1
|
Ferrari RG, Panzenhagen PHN, Conte-Junior CA. Phenotypic and Genotypic Eligible Methods for Salmonella Typhimurium Source Tracking. Front Microbiol 2017; 8:2587. [PMID: 29312260 PMCID: PMC5744012 DOI: 10.3389/fmicb.2017.02587] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonellosis is one of the most common causes of foodborne infection and a leading cause of human gastroenteritis. Throughout the last decade, Salmonella enterica serotype Typhimurium (ST) has shown an increase report with the simultaneous emergence of multidrug-resistant isolates, as phage type DT104. Therefore, to successfully control this microorganism, it is important to attribute salmonellosis to the exact source. Studies of Salmonella source attribution have been performed to determine the main food/food-production animals involved, toward which, control efforts should be correctly directed. Hence, the election of a ST subtyping method depends on the particular problem that efforts must be directed, the resources and the data available. Generally, before choosing a molecular subtyping, phenotyping approaches such as serotyping, phage typing, and antimicrobial resistance profiling are implemented as a screening of an investigation, and the results are computed using frequency-matching models (i.e., Dutch, Hald and Asymmetric Island models). Actually, due to the advancement of molecular tools as PFGE, MLVA, MLST, CRISPR, and WGS more precise results have been obtained, but even with these technologies, there are still gaps to be elucidated. To address this issue, an important question needs to be answered: what are the currently suitable subtyping methods to source attribute ST. This review presents the most frequently applied subtyping methods used to characterize ST, analyses the major available microbial subtyping attribution models and ponders the use of conventional phenotyping methods, as well as, the most applied genotypic tools in the context of their potential applicability to investigates ST source tracking.
Collapse
Affiliation(s)
- Rafaela G. Ferrari
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H. N. Panzenhagen
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
- Food Science Program, Chemistry Institute, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Multidrug-Resistant Salmonella enterica Serovar Typhimurium Isolates Are Resistant to Antibiotics That Influence Their Swimming and Swarming Motility. mSphere 2017; 2:mSphere00306-17. [PMID: 29104932 PMCID: PMC5663980 DOI: 10.1128/msphere.00306-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022] Open
Abstract
Salmonella is one of the most common causes of bacterial foodborne infections in the United States, and the Centers for Disease Control consider multidrug-resistant (MDR) Salmonella a “Serious Threat Level pathogen.” Because MDR Salmonella can lead to more severe disease in patients than that caused by antibiotic-sensitive strains, it is important to identify the role that antibiotics may play in enhancing Salmonella virulence. The current study examined several MDR Salmonella isolates and determined the effect that various antibiotics had on Salmonella motility, an important virulence-associated factor. While most antibiotics had a neutral or negative effect on motility, we found that kanamycin actually enhanced MDR Salmonella swarming in some isolates. Subsequent experiments showed this phenotype as being dependent on a combination of several different genetic factors. Understanding the influence that antibiotics have on MDR Salmonella motility is critical to the proper selection and prudent use of antibiotics for efficacious treatment while minimizing potential collateral consequences. Motile bacteria employ one or more methods for movement, including darting, gliding, sliding, swarming, swimming, and twitching. Multidrug-resistant (MDR) Salmonella carries acquired genes that provide resistance to specific antibiotics, and the goal of our study was to determine how antibiotics influence swimming and swarming in such resistant Salmonella isolates. Differences in motility were examined for six MDR Salmonella enterica serovar Typhimurium isolates grown on swimming and swarming media containing subinhibitory concentrations of chloramphenicol, kanamycin, streptomycin, or tetracycline. Chloramphenicol and tetracycline reduced both swimming and swarming, though the effect was more pronounced for swimming than for swarming at the same antibiotic and concentration. Swimming was limited by kanamycin and streptomycin, but these antibiotics had much less influence on decreasing swarming. Interestingly, kanamycin significantly increased swarming in one of the isolates. Removal of the aphA1 kanamycin resistance gene and complementation with either the aphA1 or aphA2 kanamycin resistance gene revealed that aphA1, along with an unidentified Salmonella genetic factor, was required for the kanamycin-enhanced swarming phenotype. Screening of 25 additional kanamycin-resistant isolates identified two that also had significantly increased swarming motility in the presence of kanamycin. This study demonstrated that many variables influence how antibiotics impact swimming and swarming motility in MDR S. Typhimurium, including antibiotic type, antibiotic concentration, antibiotic resistance gene, and isolate-specific factors. Identifying these isolate-specific factors and how they interact will be important to better understand how antibiotics influence MDR Salmonella motility. IMPORTANCESalmonella is one of the most common causes of bacterial foodborne infections in the United States, and the Centers for Disease Control consider multidrug-resistant (MDR) Salmonella a “Serious Threat Level pathogen.” Because MDR Salmonella can lead to more severe disease in patients than that caused by antibiotic-sensitive strains, it is important to identify the role that antibiotics may play in enhancing Salmonella virulence. The current study examined several MDR Salmonella isolates and determined the effect that various antibiotics had on Salmonella motility, an important virulence-associated factor. While most antibiotics had a neutral or negative effect on motility, we found that kanamycin actually enhanced MDR Salmonella swarming in some isolates. Subsequent experiments showed this phenotype as being dependent on a combination of several different genetic factors. Understanding the influence that antibiotics have on MDR Salmonella motility is critical to the proper selection and prudent use of antibiotics for efficacious treatment while minimizing potential collateral consequences.
Collapse
|
3
|
Molina-Moya B, Lacoma A, García-Sierra N, Blanco S, Haba L, Samper S, Ruiz-Manzano J, Prat C, Arnold C, Domínguez J. PyroTyping, a novel pyrosequencing-based assay for Mycobacterium tuberculosis genotyping. Sci Rep 2017; 7:6777. [PMID: 28754991 PMCID: PMC5533701 DOI: 10.1038/s41598-017-06760-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/19/2017] [Indexed: 11/09/2022] Open
Abstract
We developed a novel method, PyroTyping, for discrimination of Mycobacterium tuberculosis isolates combining pyrosequencing and IS6110 polymorphism. A total of 100 isolates were analysed with IS6110-restriction fragment length polymorphism (RFLP), spoligotyping, mycobacterial interspersed repetitive units - variable number tandem repeats (MIRU-VNTR), and PyroTyping. PyroTyping results regarding clustering or discrimination of the isolates were highly concordant with the other typing methods performed. PyroTyping is more rapid than RFLP and presents the same discriminatory power, thus, it may be useful for taking timely decisions for tuberculosis control.
Collapse
Affiliation(s)
- B Molina-Moya
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - A Lacoma
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - N García-Sierra
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain
| | - S Blanco
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - L Haba
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain
| | - S Samper
- CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Instituto Aragonés de Ciencias de la Salud, Zaragoza, 50009, Spain.,Fundación Instituto de Investigación Sanitaria de Aragón, Zaragoza, 50009, Spain
| | - J Ruiz-Manzano
- Servei de Pneumologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - C Prat
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain.,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - C Arnold
- Genomic Services and Development Unit, Public Health England, 61 Colindale Avenue, London, United Kingdom
| | - J Domínguez
- Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, Universitat Autònoma de Barcelona, Carretera del Canyet s/n, 08916, Badalona, Spain. .,CIBER Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain.
| |
Collapse
|
4
|
Habing GG, Manning S, Bolin C, Cui Y, Rudrik J, Dietrich S, Kaneene JB. Within-Farm Changes in Dairy Farm-Associated Salmonella Subtypes and Comparison to Human Clinical Isolates in Michigan, 2000-2001 and 2009. Appl Environ Microbiol 2015; 81:5724-35. [PMID: 26070676 PMCID: PMC4551238 DOI: 10.1128/aem.00899-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/08/2015] [Indexed: 11/20/2022] Open
Abstract
Temporal changes in the distribution of Salmonella subtypes in livestock populations may have important impacts on human health. The first objective of this research was to determine the within-farm changes in the population of subtypes of Salmonella on Michigan dairy farms that were sampled longitudinally in 2000-2001 and again in 2009. The second objective was to determine the yearly frequency (2001 through 2012) of reported human illnesses in Michigan associated with the same subtypes. Comparable sampling techniques were used to collect fecal and environmental samples from the same 18 Michigan dairy farms in 2000-2001 and 2009. Serotypes, multilocus sequence types (STs), and pulsed-field gel electrophoresis (PFGE) banding patterns were identified for isolates from 6 farms where >1 Salmonella isolate was recovered in both 2000-2001 and 2009. The distribution of STs was significantly different between time frames (P < 0.05); only two of 31 PFGE patterns were identified in both time frames, and each was recovered from the same farm in each time frame. Previously reported within-farm decreases in the frequency of multidrug-resistant (MDR) Salmonella were due to recovery of MDR subtypes of S. enterica serotypes Senftenberg and Typhimurium in 2000-2001 and genetically distinct, pansusceptible subtypes of the same serotypes in 2009. The annual frequency of human illnesses between 2001 and 2012 with a PFGE pattern matching a bovine strain decreased for patterns recovered from dairy farms in 2000-2001 and increased for patterns recovered in 2009. These data suggest important changes in the population of Salmonella on dairy farms and in the frequency of human illnesses associated with cattle-derived subtypes.
Collapse
Affiliation(s)
- Greg G Habing
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Shannon Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Carole Bolin
- Diagnostic Center for Population and Animal Health, Michigan State University, East Lansing, Michigan, USA
| | - Yuehua Cui
- Department of Statistics and Probability, Michigan State University, East Lansing, Michigan, USA
| | - James Rudrik
- Infectious Disease Division, Michigan Department of Community Health, Lansing, Michigan, USA
| | - Stephen Dietrich
- Infectious Disease Division, Michigan Department of Community Health, Lansing, Michigan, USA
| | - John B Kaneene
- Center for Comparative Epidemiology, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Sandt CH, Fedorka-Cray PJ, Tewari D, Ostroff S, Joyce K, M’ikanatha NM. A comparison of non-typhoidal Salmonella from humans and food animals using pulsed-field gel electrophoresis and antimicrobial susceptibility patterns. PLoS One 2013; 8:e77836. [PMID: 24204990 PMCID: PMC3813714 DOI: 10.1371/journal.pone.0077836] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 09/10/2013] [Indexed: 02/07/2023] Open
Abstract
Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoidal Salmonella isolated from ill humans in Pennsylvania and from food animals before retail. Human clinical isolates were received from 2005 through 2011 during routine public health operations in Pennsylvania. Isolates from cattle, chickens, swine and turkeys were recovered during the same period from federally inspected slaughter and processing facilities in the northeastern United States. We found that subtyping Salmonella isolates by PFGE revealed differences in antimicrobial susceptibility patterns and, for human Salmonella, differences in sources and invasiveness that were not evident from serotyping alone. Sixteen of the 20 most common human Salmonella PFGE patterns were identified in Salmonella recovered from food animals. The most common human Salmonella PFGE pattern, Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS), was associated with more cases of invasive salmonellosis than all other patterns. In food animals, this pattern was almost exclusively (99%) found in Salmonella recovered from chickens and was present in poultry meat in every year of the study. Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS) was associated with susceptibility to all antimicrobial agents tested in 94.7% of human and 97.2% of food animal Salmonella isolates. In contrast, multidrug resistance (resistance to three or more classes of antimicrobial agents) was observed in five PFGE patterns. Typhimurium patterns JPXX01.0003 (JPXX01.0003 ARS) and JPXX01.0018 (JPXX01.0002 ARS), considered together, were associated with resistance to five or more classes of antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT), in 92% of human and 80% of food animal Salmonella isolates. The information from our study can assist in source attribution, outbreak investigations, and tailoring of interventions to maximize their impact on prevention.
Collapse
Affiliation(s)
- Carol H. Sandt
- Bureau of Laboratories, Pennsylvania Department of Health, Exton, Pennsylvania, United States of America
| | - Paula J. Fedorka-Cray
- United States Department of Agriculture, Agricultural Research Service, Athens, Georgia, United States of America
| | - Deepanker Tewari
- Pennsylvania Veterinary Laboratory, Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania, United States of America
| | - Stephen Ostroff
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, United States of America
| | - Kevin Joyce
- National Antimicrobial Resistance Monitoring System, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Nkuchia M. M’ikanatha
- Division of Infectious Disease Epidemiology, Pennsylvania Department of Health, Harrisburg, Pennsylvania, United States of America
| |
Collapse
|
6
|
Tetracycline accelerates the temporally-regulated invasion response in specific isolates of multidrug-resistant Salmonella enterica serovar Typhimurium. BMC Microbiol 2013; 13:202. [PMID: 24020473 PMCID: PMC3854800 DOI: 10.1186/1471-2180-13-202] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/02/2013] [Indexed: 12/21/2022] Open
Abstract
Background Multidrug-resistant (MDR) Salmonella isolates are associated with increased morbidity compared to antibiotic-sensitive strains and are an important health and safety concern in both humans and animals. Salmonella enterica serovar Typhimurium is a prevalent cause of foodborne disease, and a considerable number of S. Typhimurium isolates from humans and livestock are resistant to three or more antibiotics. The majority of these MDR S. Typhimurium isolates are resistant to tetracycline, a commonly used and clinically and agriculturally relevant antibiotic. Because exposure of drug-resistant bacteria to antibiotics can affect cellular processes associated with virulence, such as invasion, we investigated the effect tetracycline had on the invasiveness of tetracycline-resistant MDR S. Typhimurium isolates. Results The isolates selected and tested were from two common definitive phage types of S. Typhimurium, DT104 and DT193, and were resistant to tetracycline and at least three other antibiotics. Although Salmonella invasiveness is temporally regulated and normally occurs during late-log growth phase, tetracycline exposure induced the full invasive phenotype in a cell culture assay during early-log growth in several DT193 isolates. No changes in invasiveness due to tetracycline exposure occurred in the DT104 isolates during early-log growth or in any of the isolates during late-log growth. Real-time PCR was used to test expression of the virulence genes hilA, prgH, and invF, and these genes were significantly up-regulated during early-log growth in most isolates due to tetracycline exposure; however, increased virulence gene expression did not always correspond with increased invasion, and therefore was not an accurate indicator of elevated invasiveness. This is the first report to assess DT193 isolates, as well as the early-log growth phase, in response to tetracycline exposure, and it was the combination of both parameters that was necessary to observe the induced invasion phenotype. Conclusions In this report, we demonstrate that the invasiveness of MDR S. Typhimurium can be modulated in the presence of tetracycline, and this effect is dependent on growth phase, antibiotic concentration, and strain background. Identifying the conditions necessary to establish an invasive phenotype is important to elucidate the underlying factors associated with increased virulence of MDR Salmonella.
Collapse
|
7
|
Barco L, Barrucci F, Olsen JE, Ricci A. Salmonella source attribution based on microbial subtyping. Int J Food Microbiol 2013; 163:193-203. [PMID: 23562696 DOI: 10.1016/j.ijfoodmicro.2013.03.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/20/2013] [Accepted: 03/02/2013] [Indexed: 10/27/2022]
Abstract
Source attribution of cases of food-borne disease represents a valuable tool for identifying and prioritizing effective food-safety interventions. Microbial subtyping is one of the most common methods to infer potential sources of human food-borne infections. So far, Salmonella microbial subtyping source attribution models have been implemented by using serotyping and phage-typing data. Molecular-based methods may prove to be similarly valuable in the future, as already demonstrated for other food-borne pathogens like Campylobacter. This review assesses the state of the art concerning Salmonella source attribution through microbial subtyping approach. It summarizes the available microbial subtyping attribution models and discusses the use of conventional phenotypic typing methods, as well as of the most commonly applied molecular typing methods in the European Union (EU) laboratories in the context of their potential applicability for Salmonella source attribution studies.
Collapse
Affiliation(s)
- Lisa Barco
- OIE, National Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università 10, Padova, 35020 Legnaro, Italy
| | | | | | | |
Collapse
|
8
|
Bacterias patógenas con alta resistencia a antibióticos: estudio sobre reservorios bacterianos en animales cautivos en el zoológico de Barranquilla. INFECTIO 2010. [DOI: 10.1016/s0123-9392(10)70088-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Adaska J, Silva A, Sischo W. Comparison of Salmonella enterica subspecies enterica serovar Typhimurium isolates from dairy cattle and humans using in vitro assays of virulence. Vet Microbiol 2008; 128:90-5. [DOI: 10.1016/j.vetmic.2007.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/17/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
|