1
|
Nathani NM, Mootapally C, Sharma P, Solomon S, Kumar R, Fulke AB, Kumar M. Microbial machinery dealing diverse aromatic compounds: Decoded from pelagic sediment ecogenomics in the gulfs of Kathiawar Peninsula and Arabian Sea. ENVIRONMENTAL RESEARCH 2023; 225:115603. [PMID: 36863652 DOI: 10.1016/j.envres.2023.115603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 05/25/2023]
Abstract
Aromatic hydrocarbons are persistent pollutants in aquatic systems as endocrine disruptors, significantly impacting natural ecosystems and human health. Microbes perform as natural bioremediators to remove and regulate aromatic hydrocarbons in the marine ecosystem. The present study focuses upon the comparative diversity and abundance of various hydrocarbon-degrading enzymes and their pathways from deep sediments along the Gulf of Kathiawar Peninsula and Arabian Sea, India. The elucidation of large number of degradation pathways in the study area under the presence of a wide range of pollutants whose fate needs to be addressed. Sediment core samples were collected, and the whole microbiome was sequenced. Analysis of the predicted ORFs (open reading frames) against the AromaDeg database revealed 2946 aromatic hydrocarbon-degrading enzyme sequences. Statistical analysis portrayed that the Gulfs were more diverse in degradation pathways compared to the open sea, with the Gulf of Kutch being more prosperous and more diverse than the Gulf of Cambay. The vast majority of the annotated ORFs belonged to groups of dioxygenases that included catechol, gentisate, and benzene dioxygenases, along with Rieske (2Fe-2S) and vicinal oxygen chelate (VOC) family proteins. From the sampling sites, only 960 of the total predicted genes were given taxonomic annotations, which mention the presence of many under-explored marine microorganism-derived hydrocarbon degrading genes and pathways. Through the present study, we tried to unveil the array of catabolic pathways of aromatic hydrocarbon degradation and genes from a marine ecosystem that upholds economic and ecological significance in India. Thus, this study provides vast opportunities and strategies for microbial resource recovery in marine ecosystems, which can be investigated to explore aromatic hydrocarbon degradation and their potential mechanisms under various oxic or anoxic environments. Future studies should focus on aromatic hydrocarbon degradation by considering degradation pathways, biochemical analysis, enzymatic, metabolic, and genetic systems, and regulations.
Collapse
Affiliation(s)
- Neelam M Nathani
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Life Sciences, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Chandrashekar Mootapally
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India; Department of Marine Science, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar, 364001, Gujarat, India
| | - Parth Sharma
- School of Applied Sciences & Technology (SAST-GTU), Gujarat Technological University, Ahmedabad, 382424, Gujarat, India
| | - Solly Solomon
- Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology, Kochi, 682022, Kerala, India; Cochin Base of Fishery Survey of India, Post Box 853 Kochangady, Cochin, 682005, Kerala, India
| | - Rakesh Kumar
- School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Abhay B Fulke
- Microbiology Division, CSIR - National Institute of Oceanography (CSIR-NIO), Regional Centre, Andheri (West), Maharashtra, 400053, India
| | - Manish Kumar
- Sustainability Cluster, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey, 64849, Nuevo Leon, Mexico.
| |
Collapse
|
2
|
Huang Y, Li L, Yin X, Zhang T. Polycyclic aromatic hydrocarbon (PAH) biodegradation capacity revealed by a genome-function relationship approach. ENVIRONMENTAL MICROBIOME 2023; 18:39. [PMID: 37122013 PMCID: PMC10150532 DOI: 10.1186/s40793-023-00497-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbon (PAH) contamination has been a worldwide environmental issue because of its impact on ecosystems and human health. Biodegradation plays an important role in PAH removal in natural environments. To date, many PAH-degrading strains and degradation genes have been reported. However, a comprehensive PAH-degrading gene database is still lacking, hindering a deep understanding of PAH degraders in the era of big data. Furthermore, the relationships between the PAH-catabolic genotype and phenotype remain unclear. RESULTS Here, we established a bacterial PAH-degrading gene database and explored PAH biodegradation capability via a genome-function relationship approach. The investigation of functional genes in the experimentally verified PAH degraders indicated that genes encoding hydratase-aldolase could serve as a biomarker for preliminarily identifying potential degraders. Additionally, a genome-centric interpretation of PAH-degrading genes was performed in the public genome database, demonstrating that they were ubiquitous in Proteobacteria and Actinobacteria. Meanwhile, the global phylogenetic distribution was generally consistent with the culture-based evidence. Notably, a few strains affiliated with the genera without any previously known PAH degraders (Hyphomonas, Hoeflea, Henriciella, Saccharomonospora, Sciscionella, Tepidiphilus, and Xenophilus) also bore a complete PAH-catabolic gene cluster, implying their potential of PAH biodegradation. Moreover, a random forest analysis was applied to predict the PAH-degrading trait in the complete genome database, revealing 28 newly predicted PAH degraders, of which nine strains encoded a complete PAH-catabolic pathway. CONCLUSIONS Our results established a comprehensive PAH-degrading gene database and a genome-function relationship approach, which revealed several potential novel PAH-degrader lineages. Importantly, this genome-centric and function-oriented approach can overcome the bottleneck of conventional cultivation-based biodegradation research and substantially expand our current knowledge on the potential degraders of environmental pollutants.
Collapse
Affiliation(s)
- Yue Huang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
3
|
Liang C, Ye Q, Huang Y, Zhang Z, Wang C, Wang Y, Wang H. Distribution of the new functional marker gene (pahE) of aerobic polycyclic aromatic hydrocarbon (PAHs) degrading bacteria in different ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161233. [PMID: 36586685 DOI: 10.1016/j.scitotenv.2022.161233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Understanding the degradation potentials in PAHs-contaminated sites is significant for formulating effective bioremediation strategies. pahE encoding PAHs hydratase-aldolase has been proven as a better new functional marker gene of aerobic PAHs-degrading bacteria to assess the biodegradation potential of indigenous PAHs-degrading bacterial population. However, the distribution of pahE and its relationship with environmental factors remain unknown. The present study observed spatial variations in the diversity and abundance of pahE across oilfield soils, mangrove sediments, and urban roadside soils. nahE from Pseudomonas, bphE from Hyphomonas oceanitis, nagE from Comamonas testosterone, and novel pahE genes were widely present in these PAHs-polluted ecosystems. The abundance of pahE in PAHs-contaminated sites was in the range of 105-106 copies·g-1 (dry weight). Redundancy analysis and Pearson's correlation analysis implied that the distribution of pahE in the PAHs-contaminated environment was mainly shaped by environmental factors such as PAHs pollution level, nutrient level, salinity, and water content. This work was the first to explore the distribution of the new functional marker gene (pahE) and its links with environmental parameters, which provided new insights into the ecophysiology and distribution of indigenous aerobic PAHs-degrading bacteria in contaminated sites.
Collapse
Affiliation(s)
- Chengyue Liang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Quanhui Ye
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yong Huang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Chongyang Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hui Wang
- State Key Joint Laboratory on Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Li S, Shen W, Lian S, Wu Y, Qu Y, Deng Y. DARHD: A sequence database for aromatic ring-hydroxylating dioxygenase analysis and primer evaluation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129230. [PMID: 35739750 DOI: 10.1016/j.jhazmat.2022.129230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Biodegradation of aromatic compounds is ubiquitous in the environment and important for controlling organic pollutants. Aromatic ring-hydroxylating dioxygenases (ARHDs) are responsible for the first and rate-limiting step of aerobic biodegradation of aromatic compounds. The ARHD α subunit is a good biomarker for studying functional microorganisms in the environment, however their diversity and corresponding primer coverage are unclear, both of which require a comprehensive sequence database for the ARHD α subunit. Here amino acid sequences of the ARHD α subunit were collected, and a total of 103 sequences were selected as seed sequences that were distributed in 72 bacterial genera with 34 gene names. Based on both homolog search and keyword confirmation against the GenBank, a sequence database of ARHD (DARHD) has been established and 6367 highly credible sequences were retrieved. DARHD contained 407 bacterial genera capable of degrading 38 aromatic substrates, and intricate relationships among the gene name, aromatic substrate and microbial taxa were observed. Thereafter, a total of 136 pairs of primers were collected and assessed. Results showed coverages of most published primers were low. Our research provides new insights for understanding the diversity of ARHD α subunit, and gives guidance on the design and application of primers in the future.
Collapse
Affiliation(s)
- Shuzhen Li
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wenli Shen
- Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueni Wu
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Marine Science and Technology, Shandong University, Qingdao 266237, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
6
|
Veldkornet D, Rajkaran A, Paul S, Naidoo G. Oil induces chlorophyll deficient propagules in mangroves. MARINE POLLUTION BULLETIN 2020; 150:110667. [PMID: 31689609 DOI: 10.1016/j.marpolbul.2019.110667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
In Australia, some trees of the mangrove, Avicennia marina, growing in a chronic oil polluted site, produce chlorophyll deficient (albino) propagules. We tested the hypothesis that albinism was due to an oil-induced mutant allele that controls photosynthesis. We determined whether there are genetic differences between normal and chlorophyll deficient propagules. Four gene regions (nuclear 18S-26S cistron; chloroplast - trnH-psbA, rsp16 and matK) were sequenced and analysed for normal and albino propagules. Mutations occurred in both nuclear (ITS) and coding chloroplast (matK) genes of albino propagules. There were 10 mutational differences between normal and albino propagules in the matK samples. Analysis of molecular variation (AMOVA) of the matK dataset indicated highly significant genetic differentiation between normal and albino propagules. Our study suggests for the first time that PAHs from a chronic oil polluted site resulted in mutations in both nuclear and chloroplast genes, resulting in the production of albino propagules.
Collapse
Affiliation(s)
- Dimitri Veldkornet
- Department of Biodiversity and Conservation Biology, University of the Western Cape, South Africa
| | - Anusha Rajkaran
- Department of Biodiversity and Conservation Biology, University of the Western Cape, South Africa
| | - Swapan Paul
- Sydney Olympic Park Authority, Sydney, Australia
| | - Gonasageran Naidoo
- University of KwaZulu-Natal, School of Life Sciences, Westville, South Africa.
| |
Collapse
|
7
|
Kuzmanović N, Behrens P, Idczak E, Wagner S, Götz M, Spröer C, Bunk B, Overmann J, Smalla K. A Novel Group of Rhizobium tumorigenes-Like Agrobacteria Associated with Crown Gall Disease of Rhododendron and Blueberry. PHYTOPATHOLOGY 2019; 109:1840-1848. [PMID: 31294681 DOI: 10.1094/phyto-05-19-0167-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crown gall is an economically important and widespread plant disease caused by tumorigenic bacteria that are commonly affiliated within the genera Agrobacterium, Allorhizobium, and Rhizobium. Although crown gall disease was reported to occur on rhododendron, literature data regarding this disease are limited. In this study, an atypical group of tumorigenic agrobacteria belonging to the genus Rhizobium was identified as a causative agent of crown gall on rhododendron. Genome analysis suggested that tumorigenic bacteria isolated from rhododendron tumors are most closely related to Rhizobium tumorigenes, a new tumorigenic bacterium discovered recently on blackberry in Serbia. However, R. tumorigenes and novel rhododendron strains belong to separate species and form a homogenous clade within the genus Rhizobium, which we named the "tumorigenes" clade. Moreover, tumorigenic bacteria isolated from rhododendron seem to carry a distinct tumor-inducing (Ti) plasmid, compared with those carried by R. tumorigenes strains and Ti plasmids described thus far. To facilitate rapid identification of bacteria belonging to the "tumorigenes" clade, regardless of whether they are pathogenic or not, a conventional PCR method targeting putative chromosomal gene-encoding flagellin protein FlaA was developed in this study. Finally, our results suggested that this novel group of tumorigenic agrobacteria occurs on blueberry but it cannot be excluded that it is distributed more widely.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Patric Behrens
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Elke Idczak
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Stefan Wagner
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Monika Götz
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Microbiology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| |
Collapse
|
8
|
Machado LF, de Assis Leite DC, da Costa Rachid CTC, Paes JE, Martins EF, Peixoto RS, Rosado AS. Tracking Mangrove Oil Bioremediation Approaches and Bacterial Diversity at Different Depths in an in situ Mesocosms System. Front Microbiol 2019; 10:2107. [PMID: 31572322 PMCID: PMC6753392 DOI: 10.3389/fmicb.2019.02107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022] Open
Abstract
In this study, oil spills were simulated in field-based mangrove mesocosms to compare the efficiency of bioremediation strategies and to characterize the presence of the alkB, ndo, assA, and bssA genes and the ecological structures of microbial communities in mangrove sediments at two different depths, (D1) 1–10 cm and (D2) 25–35 cm. The results indicated that the hydrocarbon degradation efficiency was higher in superficial sediment layers, although no differences in the hydrocarbon degradation rates or in the abundances of the alkB and ndo genes were detected among the tested bioremediation strategies at this depth. Samples from the deeper layer exhibited higher abundances of the analyzed genes, except for assA and bssA, which were not detected in our samples. For all of the treatments and depths, the most abundant phyla were Proteobacteria, Firmicutes and Bacteroidetes, with Gammaproteobacteria, Flavobacteriales and Clostridiales being the most common classes. The indicator species analysis (ISA) results showed strong distinctions among microbial taxa in response to different treatments and in the two collection depths. Our results indicated a high efficiency of the monitored natural attenuation (MNA) for oil consumption in the tested mangrove sediments, revealing the potential of this strategy for environmental decontamination and suggesting that environmental and ecological factors may select for specific bacterial populations in distinct niches.
Collapse
Affiliation(s)
- Laís Feitosa Machado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Jorge Eduardo Paes
- Research Center Leopoldo Américo Miguez de Mello, Rio de Janeiro, Brazil
| | - Edir Ferreira Martins
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,IMAM-AquaRio - Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Louvado A, Coelho FJRC, Oliveira V, Gomes H, Cleary DFR, Simões MMQ, Cunha A, Gomes NCM. Microcosm evaluation of the impact of oil contamination and chemical dispersant addition on bacterial communities and sediment remediation of an estuarine port environment. J Appl Microbiol 2019; 127:134-149. [PMID: 30907485 DOI: 10.1111/jam.14261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 01/21/2023]
Abstract
AIM To evaluate the interactive effects of oil contamination and chemical dispersant application on bacterial composition and sediment remediation of an estuarine port environment. METHODS AND RESULTS A multifactorial controlled microcosm experiment was set up using sediment cores retrieved from an estuarine port area located at Ria de Aveiro lagoon (Aveiro, Portugal). An oil spill with and without chemical dispersant addition was simulated. Sediment oil hydrocarbon concentrations and benthic bacterial community structure were evaluated by GC-MS and 16S rRNA high-throughput sequencing respectively. Although initially (first 10 days) chemical dispersion of oil enhanced the concentrations of the heavier polycyclic aromatic hydrocarbons and of the C22 -C30 alkane group, with time (21 days), no significant differences in hydrocarbon concentrations were detected among treatments. Moreover, no significant changes were detected in the structure of sediment bacterial communities, which mainly consisted of operational taxonomic units related to hydrocarbon-contaminated marine environments. We hypothesize that the environmental background of the sampling site preconditioned the communities' response to additional contamination. CONCLUSION This experimental microcosm study showed that the chemical dispersion of oil did not influence sediment remediation or bacterial community composition. SIGNIFICANCE AND IMPACT OF THE STUDY Our study showed that chemical dispersion of oil may not improve the remediation of port sediments. Further studies are needed to investigate the impact of chemical dispersants in combination with bioremediation strategies on the process of sediment remediation in port areas.
Collapse
Affiliation(s)
- A Louvado
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - F J R C Coelho
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - V Oliveira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - H Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - D F R Cleary
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - M M Q Simões
- Department of Chemistry & QOPNA, University of Aveiro, Aveiro, Portugal
| | - A Cunha
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - N C M Gomes
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
10
|
Ghizelini AM, Martins KG, Gießelmann UC, Santoro E, Pasqualette L, Mendonça-Hagler LCS, Rosado AS, Macrae A. Fungal communities in oil contaminated mangrove sediments - Who is in the mud? MARINE POLLUTION BULLETIN 2019; 139:181-188. [PMID: 30686417 DOI: 10.1016/j.marpolbul.2018.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/14/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Mangroves are ecosystems located in tropical and subtropical regions of the world and are vital for coastal protection. Their unique characteristics make them hotspots for carbon cycling and biological diversity. Studies on isolated filamentous fungi and environmental and anthropogenic factors that influence sediments offer new understandings on how to preserve mangroves. Here we report on the filamentous fungi isolated from four mangroves. We correlated fungal community composition with sediment texture, polycyclic aromatic hydrocarbons concentration (oil pollution), pH, salinity, organic matter, total and thermotolerant coliforms (sewage pollution). In total we identified 34 genera and 97 species. The most polluted sites had highest species richness whereas the best preserved site showed the lowest species richness. Oil spill and sewage pollution were identified as the drivers of fungal community composition in the most polluted sites. We found very distinct fungal communities with no >5 species shared between any two mangrove sites.
Collapse
Affiliation(s)
- Angela Michelato Ghizelini
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Urs Christian Gießelmann
- Institute of Biology, Department of Chemistry-Biology, Faculty of Science and Technology, University of Siegen, Germany
| | - Erika Santoro
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Pasqualette
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leda C S Mendonça-Hagler
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Soares Rosado
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew Macrae
- Institute of Microbiology Paulo de Góes, Health Science Center, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Cave Drip Water-Related Samples as a Natural Environment for Aromatic Hydrocarbon-Degrading Bacteria. Microorganisms 2019; 7:microorganisms7020033. [PMID: 30691082 PMCID: PMC6406655 DOI: 10.3390/microorganisms7020033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 01/05/2023] Open
Abstract
Restricted contact with the external environment has allowed the development of microbial communities adapted to the oligotrophy of caves. However, nutrients can be transported to caves by drip water and affect the microbial communities inside the cave. To evaluate the influence of aromatic compounds carried by drip water on the microbial community, two limestone caves were selected in Brazil. Drip-water-saturated and unsaturated sediment, and dripping water itself, were collected from each cave and bacterial 16S rDNA amplicon sequencing and denaturing gradient gel electrophoresis (DGGE) of naphthalene dioxygenase (ndo) genes were performed. Energy-dispersive X-ray spectroscopy (EDX) and atomic absorption spectroscopy (AAS) were performed to evaluate inorganic nutrients, and GC was performed to estimate aromatic compounds in the samples. The high frequency of Sphingomonadaceae in drip water samples indicates the presence of aromatic hydrocarbon-degrading bacteria. This finding was consistent with the detection of naphthalene and acenaphthene and the presence of ndo genes in drip-water-related samples. The aromatic compounds, aromatic hydrocarbon-degrading bacteria and 16S rDNA sequencing indicate that aromatic compounds may be one of the sources of energy and carbon to the system and the drip-water-associated bacterial community contains several potentially aromatic hydrocarbon-degrading bacteria. To the best of our knowledge, this is the first work to present compelling evidence for the presence of aromatic hydrocarbon-degrading bacteria in cave drip water.
Collapse
|
12
|
Distribution of bacterial polycyclic aromatic hydrocarbon (PAH) ring-hydroxylating dioxygenases genes in oilfield soils and mangrove sediments explored by gene-targeted metagenomics. Appl Microbiol Biotechnol 2019; 103:2427-2440. [PMID: 30661109 DOI: 10.1007/s00253-018-09613-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/25/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
PAH ring-hydroxylating dioxygenases (PAH-RHDα) gene, a useful biomarker for PAH-degrading bacteria, has been widely used to examine PAH-degrading bacterial community in different contaminated sites. However, the distribution of PAH-RHDα genes in oilfield soils and mangrove sediments and their relationship with environmental factors still remain largely unclear. In this study, gene-targeted metagenomics was first used to investigate the diversity of PAH-degrading bacterial communities in oilfield soils and mangrove sediments. The results showed that higher diversity of PAH-degrading bacteria in the studied samples was revealed by gene-targeted metagenomics than traditional clone library analysis. Pseudomonas, Burkholderia, Ralstonia, Polymorphum gilvum, Mycobacterium, Sciscionella marina, Rhodococcus, and potential new degraders were prevailed in the oilfield area. For mangrove sediments, novel PAH degraders and Mycobacterium were predominated. The spatial distribution of PAH-RHDα gene was dependent on geographical location and regulated by local environmental variables. PAH content played a key role in shaping PAH-degrading bacterial communities in the studied samples, which would enrich PAH-degrading bacterial population and decrease PAH-degrading bacterial diversity. This work brings a more comprehensive and some new insights into the distribution and biodegradation potential of PAH-degrading bacteria in soil and sediments ecosystems.
Collapse
|
13
|
Antarctic Soil Microbial Communities in a Changing Environment: Their Contributions to the Sustainability of Antarctic Ecosystems and the Bioremediation of Anthropogenic Pollution. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Kotoky R, Rajkumari J, Pandey P. The rhizosphere microbiome: Significance in rhizoremediation of polyaromatic hydrocarbon contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:858-870. [PMID: 29660711 DOI: 10.1016/j.jenvman.2018.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Microbial communities are an essential part of plant rhizosphere and participate in the functioning of plants, including rhizoremediation of petroleum contaminants. Rhizoremediation is a promising technology for removal of polyaromatic hydrocarbons based on interactions between plants and microbiome in the rhizosphere. Root exudation in the rhizosphere provides better nutrient uptake for rhizosphere microbiome, and therefore it is considered to be one of the major factors of microbial community function in the rhizosphere that plays a key role in the enhanced PAH biodegradation. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, the interactions between microbiome and plant roots in the process of rhizosphere mediated remediation of PAH still needs attention. Most of the current researches target PAH degradation by plant or single microorganism, separately, whereas the interactions between plants and whole microbiome are overlooked and its role has been ignored. This review summarizes recent knowledge of PAH degradation in the rhizosphere in the process of plant-microbiome interactions based on emerging omics approaches such as metagenomics, metatranscriptomics, metabolomics and metaproteomics. These omics approaches with combinations to bioinformatics tools provide us a better understanding in integrated activity patterns between plants and rhizosphere microbes, and insight into the biochemical and molecular modification of the meta-organisms (plant-microbiome) to maximize rhizoremediation activity. Moreover, a better understanding of the interactions could lead to the development of techniques to engineer rhizosphere microbiome for better hydrocarbon degradation.
Collapse
Affiliation(s)
- Rhitu Kotoky
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Jina Rajkumari
- Department of Microbiology, Assam University, Silchar, 788011, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, India.
| |
Collapse
|
15
|
Petroleum contamination and bioaugmentation in bacterial rhizosphere communities from Avicennia schaueriana. Braz J Microbiol 2018; 49:757-769. [PMID: 29866608 PMCID: PMC6175736 DOI: 10.1016/j.bjm.2018.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 02/01/2018] [Accepted: 02/14/2018] [Indexed: 11/23/2022] Open
Abstract
Anthropogenic activity, such as accidental oil spills, are typical sources of urban mangrove pollution that may affect mangrove bacterial communities as well as their mobile genetic elements. To evaluate remediation strategies, we followed over the time the effects of a petroleum hydrocarbon degrading consortium inoculated on mangrove tree Avicennia schaueriana against artificial petroleum contamination in a phytoremediation greenhouse experiment. Interestingly, despite plant protection due to the inoculation, denaturing gradient gel electrophoresis of the bacterial 16S rRNA gene fragments amplified from the total community DNA indicated that the different treatments did not significantly affect the bacterial community composition. However, while the bacterial community was rather stable, pronounced shifts were observed in the abundance of bacteria carrying plasmids. A PCR-Southern blot hybridization analysis indicated an increase in the abundance of IncP-9 catabolic plasmids. Denaturing gradient gel electrophoresis of naphthalene dioxygenase (ndo) genes amplified from cDNA (RNA) indicated the dominance of a specific ndo gene in the inoculated petroleum amendment treatment. The petroleum hydrocarbon degrading consortium characterization indicated the prevalence of bacteria assigned to Pseudomonas spp., Comamonas spp. and Ochrobactrum spp. IncP-9 plasmids were detected for the first time in Comamonas sp. and Ochrobactrum spp., which is a novelty of this study.
Collapse
|
16
|
Martirani-Von Abercron SM, Marín P, Solsona-Ferraz M, Castañeda-Cataña MA, Marqués S. Naphthalene biodegradation under oxygen-limiting conditions: community dynamics and the relevance of biofilm-forming capacity. Microb Biotechnol 2017; 10:1781-1796. [PMID: 28840968 PMCID: PMC5658598 DOI: 10.1111/1751-7915.12842] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 11/27/2022] Open
Abstract
Toxic polycyclic aromatic hydrocarbons (PAHs) are frequently released into the environment from anthropogenic sources. PAH remediation strategies focus on biological processes mediated by bacteria. The availability of oxygen in polluted environments is often limited or absent, and only bacteria able to thrive in these conditions can be considered for bioremediation strategies. To identify bacterial strains able to degrade PAHs under oxygen‐limiting conditions, we set up enrichment cultures from samples of an oil‐polluted aquifer, using either anoxic or microaerophilic condition and with PAHs as the sole carbon source. Despite the presence of a significant community of nitrate‐reducing bacteria, the initial community, which was dominated by Betaproteobacteria, was incapable of PAH degradation under strict anoxic conditions, although a clear shift in the structure of the community towards an increase in the Alphaproteobacteria (Sphingomonadaceae), Actinobacteria and an uncultured group of Acidobacteria was observed in the enrichments. In contrast, growth under microaerophilic conditions with naphthalene as the carbon source evidenced the development of a biofilm structure around the naphthalene crystal. The enrichment process selected two co‐dominant groups which finally reached 97% of the bacterial communities: Variovorax spp. (54%, Betaproteobacteria) and Starkeya spp. (43%, Xanthobacteraceae). The two dominant populations were able to grow with naphthalene, although only Starkeya was able to reproduce the biofilm structure around the naphthalene crystal. The pathway for naphthalene degradation was identified, which included as essential steps dioxygenases with high affinity for oxygen, showing 99% identity with Xanthobacter polyaromaticivorans dbd cluster for PAH degradation. Our results suggest that the biofilm formation capacity of Starkeya provided a structure to allocate its cells at an appropriate distance from the toxic carbon source.
Collapse
Affiliation(s)
| | - Patricia Marín
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Marta Solsona-Ferraz
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Mayra-Alejandra Castañeda-Cataña
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Silvia Marqués
- Estación Experimental del Zaidín, Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
17
|
Imchen M, Kumavath R, Barh D, Azevedo V, Ghosh P, Viana M, Wattam AR. Searching for signatures across microbial communities: Metagenomic analysis of soil samples from mangrove and other ecosystems. Sci Rep 2017; 7:8859. [PMID: 28821820 PMCID: PMC5562921 DOI: 10.1038/s41598-017-09254-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
In this study, we categorize the microbial community in mangrove sediment samples from four different locations within a vast mangrove system in Kerala, India. We compared this data to other samples taken from the other known mangrove data, a tropical rainforest, and ocean sediment. An examination of the microbial communities from a large mangrove forest that stretches across southwestern India showed strong similarities across the higher taxonomic levels. When ocean sediment and a single isolate from a tropical rain forest were included in the analysis, a strong pattern emerged with Bacteria from the phylum Proteobacteria being the prominent taxon among the forest samples. The ocean samples were predominantly Archaea, with Euryarchaeota as the dominant phylum. Principal component and functional analyses grouped the samples isolated from forests, including those from disparate mangrove forests and the tropical rain forest, from the ocean. Our findings show similar patterns in samples were isolated from forests, and these were distinct from the ocean sediment isolates. The taxonomic structure was maintained to the level of class, and functional analysis of the genes present also displayed these similarities. Our report for the first time shows the richness of microbial diversity in the Kerala coast and its differences with tropical rain forest and ocean microbiome.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Periye, Padanakkad P.O, Kasaragod, Kerala, 671314, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Periye, Padanakkad P.O, Kasaragod, Kerala, 671314, India.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, 721172, India.,Xcode Life Sciences, 3D Eldorado, 112 Nungambakkam High Road, Nungambakkam, Chennai, Tamil Nadu, 600034, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Marcus Viana
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech University, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
18
|
de Sousa STP, Cabral L, Lacerda Júnior GV, Oliveira VM. Diversity of aromatic hydroxylating dioxygenase genes in mangrove microbiome and their biogeographic patterns across global sites. Microbiologyopen 2017; 6. [PMID: 28544594 PMCID: PMC5552929 DOI: 10.1002/mbo3.490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/16/2017] [Accepted: 03/23/2017] [Indexed: 01/25/2023] Open
Abstract
Aromatic hydrocarbons (AH), such as polycyclic aromatic hydrocarbons, are compounds largely found in nature. Aromatic‐ring‐hydroxylating dioxygenases (ARHD) are proteins involved in AH degradation pathways. We used ARHD functional genes from an oil‐impacted mangrove area and compared their diversity with other sites around the world to understand the ARHD biogeographic distribution patterns. For this, a comprehensive database was established with 166 operational protein families (OPFs) from 1,758 gene sequences obtained from 15 different sites worldwide, of which twelve are already published studies and three are unpublished. Based on a deduced ARHD peptide sequences consensus phylogeny, we examined trends and divergences in the sequence phylogenetic clustering from the different sites. The taxonomic affiliation of the OPF revealed that Pseudomonas, Streptomyces, Variovorax, Bordetella and Rhodococcus were the five most abundant genera, considering all sites. The functional diversity analysis showed the enzymatic prevalence of benzene 1,2‐dioxygenase, 3‐phenylpropionate dioxygenase and naphthalene 1,2‐dioxygenase, in addition to 10.98% of undefined category ARHDs. The ARHD gene correlation analysis among different sites was essentially important to gain insights on spatial distribution patterns, genetic congruence and ecological coherence of the bacterial groups found. This work revealed the genetic potential from the mangrove sediment for AH biodegradation and a considerable evolutionary proximity among the dioxygenase OPFs found in Antarctica and South America sites, in addition to high level of endemism in each continental region.
Collapse
Affiliation(s)
- Sanderson T P de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil.,Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Gileno Vieira Lacerda Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil.,Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Valéria M Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| |
Collapse
|
19
|
Obi CC, Adebusoye SA, Amund OO, Ugoji EO, Ilori MO, Hedman CJ, Hickey WJ. Structural dynamics of microbial communities in polycyclic aromatic hydrocarbon-contaminated tropical estuarine sediments undergoing simulated aerobic biotreatment. Appl Microbiol Biotechnol 2017; 101:4299-4314. [PMID: 28190100 DOI: 10.1007/s00253-017-8151-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/18/2017] [Accepted: 01/22/2017] [Indexed: 01/12/2023]
Abstract
Coastal sediments contaminated by polycyclic aromatic hydrocarbons (PAHs) can be candidates for remediation via an approach like land farming. Land farming converts naturally anaerobic sediments to aerobic environments, and the response of microbial communities, in terms of community structure alterations and corresponding effects on biodegradative activities, is unknown. A key goal of this study was to determine if different sediments exhibited common patterns in microbial community responses that might serve as indicators of PAH biodegradation. Sediments from three stations in the Lagos Lagoon (Nigeria) were used in microcosms, which were spiked with a mixture of four PAH, then examined for PAH biodegradation and for shifts in microbial community structure by analysis of diversity in PAH degradation genes and Illumina sequencing of 16S rRNA genes. PAH biodegradation was similar in all sediments, yet each exhibited unique microbiological responses and there were no microbial indicators of PAH bioremediation common to all sediments.
Collapse
Affiliation(s)
- Chioma C Obi
- Department of Microbiology, University of Lagos, Lagos, Nigeria.
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | - Esther O Ugoji
- Department of Microbiology, University of Lagos, Lagos, Nigeria
| | - Mathew O Ilori
- Department of Microbiology, University of Lagos, Lagos, Nigeria
| | | | - William J Hickey
- O.N. Allen Laboratory for Soil Microbiology, Department of Soil Science, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Fuentes S, Ding GC, Cárdenas F, Smalla K, Seeger M. Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile. FEMS Microbiol Ecol 2015; 91:fiv110. [PMID: 26362923 DOI: 10.1093/femsec/fiv110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2015] [Indexed: 11/14/2022] Open
Abstract
Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils.
Collapse
Affiliation(s)
- Sebastián Fuentes
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Guo-Chun Ding
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | - Franco Cárdenas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), 38116 Braunschweig, Germany
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química & Center of Nanotechnology and Systems Biology & Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Avenida España 1680, 2390123 Valparaíso, Chile
| |
Collapse
|
21
|
Abundance and diversity of polycyclic aromatic hydrocarbon degradation bacteria in urban roadside soils in Shanghai. Appl Microbiol Biotechnol 2014; 99:3639-49. [DOI: 10.1007/s00253-014-6299-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/26/2022]
|
22
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Distribution of naphthalene dioxygenase genes in crude oil-contaminated soils. MICROBIAL ECOLOGY 2014; 68:785-793. [PMID: 25008984 DOI: 10.1007/s00248-014-0457-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the major pollutants in soils in oil exploring areas. Biodegradation is the major process for natural elimination of PAHs from contaminated soils. Functional genes can be used as biomarkers to assess the biodegradation potential of indigenous microbial populations. However, little is known about the distribution of PAH-degrading genes in the environment. The links between environmental parameters and the distribution of PAH metabolic genes remain essentially unclear. The present study investigated the abundance and diversity of naphthalene dioxygenase genes in the oil-contaminated soils in the Shengli Oil Field (China). Spatial variations in the density and diversity of naphthalene dioxygenase genes occurred in this area. Four different sequence genotypes were observed in the contaminated soils, with the predominance of novel PAH-degrading genes. Pearson's correlation analysis illustrated that gene abundance had positive correlations with the levels of total organic carbon and aromatic hydrocarbons, while gene diversity showed a negative correlation with the level of polar aromatics. This work could provide some new insights toward the distribution of PAH metabolic genes and PAH biodegradation potential in oil-contaminated ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|
23
|
Oliveira V, Gomes NCM, Almeida A, Silva AMS, Simões MMQ, Smalla K, Cunha Â. Hydrocarbon contamination and plant species determine the phylogenetic and functional diversity of endophytic degrading bacteria. Mol Ecol 2013; 23:1392-1404. [DOI: 10.1111/mec.12559] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanessa Oliveira
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Newton C. M. Gomes
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Adelaide Almeida
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- Department of Chemistry & QOPNA; University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Mário M. Q. Simões
- Department of Chemistry & QOPNA; University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Kornelia Smalla
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Department of Epidemiology and Pathogen Diagnostics; Messeweg 11-12 38104 Braunschweig Germany
| | - Ângela Cunha
- Department of Biology & Center for Environmental and Marine Studies (CESAM); University of Aveiro; Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
24
|
Wongwongsee W, Chareanpat P, Pinyakong O. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. MARINE POLLUTION BULLETIN 2013; 74:95-104. [PMID: 23928000 DOI: 10.1016/j.marpolbul.2013.07.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 06/02/2023]
Abstract
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50-76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.
Collapse
Affiliation(s)
- Wanwasan Wongwongsee
- Microbiology Program in Science, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | | |
Collapse
|
25
|
Gomes NCM, Manco SC, Pires ACC, Gonçalves SF, Calado R, Cleary DFR, Loureiro S. Richness and composition of sediment bacterial assemblages in an Atlantic port environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 452-453:172-180. [PMID: 23506850 DOI: 10.1016/j.scitotenv.2013.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
In the present study, we assessed the bacterial richness and composition of sediment samples collected in and around the port of Aveiro, on the Atlantic coast of mainland Portugal. Sediment samples were collected in five locations: two within the port harbor, two in port areas along a channel adjacent to the harbor and one in a relatively undisturbed reference location. These areas were characterized as under high, medium and no port activity, respectively. In-depth, barcoded-pyrosequencing analysis indicated that port activity affects the composition and abundance of bacterial communities colonizing surface sediments. Sampling sites under the influence of port activities (channel and harbor) were associated with higher relative abundances of Desulfobacterales and a marked decline in the abundance of Flavobacteriia. In addition, there was a pronounced prevalence of operational taxonomic units (OTUs) in the port area that were closely related to hydrocarbon-degrading bacteria (Desulfococcus spp.), antifouling paint (bacterium strain WH6-7) and copper rich sediments (bacterium strain CanalPD16A). Here we provide evidence that specific phylotypes detected have the potential to be used as biomarkers and should be evaluated in future studies as proxies for sediment disturbance associated with port activity.
Collapse
Affiliation(s)
- Newton C M Gomes
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wu P, Wang YS, Sun FL, Wu ML, Peng YL. Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases in the sediments from the Pearl River estuary, China. Appl Microbiol Biotechnol 2013; 98:875-84. [PMID: 23558584 DOI: 10.1007/s00253-013-4854-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 11/24/2022]
Abstract
Bacterial community compositions were characterized using denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene in the sediments of the Pearl River estuary. Sequencing analyses of the excised bands indicated that Gram-negative bacteria, especially Gammaproteobacteria, were dominant in the Pearl River estuary. The diversity of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) gene in this estuary was then assessed by clone library analysis. The phylogenetic analyses showed that all PAH-RHD gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to the nagAc gene described for Ralstonia sp. U2 or nahAc gene for Pseudomonas sp. 9816-4, while the PAH-RHD gene sequences of Gram-positive bacteria (PAH-RHD[GP]) at sampling site A1 showed high sequence similarity to the nidA gene from Mycobacterium species. Meanwhile, molecular diversity of the two functional genes was higher at the upstream of this region, while lower at the downstream. Redundancy analysis indicated that environmental factors, such as NH₄--N, ∑PAHs, pH, SiO₃--Si, and water depth, affected the distribution of the PAH-RHD[GN] gene in the Pearl River estuary.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | | | | | | | | |
Collapse
|
27
|
Bayen S. Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. ENVIRONMENT INTERNATIONAL 2012; 48:84-101. [PMID: 22885665 DOI: 10.1016/j.envint.2012.07.008] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 07/05/2012] [Accepted: 07/22/2012] [Indexed: 05/21/2023]
Abstract
Although their ecological and socioeconomic importance has received recent attention, mangrove ecosystems are one of the most threatened tropical environments. Besides direct clearance, hydrological alterations, climatic changes or insect infestations, chemical pollution could be a significant contributor of mangrove degradation. The present paper reviews the current knowledge on the occurrence, bioavailability and toxic effects of trace contaminants in mangrove ecosystems. The literature confirmed that trace metals, Polycyclic Aromatic Hydrocarbons (PAHs), Persistent Organic Pollutants (POPs), Pharmaceuticals and Personal Care Products (PPCPs) and Endocrine Disrupters Compounds (EDCs) have been detected in various mangrove compartments (water, sediments and biota). In some cases, these chemicals have associated toxic effects on mangrove ecosystem species, with potential impact on populations and biodiversity in the field. However, nearly all studies about the bioavailability and toxic effects of contaminants in mangrove ecosystems focus on selected trace metals, PAHs or some "conventional" POPs, and virtually no data exist for other contaminant groups. The specificities of mangrove ecosystems (e.g. biology, physico-chemistry and hydrology) support the need for specific ecotoxicological tools. This review highlights the major data and methodological gaps which should be addressed to refine the risk assessment of trace pollutants in mangrove ecosystems.
Collapse
Affiliation(s)
- Stéphane Bayen
- Singapore-Delft Water Alliance, National University of Singapore, Engineering Workshop 1, #02-05, No. 2 Engineering Drive 2, Singapore 117577, Singapore.
| |
Collapse
|
28
|
Ghizelini AM, Mendonça-Hagler LCS, Macrae A. Microbial diversity in Brazilian mangrove sediments - a mini review. Braz J Microbiol 2012; 43:1242-54. [PMID: 24031949 PMCID: PMC3769006 DOI: 10.1590/s1517-83822012000400002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 06/07/2012] [Indexed: 11/21/2022] Open
Abstract
The importance and protection of mangrove ecosystems has been recognized in Brazilian Federal law since 1965. Being protected in law, however, has not always guaranteed their protection in practice. Mangroves are found in coastal and estuarine locations, which are prime real estate for the growth of cities, ports and other economic activities important for Brazilian development. In this mini-review we introduce what mangroves are and why they are so important. We give a brief overview of the microbial diversity found in mangrove sediments and then focus on diversity studies from Brazilian mangroves. We highlight the breadth and depth of knowledge about mangrove microbial communities gained from studying Brazilian mangroves. We report on the exciting findings of molecular microbial ecology methods that have been very successfully applied to study bacterial communities. We note that there have been fewer studies that focus on fungal communities and that fungal diversity studies deserve more attention. The review ends with a look at how a combination of new molecular biology methods and isolation studies are being developed to monitor and conserve mangrove ecosystems and their associated microbial communities. These recent studies are having a global impact and we hope they will help to protect and re-establish mangrove ecosystems.
Collapse
Affiliation(s)
- Angela Michelato Ghizelini
- Programa de Pós Graduação em Biotecnologia Vegetal, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brasil
| | | | - Andrew Macrae
- Programa de Pós Graduação em Biotecnologia Vegetal, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brasil
- Instituto de Microbiologia Prof. Paulo de Góes, Universidade Federal do Rio de Janeiro, RJ, Brasil
| |
Collapse
|
29
|
Ding GC, Heuer H, Smalla K. Dynamics of bacterial communities in two unpolluted soils after spiking with phenanthrene: soil type specific and common responders. Front Microbiol 2012; 3:290. [PMID: 22934091 PMCID: PMC3423926 DOI: 10.3389/fmicb.2012.00290] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/23/2012] [Indexed: 11/13/2022] Open
Abstract
Considering their key role for ecosystem processes, it is important to understand the response of microbial communities in unpolluted soils to pollution with polycyclic aromatic hydrocarbons (PAH). Phenanthrene, a model compound for PAH, was spiked to a Cambisol and a Luvisol soil. Total community DNA from phenanthrene-spiked and control soils collected on days 0, 21, and 63 were analyzed based on PCR-amplified 16S rRNA gene fragments. Denaturing gradient gel electrophoresis (DGGE) fingerprints of bacterial communities increasingly deviated with time between spiked and control soils. In taxon specific DGGE, significant responses of Alphaproteobacteria and Actinobacteria became only detectable after 63 days, while significant effects on Betaproteobacteria were detectable in both soils after 21 days. Comparison of the taxonomic distribution of bacteria in spiked and control soils on day 63 as revealed by pyrosequencing indicated soil type specific negative effects of phenanthrene on several taxa, many of them belonging to the Gamma-, Beta-, or Deltaproteobacteria. Bacterial richness and evenness decreased in spiked soils. Despite the significant differences in the bacterial community structure between both soils on day 0, similar genera increased in relative abundance after PAH spiking, especially Sphingomonas and Polaromonas. However, this did not result in an increased overall similarity of the bacterial communities in both soils.
Collapse
Affiliation(s)
- Guo-Chun Ding
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants Braunschweig, Germany
| | | | | |
Collapse
|
30
|
Martin F, Malagnoux L, Violet F, Jakoncic J, Jouanneau Y. Diversity and catalytic potential of PAH-specific ring-hydroxylating dioxygenases from a hydrocarbon-contaminated soil. Appl Microbiol Biotechnol 2012; 97:5125-35. [PMID: 22903320 DOI: 10.1007/s00253-012-4335-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
Ring-hydroxylating dioxygenases (RHDs) catalyze the initial oxidation step of a range of aromatic hydrocarbons including polycyclic aromatic hydrocarbons (PAHs). As such, they play a key role in the bacterial degradation of these pollutants in soil. Several polymerase chain reaction (PCR)-based methods have been implemented to assess the diversity of RHDs in soil, allowing limited sequence-based predictions on RHD function. In the present study, we developed a method for the isolation of PAH-specific RHD gene sequences of Gram-negative bacteria, and for analysis of their catalytic function. The genomic DNA of soil PAH degraders was labeled in situ by stable isotope probing, then used to PCR amplify sequences specifying the catalytic domain of RHDs. Sequences obtained fell into five clusters phylogenetically linked to RHDs from either Sphingomonadales or Burkholderiales. However, two clusters comprised sequences distantly related to known RHDs. Some of these sequences were cloned in-frame in place of the corresponding region of the phnAIa gene from Sphingomonas CHY-1 to generate hybrid genes, which were expressed in Escherichia. coli as chimerical enzyme complexes. Some of the RHD chimeras were found to be competent in the oxidation of two- and three-ring PAHs, but other appeared unstable. Our data are interpreted in structural terms based on 3D modeling of the catalytic subunit of hybrid RHDs. The strategy described herein might be useful for exploring the catalytic potential of the soil metagenome and recruit RHDs with new activities from uncultured soil bacteria.
Collapse
Affiliation(s)
- Florence Martin
- Laboratoire de Chimie et Biologie des Métaux, CEA, DSV, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
31
|
Vitte I, Duran R, Hernandez-Raquet G, Mounier J, Jézéquel R, Bellet V, Balaguer P, Caumette P, Cravo-Laureau C. Dynamics of metabolically active bacterial communities involved in PAH and toxicity elimination from oil-contaminated sludge during anoxic/oxic oscillations. Appl Microbiol Biotechnol 2012; 97:4199-211. [DOI: 10.1007/s00253-012-4219-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
|
32
|
Ding GC, Heuer H, He Z, Xie J, Zhou J, Smalla K. More functional genes and convergent overall functional patterns detected by geochip in phenanthrene-spiked soils. FEMS Microbiol Ecol 2012; 82:148-56. [DOI: 10.1111/j.1574-6941.2012.01413.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 11/30/2022] Open
Affiliation(s)
- Guo-Chun Ding
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Holger Heuer
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Zhili He
- Institute for Environmental Genomics and Department of Botany and Microbiology; University of Oklahoma; Norman; OK; USA
| | - Jianping Xie
- Institute for Environmental Genomics and Department of Botany and Microbiology; University of Oklahoma; Norman; OK; USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Botany and Microbiology; University of Oklahoma; Norman; OK; USA
| | - Kornelia Smalla
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| |
Collapse
|
33
|
Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 2012; 78:5520-8. [PMID: 22660713 DOI: 10.1128/aem.00386-12] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.
Collapse
|
34
|
Paissé S, Goñi-Urriza M, Stadler T, Budzinski H, Duran R. Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution. FEMS Microbiol Ecol 2012; 80:77-86. [DOI: 10.1111/j.1574-6941.2011.01270.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/08/2011] [Accepted: 11/24/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- Sandrine Paissé
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Marisol Goñi-Urriza
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Thibault Stadler
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| | - Hélène Budzinski
- Institut des Sciences Moléculaires; UMR CNRS 5255; Université Bordeaux; Talence; France
| | - Robert Duran
- Equipe Environnement et Microbiologie; UMR CNRS IPREM 5254; Université de Pau; Pau Cedex; France
| |
Collapse
|
35
|
Cleary DFR, Smalla K, Mendonça-Hagler LCS, Gomes NCM. Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing. PLoS One 2012; 7:e29380. [PMID: 22247774 PMCID: PMC3256149 DOI: 10.1371/journal.pone.0029380] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/28/2011] [Indexed: 01/31/2023] Open
Abstract
Here, we use DGGE fingerprinting and barcoded pyrosequencing data, at six cut-off levels (85-100%), of all bacteria, Alphaproteobacteria and Betaproteobacteria to assess composition in the rhizosphere of nursery plants and nursery-raised transplants, native plants and bulk sediment in a mangrove habitat. When comparing compositional data based on DGGE fingerprinting and barcoded pyrosequencing at different cut-off levels, all revealed highly significant differences in composition among microhabitats. Procrustes superimposition revealed that ordination results using cut-off levels from 85-100% and DGGE fingerprint data were highly congruent with the standard 97% cut-off level. The various approaches revealed a primary gradient in composition from nursery to mangrove samples. The affinity between the nursery and transplants was greatest when using Betaproteobacteria followed by Alphaproteobacteria data. There was a distinct secondary gradient in composition from transplants to bulk sediment with native plants intermediate, which was most prevalent using all bacteria at intermediate cut-off levels (92-97%). Our results show that PCR-DGGE provides a robust and cost effective exploratory approach and is effective in distinguishing among a priori defined groups.
Collapse
Affiliation(s)
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | | | - Newton C. M. Gomes
- Department of Biology and CESAM, Universidade de Aveiro, Aveiro, Portugal
- * E-mail:
| |
Collapse
|
36
|
Comparison of the specificities and efficacies of primers for aromatic dioxygenase gene analysis of environmental samples. Appl Environ Microbiol 2011; 77:3551-7. [PMID: 21498766 DOI: 10.1128/aem.00331-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic dioxygenase genes have long been of interest for bioremediation and aromatic carbon cycling studies. To date, 115 primers and probes have been designed and used to analyze dioxygenase gene diversities in environmental samples. Here we analyze those primers' specificities, coverages, and PCR product lengths compared to known aromatic dioxygenase genes based on in silico analysis as well as summarize their differing advantages or effectiveness from over 50 reported experimental studies. We also provide some guidance for primer use in future studies.
Collapse
|
37
|
Gomes NCM, Cleary DFR, Pinto FN, Egas C, Almeida A, Cunha A, Mendonça-Hagler LCS, Smalla K. Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS One 2010; 5:e14065. [PMID: 21124923 PMCID: PMC2989908 DOI: 10.1371/journal.pone.0014065] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 10/26/2010] [Indexed: 11/18/2022] Open
Abstract
Background Mangrove forests are of global ecological and economic importance, but are also one of the world's most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants. Methodology/Principal Findings A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment. Conclusions/Significance In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments.
Collapse
Affiliation(s)
- Newton C M Gomes
- CESAM and Department of Biology, University of Aveiro, Aveiro, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Vilchez-Vargas R, Junca H, Pieper DH. Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 2010; 12:3089-104. [DOI: 10.1111/j.1462-2920.2010.02340.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LC, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010. [DOI: 10.1111/j.1574-6941.2010.00962.x 276-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Gomes NCM, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LCS, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010; 74:276-90. [PMID: 20812953 DOI: 10.1111/j.1574-6941.2010.00962.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched.
Collapse
Affiliation(s)
- Newton C M Gomes
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Um Y, Chang MW, Holoman TP. A simple and effective plating method to screen polycyclic aromatic hydrocarbon-degrading bacteria under various redox conditions. Appl Microbiol Biotechnol 2010; 88:291-7. [DOI: 10.1007/s00253-010-2761-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 06/08/2010] [Accepted: 07/05/2010] [Indexed: 11/28/2022]
|
42
|
Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol 2010; 76:4765-71. [PMID: 20495045 DOI: 10.1128/aem.00047-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel PCR primer system that targets a wide range of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD(alpha)) genes of both Gram-positive and Gram-negative bacteria was developed and used to study their abundance and diversity in two different soils in response to phenanthrene spiking. The specificities and target ranges of the primers predicted in silico were confirmed experimentally by cloning and sequencing of PAH-RHD(alpha) gene amplicons from soil DNA. Cloning and sequencing showed the dominance of phnAc genes in the contaminated Luvisol. In contrast, high diversity of PAH-RHD(alpha) genes of Gram-positive and Gram-negative bacteria was observed in the phenanthrene-spiked Cambisol. Quantitative real-time PCR based on the same primers revealed that 63 days after phenanthrene spiking, PAH-RHD(alpha) genes were 1 order of magnitude more abundant in the Luvisol than in the Cambisol, while they were not detected in both control soils. In conclusion, sequence analysis of the amplicons obtained confirmed the specificity of the novel primer system and revealed a soil type-dependent response of PAH-RHD(alpha) gene-carrying soil bacteria to phenanthrene spiking.
Collapse
|
43
|
Kumar M, Khanna S. Diversity of 16S rRNA and dioxygenase genes detected in coal-tar-contaminated site undergoing active bioremediation. J Appl Microbiol 2010; 108:1252-62. [DOI: 10.1111/j.1365-2672.2009.04523.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Taketani RG, Franco NO, Rosado AS, van Elsas JD. Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol 2010; 48:7-15. [PMID: 20221723 DOI: 10.1007/s12275-009-0147-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/09/2009] [Indexed: 02/01/2023]
Abstract
In this study, we examined the hypothesis that the microbial communities in mangrove sediments with different chemical and historical characteristics respond differently to the disturbance of a hydrocarbon spill. Two different mangrove sediments were sampled, one close to an oil refinery that had suffered a recent oil spill and another that had not been in contact with oil. Based on the sampled sediment, two sets of mesocosms were built, and oil was added to one of them. They were subjected to mimicked mangrove conditions and monitored for 75 days. Archaeal and bacterial communities were evaluated through PCR-DGGE. Both communities showed the emergence of small numbers of novel bands in response to oil pollution. 16S rRNA gene clone libraries were constructed from both mesocosms before the addition of oil and at day 75 after oil addition. LIBSHUFF analysis showed that both mangrove-based mesocosms contained similar communities at the start of the experiment and that they were different from the initial one, as well as from each other, after 75 days. These results hint at a role of environmental history that is not obvious from community diversity indicators, but is apparent from the response to the applied stress.
Collapse
Affiliation(s)
- Rodrigo Gouvêa Taketani
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
45
|
Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010; 3:136-64. [PMID: 21255317 PMCID: PMC3836582 DOI: 10.1111/j.1751-7915.2009.00130.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022] Open
Abstract
Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome Systems, Faculty of Bionanoscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Kanagawa-ken, Yokohama 236-0027, Japan.
| | | |
Collapse
|
46
|
Montgomery MT, Boyd TJ, Osburn CL, Smith DC. PAH mineralization and bacterial organotolerance in surface sediments of the Charleston Harbor estuary. Biodegradation 2009; 21:257-66. [PMID: 19760111 PMCID: PMC2829130 DOI: 10.1007/s10532-009-9298-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/01/2009] [Indexed: 11/16/2022]
Abstract
Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December).
Collapse
|
47
|
Diversity, abundance, and consistency of microbial oxygenase expression and biodegradation in a shallow contaminated aquifer. Appl Environ Microbiol 2009; 75:6478-87. [PMID: 19700556 DOI: 10.1128/aem.01091-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The diversity of Rieske dioxygenase genes and short-term temporal variability in the abundance of two selected dioxygenase gene sequences were examined in a naphthalene-rich, coal tar waste-contaminated subsurface study site. Using a previously published PCR-based approach (S. M. Ní Chadhain, R. S. Norman, K. V. Pesce, J. J. Kukor, and G. J. Zylstra, Appl. Environ. Microbiol. 72:4078-4087, 2006) a broad suite of genes was detected, ranging from dioxygenase sequences associated with Rhodococcus and Sphingomonas to 32 previously uncharacterized Rieske gene sequence clone groups. The nag genes appeared frequently (20% of the total) in two groundwater monitoring wells characterized by low ( approximately 10(2) ppb; approximately 1 muM) ambient concentrations of naphthalene. A quantitative competitive PCR assay was used to show that abundances of nag genes (and archetypal nah genes) fluctuated substantially over a 9-month period. To contrast short-term variation with long-term community stability, in situ community gene expression (dioxygenase mRNA) and biodegradation potential (community metabolism of naphthalene in microcosms) were compared to measurements from 6 years earlier. cDNA sequences amplified from total RNA extracts revealed that nah- and nag-type genes were expressed in situ, corresponding well with structural gene abundances. Despite evidence for short-term (9-month) shifts in dioxygenase gene copy number, agreement in field gene expression (dioxygenase mRNA) and biodegradation potential was observed in comparisons to equivalent assays performed 6 years earlier. Thus, stability in community biodegradation characteristics at the hemidecadal time frame has been documented for these subsurface microbial communities.
Collapse
|
48
|
Flocco CG, Gomes NCM, Mac Cormack W, Smalla K. Occurrence and diversity of naphthalene dioxygenase genes in soil microbial communities from the Maritime Antarctic. Environ Microbiol 2009; 11:700-14. [PMID: 19278452 DOI: 10.1111/j.1462-2920.2008.01858.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diversity of naphthalene dioxygenase genes (ndo) in soil environments from the Maritime Antarctic was assessed, dissecting as well the influence of the two vascular plants that grow in the Antarctic: Deschampsia antarctica and Colobanthus quitensis. Total community DNA was extracted from bulk and rhizosphere soil samples from Jubany station and Potter Peninsula, South Shetland Islands. ndo genes were amplified by a nested PCR and analysed by denaturant gradient gel electrophoresis approach (PCR-DGGE) and cloning and sequencing. The ndo-DGGE fingerprints of oil-contaminated soil samples showed even and reproducible patterns, composed of four dominant bands. The presence of vascular plants did not change the relative abundance of ndo genotypes compared with bulk soil. For non-contaminated sites, amplicons were not obtained for all replicates and the variability among the fingerprints was comparatively higher, likely reflecting a lower abundance of ndo genes. The phylogenetic analyses showed that all sequences were affiliated to the nahAc genes closely related to those described for Pseudomonas species and related mobile genetic elements. This study revealed that a microdiversity of nahAc-like genes exists in microbial communities of Antarctic soils and quantitative PCR indicated that their relative abundance was increased in response to anthropogenic sources of pollution.
Collapse
Affiliation(s)
- Cecilia G Flocco
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants (JKI), Braunschweig, Germany.
| | | | | | | |
Collapse
|
49
|
Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 2009; 11:2253-70. [PMID: 19453698 DOI: 10.1111/j.1462-2920.2009.01947.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We analysed the genome of the aromatic hydrocarbon-degrading, facultatively chemolithotrophic betaproteobacterium, Polaromonas naphthalenivorans strain CJ2. Recent work has increasingly shown that Polaromonas species are prevalent in a variety of pristine oligotrophic environments, as well as polluted habitats. Besides a circular chromosome of 4.4 Mb, strain CJ2 carries eight plasmids ranging from 353 to 6.4 kb in size. Overall, the genome is predicted to encode 4929 proteins. Comparisons of DNA sequences at the individual gene, gene cluster and whole-genome scales revealed strong trends in shared heredity between strain CJ2 and other members of the Comamonadaceae and Burkholderiaceae. blastp analyses of protein coding sequences across strain CJ2's genome showed that genetic commonalities with other betaproteobacteria diminished significantly in strain CJ2's plasmids compared with the chromosome, especially for the smallest ones. Broad trends in nucleotide characteristics (GC content, GC skew, Karlin signature difference) showed at least six anomalous regions in the chromosome, indicating alteration of genome architecture via horizontal gene transfer. Detailed analysis of one of these anomalous regions (96 kb in size, containing the nag-like naphthalene catabolic operon) indicates that the fragment's insertion site was within a putative MiaB-like tRNA-modifying enzyme coding sequence. The mosaic nature of strain CJ2's genome was further emphasized by the presence of 309 mobile genetic elements scattered throughout the genome, including 131 predicted transposase genes, 178 phage-related genes, and representatives of 12 families of insertion elements. A total of three different terminal oxidase genes were found (putative cytochrome aa(3)-type oxidase, cytochrome cbb(3)-type oxidase and cytochrome bd-type quinol oxidase), suggesting adaptation by strain CJ2 to variable aerobic and microaerobic conditions. Sequence-suggested abilities of strain CJ2 to carry out nitrogen fixation and grow on the aromatic compounds, biphenyl and benzoate, were experimentally verified. These new phenotypes and genotypes set the stage for gaining additional insights into the physiology and biochemistry contributing to strain CJ2's fitness in its native habitat, contaminated sediment.
Collapse
Affiliation(s)
- Jane M Yagi
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
50
|
Debruyn JM, Sayler GS. Microbial community structure and biodegradation activity of particle-associated bacteria in a coal tar contaminated creek. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3047-3053. [PMID: 19534112 DOI: 10.1021/es803373y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Chattanooga Creek Superfund site (Chattanooga, TN) is one of the most polluted waterways in the southeastern U.S. with high polycyclic aromatic hydrocarbon (PAH) concentrations in the sediments. PAHs associate with suspended solids in the water column, and may be redeposited onto the floodplain. These suspended particles represent an interesting but understudied environment for PAH-degrading microbial communities. This study tested the hypotheses that particle-associated bacterial (PAB) communities have genotypic potential (PAH-dioxygenase genes) and activity (naphthalene and pyrene mineralization), and can contribute to natural attenuation of PAHs in Chattanooga Creek. Upstream of the Superfund site, mineralization ranged from 0.2 to 2.0% of added 14C-naphthalene and 0 to 0.1% 14C-pyrene (after 40 h), with first order biodegradation rate constants (k1) ranging from 1.09 to 9.18 x 10(-5) h(-1) and 0 to 1.13 x 10(-6) h(-1), respectively. Mineralization was significantly greater in PAB communities within the contaminated zone, with 11.8 to 31.2% 14C-naphthalene (k1 5.34 to 14.2 x 10(-4) h(-1)) and 1.3 to 6.6% 14C-pyrene mineralized (k1 2.89 to 15.0 x 10(-5) h(-1)). Abundances of nagAc (naphthalene dioxygenase) and nidA (pyrene dioxygenase) genes indicated that PAB communities harbored populations with genetic potential for both low- and high-molecularweight PAH degradation, and quantification of Mycobacterium 16S rDNA genes indicated that PAH-degrading mycobacteria are also prevalent in this environment. Phylogenetic comparisons (T-RFLPs) between PAB and sediments indicated these microbial communities were taxonomically distinct, but shared some functional similarities, namely PAH catabolic genotypes, mineralization capabilities, and community structuring along a contamination gradient
Collapse
Affiliation(s)
- Jennifer M Debruyn
- Center for Environmental Biotechnology and Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|