1
|
Rahlff J, Westmeijer G, Weissenbach J, Antson A, Holmfeldt K. Surface microlayer-mediated virome dissemination in the Central Arctic. MICROBIOME 2024; 12:218. [PMID: 39449105 PMCID: PMC11515562 DOI: 10.1186/s40168-024-01902-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Aquatic viruses act as key players in shaping microbial communities. In polar environments, they face significant challenges such as limited host availability and harsh conditions. However, due to the restricted accessibility of these ecosystems, our understanding of viral diversity, abundance, adaptations, and host interactions remains limited. RESULTS To fill this knowledge gap, we studied viruses from atmosphere-close aquatic ecosystems in the Central Arctic and Northern Greenland. Aquatic samples for virus-host analysis were collected from ~60 cm depth and the submillimeter surface microlayer (SML) during the Synoptic Arctic Survey 2021 on icebreaker Oden in the Arctic summer. Water was sampled from a melt pond and open water before undergoing size-fractioned filtration, followed by genome-resolved metagenomic and cultivation investigations. The prokaryotic diversity in the melt pond was considerably lower compared to that of open water. The melt pond was dominated by a Flavobacterium sp. and Aquiluna sp., the latter having a relatively small genome size of 1.2 Mb and the metabolic potential to generate ATP using the phosphate acetyltransferase-acetate kinase pathway. Viral diversity on the host fraction (0.2-5 µm) of the melt pond was strikingly limited compared to that of open water. From the 1154 viral operational taxonomic units (vOTUs), of which two-thirds were predicted bacteriophages, 17.2% encoded for auxiliary metabolic genes (AMGs) with metabolic functions. Some AMGs like glycerol-3-phosphate cytidylyltransferase and ice-binding like proteins might serve to provide cryoprotection for the host. Prophages were often associated with SML genomes, and two active prophages of new viral genera from the Arctic SML strain Leeuwenhoekiella aequorea Arc30 were induced. We found evidence that vOTU abundance in the SML compared to that of ~60 cm depth was more positively correlated with the distribution of a vOTU across five different Arctic stations. CONCLUSIONS The results indicate that viruses employ elaborate strategies to endure in extreme, host-limited environments. Moreover, our observations suggest that the immediate air-sea interface serves as a platform for viral distribution in the Central Arctic. Video Abstract.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
- Aero-Aquatic Virus Research Group, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany.
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - George Westmeijer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Julia Weissenbach
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
2
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
3
|
Chen J, Jia Y, Sun Y, Liu K, Zhou C, Liu C, Li D, Liu G, Zhang C, Yang T, Huang L, Zhuang Y, Wang D, Xu D, Zhong Q, Guo Y, Li A, Seim I, Jiang L, Wang L, Lee SMY, Liu Y, Wang D, Zhang G, Liu S, Wei X, Yue Z, Zheng S, Shen X, Wang S, Qi C, Chen J, Ye C, Zhao F, Wang J, Fan J, Li B, Sun J, Jia X, Xia Z, Zhang H, Liu J, Zheng Y, Liu X, Wang J, Yang H, Kristiansen K, Xu X, Mock T, Li S, Zhang W, Fan G. Global marine microbial diversity and its potential in bioprospecting. Nature 2024; 633:371-379. [PMID: 39232160 PMCID: PMC11390488 DOI: 10.1038/s41586-024-07891-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
The past two decades has witnessed a remarkable increase in the number of microbial genomes retrieved from marine systems1,2. However, it has remained challenging to translate this marine genomic diversity into biotechnological and biomedical applications3,4. Here we recovered 43,191 bacterial and archaeal genomes from publicly available marine metagenomes, encompassing a wide range of diversity with 138 distinct phyla, redefining the upper limit of marine bacterial genome size and revealing complex trade-offs between the occurrence of CRISPR-Cas systems and antibiotic resistance genes. In silico bioprospecting of these marine genomes led to the discovery of a novel CRISPR-Cas9 system, ten antimicrobial peptides, and three enzymes that degrade polyethylene terephthalate. In vitro experiments confirmed their effectiveness and efficacy. This work provides evidence that global-scale sequencing initiatives advance our understanding of how microbial diversity has evolved in the oceans and is maintained, and demonstrates how such initiatives can be sustainably exploited to advance biotechnology and biomedicine.
Collapse
Affiliation(s)
- Jianwei Chen
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Ying Sun
- BGI Research, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Chuan Liu
- BGI Research, Shenzhen, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Chengsong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Yunyun Zhuang
- Key Laboratory of Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Dazhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | | | | | - Yang Guo
- BGI Research, Qingdao, China
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | - Inge Seim
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Simon Ming Yuen Lee
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yujing Liu
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | - Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | | | - Shanmin Zheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | | | - Sen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Chen Qi
- BGI Research, Shenzhen, China
| | - Jing Chen
- Guangdong Genomics Data Center, BGI Research, Shenzhen, China
| | - Chen Ye
- BGI Research, Shenzhen, China
| | | | | | - Jie Fan
- BGI Research, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
| | | | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhangyong Xia
- Department of Neurology, The Second People's Hospital of Liaocheng, Liaocheng, China
| | - He Zhang
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Xin Liu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
| | | | | | - Karsten Kristiansen
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xun Xu
- BGI Research, Qingdao, China
- BGI Research, Shenzhen, China
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| | - Wenwei Zhang
- BGI Research, Shenzhen, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| | - Guangyi Fan
- BGI Research, Qingdao, China.
- BGI Research, Shenzhen, China.
- Qingdao Key Laboratory of Marine Genomics and Qingdao-Europe Advanced Institute for Life Sciences, BGI Research, Qingdao, China.
- Department of Food Science and Nutrition, and PolyU-BGI Joint Research Centre for Genomics and Synthetic Biology in Global Deep Ocean Resource, The Hong Kong Polytechnic University, Hong Kong, China.
- State Key Laboratory of Agricultural Genomics, BGI Research, Shenzhen, China.
| |
Collapse
|
4
|
Rahlff J, Wietz M, Giebel HA, Bayfield O, Nilsson E, Bergström K, Kieft K, Anantharaman K, Ribas-Ribas M, Schweitzer HD, Wurl O, Hoetzinger M, Antson A, Holmfeldt K. Ecogenomics and cultivation reveal distinctive viral-bacterial communities in the surface microlayer of a Baltic Sea slick. ISME COMMUNICATIONS 2023; 3:97. [PMID: 37723220 PMCID: PMC10507051 DOI: 10.1038/s43705-023-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Visible surface films, termed slicks, can extensively cover freshwater and marine ecosystems, with coastal regions being particularly susceptible to their presence. The sea-surface microlayer (SML), the upper 1-mm at the air-water interface in slicks (herein slick SML) harbors a distinctive bacterial community, but generally little is known about SML viruses. Using flow cytometry, metagenomics, and cultivation, we characterized viruses and bacteria in a brackish slick SML in comparison to non-slick SML as well as seawater below slick and non-slick areas (subsurface water = SSW). Size-fractionated filtration of all samples distinguished viral attachment to hosts and particles. The slick SML contained higher abundances of virus-like particles, prokaryotic cells, and dissolved organic carbon compared to non-slick SML and SSW. The community of 428 viral operational taxonomic units (vOTUs), 426 predicted as lytic, distinctly differed across all size fractions in the slick SML compared to non-slick SML and SSW. Specific metabolic profiles of bacterial metagenome-assembled genomes and isolates in the slick SML included a prevalence of genes encoding motility and carbohydrate-active enzymes (CAZymes). Several vOTUs were enriched in slick SML, and many virus variants were associated with particles. Nine vOTUs were only found in slick SML, six of them being targeted by slick SML-specific clustered-regularly interspaced short palindromic repeats (CRISPR) spacers likely originating from Gammaproteobacteria. Moreover, isolation of three previously unknown lytic phages for Alishewanella sp. and Pseudoalteromonas tunicata, abundant and actively replicating slick SML bacteria, suggests that viral activity in slicks contributes to biogeochemical cycling in coastal ecosystems.
Collapse
Affiliation(s)
- Janina Rahlff
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden.
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Helge-Ansgar Giebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
- Center for Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Oliver Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Kristopher Kieft
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Mariana Ribas-Ribas
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | | | - Oliver Wurl
- Center of Marine Sensors (ZfMarS), Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Alfred Antson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
5
|
Fridolfsson E, Bunse C, Lindehoff E, Farnelid H, Pontiller B, Bergström K, Pinhassi J, Legrand C, Hylander S. Multiyear analysis uncovers coordinated seasonality in stocks and composition of the planktonic food web in the Baltic Sea proper. Sci Rep 2023; 13:11865. [PMID: 37481661 PMCID: PMC10363133 DOI: 10.1038/s41598-023-38816-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/15/2023] [Indexed: 07/24/2023] Open
Abstract
The planktonic realm from bacteria to zooplankton provides the baseline for pelagic aquatic food webs. However, multiple trophic levels are seldomly included in time series studies, hampering a holistic understanding of the influence of seasonal dynamics and species interactions on food web structure and biogeochemical cycles. Here, we investigated plankton community composition, focusing on bacterio-, phyto- and large mesozooplankton, and how biotic and abiotic factors correlate at the Linnaeus Microbial Observatory (LMO) station in the Baltic Sea from 2011 to 2018. Plankton communities structures showed pronounced dynamic shifts with recurring patterns. Summarizing the parts of the planktonic microbial food web studied here to total carbon, a picture emerges with phytoplankton consistently contributing > 39% while bacterio- and large mesozooplankton contributed ~ 30% and ~ 7%, respectively, during summer. Cyanophyceae, Actinobacteria, Bacteroidetes, and Proteobacteria were important groups among the prokaryotes. Importantly, Dinophyceae, and not Bacillariophyceae, dominated the autotrophic spring bloom whereas Litostomatea (ciliates) and Appendicularia contributed significantly to the consumer entities together with the more traditionally observed mesozooplankton, Copepoda and Cladocera. Our findings of seasonality in both plankton composition and carbon stocks emphasize the importance of time series analyses of food web structure for characterizing the regulation of biogeochemical cycles and appropriately constraining ecosystem models.
Collapse
Affiliation(s)
- Emil Fridolfsson
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Carina Bunse
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
- Department of Marine Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Elin Lindehoff
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Hanna Farnelid
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
- GEOMAR Helmholtz Centre for Ocean Research Kiel, E24105, Kiel, Germany
| | - Kristofer Bergström
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| | - Catherine Legrand
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
- School of Business, Innovation and Sustainability, Halmstad University, 30118, Halmstad, Sweden.
| | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, 39182, Kalmar, Sweden.
| |
Collapse
|
6
|
Stante M, Weiland-Bräuer N, Repnik U, Werner A, Bramkamp M, Chibani CM, Schmitz RA. Four Novel Caudoviricetes Bacteriophages Isolated from Baltic Sea Water Infect Colonizers of Aurelia aurita. Viruses 2023; 15:1525. [PMID: 37515211 PMCID: PMC10383413 DOI: 10.3390/v15071525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The moon jellyfish Aurelia aurita is associated with a highly diverse microbiota changing with provenance, tissue, and life stage. While the crucial relevance of bacteria to host fitness is well known, bacteriophages have often been neglected. Here, we aimed to isolate virulent phages targeting bacteria that are part of the A. aurita-associated microbiota. Four phages (Staphylococcus phage BSwM KMM1, Citrobacter phages BSwM KMM2-BSwM KMM4) were isolated from the Baltic Sea water column and characterized. Phages KMM2/3/4 infected representatives of Citrobacter, Shigella, and Escherichia (Enterobacteriaceae), whereas KMM1 infected Gram-positive Staphylococcus spp. All phages showed an up to 99% adsorption to host cells within 5 min, short latent periods (around 30 min), large burst sizes (mean of 128 pfu/cell), and high efficiency of plating (EOP > 0.5), demonstrating decent virulence, efficiency, and infectivity. Transmission electron microscopy and viral genome analysis revealed that all phages are novel species and belong to the class of Caudoviricetes harboring a tail and linear double-stranded DNA (formerly known as Siphovirus-like (KMM3) and Myovirus-like (KMM1/2/4) bacteriophages) with genome sizes between 50 and 138 kbp. In the future, these isolates will allow manipulation of the A. aurita-associated microbiota and provide new insights into phage impact on the multicellular host.
Collapse
Affiliation(s)
- Melissa Stante
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Nancy Weiland-Bräuer
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Urska Repnik
- Central Microscopy Facility, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany;
| | - Almut Werner
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
- Central Microscopy Facility, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany;
| | - Cynthia M. Chibani
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| | - Ruth A. Schmitz
- Institute for General Microbiology, Christian Albrechts University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany; (M.S.); (N.W.-B.); (A.W.); (M.B.); (C.M.C.)
| |
Collapse
|
7
|
Cisneros-Martínez AM, Eguiarte LE, Souza V. Metagenomic comparisons reveal a highly diverse and unique viral community in a seasonally fluctuating hypersaline microbial mat. Microb Genom 2023; 9:mgen001063. [PMID: 37459167 PMCID: PMC10438804 DOI: 10.1099/mgen.0.001063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/15/2023] [Indexed: 07/20/2023] Open
Abstract
In spring 2016, a shallow hypersaline pond (50×25 m) was found in the Cuatro Cienegas Basin (CCB). This pond, known as Archaean Domes (AD) because of its elastic microbial mats that form dome-shaped structures due to the production of reducing gases reminiscent of the Archaean eon, such as methane and hydrogen sulfide, harbour a highly diverse microbial community, rich in halophilic and methanogenic archaea. AD is a seasonally fluctuating hypersaline site, with salinity ranging from low hypersaline (5.3%) during the wet season to high hypersaline (saturation) during the dry season. To characterize the viral community and to test whether it resembles those of other hypersaline sites (whose diversity is conditioned by salinity), or if it is similar to other CCB sites (with which it shares a common geological history), we generated 12 metagenomes from different seasons and depths over a 4 year period and compared them to 35 metagenomes from varied environments. Haloarchaeaviruses were detected, but were never dominant (average of 15.37 % of the total viral species), and the viral community structure and diversity were not affected by environmental fluctuations. In fact, unlike other viral communities at hypersaline sites, AD remained more diverse than other environments regardless of season. β-Diversity analyses show that AD is closely related to other CCB sites, although it has a unique viral community that forms a cluster of its own. The similarity of two surface samples to the 30 and 50 cm depth samples, as well as the observed increase in diversity at greater depths, supports the hypothesis that the diversity of CCB has evolved as a result of a long time environmental stability of a deep aquifer that functions as a 'seed bank' of great microbial diversity that is transported to the surface by sporadic groundwater upwelling events.
Collapse
Affiliation(s)
- Alejandro Miguel Cisneros-Martínez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| |
Collapse
|
8
|
Naligama KN, Halmillawewa AP. Pectobacterium carotovorum Phage vB_PcaM_P7_Pc Is a New Member of the Genus Certrevirus. Microbiol Spectr 2022; 10:e0312622. [PMID: 36346243 PMCID: PMC9769974 DOI: 10.1128/spectrum.03126-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Pectobacterium carotovorum is an economically important phytopathogen and has been identified as the major causative agent of bacterial soft rot in carrots. Control of this phytopathogen is vital to minimizing carrot harvest losses. As fully efficient control measures to successfully avoid the disease are unavailable, the phage-mediated biocontrol of the pathogen has recently gained scientific attention. In this study, we present a comprehensive characterization of the P. carotovorum phage vB_PcaM_P7_Pc (abbreviated as P7_Pc) that was isolated from infected carrot samples with characteristic soft rot symptoms, which were obtained from storage facilities at market places in Gampaha District, Sri Lanka. P7_Pc is a myovirus, and it exhibits growth characteristics of an exclusively lytic life cycle. It showed visible lysis against four of the tested P. carotovorum strains and one Pectobacterium aroidearum strain. This phage also showed a longer latent period (125 min) than other related phages; however, this did not affect its high phage titter (>1010 PFU/mL). The final assembled genome of P7_Pc is 147,299 bp in length with a G+C content of 50.34%. Of the 298 predicted open reading frames (ORFs) of the genome of P7_Pc, putative functions were assigned to 53 ORFs. Seven tRNA-coding genes were predicted in the genome, while the genome lacked any major genes coding for lysogeny-related products, confirming its virulent nature. The P7_Pc genome shares 96.12% and 95.74% average nucleotide identities with Cronobacter phages CR8 and PBES02, respectively. Phylogenetic and phylogenomic analyses of the genome revealed that P7_Pc clusters well within the clade with the members representing the genus Certrevirus. Currently, there are only 4 characterized Pectobacterium phages (P. atrosepticum phages phiTE and CB7 and Pectobacterium phages DU_PP_I and DU_PP_IV) that are classified under the genus, making the phage P7_Pc the first reported member of the genus isolated using the host bacterium P. carotovorum. The results of this study provide a detailed characterization of the phage P7_Pc, enabling its careful classification into the genus Certrevirus. The knowledge gathered on the phage based on the shared biology of the genus will further aid in the future selection of phage P7_Pc as a biocontrol agent. IMPORTANCE Bacterial soft rot disease, caused by Pectobacterium spp., can lead to significant losses in carrot yields. As current control measures involving the use of chemicals or antibiotics are not recommended in many countries, bacteriophage-mediated biocontrol strategies are being explored for the successful control of these phytopathogens. The successful implementation of such biocontrol strategies relies heavily upon the proper understanding of the growth characteristics and genomic properties of the phage. Further, the selection of taxonomically different phages for the formulation of phage cocktails in biocontrol applications is critical to combat potential bacterial resistance development. This study was conducted to carefully characterize and resolve the phylogenetic placement of the P. carotovorum phage vB_PcaM_P7_Pc by using its biological and genomic properties. Phage P7_Pc has a myovirus morphotype with an exclusively lytic life cycle, and the absence of genes related to lysogeny, toxin production, and antibiotic resistance in its genome confirmed its suitability to be used in environmental applications. Furthermore, P7_Pc is classified under the genus Certrevirus, making it the first reported phage of the genus of the host species, P. carotovorum.
Collapse
Affiliation(s)
- Kishani N. Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya, Sri Lanka
| | | |
Collapse
|
9
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Heyerhoff B, Engelen B, Bunse C. Auxiliary Metabolic Gene Functions in Pelagic and Benthic Viruses of the Baltic Sea. Front Microbiol 2022; 13:863620. [PMID: 35875520 PMCID: PMC9301287 DOI: 10.3389/fmicb.2022.863620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Marine microbial communities are facing various ecosystem fluctuations (e.g., temperature, organic matter concentration, salinity, or redox regimes) and thus have to be highly adaptive. This might be supported by the acquisition of auxiliary metabolic genes (AMGs) originating from virus infections. Marine bacteriophages frequently contain AMGs, which allow them to augment their host’s metabolism or enhance virus fitness. These genes encode proteins for the same metabolic functions as their highly similar host homologs. In the present study, we analyzed the diversity, distribution, and composition of marine viruses, focusing on AMGs to identify their putative ecologic role. We analyzed viruses and assemblies of 212 publicly available metagenomes obtained from sediment and water samples across the Baltic Sea. In general, the virus composition in both compartments differed compositionally. While the predominant viral lifestyle was found to be lytic, lysogeny was more prevalent in sediments than in the pelagic samples. The highest proportion of AMGs was identified in the genomes of Myoviridae. Overall, the most abundantly occurring AMGs are encoded for functions that protect viruses from degradation by their hosts, such as methylases. Additionally, some detected AMGs are known to be involved in photosynthesis, 7-cyano-7-deazaguanine synthesis, and cobalamin biosynthesis among other functions. Several AMGs that were identified in this study were previously detected in a large-scale analysis including metagenomes from various origins, i.e., different marine sites, wastewater, and the human gut. This supports the theory of globally conserved core AMGs that are spread over virus genomes, regardless of host or environment.
Collapse
|
11
|
Nishimura Y, Yoshizawa S. The OceanDNA MAG catalog contains over 50,000 prokaryotic genomes originated from various marine environments. Sci Data 2022; 9:305. [PMID: 35715423 PMCID: PMC9205870 DOI: 10.1038/s41597-022-01392-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
Marine microorganisms are immensely diverse and play fundamental roles in global geochemical cycling. Recent metagenome-assembled genome studies, with particular attention to large-scale projects such as Tara Oceans, have expanded the genomic repertoire of marine microorganisms. However, published marine metagenome data is still underexplored. We collected 2,057 marine metagenomes covering various marine environments and developed a new genome reconstruction pipeline. We reconstructed 52,325 qualified genomes composed of 8,466 prokaryotic species-level clusters spanning 59 phyla, including genomes from the deep-sea characterized as deeper than 1,000 m (n = 3,337), low-oxygen zones of <90 μmol O2 per kg water (n = 7,884), and polar regions (n = 7,752). Novelty evaluation using a genome taxonomy database shows that 6,256 species (73.9%) are novel and include genomes of high taxonomic novelty, such as new class candidates. These genomes collectively expanded the known phylogenetic diversity of marine prokaryotes by 34.2%, and the species representatives cover 26.5-42.0% of prokaryote-enriched metagenomes. Thoroughly leveraging accumulated metagenomic data, this genome resource, named the OceanDNA MAG catalog, illuminates uncharacterized marine microbial 'dark matter' lineages.
Collapse
Affiliation(s)
- Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.
- Research Center for Bioscience and Nanoscience (CeBN), Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan
| |
Collapse
|
12
|
Nilsson E, Li K, Hoetzinger M, Holmfeldt K. Nutrient driven transcriptional changes during phage infection in an aquatic Gammaproteobacterium. Environ Microbiol 2022; 24:2270-2281. [PMID: 35049095 PMCID: PMC9305737 DOI: 10.1111/1462-2920.15904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
Abstract
Phages modulate bacterial metabolism during infection by regulating gene expression, which influences aquatic nutrient cycling. However, the effects of shifting nutrient regimes are less understood. Here, we analyzed transcriptomes of an ecologically relevant Gammaproteobacterium and its lytic phage in high (HNM) and low (LNM) nutrient medium. Despite different infection characteristics, including reduced burst size and longer latent period in LNM, the phage had a fixed expression profile. Bacterial transcription was instead different depending on nutrient regime, with HNM bacteria focusing on growth while LNM bacteria focused on motility and membrane transport. Additionally, phage infection had a larger effect on bacterial gene expression in LNM compared to HNM, e.g. suppressing increased iron uptake and altering expression of phosphorus uptake genes. Overall, phage infection influenced host metabolism more in LNM, which was more similar to natural conditions, emphasizing the importance of considering natural conditions to understand phage and host ecology.
Collapse
Affiliation(s)
- Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Ke Li
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Faculty of Health and Life SciencesLinnaeus UniversityKalmarSE‐39231Sweden
| |
Collapse
|
13
|
Ebrahimi A, Goyal A, Cordero OX. Particle foraging strategies promote microbial diversity in marine environments. eLife 2022; 11:e73948. [PMID: 35289269 PMCID: PMC8956285 DOI: 10.7554/elife.73948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Microbial foraging in patchy environments, where resources are fragmented into particles or pockets embedded in a large matrix, plays a key role in natural environments. In the oceans and freshwater systems, particle-associated bacteria can interact with particle surfaces in different ways: some colonize only during short transients, while others form long-lived, stable colonies. We do not yet understand the ecological mechanisms by which both short- and long-term colonizers can coexist. Here, we address this problem with a mathematical model that explains how marine populations with different detachment rates from particles can stably coexist. In our model, populations grow only while on particles, but also face the increased risk of mortality by predation and sinking. Key to coexistence is the idea that detachment from particles modulates both net growth and mortality, but in opposite directions, creating a trade-off between them. While slow-detaching populations show the highest growth return (i.e., produce more net offspring), they are more susceptible to suffer higher rates of mortality than fast-detaching populations. Surprisingly, fluctuating environments, manifesting as blooms of particles (favoring growth) and predators (favoring mortality) significantly expand the likelihood that populations with different detachment rates can coexist. Our study shows how the spatial ecology of microbes in the ocean can lead to a predictable diversification of foraging strategies and the coexistence of multiple taxa on a single growth-limiting resource.
Collapse
Affiliation(s)
- Ali Ebrahimi
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Akshit Goyal
- Physics of Living Systems, Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Otto X Cordero
- Ralph M. Parsons Laboratory for Environmental Science and Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
14
|
Chevallereau A, Pons BJ, van Houte S, Westra ER. Interactions between bacterial and phage communities in natural environments. Nat Rev Microbiol 2021; 20:49-62. [PMID: 34373631 DOI: 10.1038/s41579-021-00602-y] [Citation(s) in RCA: 288] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
We commonly acknowledge that bacterial viruses (phages) shape the composition and evolution of bacterial communities in nature and therefore have important roles in ecosystem functioning. This view stems from studies in the 1990s to the first decade of the twenty-first century that revealed high viral abundance, high viral diversity and virus-induced microbial death in aquatic ecosystems as well as an association between collapses in bacterial density and peaks in phage abundance. The recent surge in metagenomic analyses has provided deeper insight into the abundance, genomic diversity and spatio-temporal dynamics of phages in a wide variety of ecosystems, ranging from deep oceans to soil and the mammalian digestive tract. However, the causes and consequences of variations in phage community compositions remain poorly understood. In this Review, we explore current knowledge of the composition and evolution of phage communities, as well as their roles in controlling the population and evolutionary dynamics of bacterial communities. We discuss the need for greater ecological realism in laboratory studies to capture the complexity of microbial communities that thrive in natural environments.
Collapse
Affiliation(s)
- Anne Chevallereau
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK. .,Department of Infection, Immunity and Inflammation, Institut Cochin, INSERM U1016, CNRS UMR8104, Université de Paris, Paris, France.
| | - Benoît J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Stineke van Houte
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK.
| |
Collapse
|
15
|
Jacobson TB, Callaghan MM, Amador-Noguez D. Hostile Takeover: How Viruses Reprogram Prokaryotic Metabolism. Annu Rev Microbiol 2021; 75:515-539. [PMID: 34348026 DOI: 10.1146/annurev-micro-060621-043448] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reproduce, prokaryotic viruses must hijack the cellular machinery of their hosts and redirect it toward the production of viral particles. While takeover of the host replication and protein synthesis apparatus has long been considered an essential feature of infection, recent studies indicate that extensive reprogramming of host primary metabolism is a widespread phenomenon among prokaryotic viruses that is required to fulfill the biosynthetic needs of virion production. In this review we provide an overview of the most significant recent findings regarding virus-induced reprogramming of prokaryotic metabolism and suggest how quantitative systems biology approaches may be used to provide a holistic understanding of metabolic remodeling during lytic viral infection. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Tyler B Jacobson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Melanie M Callaghan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , , .,Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA.,Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
16
|
Ou L, Long J, Teng Y, Yang H, Xi Y, Duan G, Chen S. Diversity of the type I-U CRISPR-Cas system in Bifidobacterium. Arch Microbiol 2021; 203:3235-3243. [PMID: 33837440 DOI: 10.1007/s00203-021-02310-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/17/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022]
Abstract
The CRISPR-Cas system is widely distributed in prokaryotes and plays an important role in the adaptive immunity of bacteria and archaea. Bifidobacterium is an important component of the intestinal flora of humans and animals, and some species of this bacterium can be employed as food additives. However, the Bifidobacterium CRISPR-Cas system has not been fully elucidated to date. In this study, the genomes of 110 strains of Bifidobacterium were employed to research the diversity of the type I-U system. The 110 strains were divided into five groups according to the genes adjacent to the CRISPR locus, including group A, B, C, D and E. Strains in the intergroup had unique species classifications and MLST types. An evolutionary tree was constructed based on the conserved cas4/cas1 fusion gene. The results showed that group A had a different evolutionary branch compared with the other groups and had a relatively low spacer number. Notably, group B, C and E had exhibited ABC transporter regulators in the genes adjacent to the CRISPR locus. ABC transporters play important roles in the exocytosis of many antibiotics and are involved in horizontal gene transfer. This mechanism may have promoted the evolution of Bifidobacterium and the horizontal gene transfer of the type I-U system, which may have promoted the generation of system diversity. In summary, our results help to elucidate the role of the type I-U system in the evolution of Bifidobacterium.
Collapse
Affiliation(s)
- Liuyang Ou
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yanli Teng
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuanlin Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China.
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
17
|
Hoetzinger M, Nilsson E, Arabi R, Osbeck CMG, Pontiller B, Hutinet G, Bayfield OW, Traving S, Kisand V, Lundin D, Pinhassi J, Middelboe M, Holmfeldt K. Dynamics of Baltic Sea phages driven by environmental changes. Environ Microbiol 2021; 23:4576-4594. [PMID: 34190387 DOI: 10.1111/1462-2920.15651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Phage predation constitutes a major mortality factor for bacteria in aquatic ecosystems, and thus, directly impacts nutrient cycling and microbial community dynamics. Yet, the population dynamics of specific phages across time scales from days to months remain largely unexplored, which limits our understanding of their influence on microbial succession. To investigate temporal changes in diversity and abundance of phages infecting particular host strains, we isolated 121 phage strains that infected three bacterial hosts during a Baltic Sea mesocosm experiment. Genome analysis revealed a novel Flavobacterium phage genus harboring gene sets putatively coding for synthesis of modified nucleotides and glycosylation of bacterial cell surface components. Another novel phage genus revealed a microdiversity of phage species that was largely maintained during the experiment and across mesocosms amended with different nutrients. In contrast to the newly described Flavobacterium phages, phages isolated from a Rheinheimera strain were highly similar to previously isolated genotypes, pointing to genomic consistency in this population. In the mesocosm experiment, the investigated phages were mainly detected after a phytoplankton bloom peak. This concurred with recurrent detection of the phages in the Baltic Proper during summer months, suggesting an influence on the succession of heterotrophic bacteria associated with phytoplankton blooms.
Collapse
Affiliation(s)
- Matthias Hoetzinger
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Emelie Nilsson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Rahaf Arabi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Christofer M G Osbeck
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Benjamin Pontiller
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Geoffrey Hutinet
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Oliver W Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, UK
| | - Sachia Traving
- Nordcee and HADAL, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Mathias Middelboe
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Karin Holmfeldt
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
18
|
Feng X, Yan W, Wang A, Ma R, Chen X, Lin TH, Chen YL, Wei S, Jin T, Jiao N, Zhang R. A Novel Broad Host Range Phage Infecting Alteromonas. Viruses 2021; 13:v13060987. [PMID: 34073246 PMCID: PMC8228385 DOI: 10.3390/v13060987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages substantially contribute to bacterial mortality in the ocean and play critical roles in global biogeochemical processes. Alteromonas is a ubiquitous bacterial genus in global tropical and temperate waters, which can cross-protect marine cyanobacteria and thus has important ecological benefits. However, little is known about the biological and ecological features of Alteromonas phages (alterophages). Here, we describe a novel alterophage vB_AmeP-R8W (R8W), which belongs to the Autographiviridae family and infects the deep-clade Alteromonas mediterranea. R8W has an equidistant and icosahedral head (65 ± 1 nm in diameter) and a short tail (12 ± 2 nm in length). The genome size of R8W is 48,825 bp, with a G + C content of 40.55%. R8W possesses three putative auxiliary metabolic genes encoding proteins involved in nucleotide metabolism and DNA binding: thymidylate synthase, nucleoside triphosphate pyrophosphohydrolase, and PhoB. R8W has a rapid lytic cycle with a burst size of 88 plaque-forming units/cell. Notably, R8W has a wide host range, such that it can infect 35 Alteromonas strains; it exhibits a strong specificity for strains isolated from deep waters. R8W has two specific receptor binding proteins and a compatible holin-endolysin system, which contribute to its wide host range. The isolation of R8W will contribute to the understanding of alterophage evolution, as well as the phage-host interactions and ecological importance of alterophages.
Collapse
Affiliation(s)
- Xuejin Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Wei Yan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Anan Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Tao Jin
- Guangzhou Magigene Biotechnology Co., Ltd., Guangzhou 510000, China;
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Correspondence: (N.J.); (R.Z.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: (N.J.); (R.Z.)
| |
Collapse
|
19
|
The Fennoscandian Shield deep terrestrial virosphere suggests slow motion 'boom and burst' cycles. Commun Biol 2021; 4:307. [PMID: 33686191 PMCID: PMC7940616 DOI: 10.1038/s42003-021-01810-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
The deep biosphere contains members from all three domains of life along with viruses. Here we investigate the deep terrestrial virosphere by sequencing community nucleic acids from three groundwaters of contrasting chemistries, origins, and ages. These viromes constitute a highly unique community compared to other environmental viromes and sequenced viral isolates. Viral host prediction suggests that many of the viruses are associated with Firmicutes and Patescibacteria, a superphylum lacking previously described active viruses. RNA transcript-based activity implies viral predation in the shallower marine water-fed groundwater, while the deeper and more oligotrophic waters appear to be in ‘metabolic standby’. Viral encoded antibiotic production and resistance systems suggest competition and antagonistic interactions. The data demonstrate a viral community with a wide range of predicted hosts that mediates nutrient recycling to support a higher microbial turnover than previously anticipated. This suggests the presence of ‘kill-the-winner’ oscillations creating slow motion ‘boom and burst’ cycles. Karin Holmfeldt et al. sequence metagenomes and metatranscriptomes of viruses in deep groundwaters down to 448 m below the surface. The results reveal ecological dynamics of viruses including slow motion ‘boom and burst’ cycles and a ‘kill the winner’ model potentially driven by viral predation.
Collapse
|
20
|
Phages as a Cohesive Prophylactic and Therapeutic Approach in Aquaculture Systems. Antibiotics (Basel) 2020; 9:antibiotics9090564. [PMID: 32882880 PMCID: PMC7558664 DOI: 10.3390/antibiotics9090564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/15/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Facing antibiotic resistance has provoked a continuously growing focus on phage therapy. Although the greatest emphasis has always been placed on phage treatment in humans, behind phage application lies a complex approach that can be usefully adopted by the food industry, from hatcheries and croplands to ready-to-eat products. Such diverse businesses require an efficient method for combating highly pathogenic bacteria since antibiotic resistance concerns every aspect of human life. Despite the vast abundance of phages on Earth, the aquatic environment has been considered their most natural habitat. Water favors multidirectional Brownian motion and increases the possibility of contact between phage particles and their bacterial hosts. As the global production of aquatic organisms has rapidly grown over the past decades, phage treatment of bacterial infections seems to be an obvious and promising solution in this market sector. Pathogenic bacteria, such as Aeromonas and Vibrio, have already proved to be responsible for mass mortalities in aquatic systems, resulting in economic losses. The main objective of this work is to summarize, from a scientific and industry perspective, the recent data regarding phage application in the form of targeted probiotics and therapeutic agents in aquaculture niches.
Collapse
|
21
|
Gonzalez-Serrano R, Dunne M, Rosselli R, Martin-Cuadrado AB, Grosboillot V, Zinsli LV, Roda-Garcia JJ, Loessner MJ, Rodriguez-Valera F. Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. mSystems 2020; 5:e00217-20. [PMID: 32518192 PMCID: PMC7289586 DOI: 10.1128/msystems.00217-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.
Collapse
Affiliation(s)
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Riccardo Rosselli
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
22
|
Diversity and Host Interactions Among Virulent and Temperate Baltic Sea Flavobacterium Phages. Viruses 2020; 12:v12020158. [PMID: 32019073 PMCID: PMC7077304 DOI: 10.3390/v12020158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 02/06/2023] Open
Abstract
Viruses in aquatic environments play a key role in microbial population dynamics and nutrient cycling. In particular, bacteria of the phylum Bacteriodetes are known to participate in recycling algal blooms. Studies of phage–host interactions involving this phylum are hence important to understand the processes shaping bacterial and viral communities in the ocean as well as nutrient cycling. In this study, we isolated and sequenced three strains of flavobacteria—LMO6, LMO9, LMO8—and 38 virulent phages infecting them. These phages represent 15 species, occupying three novel genera. Additionally, one temperate phage was induced from LMO6 and was found to be competent at infecting LMO9. Functions could be predicted for a limited number of phage genes, mainly representing roles in DNA replication and virus particle formation. No metabolic genes were detected. While the phages isolated on LMO8 could infect all three bacterial strains, the LMO6 and LMO9 phages could not infect LMO8. Of the phages isolated on LMO9, several showed a host-derived reduced efficiency of plating on LMO6, potentially due to differences in DNA methyltransferase genes. Overall, these phage–host systems contribute novel genetic information to our sequence databases and present valuable tools for the study of both virulent and temperate phages.
Collapse
|
23
|
Oduor JMO, Kadija E, Nyachieo A, Mureithi MW, Skurnik M. Bioprospecting Staphylococcus Phages with Therapeutic and Bio-Control Potential. Viruses 2020; 12:E133. [PMID: 31979276 PMCID: PMC7077315 DOI: 10.3390/v12020133] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
Emergence of antibiotic-resistant bacteria is a serious threat to the public health. This is also true for Staphylococcus aureus and other staphylococci. Staphylococcus phages Stab20, Stab21, Stab22, and Stab23, were isolated in Albania. Based on genomic and phylogenetic analysis, they were classified to genus Kayvirus of the subfamily Twortvirinae. In this work, we describe the in-depth characterization of the phages that electron microscopy confirmed to be myoviruses. These phages showed tolerance to pH range of 5.4 to 9.4, to maximum UV radiation energy of 25 µJ/cm2, to temperatures up to 45 °C, and to ethanol concentrations up to 25%, and complete resistance to chloroform. The adsorption rate constants of the phages ranged between 1.0 × 10-9 mL/min and 4.7 × 10-9 mL/min, and the burst size was from 42 to 130 plaque-forming units. The phages Stab20, 21, 22, and 23, originally isolated using Staphylococcusxylosus as a host, demonstrated varied host ranges among different Staphylococcus strains suggesting that they could be included in cocktail formulations for therapeutic or bio-control purpose. Phage particle proteomes, consisting on average of ca 60-70 gene products, revealed, in addition to straight-forward structural proteins, also the presence of enzymes such DNA polymerase, helicases, recombinases, exonucleases, and RNA ligase polymer. They are likely to be injected into the bacteria along with the genomic DNA to take over the host metabolism as soon as possible after infection.
Collapse
Affiliation(s)
- Joseph M. Ochieng’ Oduor
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
| | - Ermir Kadija
- Department of Biology-Chemistry, University of Shkodra “Luigj Gurakuqi”, 4001 Shkodra, Albania;
| | - Atunga Nyachieo
- Department of Reproductive Health & Biology, Phage Biology Section, Institute of Primate Research, P.O. Box, Karen-Nairobi 24481-00502, Kenya;
| | - Marianne W. Mureithi
- KAVI—Institute of Clinical Research, College of Health Sciences, University of Nairobi, P.O. Box, Nairobi 19676–00202, Kenya;
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Medicum, Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, 00014 UH Helsinki, Finland
- Division of Clinical Microbiology, Helsinki University Hospital, HUSLAB, 00029 HUS Helsinki, Finland
| |
Collapse
|