrong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Haroon M, Zahoor AF, Ahmad S, Mansha A, Irfan M, Mushtaq A, Akhtar R, Irfan A, Kotwica-Mojzych K, Mojzych M. The Corey-Seebach Reagent in the 21st Century: A Review. Molecules 2023; 28:4367. [PMID: 37298842 PMCID: PMC10254450 DOI: 10.3390/molecules28114367] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
The Corey-Seebach reagent plays an important role in organic synthesis because of its broad synthetic applications. The Corey-Seebach reagent is formed by the reaction of an aldehyde or a ketone with 1,3-propane-dithiol under acidic conditions, followed by deprotonation with n-butyllithium. A large variety of natural products (alkaloids, terpenoids, and polyketides) can be accessed successfully by utilizing this reagent. This review article focuses on the recent contributions (post-2006) of the Corey-Seebach reagent towards the total synthesis of natural products such as alkaloids (lycoplanine A, diterpenoid alkaloids, etc.), terpenoids (bisnorditerpene, totarol, etc.), polyketide (ambruticin J, biakamides, etc.), and heterocycles such as rodocaine and substituted pyridines, as well and their applications towards important organic synthesis.
Collapse
Affiliation(s)
- Muhammad Haroon
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.); (A.M.); (A.M.); (R.A.); (A.I.)
| | - Ameer Fawad Zahoor
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.); (A.M.); (A.M.); (R.A.); (A.I.)
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan;
| | - Asim Mansha
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.); (A.M.); (A.M.); (R.A.); (A.I.)
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Aqsa Mushtaq
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.); (A.M.); (A.M.); (R.A.); (A.I.)
| | - Rabia Akhtar
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.); (A.M.); (A.M.); (R.A.); (A.I.)
- Department of Chemistry, Superior University, Faisalabad 38000, Pakistan
| | - Ali Irfan
- Medicinal Chemistry Research Lab, Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (M.H.); (A.M.); (A.M.); (R.A.); (A.I.)
| | - Katarzyna Kotwica-Mojzych
- Laboratory of Experimental Cytology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland;
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, 3-Go Maja 54, 08-110 Siedlce, Poland
| |
Collapse
|
3
|
Trentadue K, Chang CF, Nalin A, Taylor RE. Enantioselective Total Synthesis of the Putative Biosynthetic Intermediate Ambruticin J. Chemistry 2021; 27:11126-11131. [PMID: 33887073 DOI: 10.1002/chem.202100975] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 11/09/2022]
Abstract
The family of anti-fungal natural products known as the ambruticins are structurally distinguished by a pair of pyran rings adorning a divinylcyclopropane core. Previous characterization of their biosynthesis, including the expression of a genetically modified producing organism, revealed that the polyketide synthase pathway proceeds via a diol intermediate, known as ambruticin J. Herein, we report the first enantioselective total synthesis of the putative PKS product, ambruticin J, according to a triply convergent synthetic route featuring a Suzuki-Miyaura cross-coupling and a Julia-Kocienski olefination for fragment assembly. This synthesis takes advantage of synthetic methodology previously developed by our laboratory for the stereoselective generation of the trisubstituted cyclopropyl linchpin.
Collapse
Affiliation(s)
- Kathryn Trentadue
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Chia-Fu Chang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA, 02138, USA
| | - Ansel Nalin
- College of Medicine, The Ohio State University, 370 W. 9th Avenue, Columbus, OH, 43210, USA
| | - Richard E Taylor
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
4
|
Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Mol Genet Genomics 2021; 296:1135-1145. [PMID: 34196769 DOI: 10.1007/s00438-021-01809-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Nik1 orthologs or group III hybrid histidine kinases (HHK3) represent a unique cytoplasmic osmosensor that act upstream of HOG/p38 MAPK pathway in fungi. It is an important molecular target for developing new antifungal agents against human pathogens. HHK3 orthologs contain a linear array of alternative HAMP and HAMP-like linker domains (poly-HAMP) in the N-terminal region. HAMP domains are quite common in prokaryotic histidine kinases where it mostly functions as signal transducer mediating conformational changes in the kinase domains. In contrast, poly-HAMP in HHK3 acts as a sensor and signal transducer to regulate histidine kinase activity. However, the mechanistic detail of this is poorly understood. Interestingly, recent studies indicate that the poly-HAMP-mediated regulation of the kinase activity varies among the orthologs. Hik1 is an important HHK3 ortholog from fungus Magnaporthe oryzae. In this paper, we aimed to decipher the role HAMP and HAMP-like linker domains in regulating the activity of Hik1p. We show that Hik1p acts as a bona fide osmosensor and negatively regulates the downstream HOG/p38 MAPK pathway in Saccharomyces cerevisiae. Our data suggest a differential role of the HAMP domains in the functionality of Hik1p. Most interestingly, the deletion of individual domains in poly-HAMP resulted in distinct active forms of Hik1p and thereby indicating that the poly-HAMP domain, instead of acting as on-off switch, regulates the histidine kinase activity by transition through multiple conformational states.
Collapse
|
5
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
6
|
Hu M, Chen S. Non-Target Site Mechanisms of Fungicide Resistance in Crop Pathogens: A Review. Microorganisms 2021; 9:microorganisms9030502. [PMID: 33673517 PMCID: PMC7997439 DOI: 10.3390/microorganisms9030502] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
The rapid emergence of resistance in plant pathogens to the limited number of chemical classes of fungicides challenges sustainability and profitability of crop production worldwide. Understanding mechanisms underlying fungicide resistance facilitates monitoring of resistant populations at large-scale, and can guide and accelerate the development of novel fungicides. A majority of modern fungicides act to disrupt a biochemical function via binding a specific target protein in the pathway. While target-site based mechanisms such as alternation and overexpression of target genes have been commonly found to confer resistance across many fungal species, it is not uncommon to encounter resistant phenotypes without altered or overexpressed target sites. However, such non-target site mechanisms are relatively understudied, due in part to the complexity of the fungal genome network. This type of resistance can oftentimes be transient and noninheritable, further hindering research efforts. In this review, we focused on crop pathogens and summarized reported mechanisms of resistance that are otherwise related to target-sites, including increased activity of efflux pumps, metabolic circumvention, detoxification, standing genetic variations, regulation of stress response pathways, and single nucleotide polymorphisms (SNPs) or mutations. In addition, novel mechanisms of drug resistance recently characterized in human pathogens are reviewed in the context of nontarget-directed resistance.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Correspondence: (M.H.); (S.C.)
| | - Shuning Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (M.H.); (S.C.)
| |
Collapse
|
7
|
Singh D, Gupta P, Singla-Pareek SL, Siddique KH, Pareek A. The Journey from Two-Step to Multi-Step Phosphorelay Signaling Systems. Curr Genomics 2021; 22:59-74. [PMID: 34045924 PMCID: PMC8142344 DOI: 10.2174/1389202921666210105154808] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/21/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The two-component signaling (TCS) system is an important signal transduction machinery in prokaryotes and eukaryotes, excluding animals, that uses a protein phosphorylation mechanism for signal transmission. CONCLUSION Prokaryotes have a primitive type of TCS machinery, which mainly comprises a membrane-bound sensory histidine kinase (HK) and its cognate cytoplasmic response regulator (RR). Hence, it is sometimes referred to as two-step phosphorelay (TSP). Eukaryotes have more sophisticated signaling machinery, with an extra component - a histidine-containing phosphotransfer (HPT) protein that shuttles between HK and RR to communicate signal baggage. As a result, the TSP has evolved from a two-step phosphorelay (His-Asp) in simple prokaryotes to a multi-step phosphorelay (MSP) cascade (His-Asp-His-Asp) in complex eukaryotic organisms, such as plants, to mediate the signaling network. This molecular evolution is also reflected in the form of considerable structural modifications in the domain architecture of the individual components of the TCS system. In this review, we present TCS system's evolutionary journey from the primitive TSP to advanced MSP type across the genera. This information will be highly useful in designing the future strategies of crop improvement based on the individual members of the TCS machinery.
Collapse
Affiliation(s)
| | | | | | | | - Ashwani Pareek
- Address correspondence to this author at the Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Tel/Fax: 91-11-26704504 / 26742558; E-mail:
| |
Collapse
|
8
|
Hahn F, Guth FM. The ambruticins and jerangolids - chemistry, biology and chemoenzymatic synthesis of potent antifungal drug candidates. Nat Prod Rep 2020; 37:1300-1315. [PMID: 32420573 DOI: 10.1039/d0np00012d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1977 to 2020The ambruticins and jerangolids are myxobacterial reduced polyketides, which are produced via highly unusual biosynthetic pathways containing a plethora of non-canonical enzymatic transformations. Since the discovery of the first congeners in the late 1970s, they have been in the focus of drug development due to their good antifungal activity and low toxicity in mammals, which result from interaction with an unusual innercellular target in fungi. Despite significant efforts, which have led to the development of various total syntheses, their structural complexity has yet avoided full exploitation of their pharmacological potential. This article summarises biological, total and semisynthetic as well as biosynthetic studies on both compounds. An outlook on the biosynthesis-based approaches to them and their derivatives is presented. Due to the structural and biosynthetic characteristics of the ambruticins and jerangolids, chemoenzymatic processes that make use of their biosynthetic pathway enzymes are particularly promising to gain efficient access to derivative libraries for structure activity relationship studies.
Collapse
Affiliation(s)
- Frank Hahn
- Department of Chemistry, University of Bayreuth, 51427 Bayreuth, Germany.
| | | |
Collapse
|
9
|
N'Guyen GQ, Raulo R, Marchi M, Agustí-Brisach C, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Bastide F, Hamon B, Mouchès C, Porcheron B, Lemoine R, Kwasiborski A, Simoneau P, Guillemette T. Responses to Hydric Stress in the Seed-Borne Necrotrophic Fungus Alternaria brassicicola. Front Microbiol 2019; 10:1969. [PMID: 31543870 PMCID: PMC6730492 DOI: 10.3389/fmicb.2019.01969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alternaria brassicicola is a necrotrophic fungus causing black spot disease and is an economically important seed-borne pathogen of cultivated brassicas. Seed transmission is a crucial component of its parasitic cycle as it promotes long-term survival and dispersal. Recent studies, conducted with the Arabidopsis thaliana/A. brassicicola pathosystem, showed that the level of susceptibility of the fungus to water stress strongly influenced its seed transmission ability. In this study, we gained further insights into the mechanisms involved in the seed infection process by analyzing the transcriptomic and metabolomic responses of germinated spores of A. brassicicola exposed to water stress. Then, the repertoire of putative hydrophilins, a group of proteins that are assumed to be involved in cellular dehydration tolerance, was established in A. brassicicola based on the expression data and additional structural and biochemical criteria. Phenotyping of single deletion mutants deficient for fungal hydrophilin-like proteins showed that they were affected in their transmission to A. thaliana seeds, although their aggressiveness on host vegetative tissues remained intact.
Collapse
Affiliation(s)
- Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Roxane Raulo
- Université de Lille, INRA, ISA, Université d'Artois, Université du Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Muriel Marchi
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | | | - Beatrice Iacomi
- Department of Plant Sciences, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | - Sandra Pelletier
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Jean-Pierre Renou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Nelly Bataillé-Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Claire Campion
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Chloé Mouchès
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Benoit Porcheron
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Remi Lemoine
- Equipe "Sucres & Echanges Végétaux-Environnement," UMR CNRS 7267 EBI Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, Angers, France
| |
Collapse
|
10
|
Lindner F, Friedrich S, Hahn F. Total Synthesis of Complex Biosynthetic Late-Stage Intermediates and Bioconversion by a Tailoring Enzyme from Jerangolid Biosynthesis. J Org Chem 2018; 83:14091-14101. [DOI: 10.1021/acs.joc.8b02047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Frederick Lindner
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Steffen Friedrich
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
11
|
Spadinger A, Ebel F. Molecular characterization of Aspergillus fumigatus TcsC, a characteristic type III hybrid histidine kinase of filamentous fungi harboring six HAMP domains. Int J Med Microbiol 2017; 307:200-208. [PMID: 28527583 DOI: 10.1016/j.ijmm.2017.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/04/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022] Open
Abstract
The type III hybrid histidine kinase (HHK) TcsC enables the pathogenic mold Aspergillus fumigatus to thrive under hyperosmotic conditions. It is, moreover, of particular interest, since it is the target of certain antifungal agents, such as fludioxonil. This study was aimed at a functional characterization of the domains that constitute the sensing and the kinase module of TcsC. The sensing module consists of six HAMP domains, an architecture that is commonly found in type III HHKs of filamentous fungi. To dissect the functional role of the individual domains, we have analyzed a set of truncated derivatives of TcsC with respect to their impact on fungal growth and their ability to respond to hyperosmotic stress and fludioxonil. Our data demonstrate that the TcsC kinase module per se is constitutively active and under the control of the sensing module. We furthermore found that the sixth HAMP domain alone is sufficient to arrest the kinase module in an inactive state. This effect can be partially lifted by the presence of the fifth HAMP domain. Constructs harboring more than these two HAMP domains are per se inactive and all six HAMP domains are required to enable a response to fludioxonil or hyperosmotic stress. When expressed in an A. fumigatus wild type strain, the construct harboring only the sixth HAMP domain exerts a strong dominant negative effect on the native TcsC. This effect is successively reduced in other constructs harboring increasing numbers of HAMP domains. To our knowledge, this is the first molecular characterization of a type III HHK containing six HAMP domains. Our data strongly suggest that TcsC is a positive regulator of its MAPK SakA and thereby differs fundamentally from the prototypic yeast type III HHK DhNik1 of Debaryomyces hansenii, which harbors only five HAMP domains and acts as a negative regulator of its MAPK.
Collapse
Affiliation(s)
- Anja Spadinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
12
|
Kilani J, Fillinger S. Phenylpyrroles: 30 Years, Two Molecules and (Nearly) No Resistance. Front Microbiol 2016; 7:2014. [PMID: 28018333 PMCID: PMC5159414 DOI: 10.3389/fmicb.2016.02014] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022] Open
Abstract
Phenylpyrroles are chemical analogs of the natural antifungal compound pyrrolnitrin. Fenpiclonil, but mainly fludioxonil are registered against multiple fungal crop diseases since over 25 years for seed or foliar treatment. They have severe physiological impacts on the pathogen, including membrane hyperpolarization, changes in carbon metabolism and the accumulation of metabolites leading to hyphal swelling and burst. The selection and characterization of mutants resistant to phenylpyrroles have revealed that these fungicides activate the fungal osmotic signal transduction pathway through their perception by a typical fungal hybrid histidine kinase (HHK). The HHK is prone to point mutations that confer fungicide resistance and affect its sensor domain, composed of tandem repeats of HAMP motifs. Fludioxonil resistant mutants have been selected in many fungal species under laboratory conditions. Generally they present severe impacts on fitness parameters. Since only few cases of field resistance specific to phenylpyrroles have been reported one may suspect that the fitness penalty of phenylpyrrole resistance is the reason for the lack of field resistance.
Collapse
Affiliation(s)
- Jaafar Kilani
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
- Université Paris-Sud, Université Paris-SaclayOrsay, France
| | - Sabine Fillinger
- UMR BIOGER, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
| |
Collapse
|
13
|
Hagiwara D, Sakamoto K, Abe K, Gomi K. Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the post-genomic era. Biosci Biotechnol Biochem 2016; 80:1667-80. [PMID: 27007956 DOI: 10.1080/09168451.2016.1162085] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Aspergillus species are among the most important filamentous fungi in terms of industrial use and because of their pathogenic or toxin-producing features. The genomes of several Aspergillus species have become publicly available in this decade, and genomic analyses have contributed to an integrated understanding of fungal biology. Stress responses and adaptation mechanisms have been intensively investigated using the accessible genome infrastructure. Mitogen-activated protein kinase (MAPK) cascades have been highlighted as being fundamentally important in fungal adaptation to a wide range of stress conditions. Reverse genetics analyses have uncovered the roles of MAPK pathways in osmotic stress, cell wall stress, development, secondary metabolite production, and conidia stress resistance. This review summarizes the current knowledge on the stress biology of Aspergillus species, illuminating what we have learned from the genomic data in this "post-genomic era."
Collapse
Affiliation(s)
- Daisuke Hagiwara
- a Medical Mycology Research Center , Chiba University , Chiba , Japan
| | | | - Keietsu Abe
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| | - Katsuya Gomi
- c Graduate School of Agricultural Science , Tohoku University , Sendai , Japan
| |
Collapse
|
14
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
15
|
Wichadakul D, Kobmoo N, Ingsriswang S, Tangphatsornruang S, Chantasingh D, Luangsa-ard JJ, Eurwilaichitr L. Insights from the genome of Ophiocordyceps polyrhachis-furcata to pathogenicity and host specificity in insect fungi. BMC Genomics 2015; 16:881. [PMID: 26511477 PMCID: PMC4625970 DOI: 10.1186/s12864-015-2101-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/16/2015] [Indexed: 01/19/2023] Open
Abstract
Background Ophiocordyceps unilateralis is an outstanding insect fungus for its biology to manipulate host ants’ behavior and for its extreme host-specificity. Through the sequencing and annotation of Ophiocordyceps polyrhachis-furcata, a species in the O. unilateralis species complex specific to the ant Polyrhachis furcata, comparative analyses on genes involved in pathogenicity and virulence between this fungus and other fungi were undertaken in order to gain insights into its biology and the emergence of host specificity. Results O. polyrhachis-furcata possesses various genes implicated in pathogenicity and virulence common with other fungi. Overall, this fungus possesses protein-coding genes similar to those found on other insect fungi with available genomic resources (Beauveria bassiana, Metarhizium robertsii (formerly classified as M. anisopliae s.l.), Metarhizium acridum, Cordyceps militaris, Ophiocordyceps sinensis). Comparative analyses in regard of the host ranges of insect fungi showed a tendency toward contractions of various gene families for narrow host-range species, including cuticle-degrading genes (proteases, carbohydrate esterases) and some families of pathogen-host interaction (PHI) genes. For many families of genes, O. polyrhachis-furcata had the least number of genes found; some genes commonly found in other insect fungi are even absent (e.g. Class 1 hydrophobin). However, there are expansions of genes involved in 1) the production of bacterial-like toxins in O. polyrhachis-furcata, compared with other entomopathogenic fungi, and 2) retrotransposable elements. Conclusions The gain and loss of gene families helps us understand how fungal pathogenicity in insect hosts evolved. The loss of various genes involved throughout the pathogenesis for O. unilateralis would result in a reduced capacity to exploit larger ranges of hosts and therefore in the different level of host specificity, while the expansions of other gene families suggest an adaptation to particular environments with unexpected strategies like oral toxicity, through the production of bacterial-like toxins, or sophisticated mechanisms underlying pathogenicity through retrotransposons. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2101-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Duangdao Wichadakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand. .,Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Floor 17th, Building 4, Payathai Rd., Wangmai, Pathumwan, 10330, Bangkok, Thailand.
| | - Noppol Kobmoo
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Supawadee Ingsriswang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Duriya Chantasingh
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Janet Jennifer Luangsa-ard
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| | - Lily Eurwilaichitr
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Neung, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
16
|
Calmes B, N’Guyen G, Dumur J, Brisach CA, Campion C, Iacomi B, Pigné S, Dias E, Macherel D, Guillemette T, Simoneau P. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery. FRONTIERS IN PLANT SCIENCE 2015; 6:414. [PMID: 26089832 PMCID: PMC4452805 DOI: 10.3389/fpls.2015.00414] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/22/2015] [Indexed: 05/03/2023]
Abstract
Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates (ITCs), are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which ITCs could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to ICTs led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species (ROS) and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e., the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of ICTs. Once activated by ICT-derived ROS, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against ICTs as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against ICT-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.
Collapse
Affiliation(s)
- Benoit Calmes
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Guillaume N’Guyen
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Jérome Dumur
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Carlos A. Brisach
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Claire Campion
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Béatrice Iacomi
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Sandrine Pigné
- Universitatea de Ştiinţe Agronomice şi Medicinǎ Veterinarǎ BucureştiBucharest, Romania
| | - Eva Dias
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - David Macherel
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Thomas Guillemette
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| | - Philippe Simoneau
- Université d’Angers, INRA, Agrocampus Ouest, UMR 1345 IRHS, SFR 4207 QUASAVAngers, France
| |
Collapse
|
17
|
Defosse TA, Sharma A, Mondal AK, Dugé de Bernonville T, Latgé JP, Calderone R, Giglioli-Guivarc'h N, Courdavault V, Clastre M, Papon N. Hybrid histidine kinases in pathogenic fungi. Mol Microbiol 2015; 95:914-24. [DOI: 10.1111/mmi.12911] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Tatiana A. Defosse
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| | | | - Alok K. Mondal
- Institute of Microbial Technology; Chandigarh India
- School of Life Sciences; Jawaharlal Nehru University; New Delhi India
| | | | | | - Richard Calderone
- Georgetown University Medical Center; Department of Microbiology & Immunology; Washington DC USA
| | | | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| | - Marc Clastre
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| | - Nicolas Papon
- Biomolécules et Biotechnologies Végétales; EA 2106; Université François-Rabelais de Tours; Tours France
| |
Collapse
|
18
|
Jacob S, Foster AJ, Yemelin A, Thines E. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae. Microbiologyopen 2014; 3:668-87. [PMID: 25103193 PMCID: PMC4234259 DOI: 10.1002/mbo3.197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 01/11/2023] Open
Abstract
The aim of this study is a functional characterization of 10 putative histidine kinases (HIKs)-encoding genes in the phytopathogenic fungus Magnaporthe oryzae. Two HIKs were found to be required for pathogenicity in the fungus. It was found that the mutant strains ΔMohik5 and ΔMohik8 show abnormal conidial morphology and furthermore ΔMohik5 is unable to form appressoria. Both HIKs MoHik5p and MoHik8p appear to be essential for pathogenicity since the mutants fail to infect rice plants. MoSln1p and MoHik1p were previously reported to be components of the HOG pathway in M. oryzae. The ΔMosln1 mutant is more susceptible to salt stress compared to ΔMohik1, whereas ΔMohik1 appears to be stronger affected by osmotic or sugar stress. In contrast to yeast, the HOG signaling cascade in phytopathogenic fungi apparently comprises more elements. Furthermore, vegetative growth of the mutants ΔMohik5 and ΔMohik9 was found to be sensitive to hypoxia-inducing NaNO2 -treatment. Additionally, it was monitored that NaNO2 -treatment resulted in MoHog1p phosphorylation. As a consequence we assume a first simplified model for hypoxia signaling in M. oryzae including the HOG pathway and the HIKs MoHik5p and MoHik9p.
Collapse
Affiliation(s)
- Stefan Jacob
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Andrew J Foster
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Alexander Yemelin
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
| | - Eckhard Thines
- Institute of Biotechnology and Drug Research (IBWF)Erwin-Schrödinger-Str. 56, D-67663, Kaiserslautern, Germany
- Johannes Gutenberg-University Mainz, Institute of Biotechnology and Drug ResearchDuesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
19
|
Hagiwara D, Takahashi-Nakaguchi A, Toyotome T, Yoshimi A, Abe K, Kamei K, Gonoi T, Kawamoto S. NikA/TcsC histidine kinase is involved in conidiation, hyphal morphology, and responses to osmotic stress and antifungal chemicals in Aspergillus fumigatus. PLoS One 2013; 8:e80881. [PMID: 24312504 PMCID: PMC3846623 DOI: 10.1371/journal.pone.0080881] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/05/2013] [Indexed: 11/18/2022] Open
Abstract
The fungal high osmolarity glycerol (HOG) pathway is composed of a two-component system (TCS) and Hog1-type mitogen-activated protein kinase (MAPK) cascade. A group III (Nik1-type) histidine kinase plays a major role in the HOG pathway of several filamentous fungi. In this study, we characterized a group III histidine kinase, NikA/TcsC, in the life-threatening pathogenic fungus, Aspergillus fumigatus. A deletion mutant of nikA showed low conidia production, abnormal hyphae, marked sensitivity to high osmolarity stresses, and resistance to cell wall perturbing reagents such as congo red and calcofluor white, as well as to fungicides such as fludioxonil, iprodione, and pyrrolnitrin. None of these phenotypes were observed in mutants of the SskA response regulator and SakA MAPK, which were thought to be downstream components of NikA. In contrast, in response to fludioxonil treatment, NikA was implicated in the phosphorylation of SakA MAPK and the transcriptional upregulation of catA, dprA, and dprB, which are regulated under the control of SakA. We then tested the idea that not only NikA, but also the other 13 histidine kinases play certain roles in the regulation of the HOG pathway. Interestingly, the expression of fos1, phkA, phkB, fhk5, and fhk6 increased by osmotic shock or fludioxonil treatment in a SakA-dependent manner. However, deletion mutants of the histidine kinases showed no significant defects in growth under the tested conditions. Collectively, although the signal transduction network related to NikA seems complicated, NikA plays a crucial role in several aspects of A. fumigatus physiology and, to a certain extent, modulates the HOG pathway.
Collapse
Affiliation(s)
- Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pochon S, Simoneau P, Pigné S, Balidas S, Bataillé-Simoneau N, Campion C, Jaspard E, Calmes B, Hamon B, Berruyer R, Juchaux M, Guillemette T. Dehydrin-like proteins in the necrotrophic fungus Alternaria brassicicola have a role in plant pathogenesis and stress response. PLoS One 2013; 8:e75143. [PMID: 24098369 PMCID: PMC3788798 DOI: 10.1371/journal.pone.0075143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, the roles of fungal dehydrin-like proteins in pathogenicity and protection against environmental stresses were investigated in the necrotrophic seed-borne fungus Alternaria brassicicola. Three proteins (called AbDhn1, AbDhn2 and AbDhn3), harbouring the asparagine-proline-arginine (DPR) signature pattern and sharing the characteristic features of fungal dehydrin-like proteins, were identified in the A. brassicicola genome. The expression of these genes was induced in response to various stresses and found to be regulated by the AbHog1 mitogen-activated protein kinase (MAPK) pathway. A knock-out approach showed that dehydrin-like proteins have an impact mainly on oxidative stress tolerance and on conidial survival upon exposure to high and freezing temperatures. The subcellular localization revealed that AbDhn1 and AbDhn2 were associated with peroxisomes, which is consistent with a possible perturbation of protective mechanisms to counteract oxidative stress and maintain the redox balance in AbDhn mutants. Finally, we show that the double deletion mutant ΔΔabdhn1-abdhn2 was highly compromised in its pathogenicity. By comparison to the wild-type, this mutant exhibited lower aggressiveness on B. oleracea leaves and a reduced capacity to be transmitted to Arabidopsis seeds via siliques. The double mutant was also affected with respect to conidiation, another crucial step in the epidemiology of the disease.
Collapse
Affiliation(s)
- Stéphanie Pochon
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Philippe Simoneau
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Sandrine Pigné
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Samuel Balidas
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Nelly Bataillé-Simoneau
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Claire Campion
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Emmanuel Jaspard
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Benoît Calmes
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Bruno Hamon
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | - Romain Berruyer
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
| | | | - Thomas Guillemette
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, Angers, France
- INRA, UMR 1345 IRHS, Angers, France
- Agrocampus-Ouest, UMR 1345 IRHS, Angers, France
- * E-mail:
| |
Collapse
|
21
|
El-Mowafy M, Bahgat MM, Bilitewski U. Deletion of the HAMP domains from the histidine kinase CaNik1p of Candida albicans or treatment with fungicides activates the MAP kinase Hog1p in S. cerevisiae transformants. BMC Microbiol 2013; 13:209. [PMID: 24044701 PMCID: PMC3848655 DOI: 10.1186/1471-2180-13-209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 09/06/2013] [Indexed: 12/26/2022] Open
Abstract
Background Microorganisms use two-component signal transduction (TCST) systems to regulate the response of the organism to changes of environmental conditions. Such systems are absent from mammalian cells and are thus of interest as drug targets. Fungal TCST systems are usually composed of a hybrid histidine kinase, comprising the histidine kinase (HisKA) domain and a receiver domain, a histidine phosphotransfer protein and a response regulator. Among the 11 groups of fungal histidine kinases, group III histidine kinases are of particular relevance as they are essential for the activity of different groups of fungicides. A characteristic feature is the N-terminal amino acid repeat domain comprising multiple HAMP domains, of which the function is still largely unknown. In Candida albicans, a fungal human pathogen, three histidine kinases were identified, of which CaNik1p is a group III histidine kinase. Heterologous expression of this protein in Sacchromyces cerevisiae conferred susceptibility to different fungicides. Fungicide activity was associated with phosphorylation of the mitogen activated protein kinase Hog1p. Results We have constructed mutated versions of CaNik1p, from which either all HAMP domains were deleted (CaNik1pΔHAMP) or in which the histidine kinase or the receiver domains were not-functional. Expression of CaNIK1ΔHAMP in S. cerevisiae led to severe growth inhibition. Normal growth could be restored by either replacing the phosphate-accepting histidine residue in CaNik1pΔHAMP or by expressing CaNIK1ΔHAMP in S. cerevisiae mutants, in which single genes encoding several components of the HOG pathway were deleted. Expression of proteins with non-functional histidine kinase or receiver domains resulted in complete loss of susceptibility to antifungals, such as fludioxonil. Conditions leading to growth inhibition of transformants also led to phosphorylation of the MAP kinase Hog1p. Conclusion Our results show that functional histidine kinase and receiver domains of CaNik1p were essential for antifungal susceptibility and for activation of the Hog1p. Moreover, for the first time we show that deletion of all HAMP domains from CaNik1p led to activation of Hog1p without an external stimulus. This phenotype was similar to the effects obtained upon treatment with fungicides, as in both cases growth inhibition correlated with Hog1p activation and was dependent on the functionality of the conserved phosphate-accepting histidine residue.
Collapse
Affiliation(s)
- Mohammed El-Mowafy
- AG Biological Systems Analysis, Helmholtz Centre for Infection Research (HZI), Inhoffenstr, 7, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|
22
|
Li M, Zhang HY, Liang B. Novel mutations in β-tubulin gene in Trichoderma harzianum mutants resistant to methyl benzimidazol-2-YL carbamate. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813050086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Calmes B, Guillemette T, Teyssier L, Siegler B, Pigné S, Landreau A, Iacomi B, Lemoine R, Richomme P, Simoneau P. Role of mannitol metabolism in the pathogenicity of the necrotrophic fungus Alternaria brassicicola. FRONTIERS IN PLANT SCIENCE 2013; 4:131. [PMID: 23717316 PMCID: PMC3652318 DOI: 10.3389/fpls.2013.00131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/20/2013] [Indexed: 05/29/2023]
Abstract
In this study, the physiological functions of fungal mannitol metabolism in the pathogenicity and protection against environmental stresses were investigated in the necrotrophic fungus Alternaria brassicicola. Mannitol metabolism was examined during infection of Brassica oleracea leaves by sequential HPLC quantification of the major soluble carbohydrates and expression analysis of genes encoding two proteins of mannitol metabolism, i.e., a mannitol dehydrogenase (AbMdh), and a mannitol-1-phosphate dehydrogenase (AbMpd). Knockout mutants deficient for AbMdh or AbMpd and a double mutant lacking both enzyme activities were constructed. Their capacity to cope with various oxidative and drought stresses and their pathogenic behavior were evaluated. Metabolic and gene expression profiling indicated an increase in mannitol production during plant infection. Depending on the mutants, distinct pathogenic processes, such as leaf and silique colonization, sporulation, survival on seeds, were impaired by comparison to the wild-type. This pathogenic alteration could be partly explained by the differential susceptibilities of mutants to oxidative and drought stresses. These results highlight the importance of mannitol metabolism with respect to the ability of A. brassicicola to efficiently accomplish key steps of its pathogenic life cycle.
Collapse
Affiliation(s)
- Benoit Calmes
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Thomas Guillemette
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Lény Teyssier
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Benjamin Siegler
- Plateforme d'Ingénierie et Analyses Moléculaires, Université d'AngersAngers Cedex, France
| | - Sandrine Pigné
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| | - Anne Landreau
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | | | - Rémi Lemoine
- Ecologie, Biologie des Interactions, UMR 7267 CNRS/Université de PoitiersPoitiers, France
| | - Pascal Richomme
- SONAS EA 921, SFR 4207, QUASAV UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Université d'AngersAngers Cedex, France
| | - Philippe Simoneau
- SFR 4207 QUASAV, UMR 1345 IRHS, Université d'AngersAngers Cedex, France
- SFR 4207 QUASAV, INRA, UMR 1345 IRHSAngers Cedex, France
- SFR 4207 QUASAV, Agrocampus-Ouest, UMR 1345 IRHSAngers Cedex, France
| |
Collapse
|
24
|
Chung KR. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. SCIENTIFICA 2012; 2012:635431. [PMID: 24278721 PMCID: PMC3820455 DOI: 10.6064/2012/635431] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 05/07/2023]
Abstract
The production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A. alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death. The mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) after invasion have begun to be elucidated. The ability to coordinate of signaling pathways is essential for the detoxification of cellular stresses induced by ROS and for pathogenicity in A. alternata. A low level of H2O2, produced by the NADPH oxidase (NOX) complex, modulates ROS resistance and triggers conidiation partially via regulating the redox-responsive regulators (YAP1 and SKN7) and the mitogen-activated protein (MAP) kinase (HOG1) mediated pathways, which subsequently regulate the genes required for the biosynthesis of siderophore, an iron-chelating compound. Siderophore-mediated iron acquisition plays a key role in ROS detoxification because of the requirement of iron for the activities of antioxidants (e.g., catalase and SOD). Fungal strains impaired for the ROS-detoxifying system severely reduce the virulence on susceptible citrus cultivars. This paper summarizes the current state of knowledge of signaling pathways associated with cellular responses to multidrugs, oxidative and osmotic stress, and fungicides, as well as the pathogenicity/virulence in the tangerine pathotype of A. alternata.
Collapse
Affiliation(s)
- Kuang-Ren Chung
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
25
|
Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Lett 2012; 586:2417-22. [DOI: 10.1016/j.febslet.2012.05.057] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/18/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022]
|
26
|
Pochon S, Terrasson E, Guillemette T, Iacomi-Vasilescu B, Georgeault S, Juchaux M, Berruyer R, Debeaujon I, Simoneau P, Campion C. The Arabidopsis thaliana-Alternaria brassicicola pathosystem: A model interaction for investigating seed transmission of necrotrophic fungi. PLANT METHODS 2012; 8:16. [PMID: 22571391 PMCID: PMC3445844 DOI: 10.1186/1746-4811-8-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/09/2012] [Indexed: 05/11/2023]
Abstract
BACKGROUND Seed transmission constitutes a major component of the parasitic cycle for several fungal pathogens. However, very little is known concerning fungal or plant genetic factors that impact seed transmission and mechanisms underlying this key biological trait have yet to be clarified. Such lack of available data could be probably explained by the absence of suitable model pathosystem to study plant-fungus interactions during the plant reproductive phase. RESULTS Here we report on setting up a new pathosystem that could facilitate the study of fungal seed transmission. Reproductive organs of Arabidopsis thaliana were inoculated with Alternaria brassicicola conidia. Parameters (floral vs fruit route, seed collection date, plant and silique developmental stages) that could influence the seed transmission efficiency were tested to define optimal seed infection conditions. Microscopic observations revealed that the fungus penetrates siliques through cellular junctions, replum and stomata, and into seed coats either directly or through cracks. The ability of the osmosensitive fungal mutant nik1Δ3 to transmit to A. thaliana seeds was analyzed. A significant decrease in seed transmission rate was observed compared to the wild-type parental strain, confirming that a functional osmoregulation pathway is required for efficient seed transmission of the fungus. Similarly, to test the role of flavonoids in seed coat protection against pathogens, a transparent testa Arabidopsis mutant (tt4-1) not producing any flavonoid was used as host plant. Unexpectedly, tt4-1 seeds were infected to a significantly lower extent than wild-type seeds, possibly due to over-accumulation of other antimicrobial metabolites. CONCLUSIONS The Arabidopsis thaliana-Alternaria brassicicola pathosystem, that have been widely used to study plant-pathogen interactions during the vegetative phase, also proved to constitute a suitable model pathosystem for detailed analysis of plant-pathogen interactions during the reproductive phase. We demonstrated that it provides an excellent system for investigating the impact of different fungal or plant mutations on the seed transmission process and therefore paves the way towards future high-throughput screening of both Arabidopsis and fungal mutant.
Collapse
Affiliation(s)
- Stephanie Pochon
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France
- INRA, UMR 1345 IRHS, 16 Bd Lavoisier, Angers cedex, F-49045, France
- Agrocampus-Ouest, UMR 1345 IRHS, 2 Bd Lavoisier, Angers cedex, F-49045, France
| | - Emmanuel Terrasson
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France
- INRA, UMR 1345 IRHS, 16 Bd Lavoisier, Angers cedex, F-49045, France
- Agrocampus-Ouest, UMR 1345 IRHS, 2 Bd Lavoisier, Angers cedex, F-49045, France
| | - Thomas Guillemette
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France
- INRA, UMR 1345 IRHS, 16 Bd Lavoisier, Angers cedex, F-49045, France
- Agrocampus-Ouest, UMR 1345 IRHS, 2 Bd Lavoisier, Angers cedex, F-49045, France
| | | | - Sonia Georgeault
- Université d’Angers, SCIAM, IBS, 4 rue Larrey, Angers cedex, F-49933, France
| | - Marjorie Juchaux
- Université d’Angers, SFR QUASAV, IMAC, rue Georges Morel, Beaucouzé cedex, F-49071, France
| | - Romain Berruyer
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France
- INRA, UMR 1345 IRHS, 16 Bd Lavoisier, Angers cedex, F-49045, France
- Agrocampus-Ouest, UMR 1345 IRHS, 2 Bd Lavoisier, Angers cedex, F-49045, France
| | - Isabelle Debeaujon
- INRA, UMR1318 IJPB, Saclay Plant Sciences, Route de Saint-Cyr, Versailles Cedex, 78026, France
| | - Philippe Simoneau
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France
- INRA, UMR 1345 IRHS, 16 Bd Lavoisier, Angers cedex, F-49045, France
- Agrocampus-Ouest, UMR 1345 IRHS, 2 Bd Lavoisier, Angers cedex, F-49045, France
| | - Claire Campion
- Université d’Angers, UMR 1345 IRHS, SFR QUASAV, 2 Bd Lavoisier, Angers cedex, F-49045, France
- INRA, UMR 1345 IRHS, 16 Bd Lavoisier, Angers cedex, F-49045, France
- Agrocampus-Ouest, UMR 1345 IRHS, 2 Bd Lavoisier, Angers cedex, F-49045, France
| |
Collapse
|
27
|
Zhou G, Wang J, Qiu L, Feng MG. A Group III histidine kinase (mhk1) upstream of high-osmolarity glycerol pathway regulates sporulation, multi-stress tolerance and virulence of Metarhizium robertsii, a fungal entomopathogen. Environ Microbiol 2011; 14:817-29. [PMID: 22118192 DOI: 10.1111/j.1462-2920.2011.02643.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of Metarhizium robertsii Group III histidine kinase (mhk1) in regulating various phenotypes of the fungal entomopathogen and the transcripts of 25 downstream genes likely associated with the phenotypes were probed by constructing Δmhk1 and Δmhk1/mhk1 mutants. All examined Δmhk1 phenotypes except unchanged sensitivity to fungicide (dimethachlon) differed significantly from those of wild type and Δmhk1/mhk1, which were similar to each other. Significant phenotypic changes in Δmhk1 included increased conidial yields on two media, increased tolerance to H(2)O(2) , decreased tolerance to menadione, increased tolerance to hyperosmolarity, increased conidial thermotolerance, decreased conidial UV-B resistance and reduced virulence to Tenebrio molitor larvae. The mhk1 disruption elevated the transcripts of nine genes, including two associated with conidiation (flbC and hymA) and three encoding catalases but decreased seven other gene transcripts, including three for superoxide dismultases, under normal conditions. The high-osmolarity glycerol pathway MAPK phosphorylation level in Δmhk1 culture was increased 1.0- to 1.8-fold by KCl, sucrose and menadione stresses but reduced drastically by H(2)O(2) or heat (40°C) stress, accompanied with different transcript patterns of all examined genes under the stresses. Our results confirmed the crucial role of mhk1 in regulating the expression of the downstream genes and associated phenotypes important for the fungal biocontrol potential.
Collapse
Affiliation(s)
- Gang Zhou
- Institute of Microbiology, College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | | | | | | |
Collapse
|
28
|
Buschart A, Gremmer K, El-Mowafy M, van den Heuvel J, Mueller PP, Bilitewski U. A novel functional assay for fungal histidine kinases group III reveals the role of HAMP domains for fungicide sensitivity. J Biotechnol 2011; 157:268-77. [PMID: 21963586 DOI: 10.1016/j.jbiotec.2011.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/24/2011] [Accepted: 09/16/2011] [Indexed: 11/25/2022]
Abstract
Signal transduction systems comprising histidine kinases are suggested as new molecular targets of antibiotics. The important human fungal pathogen Candida albicans possesses three histidine kinases, one of which is the type III histidine kinase CaNik1, which activates the MAP kinase Hog1. We established a screening system for inhibitors of this class of histidine kinases by functional expression of the CaNIK1 gene in S. cerevisiae. This transformant was susceptible to fungicides to which the wild type strain was resistant, such as fludioxonil and ambruticin. Growth inhibition correlated with phosphorylation of Hog1 and was dependent on an intact Hog1 pathway. At the N-terminus the histidine kinase CaNik1 has four amino acid repeats of 92 amino acids each and one truncated repeat of 72 amino acids. Within these repeats we identified 9 HAMP domains with a paired structure. We constructed mutants in which one or two pairs of these domains were deleted. S. cerevisiae transformants expressing the full-length CaNIK1 showed the highest sensitivity to the fungicides, any truncation reduced the susceptibility of the transformants to the fungicides. This indicates that the HAMP domains are decisive for the mode of action of the antifungal compounds.
Collapse
Affiliation(s)
- Anna Buschart
- Helmholtz Centre for Infection Research, Department of Biological Systems Analysis, Inhoffenstr.7, 38124 Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Joubert A, Bataille-Simoneau N, Campion C, Guillemette T, Hudhomme P, Iacomi-Vasilescu B, Leroy T, Pochon S, Poupard P, Simoneau P. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell Microbiol 2010; 13:62-80. [PMID: 20812995 DOI: 10.1111/j.1462-5822.2010.01520.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Camalexin, the characteristic phytoalexin of Arabidopsis thaliana, inhibits growth of the fungal necrotroph Alternaria brassicicola. This plant metabolite probably exerts its antifungal toxicity by causing cell membrane damage. Here we observed that activation of a cellular response to this damage requires cell wall integrity (CWI) and the high osmolarity glycerol (HOG) pathways. Camalexin was found to activate both AbHog1 and AbSlt2 MAP kinases, and activation of the latter was abrogated in a AbHog1 deficient strain. Mutant strains lacking functional MAP kinases showed hypersensitivity to camalexin and brassinin, a structurally related phytoalexin produced by several cultivated Brassica species. Enhanced susceptibility to the membrane permeabilization activity of camalexin was observed for MAP kinase deficient mutants. These results suggest that the two signalling pathways have a pivotal role in regulating a cellular compensatory response to preserve cell integrity during exposure to camalexin. AbHog1 and AbSlt2 deficient mutants had reduced virulence on host plants that may, at least for the latter mutants, partially result from their inability to cope with defence metabolites such as indolic phytoalexins. This constitutes the first evidence that a phytoalexin activates fungal MAP kinases and that outputs of activated cascades contribute to protecting the fungus against antimicrobial plant metabolites.
Collapse
Affiliation(s)
- Aymeric Joubert
- UMR PaVe no. 77, IFR 149 QUASAV, 2 Bd Lavoisier, F-49045 Angers Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hanessian S, Focken T, Mi X, Oza R, Chen B, Ritson D, Beaudegnies R. Total Synthesis of (+)-Ambruticin S: Probing the Pharmacophoric Subunit. J Org Chem 2010; 75:5601-18. [DOI: 10.1021/jo100956v] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, PQ, Canada H3C 3J7
| | - Thilo Focken
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, PQ, Canada H3C 3J7
| | - Xueling Mi
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, PQ, Canada H3C 3J7
| | - Rupal Oza
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, PQ, Canada H3C 3J7
| | - Bin Chen
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, PQ, Canada H3C 3J7
| | - Dougal Ritson
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, PQ, Canada H3C 3J7
| | - Renaud Beaudegnies
- Syngenta Crop Protection AG, Crop Protection Research, Research Chemistry, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| |
Collapse
|
31
|
Lin CH, Chung KR. Specialized and shared functions of the histidine kinase- and HOG1 MAP kinase-mediated signaling pathways in Alternaria alternata, a filamentous fungal pathogen of citrus. Fungal Genet Biol 2010; 47:818-27. [PMID: 20601043 DOI: 10.1016/j.fgb.2010.06.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/02/2010] [Accepted: 06/17/2010] [Indexed: 12/16/2022]
Abstract
Signal transduction pathways are critical for the coordination of complex cellular processes in cells. In Alternaria alternata, a necrotrophic fungal pathogen of citrus, cloning and characterization of a gene coding a Group III histidine kinase (AaHSK1) and the yeast HOG1 ortholog (AaHOG1) showed the two genes to operate, both uniquely and synergistically, in a number of physiological and pathological functions. Systemic loss-of-function genetics in A. alternata revealed that AaHSK1 is a primary regulator for cellular resistance to sugar osmotic stress and for sensitivity to dicarboximide or phenylpyrrole fungicides. These functions were likely modulated by unknown mechanisms rather than solely by the AaHOG1-mediated pathway. AaHOG1, which conferred cellular resistance to salts and oxidative stress, also bypassed AaHSK1, even though deletion of AaHSK1 affected AaHOG1 phosphorylation. Phosphorylation of AaHOG1 was increased when the fungus was treated with osmotic stress, fungicides or H(2)O(2). Fungal mutants impaired in AaHSK1, AaHOG1, AaAP1 (encoding a redox-responsive transcription factor) or AaFUS3 (encoding a MAP kinase) were all hypersensitive to 2-chloro-5-hydroxypyridine (CHP) or 2,3,5-triiodobenzoic acid (TIBA). An AaHOG1::sGFP (synthetic green fluorescent protein) fusion protein became localized in the nucleus in response to H(2)O(2), CHP, TIBA, fungicides, but not glucose. Glucose, however, enhanced AaHOG1 phosphorylation and nuclear localization in the AaHSK1 deficient background. Accumulation of the AaHSK1 gene transcript was negatively regulated by AaHOG1, AaAP1 or AaFUS3. AaHOG1 was necessary for fungal pathogenicity, yet AaHSK1 was completely dispensable for pathogenicity. Our results highlight a dramatic flexibility and uniqueness in the signaling pathways that are involved in responding to diverse environmental stimuli in A. alternata.
Collapse
Affiliation(s)
- Ching-Hsuan Lin
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | | |
Collapse
|
32
|
Affiliation(s)
- Stephen Hanessian
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Thilo Focken
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Rupal Oza
- Department of Chemistry, Université de Montréal, C. P. 6128, Succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
33
|
Joubert A, Calmes B, Berruyer R, Pihet M, Bouchara JP, Simoneau P, Guillemette T. Laser nephelometry applied in an automated microplate system to study filamentous fungus growth. Biotechniques 2010; 48:399-404. [DOI: 10.2144/000113399] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
By contrast with photometry (i.e., the measurement of light transmitted through a particle suspension), nephelometry is a direct method of measuring light scattered by particles in suspension. Since the scattered light intensity is directly proportional to the suspended particle concentration, nephelometry is a promising method for recording microbial growth and especially for studying filamentous fungi, which cannot be efficiently investigated through spectrophotometric assays. We describe herein for the first time a filamentous fungi–tailored procedure based on microscale liquid cultivation and automated nephelometric recording of growth, followed by extraction of relevant variables (lag time and growth rate) from the obtained growth curves. This microplate reader technique is applicable for the evaluation of antifungal activity and for large-scale phenotypic profiling.
Collapse
Affiliation(s)
| | | | | | - Marc Pihet
- Groupe d'Étude des Interactions Hôte-Pathogène, UPRES-EA 3142, Université d'Angers, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Jean-Philippe Bouchara
- Groupe d'Étude des Interactions Hôte-Pathogène, UPRES-EA 3142, Université d'Angers, Angers, France
- Laboratoire de Parasitologie-Mycologie, Centre Hospitalier Universitaire d'Angers, Angers, France
| | | | | |
Collapse
|
34
|
Meena N, Kaur H, Mondal AK. Interactions among HAMP domain repeats act as an osmosensing molecular switch in group III hybrid histidine kinases from fungi. J Biol Chem 2010; 285:12121-32. [PMID: 20164185 DOI: 10.1074/jbc.m109.075721] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The members of group III hybrid histidine kinases (HHK) are ubiquitous in fungi. Group III HHK have been implicated to function as osmosensors in the high osmolarity glycerol (HOG) pathway that is essential for fungal survival under high osmolarity stress. Recent literature suggests that group III HHK are also involved in conidia formation, virulence in several filamentous fungi, and are an excellent molecular target for antifungal agents. Thus, group III HHK constitute a very important group of sensor kinases. Structurally, group III HHK are distinct from Sln1p, the osmosensing HHK that regulates the HOG pathway in Saccharomyces cerevisiae. Group III HHK lack any transmembrane domain and typically contain HAMP domain repeats at the N terminus. Until now, it is not clear how group III HHK function as an osmosensor to regulate the HOG pathway. To investigate this, we undertook molecular characterization of DhNIK1, an ortholog from osmotolerant yeast Debaryomyces hansenii. We show here that DhNIK1 could complement sln1 mutation in S. cerevisiae thereby confirming its role as a bona fide osmosensor. We further investigated the role of HAMP domains by deleting them systematically. Our results clearly indicate that the HAMP4 domain is crucial for osmosensing by DhNik1p. Most importantly, we also show that the alternative interaction among the HAMP domains regulates the activity of DhNik1p like an "on-off switch" and thus provides, for the first time, an insight into the molecular mechanism of osmosensing by this group of HHKs.
Collapse
Affiliation(s)
- Netrapal Meena
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | | | | |
Collapse
|