1
|
Manetsberger J, Caballero Gómez N, Benomar N, Christie G, Abriouel H. Antimicrobial activity of environmental Bacillus spp. and Peribacillus spp. isolates linked to surfactin, fengycin, bacillibactin and lantibiotics. Int J Biol Macromol 2025; 316:144644. [PMID: 40436168 DOI: 10.1016/j.ijbiomac.2025.144644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/21/2025] [Accepted: 05/23/2025] [Indexed: 06/02/2025]
Abstract
Bacillus and closely related species are amongst the most exploited organisms for the development of novel bioactive formulations in sustainable agriculture. These bacteria produce a wide arsenal of bioactive compounds, such as antimicrobial peptides which are gaining increasing attention. Using an in-silico approach we characterised the whole genomes of five environmental isolates belonging to the Bacillus subtilis, Peribacillus simplex and Bacillus cereus clade with antimicrobial potential. We showed that the isolates contain genomic sequences for a wide range of secondary metabolites, including lipopeptides surfactin, fengycin, the siderophore bacillibactin or several promising lantipeptides. Ex situ production of antimicrobial substances was confirmed in vitro, detecting synergistic effects between isolates from the same origin. The strains furthermore exhibited a strong capacity of biofilm formation in silico and in vitro, although no synergy occurred. Regarding safety properties, all strains were found to harbour virulence and virulence-associated factors including antibiotic resistance genes. In summary, this study provides valuable insights into the genetic make-up and variations of spore-formers derived from olive orchards, which can be useful for the development of antimicrobial agents in sustainable agriculture.
Collapse
Affiliation(s)
- Julia Manetsberger
- Area of Microbiology, Department of Health Sciences, University of Jaén, Jaén, Spain.
| | | | - Nabil Benomar
- Area of Microbiology, Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hikmate Abriouel
- Area of Microbiology, Department of Health Sciences, University of Jaén, Jaén, Spain.
| |
Collapse
|
2
|
Hong K, Li C, Ai J, Han X, Han B, Qin Q, Deng H, Wu T, Zhao X, Huang W, Zhan J, You Y. Biogenic amines degradation ability of Saccharomyces cerevisiae I45 and Pichia sp. NW5 & LB60 and their application in beer fermentation. Food Res Int 2025; 202:115726. [PMID: 39967102 DOI: 10.1016/j.foodres.2025.115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Biogenic amines (BAs) are abundant in craft beer and pose toxicological risks to consumers. Certain microbes have shown potential for degrading BAs. This study, for the first time, used beer as a fermentation system to screen three yeast strains: Saccharomyces cerevisiae I45, Pichia kluyveri NW5, and Pichia terricola LB60, which effectively reduced BA levels in stout beer. The degradation rates for tryptamine by S. cerevisiae I45, tyramine by P. kluyveri NW5, and putrescine by P. terricola LB60 were 55.76 %, 41.75 %, and 36.53 %, respectively. After mixed fermentation, the total BAs degradation rate in the stout beer was 48.81 %, and the highest degradation rates of the representative bioamines tryptamine and putrescine were 40.52 % and 50.96 %, respectively. Additionally, glycerol yield and ester content were significantly increased, without negatively impacting the beer's volatile aroma components, while enhancing characteristic aromas like rose and tropical fruit. These findings provide a theoretical basis and technical guidance for improving the safety and sensory quality of craft beer.
Collapse
Affiliation(s)
- Kexin Hong
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; School of Advanced Agricultural Sciences, Peking University, Beijing 100871 China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700 Jiangsu, China
| | - Jingya Ai
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; College of Food Science and Engineering, Ningxia University, West Helan Mountain Road 489, Xixia District, Yinchuan, Ningxia, Hui Autonomous Region 750021, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Qiuxing Qin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700 Jiangsu, China
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Xiaoxuan Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700 Jiangsu, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China.
| |
Collapse
|
3
|
Banicod RJS, Ntege W, Njiru MN, Abubakar WH, Kanthenga HT, Javaid A, Khan F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol 2025; 428:110996. [PMID: 39615409 DOI: 10.1016/j.ijfoodmicro.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
Collapse
Affiliation(s)
- Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar 30500, Kenya
| | - Woru Hamzat Abubakar
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Aquaculture and Biotechnology Department, National Institute for Freshwater Fisheries Research, New Bussa, Niger State 913003, Nigeria
| | - Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi 301401, Malawi
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
4
|
Abdelshafy AM, Mahmoud AR, Abdelrahman TM, Mustafa MA, Atta OM, Abdelmegiud MH, Al-Asmari F. Biodegradation of chemical contamination by lactic acid bacteria: A biological tool for food safety. Food Chem 2024; 460:140732. [PMID: 39106807 DOI: 10.1016/j.foodchem.2024.140732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Ahmed Rashad Mahmoud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Talat M Abdelrahman
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt.
| | - Mustafa Abdelmoneim Mustafa
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mahmoud H Abdelmegiud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
5
|
Manetsberger J, Gómez NC, Benomar N, Christie G, Abriouel H. Phenotypic and Genomic Insights Into Bacillus spp. and Peribacillus spp. of Spanish Olive Groves With Biotechnological Potential. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70053. [PMID: 39604090 PMCID: PMC11602404 DOI: 10.1111/1758-2229.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Spore-forming organisms are an integral component of the rhizosphere, providing plants with significant advantages. Previous studies determined the antimicrobial activity of the olive sporobiota, identifying five candidates of particular relevance, belonging to the Bacillus subtilis, Peribacillus simplex and Bacillus cereus clade. This study aimed to determine their biotechnological properties, safety aspects, spore structure and resistance, and interaction with the environment through a combined microbiological and genomic approach. We report on the ability of these strains to produce hydrolytic and surface-active enzymes and provide evidence for differences in population behaviour through the formation of strong sessile or floating biofilms. Electron microscopic analysis revealed for the first time the presence of an exosporium layer in olive sporobiota isolates belonging to the P. simplex and B. cereus clade, including numerous pili-like structures on the latter. Spores showed significant differences in their resistance to wet heat, oxidising agents, and UV exposure. Whole genome sequencing of isolate Peribacillus frigoritolerans yielded information on its antimicrobial compound biosynthesis and environmental safety. Overall, our findings provide insights into the phenotypic, morphological and genetic variations of spore-formers from Spanish olive groves, which can be useful for the development of bioactive compounds in sustainable agriculture.
Collapse
Affiliation(s)
- Julia Manetsberger
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Natacha Caballero Gómez
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Nabil Benomar
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| | - Graham Christie
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
| | - Hikmate Abriouel
- Area of Microbiology, Department of Health Sciences, Faculty of Experimental SciencesUniversity of JaénJaénSpain
| |
Collapse
|
6
|
Capri FC, Gaglio R, Botta L, Settanni L, Alduina R. Selection of starter lactic acid bacteria capable of forming biofilms on wooden vat prototypes for their future application in traditional Sicilian goat's milk cheese making. Int J Food Microbiol 2024; 419:110752. [PMID: 38781647 DOI: 10.1016/j.ijfoodmicro.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
In this study, 327 presumptive lactic acid bacteria (LAB) were isolated from goats' milk acid curds produced at a Sicilian dairy farm with the aim to identify potential starter cultures for traditional cheeses. All isolates were first processed by randomly amplified polymorphic DNA (RAPD)-PCR analysis. This approach identified 63 distinct strains which were evaluated for their acidifying capacity. Only 15 strains specifically stood out for their acidification capacity and were identified through 16S rRNA gene sequencing as Lactococcus lactis (11 strains) Enterococcus faecalis (three strains), and Ligilactobacillus animalis (one strain). Notably, all 15 LAB isolates produced bacteriocin-like inhibitory substances and anti-biofilm compounds, against both planktonic and biofilm forms of Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli, and Staphylococcus aureus, albeit at varying levels. Among these 15 LAB, En. faecalis RGM25 and Lc. lactis RGM55, susceptible to five antibiotics tested, were put in contact with wooden vat prototypes, because all equipment used in traditional cheese production in Sicily are made of wood. Scanning electron microscopy and bacterial plate counts of the wooden vat prototypes showed the development of biofilms at levels of approximately 6.0 log CFU/cm2. Overall, this study contributes to establishing a custom-made LAB starter cultures with bio-preservatives properties for Sicilian cheese productions.
Collapse
Affiliation(s)
- Fanny Claire Capri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Bldg. 6, 90128 Palermo, Italy
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Bldg. 16-17, 90128 Palermo, Italy; National Biodiversity Future Center (NBFC), Piazza Marina, 61, 90133 Palermo, Italy
| |
Collapse
|
7
|
Colautti A, Ginaldi F, Camprini L, Comi G, Reale A, Iacumin L. Investigating Safety and Technological Traits of a Leading Probiotic Species: Lacticaseibacillus paracasei. Nutrients 2024; 16:2212. [PMID: 39064654 PMCID: PMC11280365 DOI: 10.3390/nu16142212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lacticaseibacillus spp. are genetically close lactic acid bacteria species widely used in fermented products for their technological properties as well as their proven beneficial effects on human and animal health. This study, the first to include such a large collection of heterogeneous isolates (121) obtained from international collections belonging to Lacticaseibacillus paracasei, aimed to characterize the safety traits and technological properties of this important probiotic species, also making comparisons with other genetically related species, such as Lacticaseibacillus casei and Lacticaseibacillus zeae. These strains were isolated from a variety of heterogeneous sources, including dairy products, sourdoughs, wine, must, and human body excreta. After a preliminary molecular characterization using repetitive element palindromic PCR (Rep-PCR), Random Amplification of Polymorphic DNA (RAPD), and Sau-PCR, particular attention was paid to safety traits, evaluating antibiotic resistance profiles, biogenic amine (BA) production, the presence of genes related to the production of ethyl carbamate and diaminobenzidine (DAB), and multicopper oxidase activity (MCO). The technological characteristics of the strains, such as the capability to grow at different NaCl and ethanol concentrations and different pH values, were also investigated, as well as the production of bacteriocins. From the obtained results, it was observed that strains isolated from the same type of matrix often shared similar genetic characteristics. However, phenotypic traits were strain-specific. This underscored the vast potential of the different strains to be used for various purposes, from probiotics to bioprotective and starter cultures for food and feed production, highlighting the importance of conducting comprehensive evaluations to identify the most suitable strain for each purpose with the final aim of promoting human health.
Collapse
Affiliation(s)
- Andrea Colautti
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Federica Ginaldi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Lucia Camprini
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Giuseppe Comi
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| | - Anna Reale
- Institute of Food Science (ISA), National Research Council, Via Roma, 64, 83100 Avellino, Italy;
| | - Lucilla Iacumin
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy (G.C.)
| |
Collapse
|
8
|
Dong Y, Ronholm J, Fliss I, Karboune S. Screening of Lactic Acid Bacteria Strains for Potential Sourdough and Bread Applications: Enzyme Expression and Exopolysaccharide Production. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10270-y. [PMID: 38733464 DOI: 10.1007/s12602-024-10270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Twenty-eight strains of lactic acid bacteria (LAB) were characterized for the ability to express enzymes of interest (including protease, xylanase, α-amylase, laccase, and glucose oxidase) as well as the ability to produce exopolysaccharide (EPS). The screening of enzyme capability for all LAB strains proceeded in a progressive 3-stage manner that helps to profile the efficiency of LAB strains in expressing chosen enzymes (Stage 1), highlights the strains with affinity for flour as the substrate (Stage 2), and discerns strains that can adapt well in a simulated starter environment (Stage 3). The theoretical ability of LAB to express these enzymes was also assessed using Basic Local Alignment Search Tool (BLAST) analysis to identify the underlying genes in the whole genome sequence. By consolidating both experimental data and information obtained from BLAST, three LAB strains were deemed optimal in expressing enzymes, namely, Lb. delbrueckii subsp. bulgaricus (RBL 52), Lb. rhamnosus (RBL 102), and Lb. plantarum (ATCC 10241). Meanwhile, EPS-producing capabilities were observed for 10 out of 28 LAB strains, among which, Lactococcus lactis subsp. diacetylactis (RBL 37) had the highest total EPS yield (274.15 mg polysaccharide/L culture) and produced 46.2% polysaccharide with a molecular mass of more than 100 kDa.
Collapse
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Ismail Fliss
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Wang H, Sui Y, Liu J, Liu H, Qin L, Kong B, Chen Q. Screening and evaluating microorganisms with broad-spectrum biogenic amine-degrading ability from naturally fermented dry sausage collected from Northeast China. Meat Sci 2024; 210:109438. [PMID: 38290305 DOI: 10.1016/j.meatsci.2024.109438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 12/01/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
This study aimed to screen autochthonous strains with broad-spectrum biogenic amine (BA) degradation ability from traditional dry sausages and to evaluate their BA-degrading ability in dry sausages. A total of 120 strains were isolated from dry sausages collected from various regions in Northeast China, and 35 of 120 isolates were identified as non-BA producing strains by the in vitro agar method. The random amplified polymorphic DNA polymerase chain reaction technique genotyped these 35 isolates into 18 biotypes. Moreover, high performance liquid chromatography (HPLC) quantification showed that six strains (Latilactobacillus sakei MDJ6; Lactiplantibacillus plantarum SH7; Weissella hellenica DQ9; Staphylococcus saprophyticus JX18 and SYS8; and Macrococcus caseolyticus SYS11) of the 18 biotypes exhibited broad-spectrum BA-degrading ability, all of which had various levels of amine oxidase activity with monoamine oxidase and diamine oxidase activities ranged of 6.60-619.04 and 26.32-352.81 U/mg protein, respectively. These six strains were subsequently inoculated into dry sausages and the results showed that they exhibited varying degrees of BA-degrading ability, of which strain Lat. sakei MDJ6 allowed to have less BA production on dry sausage with a final concentration of 61.33 mg/kg.
Collapse
Affiliation(s)
- Huiping Wang
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yumeng Sui
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaqi Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Haotian Liu
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ligang Qin
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baohua Kong
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Qian Chen
- Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
10
|
Sadighara P, Bekheir SA, Shafaroodi H, Basaran B, Sadighara M. Tyramine, a biogenic agent in cheese: amount and factors affecting its formation, a systematic review. FOOD PRODUCTION, PROCESSING AND NUTRITION 2024; 6:30. [DOI: 10.1186/s43014-024-00223-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2025]
Abstract
AbstractTyramine is one of the most important biological amines in food, which leads to food poisoning if consumed in high amounts. In addition to food poisoning, tyramine leads to drug interactions. Foods high in tyramine can cause high blood pressure and migraines in people taking monoamine oxidase (MAO) inhibitors. Therefore, people taking MAO inhibitors should avoid foods high in tyramine. Cheese provides ideal conditions for the production of tyramine. Some cheeses contain high amounts of tyramine and lead to unwanted effects in people taking MAO inhibitors. These unwanted effects are called the cheese effect or tyramine interaction. Considering the importance of the subject, a systematic study was designed with the aim of determining the amount of tyramine in cheeses and the effect of effective factors on the amount of tyramine production. The search was done in three databases, including Scopus, PubMed, and Science Direct. The study was conducted in two phases. In the first stage, the amount of tyramine reported in cheeses, the analytical method, measurement, and characteristics of cheese were discussed. In the second phase, the influencing factors in its formation were investigated. Based on the extracted data, tyramine levels ranged from 3.23 to 1398 mg/kg. The most analytical method for measuring tyramine in the studies was the HPLC method. According to a detailed review of the literature, the influencing factors included bacterial species, animal species, the effect of storage conditions (time and temperature), pH, moisture, salt, and the number of somatic cells. Basically, by identifying the factors affecting the amount of tyramine in cheeses, it is possible to control the production of tyramine.
Graphical Abstract
Collapse
|
11
|
Klementová L, Purevdorj K, Butor I, Jančová P, Bábková D, Buňka F, Buňková L. Reduction of histamine, putrescine and cadaverine by the bacteria Lacticaseibacillus casei depending on selected factors in the real condition of the dairy product. Food Microbiol 2024; 117:104391. [PMID: 37919013 DOI: 10.1016/j.fm.2023.104391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023]
Abstract
One way to effectively reduce the number of biogenic amines (BAs) in food is through enzymatic reduction using bacteria, such as lactic acid bacteria. This study focuses on the ability of the bacterial strain Lacticaseibacillus casei CCDM 198 to reduce the number of three important BAs (histamine, putrescine and cadaverine) over time, depending on different conditions (temperature and pH) in vitro and for the real dairy product - skimmed milk. The obtained results show that the studied strain significantly (P < 0.05) affects the number of individual amines, and the content of all amines has a decreasing character compared to the initial relative content of BAs at time zero. Furthermore, a statistical dependence (P < 0.05) of the rate of amine degradation on the combination of investigated factors was demonstrated. The presence and the activity of multicopper oxidase enzyme was also detected in this bacterial strain. This is the first known publication demonstrating multicopper oxidase activity in Lacticaseibacillus casei CCDM 198. Moreover, the studied strain is able to reduce the tested BAs in skimmed milk and would be a good candidate for degrading these toxic compounds in other dairy products, such as cheese. These findings could significantly enhance the food safety of dairy products.
Collapse
Affiliation(s)
- Lucie Klementová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| | - Khatantuul Purevdorj
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic.
| | - Irena Butor
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| | - Petra Jančová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| | - Dagmar Bábková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| | - František Buňka
- Food Quality and Safety Research Laboratory, Department of Logistics, Faculty of Military Leadership, University of Defence, Kounicova 65, 662 10, Brno, Czech Republic
| | - Leona Buňková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01, Zlín, Czech Republic
| |
Collapse
|
12
|
Pei H, Wang Y, He W, Deng L, Lan Q, Zhang Y, Yang L, Hu K, Li J, Liu A, Ao X, Teng H, Liu S, Zou L, Li R, Yang Y. Research of Multicopper Oxidase and Its Degradation of Histamine in Lactiplantibacillus plantarum LPZN19. Microorganisms 2023; 11:2724. [PMID: 38004736 PMCID: PMC10672810 DOI: 10.3390/microorganisms11112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
In order to explore the structural changes and products of histamine degradation by multicopper oxidase (MCO) in Lactiplantibacillus plantarum LPZN19, a 1500 bp MCO gene in L. plantarum LPZN19 was cloned, and the recombinant MCO was expressed in E. coli BL21 (DE3). After purification by Ni2+-NTA affinity chromatography, the obtained MCO has a molecular weight of 58 kDa, and it also has the highest enzyme activity at 50 °C and pH 3.5, with a relative enzyme activity of 100%, and it maintains 57.71% of the relative enzyme activity at 5% salt concentration. The secondary structure of MCO was determined by circular dichroism, in which the proportions of the α-helix, β-sheet, β-turn and random coil were 2.9%, 39.7%, 21.2% and 36.1%, respectively. The 6xj0.1.A with a credibility of 68.21% was selected as the template to predict the tertiary structure of MCO in L. plantarum LPZN19, and the results indicated that the main components of the tertiary structure of MCO were formed by the further coiling and folding of a random coil and β-sheet. Histamine could change the spatial structure of MCO by increasing the content of the α-helix and β-sheet. Finally, the LC-MS/MS identification results suggest that the histamine was degraded into imidazole acetaldehyde, hydrogen peroxide and ammonia.
Collapse
Affiliation(s)
- Huijie Pei
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yilun Wang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Wei He
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Lin Deng
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Qinjie Lan
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yue Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Lamei Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Hui Teng
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Likou Zou
- College of Resource, Sichuan Agricultural University, Chengdu 611130, China;
| | - Ran Li
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; (H.P.); (Y.W.); (W.H.); (L.D.); (Q.L.); (Y.Z.); (L.Y.); (K.H.); (J.L.); (X.A.); (H.T.); (S.L.); (R.L.)
| |
Collapse
|
13
|
Ma J, Nie Y, Zhang L, Xu Y. Ratio of Histamine-Producing/Non-Histamine-Producing Subgroups of Tetragenococcus halophilus Determines the Histamine Accumulation during Spontaneous Fermentation of Soy Sauce. Appl Environ Microbiol 2023; 89:e0188422. [PMID: 36802225 PMCID: PMC10056960 DOI: 10.1128/aem.01884-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/23/2023] Open
Abstract
Strain specificity (within-species variation) of microorganisms occurs widely in nature. It might affect microbiome construction and function in a complex microbial environment. Tetragenococcus halophilus, a halophilic bacterium that generally is used in high salt food fermentation, consists of two histamine-producing and non-histamine-producing subgroups. It is unclear whether and how the strain specificity of histamine-producing capacity influences the microbial community function during food fermentation. Here, based on systematic bioinformatic analysis, histamine production dynamic analysis, clone library construction analysis, and cultivation-based identification, we identified that T. halophilus is the focal histamine-producing microorganism during soy sauce fermentation. Furthermore, we discovered that a larger number and ratio of histamine-producing subgroups of T. halophilus significantly contributed more histamine production. We were able to artificially decrease the ratio of histamine-producing to non-histamine-producing subgroups of T. halophilus in complex soy sauce microbiota and realized the reduction of histamine by 34%. This study emphasizes the significance of strain specificity in regulating microbiome function. This study investigated how strain specificity influenced microbial community function and developed an efficient technique for histamine control. IMPORTANCE Inhibiting the production of microbiological hazards under the assumption of stable and high-quality fermentation is a critical and time-consuming task for the food fermentation industry. For spontaneously fermented food, it can be realized theoretically by finding and controlling the focal hazard-producing microorganism in complex microbiota. This work used histamine control in soy sauce as a model and developed a system-level approach to identify and regulate the focal hazard-producing microorganism. We discovered that the strain specificity of focal hazard-producing microorganisms had an important impact on hazard accumulation. Microorganisms frequently exhibit strain specificity. Strain specificity is receiving increasing interest since it determines not only microbial robustness but also microbial community assembly and microbiome function. This study creatively explored how the strain specificity of microorganisms influenced microbiome function. In addition, we believe that this work provides an excellent model for microbiological hazard control which can promote future work in other systems.
Collapse
Affiliation(s)
- Jinjin Ma
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lijie Zhang
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Ferrante MC, Mercogliano R. Focus on Histamine Production During Cheese Manufacture and Processing: A Review. Food Chem 2023; 419:136046. [PMID: 37058863 DOI: 10.1016/j.foodchem.2023.136046] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Histamine (HIS) intoxication is a poisoning caused by histamine in food. Cheese is one of the most common dairy products associated with histamine levels which vary depending on the processing methods. The final content of histamine in cheese is influenced by intrinsic and extrinsic factors, their interactions, and contamination stemming from food processing. The application of control measures may be useful to inhibit/reduce production during cheese manufacture and processing but have a limited effect. To reduce histamine intoxication outbreaks from cheese consumption the introduction of quality control programs and appropriate risk mitigation options should be applied along the dairy chain from an overall perspective of food safety based on individual susceptibility and consumer sensitivity. As key food safety, this topic should be considered in future regulations in dairy products because the lack of a clear law on HIS limits in cheese may result in a significant potential deviation from the EU food safety strategy.
Collapse
|
15
|
Luo Y, Li D, Liao H, Xia X. Patterns of biogenic amine during broad bean paste fermentation: microbial diversity and functionality via Bacillus bioaugmentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1315-1325. [PMID: 36114594 DOI: 10.1002/jsfa.12225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Broad bean paste is a high nitrogen and high salt traditional Chinese condiment, which triggers biosynthesis of nitrogen hazards like biogenic amines (BAs). Mechanisms of association and applied research of functional safety and community assembly within multiple-microbial fermentation are currently lacking. Here, bioaugmentation was performed based on the profiles of BAs accumulation and microbial succession to evaluate the functional variation within broad bean paste fermentation. RESULTS Putrescine, spermine, and spermidine were the main BAs during traditional broad bean paste fermentation. Staphylococcus, Streptococcus, Lactococcus, Lactobacillus, Leuconostoc, and Bacillus were the predominant bacteria, whereas Aspergillus and Zygosaccharomyces dominated in fungal species, and community structure shifted upon salt exposure. PICRUSt software uncovered that Bacillus contributed significantly (>1%) to the amine oxidase gene family. Bacillus amyloliquefaciens 1-G6 and Bacillus licheniformis 2-B3 were screened to perform the bioaugmentation of broad bean paste, which achieved a 29% and 16% BA decrease respectively. Interaction network analysis showed that Cronobacter and Lactobacillus were significantly negatively correlated with Bacillus (ρ = -0.829 and ρ = -0.714, respectively, P < 0.05) in the B. amyloliquefaciens 1-G6 group, and Staphylococcus and Buttiauxella were inhibited by Bacillus (ρ = -0.657 and ρ = -0.543, respectively, P < 0.05) in the B. licheniformis 2-B3 group. CONCLUSION The synergism of amine oxidase activity and microbial interactions led to the decline of BAs. Thus, this study improves our understanding of the underlying mechanisms of microbial succession and functional variation to further facilitate the optimization of the fermented food industry.
Collapse
Affiliation(s)
- Yi Luo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Dongrui Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Hui Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
16
|
Systematic analysis of key fermentation parameters influencing biogenic amines production in spontaneous fermentation of soy sauce. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Li Z, Liu S, Zhao Y, Wang J, Ma X. Compound organic acid could improve the growth performance, immunity and antioxidant properties, and intestinal health by altering the microbiota profile of weaned piglets. J Anim Sci 2023; 101:skad196. [PMID: 37314321 PMCID: PMC10355368 DOI: 10.1093/jas/skad196] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
This study aimed to investigate the impact of compound organic acid (COA) and chlortetracycline (CTC) on serum biochemical parameters, intestinal health, and growth performance of weaned piglets. Twenty-four piglets (24 d of age) were randomly allocated into three treatments with eight replicate pens (one piglet per pen). Feed the basal diet or a diet containing 3,000 mg/kg COA or 75 mg/kg CTC, respectively. Results showed that both COA and CTC significantly increased average daily gain and reduced diarrhea rates (P < 0.05). They also upregulated serum total antioxidant capacity and downregulated serum interleukin (IL-10) levels (P < 0.05), increased crude protein digestibility and propionic acid concentration in the colon, and decreased spermidine and putrescine contents (P < 0.05). Intestinal microbiota analysis revealed that both COA and CTC increased the Shannon and Chao1 index and decreased the relative abundance of Blautia and Roseburia, but increased the relative abundance of Clostridium-sensu-stricto-1. Correlation analysis indicated that Clostridium-sensu-stricto-1 may be closely related to inflammation levels and microbial metabolites in piglets. Based on the results, COA may be a potential substitute for CTC to reduce antibiotic use and biogenic amine emission while improving piglet growth and intestinal health.
Collapse
Affiliation(s)
- Zhiqing Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shuhan Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yirun Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jiayi Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
18
|
Effect of stress factors on the production of biogenic amines by lactic acid bacteria isolated from fermented Mexican foods (cheese and beer). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Microbial toxins in fermented foods: health implications and analytical techniques for detection. J Food Drug Anal 2022; 30:523-537. [PMID: 36753631 PMCID: PMC9910295 DOI: 10.38212/2224-6614.3431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Recently, demand for fermented foods has increased due to their improved nutritional value, taste, and health-promoting properties. Worldwide consumption of these products is increasing. Fermented foods are generally safe for human consumption. However, some toxins, primarily biogenic amines (putrescine, phenylethylamine, histamine, tyramine, and cadaverine), mycotoxins (fumonisins, aflatoxins, ochratoxin A, zearalenone, and trichothecenes), and bacterial toxins (endotoxins, enterotoxins, and emetic toxins) can be produced as a result of using an inappropriate starter culture, processing conditions, and improper storage. These toxins can cause a multitude of foodborne illnesses and can lead to cardiovascular aberration and adverse gastrointestinal symptoms. Analytical techniques are in use for the detection of toxins in fermented foods for monitoring and control purposes. These include culture, chromatographic, immunoassays, and nano sensor-based techniques. These detection techniques can be used during the production process and along the food chain. On an industrial scale, HPLC is widely used for sensitive quantification of toxins in fermented foods. Recently, biosensor and nano sensor-based techniques have gained popularity due to accuracy, time efficiency, and simultaneous detection of multiple toxins. Other strategic methods being investigated for the removal of toxins from fermented foods include the use of specific starter cultures for bio-preservation, aflatoxin-binding, and biogenic amine-degradation agents that may help to appropriately manage the food safety concerns associated with fermented foods.
Collapse
|
20
|
Han J, Lin X, Liang H, Zhang S, Zhu B, Ji C. Improving the safety and quality of Roucha using amine-degrading lactic acid bacteria starters. Food Res Int 2022; 161:111918. [DOI: 10.1016/j.foodres.2022.111918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022]
|
21
|
Wang X, Zhao Y, Zhang S, Lin X, Liang H, Chen Y, Ji C. Heterologous Expression of the Lactobacillus sakei Multiple Copper Oxidase to Degrade Histamine and Tyramine at Different Environmental Conditions. Foods 2022; 11:3306. [PMCID: PMC9601898 DOI: 10.3390/foods11203306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines (BAs) are produced by microbial decarboxylation in various foods. Histamine and tyramine are recognized as the most toxic of all BAs. Applying degrading amine enzymes such as multicopper oxidase (MCO) is considered an effective method to reduce BAs in food systems. This study analyzed the characterization of heterologously expressed MCO from L. sakei LS. Towards the typical substrate 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the optimal temperature and pH for recombinant MCO (rMCO) were 25 °C and 3.0, respectively, with the specific enzyme activity of 1.27 U/mg. Then, the effect of different environmental factors on the degrading activity of MCO towards two kinds of BAs was investigated. The degradation activity of rMCO is independent of exogenous copper and mediators. Additionally, the oxidation ability of rMCO was improved for histamine and tyramine with an increased NaCl concentration. Several food matrices could influence the amine-oxidizing activity of rMCO. Although the histamine-degrading activities of rMCO were affected, this enzyme reached a degradation rate of 28.1% in the presence of surimi. Grape juice improved the tyramine degradation activity of rMCO by up to 31.18%. These characteristics of rMCO indicate that this enzyme would be a good candidate for degrading toxic biogenic amines in food systems.
Collapse
Affiliation(s)
- Xiaofu Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yunsong Zhao
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Sufang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Xinping Lin
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
- Department of Agricultural, Forest and Food Sciences, University of Torino, 10121-10156 Turin, Italy
| | - Huipeng Liang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Yingxi Chen
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
| | - Chaofan Ji
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- National Engineering Research Center of Seafood, Dalian 116034, China
- Correspondence: or
| |
Collapse
|
22
|
Moniente M, García-Gonzalo D, Llamas-Arriba MG, Virto R, Ontañón I, Pagán R, Botello-Morte L. Potential of histamine-degrading microorganisms and diamine oxidase (DAO) for the reduction of histamine accumulation along the cheese ripening process. Food Res Int 2022; 160:111735. [DOI: 10.1016/j.foodres.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022]
|
23
|
Yilmaz N, Özogul F, Moradi M, Fadiloglu EE, Šimat V, Rocha JM. Reduction of biogenic amines formation by foodborne pathogens using postbiotics in lysine-decarboxylase broth. J Biotechnol 2022; 358:118-127. [PMID: 36087781 DOI: 10.1016/j.jbiotec.2022.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/09/2023]
Abstract
Postbiotics is a novel term proposed to describe as a set of bioactive compounds obtained from beneficial microorganisms. In this work, postbiotics from four lactic acid bacteria (LAB) including Leuconostoc mesenteroides subsp. cremoris, Pediococcus acidilactici, Lactococcus lactis subsp. lactis and Streptococcus thermophilus were prepared in MRS broth. The antimicrobial properties and organic acids content of postbiotics were also investigated. Postbiotics were used to tentatively reduce the production of biogenic amines by foodborne pathogens (i.e., Salmonella paratyphi A and Escherichia coli) on lysine decarboxylase broth (LDB). Experimental data showed that acetic, propionic, and butyric acids were in the range of 387.51-709.21 mg/L, 0.00-1.28 mg/L, and 0.00-20.98 mg/L, respectively. The inhibition zone of postbiotics on E. coli and S. paratyphi A were 11.67, and 12.33 mm, respectively. Two different levels of postbiotics (25%, and 50%) were used in LDB to measure the diamines (cadaverine and putrescine), polyamines (agmatine, spermidine, and spermine, ammonia), and other biogenic amine formation by pathogens. E. coli produced cadaverine and putrescine with concentrations of 1072.21 and 1114.18 mg/L, respectively. The postbiotics reduced cadaverine formation by 67% in E. coli, and cadaverine production was mostly suppressed by postbiotics from P. acidilactici in E. coli (97%) and L. lactis subsp. lactis in S. paratyphi A (90%). Putrescine production by E. coli was reduced by 94% with postbiotics of P. acidilactici at a concentration of 25%, whereas putrescine production by S. paratyphi A has been decreased by 61% in the presence of postbiotics from L. lactis subsp. Lactis with a 25% concentration. The results revealed that an increase in postbiotics concentration (from 25% to 50%) in LDB may lead to synergistic effects, resulting from the production of biogenic amines by microbial pathogens. It was importantly concluded that postbiotics of LAB may degrade biogenic amines or prevent their formation by foodborne pathogens.
Collapse
Affiliation(s)
- Nurten Yilmaz
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey.
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, the Islamic Republic of Iran.
| | - Eylem Ezgi Fadiloglu
- Department of Gastronomy and Culinary Arts, School of Applied Sciences, Yaşar University, İzmir, Turkey.
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia.
| | - João Miguel Rocha
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
24
|
Munekata PES, Chaves-Lopez C, Fernandez-Lopez J, Viuda-Martos M, Sayas-Barbera ME, Perez-Alvarez JA, Lorenzo JM. Autochthonous Starter Cultures in Cheese Production – A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2097691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
| | - Clemencia Chaves-Lopez
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Juana Fernandez-Lopez
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - Manuel Viuda-Martos
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - María Estrella Sayas-Barbera
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - José Angel Perez-Alvarez
- IPOA Research Group. Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernandez University, Alicante, Spain
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, Ourense, España
| |
Collapse
|
25
|
Strategies for the Identification and Assessment of Bacterial Strains with Specific Probiotic Traits. Microorganisms 2022; 10:microorganisms10071389. [PMID: 35889107 PMCID: PMC9323131 DOI: 10.3390/microorganisms10071389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Early in the 1900s, it was proposed that health could be improved and senility delayed by manipulating gut microbiota with the host-friendly bacteria found in yogurt. Later, in 1990, the medical community reconsidered this idea and today probiotics represent a developed area of research with a billion-dollar global industry. As a result, in recent decades, increased attention has been paid to the isolation and characterization of novel probiotic bacteria from fermented foods and dairy products. Most of the identified probiotic strains belong to the lactic acid bacteria group and the genus Bifidobacterium. However, current molecular-based knowledge has allowed the identification and culture of obligatory anaerobic commensal bacteria from the human gut, such as Akkermansia spp. and Faecalibacterium spp., among other human symbionts. We are aware that the identification of new strains of these species does not guarantee their probiotic effects and that each effect must be proved through in vitro and in vivo preclinical studies before clinical trials (before even considering it as a probiotic strain). In most cases, the identification and characterization of new probiotic strain candidates may lack the appropriate set of in vitro experiments allowing the next assessment steps. Here, we address some innovative strategies reported in the literature as alternatives to classical characterization: (i) identification of alternatives using whole-metagenome shotgun sequencing, metabolomics, and multi-omics analysis; and (ii) probiotic characterization based on molecular effectors and/or traits to target specific diseases (i.e., inflammatory bowel diseases, colorectal cancer, allergies, among others).
Collapse
|
26
|
Schirone M, Visciano P, Conte F, Paparella A. Formation of biogenic amines in the cheese production chain: favouring and hindering factors. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Liu D, Wang K, Xue X, Wen Q, Qin S, Suo Y, Liang M. The Effects of Different Processing Methods on the Levels of Biogenic Amines in Zijuan Tea. Foods 2022; 11:foods11091260. [PMID: 35563983 PMCID: PMC9103763 DOI: 10.3390/foods11091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of processing methods on the content of biogenic amines in Zijuan tea by using derivatization and hot trichloroacetic acid extraction with HPLC-UV. The results showed that the most abundant biogenic amine in the original leaves was butylamine, followed by ethylamine, methylamine, 1,7-diaminoheptane, histamine, tyramine, and 2-phenethylamine. However, during the process of producing green tea, white tea, and black tea, the content of ethylamine increased sharply, which directly led to their total contents of biogenic amines increasing by 184.4%, 169.3%, and 178.7% compared with that of the original leaves, respectively. Unexpectedly, the contents of methylamine, ethylamine, butylamine, and tyramine in dark tea were significantly reduced compared with those of the original leaves. Accordingly, the total content of biogenic amines in dark tea was only 161.19 μg/g, a reduction of 47.2% compared with that of the original leaves, indicating that the pile-fermentation process could significantly degrade the biogenic amines present in dark tea.
Collapse
Affiliation(s)
- Dandan Liu
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Kang Wang
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Xiaoran Xue
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
| | - Qiang Wen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
| | - Shiwen Qin
- Institute of Resource Plants, Yunnan University, Kunming 650500, China; (D.L.); (K.W.); (X.X.)
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Yukai Suo
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education, Yunnan Minzu University, Kunming 650031, China;
- Correspondence: (S.Q.); (Y.S.); Tel./Fax: +86-871-65926940 (S.Q. & Y.S.)
| | - Mingzhi Liang
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Menghai 666201, China;
| |
Collapse
|
28
|
Mannino G, Cirlincione F, Gaglio R, Franciosi E, Francesca N, Moschetti G, Asteggiano A, Medana C, Gentile C, Settanni L. Preliminary Investigation of Biogenic Amines in Type I Sourdoughs Produced at Home and Bakery Level. Toxins (Basel) 2022; 14:toxins14050293. [PMID: 35622540 PMCID: PMC9145269 DOI: 10.3390/toxins14050293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
During a survey for isolating sourdough lactic acid bacteria (LAB), 20 dough samples produced at the bakery level (BL) or home-made (HM) were collected. An enzyme-based colorimetric method revealed a total biogenic amines (BAs) concentration in the range 41.4–251.8 ppm for six (three BL and three HM) sourdoughs characterised by unpleasant odours. Eight BAs generally investigated in foods were identified and quantified from these six samples by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS). Only one HM sample contained almost all analysed BAs. Tryptamine was exclusively detected in HM sourdoughs (0.71–24.1 ppm). Putrescine, tryptamine, spermidine, and spermine were the only BAs detected in BL sourdoughs. MiSeq Illumina analysis was applied to study the total bacterial community of sourdoughs. LAB accounted from 67.89 to 92.17% of total bacterial diversity, and Levilactobacillus brevis was identified in all six sourdoughs. Leuconostoc, Pediococcus, and Weissella were also dominant. Plate counts detected neither the presence of Pseudomonas nor members of the Enterobacteriaceae family, and LAB levels were, on average, barely 5.89 Log CFU/g for BL, and 7.33 Log CFU/g for HM sourdoughs. Data suggested that the microorganisms mainly imputable of BAs formation in sourdough are members of the LAB community.
Collapse
Affiliation(s)
- Giuseppe Mannino
- Department of Life Science and Systems Biology, University of Turin, Via Accademia Albertina, 13, 10123 Torino, Italy;
| | - Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (F.C.); (R.G.); (N.F.); (G.M.)
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (F.C.); (R.G.); (N.F.); (G.M.)
| | - Elena Franciosi
- Research and Innovation Centre, Edmund Mach Foundation (FEM), Via E. Mach 1, 38098 San Michele all’Adige, Italy;
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (F.C.); (R.G.); (N.F.); (G.M.)
| | - Giancarlo Moschetti
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (F.C.); (R.G.); (N.F.); (G.M.)
| | - Alberto Asteggiano
- Department of Molecular Biotechnology and Health Sciences, University of Palermo, Via Giuria, 5, 10125 Torino, Italy; (A.A.); (C.M.)
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Palermo, Via Giuria, 5, 10125 Torino, Italy; (A.A.); (C.M.)
| | - Carla Gentile
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze 16, 90128 Palermo, Italy
- Correspondence: (C.G.); (L.S.)
| | - Luca Settanni
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (F.C.); (R.G.); (N.F.); (G.M.)
- Correspondence: (C.G.); (L.S.)
| |
Collapse
|
29
|
Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, Le Loir Y, Guédon E. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics 2022; 23:210. [PMID: 35291951 PMCID: PMC8925076 DOI: 10.1186/s12864-022-08459-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Background Streptococcus thermophilus is a Gram-positive bacterium widely used as starter in the dairy industry as well as in many traditional fermented products. In addition to its technological importance, it has also gained interest in recent years as beneficial bacterium due to human health-promoting functionalities. The objective of this study was to inventory the main health-promoting properties of S. thermophilus and to study their intra-species diversity at the genomic and genetic level within a collection of representative strains. Results In this study various health-related functions were analyzed at the genome level from 79 genome sequences of strains isolated over a long time period from diverse products and different geographic locations. While some functions are widely conserved among isolates (e.g., degradation of lactose, folate production) suggesting their central physiological and ecological role for the species, others including the tagatose-6-phosphate pathway involved in the catabolism of galactose, and the production of bioactive peptides and gamma-aminobutyric acid are strain-specific. Most of these strain-specific health-promoting properties seems to have been acquired via horizontal gene transfer events. The genetic basis for the phenotypic diversity between strains for some health related traits have also been investigated. For instance, substitutions in the galK promoter region correlate with the ability of some strains to catabolize galactose via the Leloir pathway. Finally, the low occurrence in S. thermophilus genomes of genes coding for biogenic amine production and antibiotic resistance is also a contributing factor to its safety status. Conclusions The natural intra-species diversity of S. thermophilus, therefore, represents an interesting source for innovation in the field of fermented products enriched for healthy components that can be exploited to improve human health. A better knowledge of the health-promoting properties and their genomic and genetic diversity within the species may facilitate the selection and application of strains for specific biotechnological and human health-promoting purpose. Moreover, by pointing out that a substantial part of its functional potential still defies us, our work opens the way to uncover additional health-related functions through the intra-species diversity exploration of S. thermophilus by comparative genomics approaches. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08459-y.
Collapse
Affiliation(s)
- Emeline Roux
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Lorraine, CALBINOTOX, Nancy, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | | - Grégoire Siekaniec
- INRAE, Institut Agro, STLO, Rennes, France.,Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | - Jacques Nicolas
- Université de Rennes, INRIA, Campus de Beaulieu, Rennes, France
| | | | | |
Collapse
|
30
|
Oberg TS, McMahon DJ, Culumber MD, McAuliffe O, Oberg CJ. Invited review: Review of taxonomic changes in dairy-related lactobacilli. J Dairy Sci 2022; 105:2750-2770. [DOI: 10.3168/jds.2021-21138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022]
|
31
|
Garofalo G, Busetta G, Maniaci G, Sardina MT, Portolano B, Badalamenti N, Maggio A, Bruno M, Gaglio R, Settanni L. Development of "Quadrello di Ovino", a Novel Fresh Ewe's Cheese. Foods 2021; 11:25. [PMID: 35010151 PMCID: PMC8750039 DOI: 10.3390/foods11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
This work was performed to produce a new soft ewe's milk cheese, namely "Quadrello di ovino" (QdO) cheese, to enlarge ewe's dairy product portfolio of South Italy, barely limited to Pecorino cheese typology. Cheese making was performed applying the technology for "Crescenza" cheese typology with some modifications. In particular, pasteurized ewes' milk was inoculated with two commercial starter formulations (SF1 and SF2) of Streptococcus thermophilus to obtain two different productions (QdO-P1 and QdO-P2, respectively). Plate counts demonstrated the ability of both starter formulations to drive the fermentation process, since S. thermophilus counts reached 109 CFU/g in both productions. Generally, the two starter formulations did not affect the chemical composition of QdO cheeses that contained, on average, 64.08% dry matter of which approximately 54.99% were fats and 36.39% proteins. Among chemical parameters, significant differences were registered for secondary lipid oxidation state (significantly lower for QdO-P2), fatty acids and volatile organic compounds (VOCs). However, the differences registered among cheese VOCs from were not perceived by the panelists who recognized both cheese productions highly similar, although QdO-P2 cheeses were mostly appreciated by the judges. This study allowed to produce a novel fresh ovine cheese with specific chemical and sensorial characteristics well appreciated by consumers.
Collapse
Affiliation(s)
- Giuliana Garofalo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (G.G.); (G.B.); (G.M.); (M.T.S.); (B.P.); (R.G.)
| | - Gabriele Busetta
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (G.G.); (G.B.); (G.M.); (M.T.S.); (B.P.); (R.G.)
| | - Giuseppe Maniaci
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (G.G.); (G.B.); (G.M.); (M.T.S.); (B.P.); (R.G.)
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (G.G.); (G.B.); (G.M.); (M.T.S.); (B.P.); (R.G.)
| | - Baldassare Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (G.G.); (G.B.); (G.M.); (M.T.S.); (B.P.); (R.G.)
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (N.B.); (A.M.); (M.B.)
| | - Antonella Maggio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (N.B.); (A.M.); (M.B.)
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (N.B.); (A.M.); (M.B.)
| | - Raimondo Gaglio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (G.G.); (G.B.); (G.M.); (M.T.S.); (B.P.); (R.G.)
| | - Luca Settanni
- Dipartimento Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, Viale delle Scienze, Ed. 5, 90128 Palermo, Italy; (G.G.); (G.B.); (G.M.); (M.T.S.); (B.P.); (R.G.)
| |
Collapse
|
32
|
Lee J, Jin YH, Pawluk AM, Mah JH. Reduction in Biogenic Amine Content in Baechu (Napa Cabbage) Kimchi by Biogenic Amine-Degrading Lactic Acid Bacteria. Microorganisms 2021; 9:microorganisms9122570. [PMID: 34946171 PMCID: PMC8704687 DOI: 10.3390/microorganisms9122570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
This study was performed to mine biogenic amine (BA)-degrading lactic acid bacteria (LAB) from kimchi and to investigate the effects of the LAB strains on BA reduction in Baechu kimchi fermentation. Among 1448 LAB strains isolated from various kimchi varieties, five strains capable of considerably degrading histamine and/or tyramine were selected through in vitro tests and identified as Levilactobacillus brevis PK08, Lactiplantibacillus pentosus PK05, Leuconostoc mesenteroides YM20, L. plantarum KD15, and Latilactobacillus sakei YM21. The selected strains were used to ferment five groups of Baechu kimchi, respectively. The LB group inoculated with L. brevis PK08 showed the highest reduction in tyramine content, 66.65% and 81.89%, compared to the control group and the positive control group, respectively. Other BA content was also considerably reduced, by 3.76–89.26% (five BAs) and 7.87–23.27% (four BAs), compared to the two control groups, respectively. The other inoculated groups showed similar or less BA reduction than the LB group. Meanwhile, a multicopper oxidase gene was detected in L. brevis PK08 when pursuing the BA degradation mechanism. Consequently, L. brevis PK08 could be applied to kimchi fermentation as a starter or protective culture to improve the BA-related safety of kimchi where prolific tyramine-producing LAB strains are present.
Collapse
|
33
|
Feng LU, Li Y, Ma C, Tuo Y. Bacterial Diversity of Sun-Dried Spanish Mackerel in Dalian and Application of Lactobacillus plantarum X23 as a Biopreservative. J Food Prot 2021; 84:2133-2142. [PMID: 33984135 DOI: 10.4315/jfp-21-057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Sun-dried Spanish mackerel is a common food in Dalian and made by adding salt and sun drying, which has special physical, chemical, and microbiological properties. In this study, the physicochemical properties and microbial composition of commercially available sun-dried Spanish mackerel in Dalian were assessed, and some Lactobacillus strains were screened as a biopreservative for sun-dried Spanish mackerel preparation. The results showed that the total volatile base nitrogen content in the traditional sun-dried Spanish mackerel samples from Dalian was within 30 mg/100 g, the histamine content was 7 to 17 mg/kg, and the dominant bacteria at the genus level were Lactobacillus, Psychrobacter, and Ralstonia. A strain with biopreservative potential was isolated from a sun-dried Spanish mackerel sample, identified as L. plantarum species by 16S rDNA sequencing, and assigned as L. plantarum X23. Fresh Spanish mackerel flesh was treated with 16% brine and L. plantarum X23 at a dose of 107 CFU/mL and then dried in the sun. The sun-dried Spanish mackerel flesh treated with 16% brine and L. plantarum X23 showed a decreased histamine and acid value, increased free amino acid content, and a higher sensory score compared with the sun-dried Spanish mackerel without L. plantarum X23 treatment (P < 0.05). In conclusion, the sun-dried Spanish mackerel purchased from the supermarkets in Dalian were safely edible, and L. plantarum X23 can significantly reduce the content of histamine and putrescine in self-made, low-salt, sun-dried Spanish mackerel and has potential as a biopreservative for sun-dried Spanish mackerel preparation. HIGHLIGHTS
Collapse
Affiliation(s)
- L U Feng
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Ying Li
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| | - Changlu Ma
- Department of Food and Biological Engineering, Beijing Vocational College of Agriculture, Beijing 102442, People's Republic of China
| | - Yanfeng Tuo
- 1School of Food Science and Technology and Dalian Probiotics Function Research Key Laboratory, Dalian Polytechnic University, Dalian 116034, People's Republic of China
| |
Collapse
|
34
|
Evaluation of the Relationship among Biogenic Amines, Nitrite and Microbial Diversity in Fermented Mustard. Molecules 2021; 26:molecules26206173. [PMID: 34684752 PMCID: PMC8541185 DOI: 10.3390/molecules26206173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
Biogenic amines (BAs) and nitrites are both considered harmful compounds for customer health, and are closely correlated with the microorganisms in fermented mustard (FM). In this study, BAs and nitrite contents in fifteen FM samples from different brands were analyzed. The concentrations of cadaverine in one sample and of histamine in one sample were above the toxic level. Moreover, five FM samples contained a high level of nitrite, exceeding the maximum residue limit (20 mg/kg) suggested by the National Food Safety Standard. Then, this study investigated bacterial and fungal communities by high-throughput sequencing analysis. Firmicutes and Basidiomycota were identified as the major bacteria and fungi phylum, respectively. The correlations among microorganisms, BAs and nitrite were analyzed. Typtamine showed a positive correlation with Lactobacillus and Pseudomonas. Cadaverine and nitrite is positively correlated with Leuconostoc. Furthermore, thirteen strains were selected from the samples to evaluate the accumulation and degradation properties of their BAs and nitrite. The results indicated that the Lactobacillus isolates, including L. plantarum GZ-2 and L. brevis SC-2, can significantly reduce BAs and nitrite in FM model experiments. This study not only assessed the contents of BAs and nitrite in FM samples, but also provided potential starter cultures for BAs and nitrite control in the FM products industry.
Collapse
|
35
|
Świder O, Wójcicki M, Bujak M, Juszczuk-Kubiak E, Szczepańska M, Roszko MŁ. Time Evolution of Microbial Composition and Metabolic Profile for Biogenic Amines and Free Amino Acids in a Model Cucumber Fermentation System Brined with 0.5% to 5.0% Sodium Chloride. Molecules 2021; 26:molecules26195796. [PMID: 34641340 PMCID: PMC8510100 DOI: 10.3390/molecules26195796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Salt concentrations in brine and temperature are the major environmental factors that affect activity of microorganisms and, thus may affect formation of biogenic amines (BAs) during the fermentation process. A model system to ferment cucumbers with low salt (0.5%, 1.5% or 5.0% NaCl) at two temperatures (11 or 23 °C) was used to study the ability of indigenous microbiota to produce biogenic amines and metabolize amino acid precursors. Colony counts for presumptive Enterococcus and Enterobacteriaceae increased by 4 and up to 2 log of CFU∙mL−1, respectively, and remained viable for more than 10 days. 16S rRNA sequencing showed that Lactobacillus and Enterobacter were dominant in fermented cucumbers with 0.5% and 1.5% salt concentrations after storage. The initial content of BAs in raw material of 25.44 ± 4.03 mg∙kg−1 fluctuated throughout experiment, but after 6 months there were no significant differences between tested variants. The most abundant BA was putrescine, that reached a maximum concentration of 158.02 ± 25.11 mg∙kg−1. The Biogenic Amines Index (BAI) calculated for all samples was significantly below that needed to induce undesirable effects upon consumption. The highest value was calculated for the 23 °C/5.0% NaCl brine variant after 192 h of fermentation (223.93 ± 54.40). Results presented in this work indicate that possibilities to control spontaneous fermentation by changing salt concentration and temperature to inhibit the formation of BAs are very limited.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland; (M.S.); (M.Ł.R.)
- Correspondence: ; Tel.: +48-22-6063854
| | - Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland; (M.W.); (E.J.-K.)
| | - Marzena Bujak
- Department of Fermentation Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland;
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland; (M.W.); (E.J.-K.)
| | - Magdalena Szczepańska
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland; (M.S.); (M.Ł.R.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology–State Research Institute, Rakowiecka 36 St., 02-532 Warsaw, Poland; (M.S.); (M.Ł.R.)
| |
Collapse
|
36
|
Technological Parameters, Anti- Listeria Activity, Biogenic Amines Formation and Degradation Ability of L. plantarum Strains Isolated from Sheep-Fermented Sausage. Microorganisms 2021; 9:microorganisms9091895. [PMID: 34576790 PMCID: PMC8470431 DOI: 10.3390/microorganisms9091895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to identify and characterize, from a technological and safety point of view, the lactic acid bacteria (LAB) isolated from traditional sheep-fermented sausage. First, LABs were identified then were screened for some technological parameters such as acidifying and growth ability, proteolytic and lipolytic activity and for antimicrobial activity. Finally, biogenic amine production and degradation abilities were also evaluated. This research reveals the predominance of Lactiplantibacillus (L.) plantarum on LAB community. Almost all L. plantarum strains were active against Listeria monocytogenes strains (inhibition zone diameters > 1 cm). None of the tested strains were positive in histidine (hdcA), lysine (ldc) and tyrosine (tyrdc) decarboxylase genes and only one (L. plantarum PT9-2) was positive to the agmatine deiminase (agdi) gene. Furthermore, given the positive results of the sufl (multi-copper oxidase) gene detection, all strains showed a potential degradation ability of biogenic amines.
Collapse
|
37
|
Zhang J, Ji C, Han J, Zhao Y, Lin X, Liang H, Zhang S. Inhibition of biogenic amines accumulation during Yucha fermentation by autochthonous
Lactobacillus plantarum
strains. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingbo Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Chaofan Ji
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| | - Jing Han
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Yunsong Zhao
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
| | - Xinping Lin
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| | - Huipeng Liang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| | - Sufang Zhang
- School of Food Science and Technology Dalian Polytechnic University Dalian PR China
- National Engineering Research Center of Seafood Dalian PR China
- Collaborative Innovation Center of Seafood Deep Processing Dalian Polytechnic University Dalian PR China
| |
Collapse
|
38
|
Li B, Wang Y, Xue L, Lu S. Heterologous Expression and Application of Multicopper Oxidases from Enterococcus spp. for Degradation of Biogenic Amines. Protein Pept Lett 2021; 28:183-194. [PMID: 32543357 DOI: 10.2174/0929866527666200616160859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Biogenic amines are harmful to human health at a certain extent. As a kind of biogenic amine oxidase, multicopper oxidase can be used to degrade them. Currently, the literature about enzyme from Enterococcus spp. are limited, and recombinant multicopper oxidase might be an effective way to degrade biogenic amines. OBJECTIVE (i) Select and identify strains that can degrade biogenic amines, (ii) overexpress enzyme from Enterococcus spp., (iii) measure gene expression and probe amine-degradation differences among strains (native, E. coli DH5α, and L. delbruckii), and (iv) examine the biochemical properties of recombinant multicopper oxidase, (v) apply the recombinant enzyme into smoked horsemeat sausage. METHODS Reverse transcription PCR and high-performance liquid chromatography were performed to examine gene expression and amine degradation rate. RESULTS The results demonstrated that target enzymes were successfully overexpressed, accompanied by increased amine-degrading activity (P <0.05). Gene from E. faecalis M5B was expressed in L. delbrueckii resulted in degradation rates for phenylethylamine, putrescine, histamine and tyramine of 54%, 52%, 70% and 40%, respectively, significantly higher than achieved by other recombinant strains. CONCLUSION In this work, gene expression levels were higher in recombinant M5B than recombinant M2B, regardless of host. E. coli is more stable to express multicopper oxidase. Besides, the amine-degrading ability was markedly increased in the two recombinant strains. After prolonged incubation, the recombinant enzyme could degrade three amines, and it displayed high alkali resistance and thermostability.
Collapse
Affiliation(s)
- Binbin Li
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Yuan Wang
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Linlin Xue
- College of Food Science, Shihezi University, Shihezi 832000, China
| | - Shiling Lu
- College of Food Science, Shihezi University, Shihezi 832000, China
| |
Collapse
|
39
|
Wang X, Zhao L, Wang Y, Xu Z, Wu X, Liao X. A new Leuconostoc citreum strain discovered in the traditional sweet potato sour liquid fermentation as a novel bioflocculant for highly efficient starch production. Food Res Int 2021; 144:110327. [PMID: 34053531 DOI: 10.1016/j.foodres.2021.110327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
Abstract
Sour liquid fermentation is commonly used in the sedimentation process of traditional starch production, where bacteria play a critical role in starch flocculation. In this study, the dynamic changes of bacterial compositions during sweet potato sour liquid (SPSL) fermentation were profiled using the single-molecule real-time (SMRT) sequencing, unveiling that Leuconostoc citreum, Leuconostoc pseudomesenteroides, Lactococcus lactis, and Lactobacillus plantarum were the dominant microorganisms in the process, and Leuconostoc citreum exhibited a strong positive correlation with starch flocculation rate (FR). In total, 75 lactic acid bacterial (LAB) strains were isolated from the SPSL, but only 7 of them caused starch flocculation. For the first time, Leuconostoc citreum strains were reported with excellent starch-flocculating abilities (up to 55.56% FR in 20 min), which might be attributed to their ability to connect starch granules through the cell surface to form large aggregation. This study provides a comprehensive understanding of the bacterial dynamics in SPSL fermentation at the species level. A starch flocculation yield of 93.63% was achieved within 1 h by using the newly discovered Leuconostoc citreum SJ-57. The time required for total starch sedimentation was reduced from 10 h to 4 h, compared with the traditional process. These results suggest that this novel bioflocculant is more suitable for modernizing the traditional SPSL fermentation process and achieving rapid and highly efficient starch sedimentation.
Collapse
Affiliation(s)
- Xuan Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Agricultural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Agricultural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Yongtao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Agricultural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaomeng Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Agricultural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit & Vegetable Processing, Key Laboratory of Fruit & Vegetable Processing, Ministry of Agriculture and Agricultural Affairs, Beijing Key Laboratory for Food Non-thermal Processing, Beijing 100083, China.
| |
Collapse
|
40
|
Gaglio R, Todaro M, Settanni L. Improvement of Raw Milk Cheese Hygiene through the Selection of Starter and Non-Starter Lactic Acid Bacteria: The Successful Case of PDO Pecorino Siciliano Cheese. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1834. [PMID: 33668630 PMCID: PMC7917940 DOI: 10.3390/ijerph18041834] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022]
Abstract
This review article focuses on the technological aspects and microbiological critical points of pressed-cooked cheeses processed from raw ewe's milk without the inoculation of starter cultures, in particular "Pecorino" cheese typology produced in Italy. After showing the composition of the biofilms adhering to the surface of the traditional dairy equipment (mainly wooden vat used to collect milk) and the microbiological characteristics of PDO Pecorino Siciliano cheese manufactured throughout Sicily, this cheese is taken as a case study to develop a strategy to improve its hygienic and safety characteristics. Basically, the natural lactic acid bacterial populations of fresh and ripened cheeses were characterized to select an autochthonous starter and non-starter cultures to stabilize the microbial community of PDO Pecorino Siciliano cheese. These bacteria were applied at a small scale level to prove their in situ efficacy, and finally introduced within the consortium for protection and promotion of this cheese to disseminate their performances to all dairy factories. The innovation in PDO Pecorino Siciliano cheese production was proven to be respectful of the traditional protocol, the final cheeses preserved their typicality, and the general cheese safety was improved. An overview of the future research prospects is also reported.
Collapse
Affiliation(s)
| | | | - Luca Settanni
- Department of Agricultural, Food and Forestry Science, University of Palermo, Viale delle Scienze 4, 90128 Palermo, Italy; (R.G.); (M.T.)
| |
Collapse
|
41
|
Moniente M, García‐Gonzalo D, Ontañón I, Pagán R, Botello‐Morte L. Histamine accumulation in dairy products: Microbial causes, techniques for the detection of histamine‐producing microbiota, and potential solutions. Compr Rev Food Sci Food Saf 2021; 20:1481-1523. [DOI: 10.1111/1541-4337.12704] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Marta Moniente
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Diego García‐Gonzalo
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Ignacio Ontañón
- Laboratorio de Análisis del Aroma y Enología, Química Analítica Facultad de Ciencias, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Rafael Pagán
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| | - Laura Botello‐Morte
- Departamento de Producción Animal y Ciencia de los Alimentos Facultad de Veterinaria, Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA) Zaragoza Spain
| |
Collapse
|
42
|
Palmeri M, Mancuso I, Gaglio R, Arcuri L, Barreca S, Barbaccia P, Scatassa ML. Identification and evaluation of antimicrobial resistance of enterococci isolated from raw ewes' and cows' milk collected in western Sicily: a preliminary investigation. Ital J Food Saf 2020; 9:8406. [PMID: 33532367 PMCID: PMC7844583 DOI: 10.4081/ijfs.2020.8406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 02/04/2020] [Indexed: 01/16/2023] Open
Abstract
The present work was carried out to investigate the Antimicrobial Resistance (AMR) of enterococci isolated from raw ewes' and cows' milk. The samples were collected from eighteen semi-extensive dairy sheep and cow farms throughout western Sicily. Plate counts, carried out on Rapid Enterococcus Agar commonly used to detect food enterococci, revealed a maximal enterococcal concentration of approximately 4.58 Log Colony Forming Unit (CFU)/mL. Colonies were isolated and differentiated based on genetic analysis by Randomly Amplified Polymorphic DNA (RAPD)-PCR. Thirty-eight different strains were identified. Analysis by a species-specific multiplex PCR assay grouped the strains into three Enterococcus species such as Enterococcus durans, Enterococcus faecalis and Enterococcus faecium. The 38 strains were also investigated for their antimicrobial resistance by a phenotypic approach. All 38 Enterococcus displayed resistance to at least one or more of the antimicrobials tested confirmed that the dairy enterococci could be a vector for the dissemination of antimicrobial resistance. This work showed that enterococci with AMR traits are commonly present in semiextensive dairy sheep and cow farms of western Sicily pointed out the relevance of informing dairy makers and veterinary regarding the antimicrobial use in order to mitigate problems of public health and veterinary medicine.
Collapse
Affiliation(s)
- Marisa Palmeri
- Institute for Experimental Veterinary Medicine of Sicily A. Mirri, Palermo
| | - Isabella Mancuso
- Institute for Experimental Veterinary Medicine of Sicily A. Mirri, Palermo
| | - Raimondo Gaglio
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | | - Santino Barreca
- Institute for Experimental Veterinary Medicine of Sicily A. Mirri, Palermo
| | - Pietro Barbaccia
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo, Italy
| | | |
Collapse
|
43
|
Kinoshita H, Hariu M, Nakashima Y, Watanabe K, Yasuda S, Igoshi K. Lactic acid bacterial exopolysaccharides strongly bind histamine and can potentially be used to remove histamine contamination in food. MICROBIOLOGY-SGM 2020; 167. [PMID: 33264088 DOI: 10.1099/mic.0.000936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The symptoms of foodborne histamine poisoning are similar to those of IgE-mediated food allergies. In this study, we investigated the histamine-binding capacity of lactic acid bacteria (LAB) strains as potential preventive agents against histamine poisoning. Histamine biosorption capacity was determined for 16 LAB strains. Leuconostoc mesenteroides TOKAI 51 m, Lactobacillus paracasei TOKAI 65 m, Lactobacillus plantarum TOKAI 111 m and Pediococcus pentosaceus TOKAI 759 m showed especially high biosorption rates and reached saturation within 30 min. Adsorption isotherms showed better conformance to the Freundlich model than to the Langmuir model. Analyses after heat, periodic acid and guanidine hydrochloride treatments suggested that histamine was bound to the bacterial cell surface. HPLC analysis revealed that exopolysaccharides produced by Lact. paracasei TOKAI 65 m strongly bound to histamine. In the detachment test with 1 mol l-1 HCl solution, the dissociation rate of histamine for Lact. paracasei TOKAI 65 m was <10 %. This strain is presumably a suitable candidate for use against histamine poisoning.
Collapse
Affiliation(s)
- Hideki Kinoshita
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Moe Hariu
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai-shi, Miyagi, Japan
| | - Yuki Nakashima
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Kohei Watanabe
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Shin Yasuda
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| | - Keiji Igoshi
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto, Japan
| |
Collapse
|
44
|
Li B, Lu S. The Importance of Amine-degrading Enzymes on the Biogenic Amine Degradation in Fermented Foods: A review. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Chen Y, Yu L, Qiao N, Xiao Y, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Latilactobacillus curvatus: A Candidate Probiotic with Excellent Fermentation Properties and Health Benefits. Foods 2020; 9:E1366. [PMID: 32993033 PMCID: PMC7600897 DOI: 10.3390/foods9101366] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/02/2023] Open
Abstract
Latilactobacillus curvatus is a candidate probiotic that has been included in the list of recommended biological agents for certification by the European Food Safety Authority. According to the published genomic information, L. curvatus has several genes that encode metabolic pathways of carbohydrate utilization. In addition, there are some differences in cell surface complex related genes of L. curvatus from different sources. L. curvatus also has several genes that encode bacteriocin production, which can produce Curvacin A and Sakacin P. Due to its ability to produce bacteriocin, it is often used as a bioprotective agent in fermented meat products, to inhibit the growth of a variety of pathogenic and spoilage bacteria. L. curvatus exerts some probiotic effects, such as mediating the production of IL-10 by dendritic cells through NF-κB and extracellular regulated protein kinases (ERK) signals to relieve colitis in mice. This review is the first summary of the genomic and biological characteristics of L. curvatus. Our knowledge on its role in the food industry and human health is also discussed, with the aim of providing a theoretical basis for the development of applications of L. curvatus.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Nanzhen Qiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (L.Y.); (Y.C.); (N.Q.); (Y.X.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
46
|
Saidi V, Sheikh-Zeinoddin M, Kobarfard F, Soleimanian-Zad S, Sedaghat Doost A. Profiling of bioactive metabolites during the ripening of a semi-hard non-starter culture cheese to detect functional dietary neurotransmitters. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
47
|
Luo Y, Huang Y, Xu RX, Qian B, Zhou JW, Xia XL. Primary and Secondary Succession Mediate the Accumulation of Biogenic Amines during Industrial Semidry Chinese Rice Wine Fermentation. Appl Environ Microbiol 2020; 86:e01177-20. [PMID: 32591381 PMCID: PMC7440807 DOI: 10.1128/aem.01177-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
The use of exogenous functional microorganisms to regulate biogenic amine (BA) content is a common approach in fermentation systems. Here, to better understand the microbial traits of succession trajectories in resource-based and biotic interference systems, the BA-related primary and secondary succession were tracked during industrial semidry Chinese rice wine (CRW) fermentation. Dominant abundance and BA-associated microbial functionality based on phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) indicated that Citrobacter, Acinetobacter, Lactobacillus, Exiguobacterium, Bacillus, Pseudomonas, and Enterobacter spp. prominently contributed to the decarboxylase gene family in CRW. The expression levels of tyrosine decarboxylase (tyrDC), ornithine decarboxylase (odc), and agmatine deiminase (aguA) genes were assessed by quantitative PCR (qPCR). The transcription levels of these genes did not correlate with the BA formation rate during postfermentation, indicating that acidification and carbon source depletion upregulated the expression and microbes launch the dormancy strategy to respond to unfavorable conditions. Furthermore, microbial interference with CRW fermentation by Lactobacillus plantarum (ACBC271) and Staphylococcus xylosus (CGMCC1.8382) coinoculated at a ratio of 1:2 exhibited the best synergetic control of BA content. Spearman correlations revealed that Lactobacillus and Staphylococcus exhibited influence on BA-associated microbiota (|ρ| > 0), Exiguobacterium and Pseudomonas were strongly suppressed by Lactobacillus (ρ = -0.867 and ρ = -0.782, respectively; P < 0.05), and Staphylococcus showed the strongest inhibitory effect toward Lactobacillus (ρ = -0.115) and Citrobacter (ρ = -0.188) in the coinoculated 1:2 group. The high inhibitory effect of exogenous added strains on specific bacteria presented evidence for the obtained BA-associated contributors. Overall, this work provides important insight into the microbial traits that rely on resource usage and functional microbiota within food microbial ecology.IMPORTANCE Understanding the shifting patterns of substance usage and microbial interactions is a fundamental objective within microbiology and ecology. Analyses of primary and secondary microbial succession allow for determinations of taxonomic diversity, community traits, and functional transformations over time or after a disturbance. The kinetics of BA generation and the patterns of resource consumption, functional metagenome prediction, and microbial interactions were profiled to elucidate the equilibrium mechanism of microbial systems. Secondary succession after a disturbance triggers a change in resource usage, which in turn affects primary succession and metabolism. In this study, the functional potential of exogenous microorganisms under disturbance synergized with secondary succession strategies, including rebalancing and dormancy, which ultimately reduced BA accumulation. Thus, this succession system could facilitate the settling of essential issues with respect to microbial traits that rely on resource usage and microbial interactions that occur in natural ecosystems.
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Yang Huang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Rui-Xian Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| | - Bin Qian
- Zhejiang Guyue Longshan Shaoxing Wine Co. Ltd., Shaoxing, People's Republic of China
| | - Jing-Wen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xiao-le Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
48
|
Sharma A, Lee S, Park YS. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review. Food Sci Biotechnol 2020; 29:1301-1318. [PMID: 32995049 PMCID: PMC7492335 DOI: 10.1007/s10068-020-00802-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Identification and classification of beneficial microbes is of the highest significance in food science and related industries. Conventional phenotypic approaches pose many challenges, and they may misidentify a target, limiting their use. Genotyping tools show comparatively better prospects, and they are widely used for distinguishing microorganisms. The techniques already employed in genotyping of lactic acid bacteria (LAB) are slightly different from one another, and each tool has its own advantages and disadvantages. This review paper compiles the comprehensive details of several fingerprinting tools that have been used for identifying and characterizing LAB at the species, sub-species, and strain levels. Notably, most of these approaches are based on restriction digestion, amplification using polymerase chain reaction, and sequencing. Nowadays, DNA sequencing technologies have made considerable progress in terms of cost, throughput, and methodology. A research journey to develop improved versions of generally applicable and economically viable tools for fingerprinting analysis is ongoing globally.
Collapse
Affiliation(s)
- Anshul Sharma
- Department of Food and Nutrition, Gachon University, Seongnam, 13120 Republic of Korea.,Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229 India
| | - Sulhee Lee
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365 Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea
| |
Collapse
|
49
|
Pištěková H, Jančová P, Berčíková L, Buňka F, Sokolová I, Šopík T, Maršálková K, Amaral OMRPD, Buňková L. Application of qPCR for multicopper oxidase gene (MCO) in biogenic amines degradation by Lactobacillus casei. Food Microbiol 2020; 91:103550. [PMID: 32539976 DOI: 10.1016/j.fm.2020.103550] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/12/2020] [Accepted: 05/20/2020] [Indexed: 11/19/2022]
Abstract
Degradation of undesirable biogenic amines (BAs) in foodstuffs by microorganisms is considered one of the most effective ways of eliminating their toxicity. In this study, we designed two sets of primers for the detection and quantification of the multicopper oxidase gene (MCO), which encodes an enzyme involved in BAs degradation, and endogenous (glyceraldehyde-3-phosphate dehydrogenase) gene (GAPDH) in Lactobacillus casei group by real-time PCR (qPCR). We tested 15 Lactobacillus strains in the screening assays (thus, MCO gene possessing assay (PCR) and monitoring of BAs degradation by HPLC-UV), in which Lactobacillus casei CCDM 198 exhibited the best degradation abilities. For this strain, we monitored the expression of the target gene (MCO) in time (qPCR), the effect of redox treatments (cysteine, ascorbic acid) on the expression of the gene, and the ability to degrade BAs not only in a modified MRS medium (MRS/2) but also in a real food sample (milk). Moreover, decarboxylase activity (ability to form BAs) of this strain was excluded. According to the results, CCDM 198 significantly (P < 0.05) reduced BAs (putrescine, histamine, tyramine, cadaverine), up to 25% decline in 48 h. The highest level of relative expression of MCO (5.21 ± 0.14) was achieved in MRS/2 media with cysteine.
Collapse
Affiliation(s)
- Hana Pištěková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic
| | - Petra Jančová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic.
| | - Lucie Berčíková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic
| | - František Buňka
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic
| | - Iveta Sokolová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic
| | - Tomáš Šopík
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic
| | - Kristýna Maršálková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic
| | - Olga Maria Reis Pacheco de Amaral
- Department of Technologies and Applied Sciences, Escola Superior Agária, Instituto Politécnico de Beja, Rua Pedro Soares S/N, Apartado 6155, 7800-295, Beja, Portugal
| | - Leona Buňková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Vavrečkova 275, 76001, Zlín, Czech Republic
| |
Collapse
|
50
|
|